WO2021035899A1 - 一种斗轮机用的耐磨碳刷材料及其制备方法 - Google Patents

一种斗轮机用的耐磨碳刷材料及其制备方法 Download PDF

Info

Publication number
WO2021035899A1
WO2021035899A1 PCT/CN2019/111560 CN2019111560W WO2021035899A1 WO 2021035899 A1 WO2021035899 A1 WO 2021035899A1 CN 2019111560 W CN2019111560 W CN 2019111560W WO 2021035899 A1 WO2021035899 A1 WO 2021035899A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
carbon brush
wear
brush material
resistant carbon
Prior art date
Application number
PCT/CN2019/111560
Other languages
English (en)
French (fr)
Inventor
颜晓磊
万正喜
许�鹏
Original Assignee
湖南长重机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南长重机器股份有限公司 filed Critical 湖南长重机器股份有限公司
Publication of WO2021035899A1 publication Critical patent/WO2021035899A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/20Contacts for co-operation with commutator or slip-ring, e.g. contact brush characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/12Manufacture of brushes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/10Connectors or connections adapted for particular applications for dynamoelectric machines

Definitions

  • the invention relates to the technical field of carbon brush materials, in particular to a wear-resistant carbon brush material for bucket wheel machines and a preparation method thereof.
  • Bucket wheel stacker-reclaimer is a kind of heavy equipment used in large bulk cargo ports, thermal power plants, large earthworks, steel plants, cement plants and other places to stack coal, coke, ore, salt and other materials.
  • the motor is an important part of the power system of the bucket wheel machine, and the carbon brush is a type of friction device that transmits energy and signals between the fixed part and the rotating part of the motor. It is an important component of the motor and is made of graphite and adhesive.
  • the mixture is called carbon brush because its main component is carbon.
  • carbon brushes are required to have good electrical, thermal, and lubricating properties, and they are required to have a certain mechanical strength and the instinct of reversing sparks.
  • Wear resistance is an important indicator of the performance of carbon brush materials.
  • the development of carbon brush materials with excellent wear resistance is a necessary condition to ensure the performance of the entire equipment and prolong the service life. Because although graphite, the main raw material for carbon brush materials, has good wear resistance, there is a problem of easy wear during actual use, which is difficult to overcome. If the wear resistance of carbon brushes is not improved, it will seriously affect the entire The performance and service life of the equipment.
  • the invention patent with the authorized announcement number CN103701004B discloses a carbon brush and a preparation method thereof.
  • the carbon brush is prepared from the following mass fraction components: 20-90wt% carbon nanotubes, 0-60wt% activated carbon, 2-10wt% % Of titanium-containing nano-compound and 5-20wt% of metal powder or its oxide powder or its salt powder.
  • the carbon brush material has excellent electrical conductivity, wear resistance and toughness, but the carbon nanotubes used in the preparation of the carbon brush are relatively harsh in synthesis, the output is relatively small, and the price is relatively expensive.
  • the present invention provides a wear-resistant carbon brush material for bucket wheel machines.
  • the carbon brush material has good wear resistance, high conductivity, low production cost, and can effectively reduce sparks during carbon brush work. Extend the service life of carbon brush materials.
  • a wear-resistant carbon brush material for bucket turbines made from the following parts by weight of raw materials: diisopropyl bis(triethanolamine) titanate modified graphene oxide 10-20 parts, graphite powder 40-60 parts, Nb-Y-Sr-Cu 10-20 parts, Cu-Sb-S nanocrystals 1-3 parts, N-trimethoxysilylpropyl-N,N,N -0.2-0.5 parts of trimethylammonium chloride, 8-12 parts of hyperbranched polyurethane, 1-3 parts of carboxymethyl chitosan, 3-6 parts of carbon-coated diamond co-doped with nitrogen, fluorine and boron.
  • the preparation method of the bis(triethanolamine) diisopropyl titanate modified graphene oxide includes the following steps: adding bis(triethanolamine) diisopropyl titanate and graphene oxide to ethanol, The reaction was stirred at 60-80°C for 3-5 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the mass ratio of diisopropyl bis(triethanolamine) titanate, graphene oxide, and ethanol is 0.2:(3-5):(10-15).
  • the preparation method of the Nb-Y-Sr-Cu includes the following steps: mixing Nb, Y, Sr, and Cu, and then placing them in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr-Cu, Then, it is crushed by hydrogen breaking method and pulverized into alloy powder with an average particle size of 5-10 ⁇ m by jet milling.
  • the heat treatment temperature is 1100°C ⁇ 1200°C, and the sintering time is 2 ⁇ 4 hours.
  • the mass ratio of Nb, Y, Sr, and Cu is (1-2):(0.05-0.1):(0.1-0.2):(70-80).
  • the method for preparing nitrogen, fluorine and boron co-doped carbon-coated diamond includes the following steps: dispersing diamond powder in an aqueous solution of ammonium fluoroborate with a mass fraction of 20-30%, and stirring at 60-80°C 4-6 hours, after centrifugation, drying, and finally calcining in a nitrogen atmosphere at 500-600°C to obtain nitrogen, fluorine and boron co-doped carbon-coated diamond; the mass ratio of the diamond powder to the aqueous solution of ammonium fluoroborate is 1:(20 -30).
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 70-90°C for 1-2 hours, and then put into a pulverizer to reflux and pulverize. The powder is passed through a 100-200 mesh sieve to obtain micropowder. Finally, the micropowder is strip-line pressed and molded, and the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering. After sintering, it is cooled, punched, ground, and buried. Wire and grinding arc are used to make the wear-resistant carbon brush material.
  • the high temperature and high pressure sintering is vacuum hot pressing sintering or spark plasma sintering
  • the cavity vacuum degree is 25-35 Pa
  • the sintering temperature is 1100-1300°C
  • the pressure is 18-25 MPa
  • the sintering time is 3 to 5 hours.
  • wear-resistant carbon brush material for bucket turbines can also be used in power systems of automobiles, ships, excavators, and the like.
  • the wear-resistant carbon brush material for bucket wheel machines provided by the present invention has a simple and easy preparation method, abundant raw material sources, suitable for the use requirements of high-end products for carbon brush materials, and high promotion and application value.
  • the wear-resistant carbon brush material for bucket turbines provided by the present invention overcomes the problem of easy wear of traditional graphite-based carbon brushes in actual use, which is difficult to overcome. If the wear resistance of the carbon brushes is not improved , The technical defects that will seriously affect the performance and service life of the entire equipment, have good wear resistance, high conductivity, low preparation cost, can effectively reduce the sparks when the carbon brush is working, and extend the service life of the carbon brush material.
  • a wear-resistant carbon brush material for bucket turbines provided by the present invention is added with nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the introduction of diamond can improve the strength and hardness of the carbon brush material.
  • Improve the conductivity of diamond, through the co-doping of nitrogen, fluorine and boron, can improve the activity of the material, and further improve its conductivity;
  • the addition of Cu-Sb-S nanocrystals can improve the wear resistance of the carbon brush material, making the carbon brush work
  • the carbon film formed on the surface of the commutator is removed by it; the synergistic effect of bis(triethanolamine) diisopropyl titanate modified graphene oxide, graphite powder, and Nb-Y-Sr-Cu can improve the conductivity of the carbon brush material
  • the synergistic effect of various raw materials reduces the metal content, effectively avoiding the problem of excessive electric spark when the current is too large;
  • the addition of Nb, Y, and Sr elements
  • organic titanium is introduced to further improve conductivity and abrasion resistance; hyperbranched polyurethane and carboxymethyl chitosan are added to have a bonding effect, which has strong adhesion and is not easy to fall off.
  • the carboxyl group on the sugar and the ammonium group on the coupling agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride undergo an ion exchange reaction, and the generated hydrogen chloride is volatilized and removed, so that the components form an organic whole .
  • a wear-resistant carbon brush material for bucket wheel machine made of the following raw materials by weight: 10 parts of bis(triethanolamine) diisopropyl titanate modified graphene oxide, 40 parts of graphite powder, Nb-Y-Sr- Cu 10 parts, Cu-Sb-S nanocrystals 1 part, N-trimethoxysilyl-N,N,N-trimethylammonium chloride 0.2 parts, hyperbranched polyurethane 8 parts, carboxymethyl chitosan 1 part, 3 parts of carbon-coated diamond co-doped with nitrogen, fluorine and boron.
  • the preparation method of the bis(triethanolamine) diisopropyl titanate modified graphene oxide includes the following steps: adding 2 g of bis(triethanolamine) diisopropyl titanate and 30 g of graphene oxide into 100 g of ethanol, The reaction was stirred at 60°C for 3 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the preparation method of the Nb-Y-Sr-Cu includes the following steps: mixing Nb 10g, Y 0.5g, Sr 1g, and Cu 700g, and then placing them in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr- Cu is subsequently crushed by hydrogen breaking method and pulverized into alloy powder with an average particle size of 5 ⁇ m by jet milling.
  • the heat treatment temperature is 1100° C. and the sintering time is 2 hours.
  • the method for preparing nitrogen, fluorine and boron co-doped carbon-coated diamond includes the following steps: dispersing 10 g of diamond powder in 200 g of an aqueous solution of 20% ammonium fluoroborate by mass, stirring at 60°C for 4 hours, and then centrifuging , Dried, and finally calcined at 500°C in a nitrogen atmosphere to obtain nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 70°C for 1 hour, and then put into a pulverizer to reflux and pulverize, and the obtained powder is passed through a 100-mesh sieve.
  • the micropowder is prepared, and finally the micropowder strip is pressed into a molding.
  • the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering.
  • the sintering After the sintering is completed, it is cooled, punched, ground, buried wire and arc ground is used to make the resistant Grinding carbon brush materials; the high temperature and high pressure sintering is vacuum hot pressing sintering, the cavity vacuum is 25 Pa, the sintering temperature is 1100° C., the pressure is 18 MPa, and the sintering time is 3 hours.
  • a wear-resistant carbon brush material for bucket wheel machine made of the following raw materials by weight: 12 parts of bis(triethanolamine) diisopropyl titanate modified graphene oxide, 45 parts of graphite powder, Nb-Y-Sr- Cu 12 parts, Cu-Sb-S nanocrystals 1.5 parts, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride 0.3 parts, hyperbranched polyurethane 9 parts, carboxymethyl chitosan 1.5 parts, 4 parts of nitrogen, fluorine and boron co-doped carbon coated diamond.
  • the method for preparing diisopropyl bis(triethanolamine) titanate modified graphene oxide includes the following steps: adding 2 g of diisopropyl bis(triethanolamine) titanate and 35 g of graphene oxide to 110 g of ethanol, and The reaction was stirred at 65°C for 3.5 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the preparation method of Nb-Y-Sr-Cu includes the following steps: mixing Nb 13g, Y 0.7g, Sr 1.3g, and Cu 730g, and then place the mixture in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr -Cu, which is crushed by hydrogen cracking method and powdered into alloy powder with an average particle size of 7 ⁇ m by jet milling.
  • the heat treatment temperature is 1130°C and the sintering time is 2.5 hours.
  • the method for preparing nitrogen, fluorine and boron co-doped carbon-coated diamond includes the following steps: dispersing 10 g of diamond powder in 230 g of 23% ammonium fluoroborate aqueous solution, stirring at 65°C for 4.5 hours, and then centrifuging , Dried, and finally calcined at 530°C in a nitrogen atmosphere to obtain nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 75°C for 1.3 hours, and then put into a crusher to reflux and crush, and the obtained powder is passed through a 130-mesh sieve.
  • the micropowder is prepared, and finally the micropowder strip is pressed into a molding.
  • the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering.
  • the sintering After the sintering is completed, it is cooled, punched, ground, buried wire and arc ground is used to make the resistant Grinding carbon brush materials; the high temperature and high pressure sintering is spark plasma sintering, the cavity vacuum is 27 Pa, the sintering temperature is 1150° C., the pressure is 19 MPa, and the sintering time is 3.5 hours.
  • a wear-resistant carbon brush material for bucket wheel machine which is made of the following parts by weight of raw materials: 15 parts of bis(triethanolamine) diisopropyl titanate modified graphene oxide, 50 parts of graphite powder, Nb-Y-Sr- Cu 15 parts, Cu-Sb-S nanocrystals 2 parts, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride 0.35 parts, hyperbranched polyurethane 10 parts, carboxymethyl chitosan 2 parts, 4.5 parts of nitrogen, fluorine and boron co-doped carbon-coated diamond.
  • the method for preparing diisopropyl bis(triethanolamine) titanate modified graphene oxide includes the following steps: adding 2 g of diisopropyl bis(triethanolamine) titanate and 40 g of graphene oxide to 130 g of ethanol, and The reaction was stirred at 70°C for 4 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the preparation method of Nb-Y-Sr-Cu includes the following steps: mixing Nb 15g, Y 0.8g, Sr 1.5g, and Cu 750g, and then place the mixture in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr -Cu, which is crushed by hydrogen cracking method and pulverized into alloy powder with an average particle size of 7.5 ⁇ m by jet milling.
  • the heat treatment temperature is 1150°C and the sintering time is 3 hours.
  • the method for preparing nitrogen, fluorine and boron co-doped carbon-coated diamond includes the following steps: dispersing 10 g of diamond powder in 250 g of 25% ammonium fluoroborate aqueous solution, stirring at 70°C for 5 hours, and then centrifuging , Dried, and finally calcined at 550°C in a nitrogen atmosphere to obtain nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 80°C for 1.5 hours, and then put into a pulverizer to reflux and pulverize, and the obtained powder is passed through a 150-mesh sieve.
  • the micropowder is prepared, and finally the micropowder strip is pressed into a molding.
  • the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering.
  • the sintering After the sintering is completed, it is cooled, punched, ground, buried wire and arc ground is used to make the resistant Grinding carbon brush materials; the high temperature and high pressure sintering is vacuum hot pressing sintering, the cavity vacuum degree is 29 Pa, the sintering temperature is 1200° C., the pressure is 21 MPa, and the sintering time is 4 hours.
  • the high temperature and high pressure sintering is vacuum hot pressing sintering, the cavity vacuum degree is 29 Pa, the sintering temperature is 1200° C., the pressure is 21 MPa, and the sintering time is 4 hours.
  • a wear-resistant carbon brush material for bucket wheel machine which is made of the following raw materials by weight: 18 parts of bis(triethanolamine) diisopropyl titanate modified graphene oxide, 55 parts of graphite powder, Nb-Y-Sr- Cu 18 parts, Cu-Sb-S nanocrystals 2.5 parts, N-trimethoxysilyl-N,N,N-trimethylammonium chloride 0.45 parts, hyperbranched polyurethane 11 parts, carboxymethyl chitosan 2.5 parts, 5.5 parts of nitrogen, fluorine and boron co-doped carbon-coated diamond.
  • the preparation method of the bis(triethanolamine) diisopropyl titanate modified graphene oxide includes the following steps: adding 2 g of bis(triethanolamine) diisopropyl titanate and 45 g of graphene oxide into 140 g of ethanol, and The reaction was stirred at 75°C for 4.5 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the preparation method of the Nb-Y-Sr-Cu includes the following steps: mixing Nb 19g, Y 0.9g, Sr 1.9g, and Cu 785g, and then place them in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr -Cu, then crushed by hydrogen breaking method and pulverized by jet milling into alloy powder with an average particle size of 9 ⁇ m.
  • the heat treatment temperature is 1190°C and the sintering time is 3.8 hours.
  • the method for preparing nitrogen, fluorine, and boron co-doped carbon-coated diamond includes the following steps: dispersing 10 g of diamond powder in 290 g of 28% ammonium fluoroborate aqueous solution, stirring at 78°C for 5.8 hours, and then centrifuging , Dried, and finally calcined at 590°C in a nitrogen atmosphere to obtain nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 88°C for 1.9 hours, and then put into a pulverizer to reflux and pulverize, and the obtained powder is passed through a 190 mesh sieve.
  • the micropowder is prepared, and finally the micropowder strip is pressed into a molding.
  • the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering.
  • the sintering After the sintering is completed, it is cooled, punched, ground, buried wire and arc ground is used to make the resistant Grinding carbon brush materials; the high-temperature and high-pressure sintering is spark plasma sintering, the cavity vacuum is 33 Pa, the sintering temperature is 1250° C., the pressure is 24 MPa, and the sintering time is 4.5 hours.
  • a wear-resistant carbon brush material for a bucket wheel machine which is made of the following parts by weight of raw materials: 20 parts of bis(triethanolamine) diisopropyl titanate modified graphene oxide, 60 parts of graphite powder, Nb-Y-Sr- Cu 20 parts, Cu-Sb-S nanocrystals 3 parts, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride 0.5 parts, hyperbranched polyurethane 12 parts, carboxymethyl chitosan 3 parts, 6 parts of carbon-coated diamond co-doped with nitrogen, fluorine and boron.
  • the preparation method of the bis(triethanolamine) diisopropyl titanate modified graphene oxide includes the following steps: adding 2 g of bis(triethanolamine) diisopropyl titanate and 50 g of graphene oxide to 150 g of ethanol, and The reaction was stirred at 80°C for 5 hours, and then the ethanol was removed by rotary evaporation to obtain diisopropyl bis(triethanolamine) titanate modified graphene oxide.
  • the preparation method of Nb-Y-Sr-Cu includes the following steps: mixing Nb 20g, Y 1g, Sr 2g, and Cu 800g, and then placing them in an intermediate frequency vacuum induction melting furnace for smelting to obtain Nb-Y-Sr-Cu Then, it is crushed by hydrogen cracking method and pulverized into alloy powder with an average particle size of 10 ⁇ m by jet milling. During the smelting process, the heat treatment temperature is 1200°C and the sintering time is 4 hours.
  • the method for preparing nitrogen, fluorine and boron co-doped carbon-coated diamond includes the following steps: dispersing 10 g of diamond powder in 300 g of an aqueous solution of ammonium fluoroborate with a mass fraction of 30%, stirring at 80°C for 6 hours, and then centrifuging , Dried, and finally calcined at 600°C in a nitrogen atmosphere to obtain nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • the preparation method of the wear-resistant carbon brush material includes the following steps: after each raw material is put into a mixer and mixed uniformly, stirred at 90°C for 2 hours, and then put into a pulverizer to reflux and pulverize, and the obtained powder is passed through a 200-mesh sieve.
  • the micropowder is prepared, and finally the micropowder strip is pressed into a molding.
  • the molded product is sent to a sintering furnace for high-temperature and high-pressure sintering.
  • the sintering After the sintering is completed, it is cooled, punched, ground, buried wire and arc ground is used to make the resistant Grinding carbon brush materials; the high temperature and high pressure sintering is vacuum hot pressing sintering, the cavity vacuum is 35 Pa, the sintering temperature is 1300° C., the pressure is 25 MPa, and the sintering time is 5 hours.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that the graphene oxide modified by diisopropyl bis(triethanolamine) titanate is not added.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that Cu is used instead of Nb-Y-Sr-Cu.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that Cu-Sb-S nanocrystals are not added.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that carboxymethyl chitosan is not added.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride is not added.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that diamond is used instead of nitrogen, fluorine, and boron co-doped carbon-coated diamond.
  • a wear-resistant carbon brush material for a bucket wheel machine is basically the same as the formula and preparation method of Example 1, except that no nitrogen, fluorine, and boron co-doped carbon-coated diamond is added.
  • test conditions room temperature; test methods: 1. Conduct resistivity test according to JB/TB133.2-1999; 2. Conduct bulk density test according to JB/T8133.14-1999; 3. Carry out Rockwell hardness test according to JB/T8133.3-1999; 4. Carry out abrasion test according to GB/T 12444.1-1990.
  • Test results are shown in Table 1.
  • the wear-resistant carbon brush material for bucket wheel machines disclosed in the embodiment of the present invention has higher conductivity, greater hardness and better wear resistance, which is the result of the synergistic effect of various raw materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

公开了一种斗轮机用耐磨碳刷材料,其特征在于,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯10-20份、石墨粉40-60份、Nb-Y-Sr-Cu10-20份、Cu-Sb-S纳米晶体1-3份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.2-0.5份、超支化聚氨酯8-12份、羧甲基壳聚糖1-3份、氮氟硼共掺杂碳包覆金刚石3-6份。还公开了所述斗轮机用耐磨碳刷材料的制备方法。斗轮机用耐磨碳刷材料耐磨性好,导电性高,制备成本低,能有效降低碳刷工作时的火花,延长碳刷材料的使用寿命。

Description

一种斗轮机用的耐磨碳刷材料及其制备方法 技术领域
本发明涉及碳刷材料技术领域,尤其涉及一种斗轮机用的耐磨碳刷材料及其制备方法。
背景技术
斗轮堆取料机是一种应用于大型散货港口、火力发电厂、大型土方工程、钢厂、水泥厂等地,进行煤炭、焦炭、矿石、食盐等物料的堆取的重型设备。电动机是斗轮机动力系统的重要组成部分,而碳刷是电动机中固定部分和转动部分之间传递能量和信号的一类摩擦装置,是电动机的重要组成部件,是一种石墨和胶黏剂的混合体,由于其主要成分是碳,所以称为碳刷。碳刷作为导出导入电流的滑动接触体,要求其具有良好的导电、导热以及润滑性能,并要求其具有一定的机械强度和换向性火花的本能。
耐磨性是碳刷材料性能的一个重要指标,发展耐磨性能优异的碳刷材料是保障整个设备的使用性能和延长使用寿命的必要条件。因为尽管碳刷材料的主要制备原料石墨具有良好的耐磨性,但在实际使用过程中,存在易磨损的问题,难以克服,如果不提高碳刷的耐磨损性能,必将严重影响到整个设备的使用性能和使用寿命。
授权公告号为CN103701004B的发明专利公开了一种碳刷及其制备方法,该碳刷由以下质量分数的组分制备而成:20-90wt%碳纳米管、0-60wt%活性炭、2-10wt%含钛纳米化合物和5-20wt%金属粉末或其氧化物粉末或其盐类的粉末。该碳刷材料具有优良的导电性、耐磨性和韧性,但是该碳刷制备所使用碳纳米管的合成比较苛刻,产量比较小,且价格比较昂贵。
因此,开发一种耐磨性好,导电性高,制备成本低的斗轮机用耐磨碳刷材料显得尤为重要。
发明内容
为了克服现有技术中的缺陷,本发明提供一种斗轮机用耐磨碳刷材料,该碳刷材料耐磨性好,导电性高,制备成本低,能有效降低碳刷工作时的火花,延长碳刷材料的使用寿命。
为达到上述发明目的,本发明采用的技术方案是:一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯10-20份、石墨粉40-60份、Nb-Y-Sr-Cu 10-20份、Cu-Sb-S纳米晶体1-3份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.2-0.5份、超支化聚氨酯8-12份、羧甲基壳聚糖1-3份、氮氟硼共掺杂碳包覆金刚石3-6份。
进一步地,所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯、氧化石墨烯加入乙醇中,在60-80℃下搅拌反应3-5小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
优选地,所述二(三乙醇胺)钛酸二异丙酯、氧化石墨烯、乙醇的质量比为0.2:(3-5):(10-15)。
进一步地,所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb、Y、Sr、Cu混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为5~10μm的合金粉,其中,熔炼过程中,热处理温度为1100℃~1200℃,烧结时间为2~4小时。
优选地,所述Nb、Y、Sr、Cu的质量比为(1-2):(0.05-0.1):(0.1-0.2):(70-80)。
进一步地,所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉分散于质量分数为20-30%的氟硼酸铵的水溶液中,在60-80℃下搅拌4-6小时,后离心,干燥,最后在氮气氛围下500-600℃下煅烧得到氮氟硼共掺杂碳包覆金刚石;所述金刚石粉、氟硼酸铵的水溶液的质量比1:(20-30)。
进一步地,所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀后,在70-90℃下搅拌1-2小时,后投入粉碎机中回流粉碎,所得粉体过100-200目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料。
根据本发明的一实施例,所述高温高压烧结为真空热压烧结或放电等离子体烧结,腔体真空度为25~35Pa,烧结温度为1100~1300℃,压强为18~25MPa,烧结时间为3~5小时。
更进一步的,所述的一种斗轮机用耐磨碳刷材料还可用于汽车、轮船、挖掘机等的动力系统中。
采用上述技术方案所产生的有益效果在于:
(1)本发明提供的一种斗轮机用耐磨碳刷材料,制备方法简单易行,原料来源丰富,适合高档产品对碳刷材料的使用要求,推广应用价值高。
(2)本发明提供的一种斗轮机用耐磨碳刷材料,克服了传统石墨类碳刷在实际使用过程中,存在易磨损的问题,难以克服,如果不提高碳刷的耐磨损性能,必将严重影响到整个设备的使用性能和使用寿命的技术缺陷,具有耐磨性好,导电性高,制备成本低,能有效降低碳刷工作时的火花,延长碳刷材料的使用寿命。
(3)本发明提供的一种斗轮机用耐磨碳刷材料,添加氮氟硼共掺杂碳包覆金刚石,金刚石的引入能提高碳刷材料的强度和硬度,通过表面碳包覆,能改善金刚石的导电性,通过氮氟硼共掺杂,能提高材料的活性,进一步提高其导电性;Cu-Sb-S纳米晶体的加入能改善碳刷材料的耐磨性,使得碳刷工作时在换向器表面形成的碳皮膜被其削除;二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯、石墨粉、Nb-Y-Sr-Cu协同作用,能够改善碳刷材料的导电性,各原料协同作用,减少了金属含量,有效避免电流过大时,产生电火花过大的问题;Nb、Y、Sr元素的加入能改善导电性;(三乙醇胺)钛酸二异丙酯改性氧化石墨烯,有利于氧化石墨烯的分散及其与其他原料的相容。另外,通过改性,引入有机钛,进一步改善导电性和耐磨性;添加超支化聚氨酯和羧甲基壳聚糖,起到粘结作用,粘结力强,不易脱落,羧甲基壳聚糖上是羧基与偶联剂N-三甲氧基硅丙基-N,N,N-三甲基氯化铵上是铵基发生离子交换反应,生成的氯化氢挥发除去,使得各成分形成有机整体。
具体实施方式
为了使本技术领域人员更好地理解本发明的技术方案,并使本发明的上述特征、目的以及优点更加清晰易懂,下面结合实施例对本发明做进一步的说明。实施例仅用于说明本发明而不用于限制本发明的范围。
本发明下述实施例中所涉及到的原料均为商业购买。
实施例1
一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯10份、石墨粉40份、Nb-Y-Sr-Cu 10份、Cu-Sb-S纳米晶体1份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.2份、超支化聚氨酯8份、羧甲基壳聚糖1份、氮氟硼共掺杂碳包覆金刚石3份。
所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯2g、氧化石墨烯30g加入乙醇100g中,在60℃下搅拌反 应3小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb 10g、Y 0.5g、Sr 1g、Cu 700g混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为5μm的合金粉,其中,熔炼过程中,热处理温度为1100℃,烧结时间为2小时。
所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉10g分散于质量分数为20%的氟硼酸铵的水溶液200g中,在60℃下搅拌4小时,后离心,干燥,最后在氮气氛围下500℃下煅烧得到氮氟硼共掺杂碳包覆金刚石。
所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀后,在70℃下搅拌1小时,后投入粉碎机中回流粉碎,所得粉体过100目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料;所述高温高压烧结为真空热压烧结,腔体真空度为25Pa,烧结温度为1100℃,压强为18MPa,烧结时间为3小时。
实施例2
一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯12份、石墨粉45份、Nb-Y-Sr-Cu 12份、Cu-Sb-S纳米晶体1.5份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.3份、超支化聚氨酯9份、羧甲基壳聚糖1.5份、氮氟硼共掺杂碳包覆金刚石4份。
所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯2g、氧化石墨烯35g加入乙醇110g中,在65℃下搅拌反应3.5小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb 13g、Y 0.7g、Sr 1.3g、Cu 730g混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为7μm的合金粉,其中,熔炼过程中,热处理温度为1130℃,烧结时间为2.5小时。
所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉10g分散于质量分数为23%的氟硼酸铵的水溶液230g中,在65℃下搅拌4.5小时,后离心,干燥,最后在氮气氛围下530℃下煅烧得到氮氟硼共掺杂碳包覆金刚石。
所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀 后,在75℃下搅拌1.3小时,后投入粉碎机中回流粉碎,所得粉体过130目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料;所述高温高压烧结为放电等离子体烧结,腔体真空度为27Pa,烧结温度为1150℃,压强为19MPa,烧结时间为3.5小时。
实施例3
一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯15份、石墨粉50份、Nb-Y-Sr-Cu 15份、Cu-Sb-S纳米晶体2份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.35份、超支化聚氨酯10份、羧甲基壳聚糖2份、氮氟硼共掺杂碳包覆金刚石4.5份。
所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯2g、氧化石墨烯40g加入乙醇130g中,在70℃下搅拌反应4小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb 15g、Y 0.8g、Sr 1.5g、Cu 750g混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为7.5μm的合金粉,其中,熔炼过程中,热处理温度为1150℃,烧结时间为3小时。
所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉10g分散于质量分数为25%的氟硼酸铵的水溶液250g中,在70℃下搅拌5小时,后离心,干燥,最后在氮气氛围下550℃下煅烧得到氮氟硼共掺杂碳包覆金刚石。
所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀后,在80℃下搅拌1.5小时,后投入粉碎机中回流粉碎,所得粉体过150目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料;所述高温高压烧结为真空热压烧结,腔体真空度为29Pa,烧结温度为1200℃,压强为21MPa,烧结时间为4小时。
实施例4
一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯18份、石墨粉55份、Nb-Y-Sr-Cu 18份、Cu-Sb-S纳米晶体2.5份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.45份、超支化聚氨酯11份、羧甲基壳 聚糖2.5份、氮氟硼共掺杂碳包覆金刚石5.5份。
所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯2g、氧化石墨烯45g加入乙醇140g中,在75℃下搅拌反应4.5小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb 19g、Y 0.9g、Sr 1.9g、Cu 785g混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为9μm的合金粉,其中,熔炼过程中,热处理温度为1190℃,烧结时间为3.8小时。
所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉10g分散于质量分数为28%的氟硼酸铵的水溶液290g中,在78℃下搅拌5.8小时,后离心,干燥,最后在氮气氛围下590℃下煅烧得到氮氟硼共掺杂碳包覆金刚石。
所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀后,在88℃下搅拌1.9小时,后投入粉碎机中回流粉碎,所得粉体过190目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料;所述高温高压烧结为放电等离子体烧结,腔体真空度为33Pa,烧结温度为1250℃,压强为24MPa,烧结时间为4.5小时。
实施例5
一种斗轮机用耐磨碳刷材料,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯20份、石墨粉60份、Nb-Y-Sr-Cu 20份、Cu-Sb-S纳米晶体3份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.5份、超支化聚氨酯12份、羧甲基壳聚糖3份、氮氟硼共掺杂碳包覆金刚石6份。
所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯2g、氧化石墨烯50g加入乙醇150g中,在80℃下搅拌反应5小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb 20g、Y 1g、Sr 2g、Cu 800g混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为10μm的合金粉,其中,熔炼过程中,热处理温度为1200℃,烧结时间为4小时。
所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉10g 分散于质量分数为30%的氟硼酸铵的水溶液300g中,在80℃下搅拌6小时,后离心,干燥,最后在氮气氛围下600℃下煅烧得到氮氟硼共掺杂碳包覆金刚石。
所述耐磨碳刷材料的制备方法,包括如下步骤:将各原料投入混合机中混合均匀后,在90℃下搅拌2小时,后投入粉碎机中回流粉碎,所得粉体过200目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料;所述高温高压烧结为真空热压烧结,腔体真空度为35Pa,烧结温度为1300℃,压强为25MPa,烧结时间为5小时。
对比例1
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是没有添加二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
对比例2
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是用Cu代替Nb-Y-Sr-Cu。
对比例3
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是没有添加Cu-Sb-S纳米晶体。
对比例4
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是没有添加羧甲基壳聚糖。
对比例5
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是没有添加N-三甲氧基硅丙基-N,N,N-三甲基氯化铵。
对比例6
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是用金刚石代替氮氟硼共掺杂碳包覆金刚石。
对比例7
一种斗轮机用耐磨碳刷材料,与实施例1的配方和制备方法基本相同,不同的是没有添加氮氟硼共掺杂碳包覆金刚石。
对比例8
市售碳刷材料。
实施例样品和对比例样品物理性能测试如下,测试条件:室温;测试方法:1、按JB/TB133.2-1999进行电阻率试验;2、按JB/T8133.14-1999进行体积密度试验;3、按JB/T8133.3-1999进行洛氏硬度试验;4、按GB/T 12444.1-1990进行磨损量试验,测试结果如表1所示。
表1样品碳刷材料物理性能检测结果
Figure PCTCN2019111560-appb-000001
从表1中数据可知,本发明实施例公开的斗轮机用耐磨碳刷材料具有更高的导电率,更大的硬度和更优异的耐磨性能,这是各原料协同作用的结果。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (9)

  1. 一种斗轮机用耐磨碳刷材料,其特征在于,由如下重量份的原料制成:二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯10-20份、石墨粉40-60份、Nb-Y-Sr-Cu 10-20份、Cu-Sb-S纳米晶体1-3份、N-三甲氧基硅丙基-N,N,N-三甲基氯化铵0.2-0.5份、超支化聚氨酯8-12份、羧甲基壳聚糖1-3份、氮氟硼共掺杂碳包覆金刚石3-6份。
  2. 根据权利要求1所述的一种斗轮机用耐磨碳刷材料,其特征在于,所述二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯的制备方法,包括如下步骤:将二(三乙醇胺)钛酸二异丙酯、氧化石墨烯加入乙醇中,在60-80℃下搅拌反应3-5小时,后旋蒸除去乙醇,得到二(三乙醇胺)钛酸二异丙酯改性氧化石墨烯。
  3. 根据权利要求2所述的一种斗轮机用耐磨碳刷材料,其特征在于,所述二(三乙醇胺)钛酸二异丙酯、氧化石墨烯、乙醇的质量比为0.2:(3-5):(10-15)。
  4. 根据权利要求1所述的一种斗轮机用耐磨碳刷材料,其特征在于,所述Nb-Y-Sr-Cu的制备方法,包括如下步骤:将Nb、Y、Sr、Cu混合,后置于中频真空感应熔炼炉进行熔炼,得到Nb-Y-Sr-Cu,后依次经过氢破法破碎、气流磨粉化为平均粒径为5~10μm的合金粉;其中,熔炼过程中的热处理温度为1100℃~1200℃,烧结时间为2~4小时。
  5. 根据权利要求4所述的一种斗轮机用耐磨碳刷材料,其特征在于,所述Nb、Y、Sr、Cu的质量比为(1-2):(0.05-0.1):(0.1-0.2):(70-80)。
  6. 根据权利要求1所述的一种斗轮机用耐磨碳刷材料,其特征在于,所述氮氟硼共掺杂碳包覆金刚石的制备方法,包括如下步骤:将金刚石粉分散于质量分数为20-30%的氟硼酸铵的水溶液中,在60-80℃下搅拌4-6小时,后离心,干燥,最后在氮气氛围下500-600℃下煅烧得到氮氟硼共掺杂碳包覆金刚石;所述金刚石粉、氟硼酸铵的水溶液的质量比1:(20-30)。
  7. 如1-6任一项所述的一种斗轮机用耐磨碳刷材料的制备方法,其特征在于,包括如下步骤:将各原料投入混合机中混合均匀后,在70-90℃下搅拌1-2小时,后投入粉碎机中回流粉碎,所得粉体过100-200目筛,制得微粉,最后将所述微粉带线压制成型,成型后的产品送入烧结炉中进行高温高压烧结,烧结结束后经冷却、打孔、磨面、埋线和磨弧制成所述耐磨碳刷材料。
  8. 根据权利要求7所述的一种斗轮机用耐磨碳刷材料的制备方法,其特征在于, 所述高温高压烧结为真空热压烧结或放电等离子体烧结,腔体真空度为25~35Pa,烧结温度为1100~1300℃,压强为18~25MPa,烧结时间为3~5小时。
  9. 如1-6任一项所述的一种斗轮机用耐磨碳刷材料的应用方法,其特征在于,所述耐磨碳刷材料除用于斗轮机外,还用于汽车、轮船、挖掘机等的动力系统中。
PCT/CN2019/111560 2019-08-24 2019-10-17 一种斗轮机用的耐磨碳刷材料及其制备方法 WO2021035899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910786968.4A CN110483047B (zh) 2019-08-24 2019-08-24 一种斗轮机用的耐磨碳刷材料及其制备方法
CN201910786968.4 2019-08-24

Publications (1)

Publication Number Publication Date
WO2021035899A1 true WO2021035899A1 (zh) 2021-03-04

Family

ID=68553756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111560 WO2021035899A1 (zh) 2019-08-24 2019-10-17 一种斗轮机用的耐磨碳刷材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110483047B (zh)
WO (1) WO2021035899A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701004A (zh) * 2013-11-29 2014-04-02 武汉工程大学 一种电机用碳刷及其制备方法
CN104917020A (zh) * 2015-06-25 2015-09-16 湖南大学 一种自均质耐磨树脂型炭刷及制备方法
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106571573A (zh) * 2016-10-31 2017-04-19 阜阳市鼎铭汽车配件制造有限公司 一种掺混纳米金刚石的高耐磨铜基石墨电机碳刷及其制备方法
CN107573481A (zh) * 2017-09-29 2018-01-12 湖北常泰欣业科技有限公司 一种新型亲水性超支化聚氨酯酰亚胺的制备方法
CN109167229A (zh) * 2018-08-28 2019-01-08 大同新成新材料股份有限公司 一种铜基氧化石墨烯碳刷及其制备方法
DE102017131341A1 (de) * 2017-12-27 2019-06-27 Schunk Carbon Technology Gmbh Kohlebürste und Verfahren zur Herstellung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511728B1 (zh) * 1969-04-22 1976-01-20
CN102035118B (zh) * 2009-09-30 2013-09-18 苏州东豪碳素有限公司 串激交直流洗涤电机用电刷的制造配方
CN104901122A (zh) * 2015-05-15 2015-09-09 安徽天宇机电有限公司 一种性能优良的金属石墨电刷材料及其制备方法
CN104987073A (zh) * 2015-06-25 2015-10-21 合肥蓝科新材料有限公司 一种掺混立方氮化硼的高硬度高耐磨电机碳刷材料及其制备方法
CN105036747A (zh) * 2015-06-25 2015-11-11 合肥蓝科新材料有限公司 一种掺混纳米羟基磷灰石的高致密度电机碳刷材料及其制备方法
CN106521367A (zh) * 2016-10-31 2017-03-22 阜阳市鼎铭汽车配件制造有限公司 一种石墨烯‑玄武岩纤维增强的铜基石墨电机碳刷及其制备方法
CN108270135A (zh) * 2018-01-20 2018-07-10 云南大学 一种银合金包复铜合金复合丝电刷材料及其制备方法
CN109672064A (zh) * 2018-11-13 2019-04-23 云南先导新材料有限公司 一种钯合金复合丝电刷材料及其制备方法
CN109524866B (zh) * 2018-11-30 2021-01-15 大同新成新材料股份有限公司 一种石墨烯-纳米碳纤维增强铜基石墨电机碳刷及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701004A (zh) * 2013-11-29 2014-04-02 武汉工程大学 一种电机用碳刷及其制备方法
CN104917020A (zh) * 2015-06-25 2015-09-16 湖南大学 一种自均质耐磨树脂型炭刷及制备方法
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106571573A (zh) * 2016-10-31 2017-04-19 阜阳市鼎铭汽车配件制造有限公司 一种掺混纳米金刚石的高耐磨铜基石墨电机碳刷及其制备方法
CN107573481A (zh) * 2017-09-29 2018-01-12 湖北常泰欣业科技有限公司 一种新型亲水性超支化聚氨酯酰亚胺的制备方法
DE102017131341A1 (de) * 2017-12-27 2019-06-27 Schunk Carbon Technology Gmbh Kohlebürste und Verfahren zur Herstellung
CN109167229A (zh) * 2018-08-28 2019-01-08 大同新成新材料股份有限公司 一种铜基氧化石墨烯碳刷及其制备方法

Also Published As

Publication number Publication date
CN110483047A (zh) 2019-11-22
CN110483047B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN105154702B (zh) 一种铝基非晶/高熵合金复合材料及制备方法
CN101658940B (zh) 一种硬质合金回收及再生的方法
CN102242303B (zh) 一种原位纳米TiC陶瓷颗粒增强铜基复合材料及其制备方法
CN102142650B (zh) 纳米稀土复合高耐磨电刷添加剂及其制备方法
CN101967593A (zh) 含有稀土的超细晶粒硬质合金材料及其制备方法
CN101985717A (zh) 高韧性超粗晶钨钴硬质合金的制备方法
CN109321768B (zh) 一种ZrO2-Y2O3颗粒增强钼合金及其制备方法、复合粉体及其制备方法
CN110218928A (zh) 一种高强韧性Mo2FeB2基金属陶瓷及其制备方法
CN106785769B (zh) 一种导电耐磨金属石墨电刷及其制备方法
CN102517467A (zh) 一种粗晶粒硬质合金的制备方法
CN102600939A (zh) 纳米氧化锆陶瓷强化耐磨钢球及其制造工艺
CN103553619B (zh) 碳化钛和碳化钒复合材料及其生产方法和应用
CN102277533B (zh) 一种原位纳米TiC陶瓷颗粒增强铁基复合材料及其制备方法
CN102807207A (zh) 一种细结构的高密度、高强度石墨制品的生产方法
CN105154706A (zh) 一种高性能超细硬质合金的制备方法
CN102674844A (zh) 微波法还原合成纳米碳化钒/铬复合粉末的制备方法
CN101701300A (zh) 机械合金化合成制备二硼化钛弥散强化铜基复合材料的方法
CN107138731A (zh) 一种纳米金属粉末的制备方法
WO2021035899A1 (zh) 一种斗轮机用的耐磨碳刷材料及其制备方法
CN107116222B (zh) 一种新型抛丸机叶片镶嵌材料及其制备方法
CN101229976A (zh) 一种高性能WC/MgO纳米复合材料的制备方法
CN103701004A (zh) 一种电机用碳刷及其制备方法
CN116716508A (zh) 一种TiB2/TiC陶瓷增强铝合金基体复合材料活塞及其制备方法
CN110093530A (zh) 一种高导高耐磨铜基复合材料及其制备方法
CN106316398A (zh) 一种添加立方氮化硼的碳化钨钛基陶瓷刀具材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943177

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943177

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943177

Country of ref document: EP

Kind code of ref document: A1