WO2021035831A1 - 一种可非等动量受限射流撞击混合的方法 - Google Patents

一种可非等动量受限射流撞击混合的方法 Download PDF

Info

Publication number
WO2021035831A1
WO2021035831A1 PCT/CN2019/106070 CN2019106070W WO2021035831A1 WO 2021035831 A1 WO2021035831 A1 WO 2021035831A1 CN 2019106070 W CN2019106070 W CN 2019106070W WO 2021035831 A1 WO2021035831 A1 WO 2021035831A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
mixing
inlet
outlet
impinging
Prior art date
Application number
PCT/CN2019/106070
Other languages
English (en)
French (fr)
Inventor
朱正曦
Original Assignee
扬州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州大学 filed Critical 扬州大学
Publication of WO2021035831A1 publication Critical patent/WO2021035831A1/zh
Priority to US17/564,273 priority Critical patent/US20220118414A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/405Methods of mixing liquids with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/453Mixing liquids with liquids; Emulsifying using flow mixing by moving the liquids in countercurrent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/718Feed mechanisms characterised by the means for feeding the components to the mixer using vacuum, under pressure in a closed receptacle or circuit system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75465Discharge mechanisms characterised by the means for discharging the components from the mixer using suction, vacuum, e.g. with a pipette
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0427Numerical distance values, e.g. separation, position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0459Numerical values of dimensionless numbers, i.e. Re, Pr, Nu, transfer coefficients

Definitions

  • the invention relates to a confined jet impingement mixing method, in particular to a method for impinging and mixing a constrained jet with non-equal momentum.
  • Confined impinging jets (CIJ) mixing is used in the flash nanoformation (FNF) technology, which can quickly, efficiently, energy-saving, and continuously prepare nano suspensions (flash nanoprecipitation, FNP) ; Patent number: US20040091546A1) or nanoemulsion (flash nanoemulsification, FNE; patent number: ZL2015105158105).
  • FNF flash nanoformation
  • FNE flash nanoemulsification
  • the conventional CIJ-D method uses the method of injecting each stream of fluid into the inlet of the mixer.
  • the two fluids that collide in the mixing cavity need to be mixed with close to equal momentum, otherwise a stream of fluid with a large momentum will push a stream of fluid with a small momentum.
  • the exit jet inlet greatly affects its mixing effect.
  • the close to isokinetic mixing determines that the two fluid components in the mixed liquid flowing from the outlet of the mixer are close to 1:1, and a considerable part of the nanoparticles are often not precipitated and formed, and the mixed liquid often needs to be diluted and mixed twice after flowing out of the mixer.
  • the particle size of each batch is affected by the secondary dilution and it is more difficult to control, the average particle size will increase and the distribution will become wider.
  • the flow of each inlet of the mixer needs to be controlled independently and synchronously, which leads to insufficient simplicity and convenience in equipment and operation.
  • the object of the invention is to provide a method for impinging and mixing non-isomomentum limited jets.
  • the present invention provides a method for impinging and mixing of non-isokinetic restricted jets.
  • Each inlet of the mixer and each fluid to be mixed are respectively connected by inlet pipes; the outlet of the mixer and the inlet of the suction device are used as outlets. Pipe connection; start the suction device, each fluid to be mixed enters the mixer through the inlet pipe and the mixer inlet successively. After mixing in the mixer cavity, the mixed liquid is sucked out from the outlet of the mixer, and passes through the outlet pipe and the suction device inlet , Flow out from the outlet of the suction device.
  • the mixer includes at least two inlets.
  • the cavity of the mixer is a closed space, and the volume is not more than 100 ⁇ L.
  • the mixer cavity is a closed space to ensure that the mixer does not leak air.
  • the fluid at the inlet can be stably sucked in; the volume of the mixer cavity is not more than 100 ⁇ L in the above method to ensure that the mixing is volume Restricted mixing.
  • the diameter of the inlet duct is not less than 0.5 mm.
  • the diameter of the pipe connecting the inlet of the mixer and the fluid to be mixed needs to be no less than 0.5mm to ensure that the pipe diameter is no less than 0.5mm of the nozzle opening in the mixer cavity.
  • the liquid in the cavity of the mixer is in a turbulent mixing state, and the Reynolds number at the outlet is not less than 1,000.
  • the Reynolds number is not less than 1000 to ensure that the fluid in the cavity is in a turbulent mixing state, and the fluids are instantaneously mixed in the cavity evenly.
  • fluid components to be mixed can be mutually dissolved.
  • the fluids to be mixed After the fluids to be mixed are mixed, they can dissolve each other to form a continuous phase.
  • the liquid sucked from the cavity of the mixer is a solution, a suspension or an emulsion.
  • a regulating valve is provided on each inlet pipe.
  • each inlet duct is not equal, the equivalent inner diameter of each inlet duct is not equal, the opening degree of each inlet regulating valve is not equal, or the roughness of the inner wall of each inlet duct is not complete, etc., in any one or more of the above cases
  • the combination can be used for impingement mixing of unequal momentum restricted jets.
  • the pressure drop of the fluid in the pipeline is inversely proportional to the fourth power of the equivalent diameter of the pipeline, and linearly proportional to the length. Therefore, the larger the diameter and the smaller the length between the pipes, The greater the momentum between the jet and the colliding fluid at the nozzle opening of the corresponding mixing cavity will be.
  • the greater the opening degree of the regulating valve provided on the inlet duct the smaller the roughness of the inner surface of each inlet duct, and the smaller the pressure drop of the fluid in the duct.
  • the fluid momentum of the jet at the nozzle opening of the mixing chamber corresponding to the inlet duct will decrease. Bigger.
  • each stream of fluid is mixed instantaneously in the mixer cavity, and at the same time, intermolecular chemical reaction or intermolecular aggregation physical reaction can occur to form a molecular-level dispersed solution or a suspension of solid particles or an emulsion of droplet particles, and then It flows out of the mixer outlet.
  • the method disclosed in the present invention adopts the method of sucking fluid from the outlet of the mixer, and at the same time, by adjusting the pressure drop of the fluid in each inlet pipeline of the mixer (such as adjusting the equivalent diameter, equivalent length, regulating valve, pipe Wall roughness, etc.), to achieve a large momentum ratio between the jet impinging fluid in the mixing chamber, and the flow rate ratio can be adjusted without the need for secondary dilution.
  • the method controls the outlet flow instead of synchronously controlling the inlet flow, which greatly simplifies the operation and equipment.
  • the present invention names this method as imbalanced momentum confined impinging jets (IMCIJ) mixing, and the corresponding mixer is called an IMCIJ mixer.
  • IMCIJ imbalanced momentum confined impinging jets
  • the method of the present invention can realize the mixing of the impingement of the unequal momentum limited jets, the flow ratio can be adjusted, and the secondary dilution is not required, and the operation is simple.
  • the nano particles prepared by the method of the invention have smaller particle size and narrower distribution.
  • Figure 1 is a schematic diagram of the working principle of the present invention.
  • the two inlets of the two-inlet CIJ mixer 5 and the fluids 3 and 4 to be mixed are connected using inlet conduits 1 and 2 respectively;
  • the outlet of the mixer 5 is connected with the inlet of the suction device 7 using an outlet conduit 6 Start the suction device 7;
  • the fluids 3 and 4 respectively flow through the inlet conduits 1, 2 into the mixer 5, and after mixing in the cavity of the mixer 5, the mixed liquid 8 is sucked out from the outlet of the mixer 5 and flows through the outlet conduit 6 and the inlet of the suction device 7 flow out from the outlet of the suction device 7.
  • l 1 and l 2 are the lengths of ducts 1 and 2 respectively
  • d 1 and d 2 are the diameters of inlet ducts 1 and 2 respectively.
  • the aqueous solution was mixed according to the above method, the mixing time was 10 seconds, the volume of the aqueous solution sucked from the pipes 1 and 2 was measured, and the volume flow ratio of the two inlet fluids was calculated.
  • the results are listed in Table 1. The results show that the ratio of the two mixed fluids can be adjusted by changing the diameter of the inlet pipe, and the impingement mixing of the non-iso-momentum restricted jets can be realized.
  • the aqueous solution was mixed according to the above method, the mixing time was 10 seconds, the volume of the aqueous solution sucked from the pipes 1 and 2 was measured, and the volume flow ratio of the two inlet fluids was calculated.
  • the results are listed in Table 2.
  • the results show that the ratio of the two mixed fluids can be adjusted by changing the diameter of the inlet pipe, and the impingement mixing of the non-iso-momentum restricted jets can be realized.
  • the results show that the ratio of the two mixed fluids can be adjusted by changing the length of the inlet duct, and the impingement mixing of the non-iso-momentum restricted jets can be realized.
  • Example 4 Comparison of CoQ 10 suspension prepared by IMCIJ mixing and CIJ-D mixing
  • a 10mm chitosan stable CoQ 10 (0.048mg/mL) nano suspension is obtained.
  • the average particle size is determined The diameter is 192nm, and the polydispersity coefficient is 0.17.
  • 1 mL of fluid 3 and 1 mL of fluid 4 are injected into the CIJ mixer at the same time. After the mixture flows out of the outlet of the mixer, it flows into 8 mL of fluid 3 to obtain 10 mL of CoQ 10 (0.048 mg/mL) nano-suspension.
  • the volume ratio of fluid 3 to fluid 4 is 9:1, and the average particle diameter is 286 nm and the polydispersity coefficient is 0.30. Comparing the chitosan-stabilized CoQ 10 nano suspensions prepared by the above two methods with the same composition and concentration, the particle size obtained by the IMCIJ method of the present invention is smaller and the distribution is narrower, which reflects its preparation advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)

Abstract

一种非等动量受限射流撞击混合方法,将受限射流撞击混合器(5)的各入口与待混合流体(3,4)分别使用导管(1,2)相连接,将混合器(5)的出口与抽吸装置(7)的入口使用出口导管(6)相连接;启动抽吸装置(7),各待混合流体(3,4)通过各导管(1,2)和混合器(5)入口进入混合器(5),在混合器(5)腔体内混合后,混合液经过混合器(5)的出口被吸出,通过出口导管(6)和抽吸装置(7)入口,从抽吸装置(7)出口流出。

Description

一种可非等动量受限射流撞击混合的方法 技术领域
本发明涉及受限射流撞击式混合方法,特别涉及一种可非等动量受限射流撞击混合的方法。
背景技术
受限撞击射流(confined impinging jets,CIJ)混合被用于瞬时纳米制备(flash nanoformation,FNF)技术之中,可快速、高效、节能、连续制备纳米悬浮液(瞬时纳米析出法,flash nanoprecipitation,FNP;专利号:US20040091546A1)或纳米乳液(瞬时纳米乳化法,flash nanoemulsification,FNE;专利号:ZL2015105158105)。通过瞬时混合两股及以上流体,在密闭且微小体积的混合腔体内,溶质的过饱和度瞬时提高,疏水分子继而团聚形成纳米固体颗粒或纳米液滴。常规CIJ-D方法采用将各股流体注射入混合器入口的方式,在混合腔体内发生撞击的两股流体需要接近等动量混合,否则大动量的一股流体将把小动量的一股流体顶出射流入口,大大影响其混合效果。接近等动量的混合决定了从混合器出口流出的混合液中两流体组分接近1∶1,相当部分的纳米颗粒往往尚未能析出形成,混合液流出混合器后往往需要进行二次稀释混合,各批次颗粒粒径大小受到二次稀释的影响而较难控制,平均粒径会增大、分布会变宽。另外,在常规CIJ-D方法中,混合器各入口的流量需要独立且同步控制,导致设备和操作不够简单和方便。
发明内容
发明目的:本发明目的是提供一种可非等动量受限射流撞击混合的方法。
技术方案:本发明提供一种可非等动量受限射流撞击混合的方法,将混合器的各入口与各待混合流体分别使用入口导管连接;将混合器的出口与抽吸装置的入口使用出口导管连接;启动抽吸装置,各待混合流体先后通过入口导管及混合器入口进入混合器,在混合器腔体内混合后,混合液被从混合器的出口吸出,通过出口导管和抽吸装置入口,从抽吸装置出口流出。
进一步地,所述混合器包括至少两个入口。
进一步地,所述混合器腔体为密闭空间,且体积不大于100μL。
混合器腔体为密闭空间,以确保混合器不漏气,在混合器出口处抽吸时,入口处流体能被稳定吸入;上述方法中混合器腔体体积不大于100μL,以确保混合为体积受限混合。
进一步地,所述入口导管的直径不小于0.5mm。
连接混合器入口与待混合流体的导管直径需要不小于0.5mm,以确保导管直径不小于混合器腔体内喷嘴口的直径0.5mm。
进一步地,所述混合器腔体内液体处于湍流混合状态,出口处的雷诺数不小于1000。
雷诺数不小于1000,以确保腔体内流体处于湍流混合状态,各流体在腔体内瞬时混合均匀。
进一步地,所述各待混合流体组分之间能互相溶解。
各待混合流体混合后能相互溶解形成连续的一相。
进一步地,所述被从混合器腔体内吸出的液体是溶液或悬浮液或乳液。
进一步地,所述各入口导管上设置调节阀门。
进一步地,所述各入口导管等效长度不全等、各入口导管等效内径不全等、各入口调节阀门开度不全等或各入口导管内壁粗糙度不全等,以上任一种或几种情况的组合均可进行非等动量受限射流撞击混合。
上述方法中根据Hagen-Poiseuille公式,流体在管道里的压降与管道的等效直径的4次方成反比,与长度成线性正比,因此各导管之间具有的直径越大以及长度越小,所对应混合腔体喷嘴口的射流对撞流体之间动量会越大。
另外,入口导管上设置调节阀打开程度越大、各入口导管内表面粗糙程度越小,流体在导管内的压降越小,该入口导管所对应混合腔体喷嘴口的这一射流流体动量会越大。
上述方法中各股流体在混合器腔体内瞬时混合的同时,可以发生分子间化学反应或分子间聚集的物理反应,形成分子水平分散的溶液或固体颗粒的悬浮液或液滴颗粒的乳液,继而从混合器出口流出。
本发明所公开的方法采用从混合器出口抽吸流体的方式,同时通过调节流体在混合器各入口管路中的压降(如调节各管路等效直径、等效长度、调节阀、管壁粗糙程度等),实现混合腔体内射流撞击流体间的大动量比,以及流量比的可调,而无需使用二次稀释。同时,该方法控制出口流量来代替同步控制各入口流量,使操作和设备大大简化。本发明将该方法命名为非等动量受限撞击射流(imbalanced momentum confined impinging jets,IMCIJ)混合,相应的混合器被称为IMCIJ混合器。
有益效果:本发明的方法可实现非等动量受限射流撞击的混合,流量比的可调,而无需使用二次稀释,操作简便。由本发明方法制备的纳米颗粒粒径更小,分布更窄。
附图说明
图1为本发明的工作原理示意图。
具体实施方式
如图1所示将两入口CIJ混合器5的两入口与待混合流体3和4分别使用入口导管1、2相连接;将混合器5的出口与抽吸装置7入口使用出口导管6相连接;启动抽吸装置7;流体3和4各自流经入口导管1、2进入混合器5,在混合器5的腔体内混合后,混合液8被从混合器5的出口吸出,流经出口导管6和抽吸装置7的入口,从抽吸装置7的出口流出。其中,l 1和l 2分别为导管1和2的长度,d 1和d 2分别为入口导管1和2的直径。
实施例1:流体3和4均为水溶液,水溶液的IMCIJ混合(当l 1=l 2=20.0cm,入口导管具有相等内壁粗糙度,入口调节阀均为全开的条件下,改变d 1和d 2)
按上述方法将水溶液混合,混合计时10秒钟,测量水溶液从导管1、2各自吸入的体积,计算两入口流体体积流量比,结果列于表1。结果表明通过改变入口导管直径可以调节两混合流体的比例,实现非等动量受限射流撞击混合。
表1.当l 1=l 2=20.0cm、入口导管具有相等内壁粗糙度、入口调节阀均为全开的条件下,通过改变d 1和d 2,实现调节入口流体流量比例
Figure PCTCN2019106070-appb-000001
实施例2:流体3和4均为水溶液,水溶液的IMCIJ混合(当d 1=d 2=0.8mm,入口导管具有相等的内壁粗糙度,入口调节阀均为全开的条件下,改变l 1和l 2)
按上述方法将水溶液混合,混合计时10秒钟,测量水溶液从导管1、2各自吸入的体积,计算两入口流体体积流量比,结果列于表2。结果表明通过改变入口导管直径可以调节两混合流体的比例,实现非等动量受限射流撞击混合。结果表明通过改变入口导管长度可以调节两混合流体的比例,实现非等动量受限射流撞击混合。
表2.当d 1=d 2=0.8mm、入口导管具有相等内壁粗糙度、入口调节阀均为全开的条件下,通过改变l 1和l 2,实现调节入口流体流量比例
Figure PCTCN2019106070-appb-000002
Figure PCTCN2019106070-appb-000003
实施例3:流体3和4均为水溶液,水溶液的IMCIJ混合(l 1=l 2=20.0cm,d 1=d 2=0.8mm,入口导管具有相等的内壁粗糙度的条件下,调节入口阀门开度)
在导管1和2上分别按上调节阀,调节调节阀,按上述方法将水溶液混合,混合计时10秒钟,测量水溶液从导管1、2各自吸入的体积,计算两入口流体体积流量比,结果表明阀门开度从全开的1调至全闭的0之间,开度值越小,入口导管压降越大,流量越小,通过调节入口导管调节阀可以调节两混合流体的比例,实现非等动量受限射流撞击混合。
实施例4:IMCIJ混合与CIJ-D混合所制备CoQ 10悬浮液的比较
使用壳聚糖水溶液(pH4,0.053mg/mL)为流体3,CoQ 10的乙醇溶液(0.48mg/mL)为流体4,分别使用上述IMCIJ混合的方法以及常规等体积CIJ-D混合的方式制备CoQ 10纳米悬浮液。在IMCIJ混合法中,l 1和l 2为20.0cm,入口调节阀均为全开,入口导管具有相等的内壁粗糙度,d 1为1.2mm,d 2为0.5mm,混合5秒,壳聚糖水溶液的流体3吸入体积9mL,乙醇溶液的流体4吸入1mL,腔体出口雷诺数约3000,混合后获得10mm壳聚糖稳定的CoQ 10(0.048mg/mL)纳米悬浮液,经测定平均粒径192nm,多分散系数0.17。在CIJ-D混合法中,1mL流体3与1mL流体4同时注射入CIJ混合器,混合液从混合器出口流出后,流入8mL流体3,获得10mL CoQ 10(0.048mg/mL)纳米悬浮液,其中流体3与流体4体积比为9∶1,经测定平均粒径286nm,多分散系数0.30。比较上述两种方法制备的组分及浓度均相同的壳聚糖稳定的CoQ 10纳米悬浮液,通过本发明的IMCIJ方法获得的颗粒粒径更小,分布更窄,体现出其制备优势。
表3.两种方法所制备的CoQ 10(0.048mg/mL)纳米悬浮液的平均粒径及多分散系数
混合方式 颗粒平均直径(nm) 粒径多分散系数
IMCIJ混合 192 0.17
CIJ-D混合 286 0.30

Claims (9)

  1. 一种可非等动量受限射流撞击混合的方法,其特征在于:
    将混合器的各入口与各待混合流体分别使用入口导管连接;将混合器的出口与抽吸装置的入口使用出口导管连接;启动抽吸装置,各待混合流体先后通过入口导管及混合器入口进入混合器,在混合器腔体内混合后,混合液被从混合器的出口吸出,通过出口导管和抽吸装置入口,从抽吸装置出口流出。
  2. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述混合器包括至少两个入口。
  3. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述混合器腔体为密闭空间,且体积不大于100μL。
  4. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述入口导管的直径不小于0.5mm。
  5. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述混合器腔体内液体处于湍流混合状态,出口处的雷诺数不小于1000。
  6. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述各待混合流体组分之间能互相溶解。
  7. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述被从混合器腔体内吸出的液体是溶液或悬浮液或乳液。
  8. 根据权利要求1所述的可非等动量受限射流撞击混合的方法,其特征在于:所述各入口导管上设置调节阀门。
  9. 根据权利要求1-8任一项所述的可非等动量受限射流撞击混合的方法,其特征在于:所述各入口导管等效长度不全等、各入口导管等效内径不全等、各入口调节阀门开度不全等或各入口导管内壁粗糙度不全等,以上任一种或几种情况的组合均可进行非等动量受限射流撞击混合。
PCT/CN2019/106070 2019-08-30 2019-09-17 一种可非等动量受限射流撞击混合的方法 WO2021035831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/564,273 US20220118414A1 (en) 2019-08-30 2021-12-29 Method for confined impinging jets mixing with imbalanced momenta

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910821015.7 2019-08-30
CN201910821015.7A CN110605036B (zh) 2019-08-30 2019-08-30 一种可非等动量受限射流撞击混合的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,273 Continuation-In-Part US20220118414A1 (en) 2019-08-30 2021-12-29 Method for confined impinging jets mixing with imbalanced momenta

Publications (1)

Publication Number Publication Date
WO2021035831A1 true WO2021035831A1 (zh) 2021-03-04

Family

ID=68890644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106070 WO2021035831A1 (zh) 2019-08-30 2019-09-17 一种可非等动量受限射流撞击混合的方法

Country Status (3)

Country Link
US (1) US20220118414A1 (zh)
CN (1) CN110605036B (zh)
WO (1) WO2021035831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025736A1 (en) * 2021-08-23 2023-03-02 Leon-Nanodrugs Gmbh Jet impingement reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425260B (zh) * 2020-10-29 2023-05-30 中国石油化工股份有限公司 一种液液混合装置及混合方法
CN114522556B (zh) * 2022-01-27 2023-11-24 扬州大学 一种大量、连续制备免水洗凝胶洗手液的微混合装置及微混合方法
CN114471217A (zh) * 2022-04-02 2022-05-13 深圳市瑞吉生物科技有限公司 一种用于脂质体合成的对冲流混合装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163114A1 (en) * 2007-03-16 2010-07-01 National University Corporation Okayama University Micro mixer
CN203790836U (zh) * 2014-03-11 2014-08-27 陈进杜 液体混合器
CN108607462A (zh) * 2018-05-21 2018-10-02 江苏新美星包装机械股份有限公司 一种液体混合装置及液体流量控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751425A (en) * 1951-02-01 1956-06-19 Exxon Research Engineering Co Method and apparatus for mixing and contacting fluids
US2751335A (en) * 1951-02-01 1956-06-19 Exxon Research Engineering Co Method and apparatus for mixing and contacting fluids
US3833718A (en) * 1971-04-02 1974-09-03 Chevron Res Method of mixing an aqueous aluminum salt solution and an alkaline base solution in a jet mixer to form a hydroxy-aluminum solution
US3884388A (en) * 1973-04-26 1975-05-20 Cornelius Co Mixing device for a beverage dispenser
US4252445A (en) * 1976-09-13 1981-02-24 3 U Partners Fluid mixing system
US4764283A (en) * 1985-04-24 1988-08-16 Ashbrook Clifford L Method and apparatus for treating cooling tower water
US5445781A (en) * 1991-08-28 1995-08-29 Centro Sviluppo Settori Impiego S.R.L. Process for the injection molding of non-precatalyzed polymerizable resins at high-pressure and flow
US5523063A (en) * 1992-12-02 1996-06-04 Applied Materials, Inc. Apparatus for the turbulent mixing of gases
SE0303476D0 (sv) * 2003-12-22 2003-12-22 Censdelivery Ab Device, method and use for the formation of small particles
CN201565264U (zh) * 2009-11-25 2010-09-01 中国石油天然气股份有限公司 一种高效射流混合装置
CN202199273U (zh) * 2011-09-06 2012-04-25 山东源根石油化工有限公司 一种固液无尘静态混合器
GB201215282D0 (en) * 2012-08-28 2012-10-10 Kind Consumer Ltd An inhaler
CN108137819B (zh) * 2015-08-13 2022-04-01 约翰霍普金斯大学 制备聚电解质络合物纳米颗粒的方法
US20170361299A1 (en) * 2016-06-17 2017-12-21 Ohio State Innovation Foundation Methods and devices for the preparation of nanomaterials
CN106422955B (zh) * 2016-08-30 2019-03-15 扬州大学 一种快速、大量、连续生产纳米乳液或纳米悬浮液的装置及方法
CN106475025B (zh) * 2016-11-09 2019-12-03 青岛科技大学 一种同轴撞击流反应器连续制备纳米材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163114A1 (en) * 2007-03-16 2010-07-01 National University Corporation Okayama University Micro mixer
CN203790836U (zh) * 2014-03-11 2014-08-27 陈进杜 液体混合器
CN108607462A (zh) * 2018-05-21 2018-10-02 江苏新美星包装机械股份有限公司 一种液体混合装置及液体流量控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025736A1 (en) * 2021-08-23 2023-03-02 Leon-Nanodrugs Gmbh Jet impingement reactor

Also Published As

Publication number Publication date
CN110605036A (zh) 2019-12-24
US20220118414A1 (en) 2022-04-21
CN110605036B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2021035831A1 (zh) 一种可非等动量受限射流撞击混合的方法
CN101433815B (zh) 一种膜分散式微通道反应器
CN103623720B (zh) 一种制备纳米流体的微分添加雾化分散方法与装置
CN109909086A (zh) 一种气液两相流雾化喷嘴及其设计方法
CN205252919U (zh) 一种新型微纳米气泡发生装置
CN106422955B (zh) 一种快速、大量、连续生产纳米乳液或纳米悬浮液的装置及方法
CN107107080A (zh) 雾化器喷嘴
JPH08131800A (ja) 気液溶解混合装置
CN106423607A (zh) 一种气液两相二级雾化喷头
CN102159326A (zh) 雾化装置
WO2016112603A1 (zh) 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用
CN112221368A (zh) 微纳米气泡发生装置
JPH0760088A (ja) 気液溶解混合装置
JP2002126485A (ja) オゾン発生装置、ならびにその付属装置である同軸型ガス−流体混合管、空冷式オゾン生成管、および液体加圧式ガス−液体混合装置
CN109925984A (zh) 一种撞击流-水力空化协同强化制备壳聚糖抑菌纳米微球的方法
CN203710930U (zh) 一种制备纳米流体的微分添加雾化分散装置
JP2974236B2 (ja) 気液溶解混合方法と装置
CN104019957B (zh) 纳米粒子流化器及超声速风洞系统
CN206295834U (zh) 一种干粉微纳米颗粒的多级弥散装置
CN209123695U (zh) 一种全能型亲水氨基硅油的乳化装置
WO2023186122A1 (zh) 一种用于脂质体合成的对冲流混合装置及方法
CN208839396U (zh) 一种纳米汽化造雾装置
CN204996345U (zh) 涡旋散射稀释器及暴露设备
US20200332998A1 (en) Fluid-gas mixer
CN101101087B (zh) 水中产生超微细气泡的管路系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942992

Country of ref document: EP

Kind code of ref document: A1