WO2016112603A1 - 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用 - Google Patents

一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用 Download PDF

Info

Publication number
WO2016112603A1
WO2016112603A1 PCT/CN2015/078500 CN2015078500W WO2016112603A1 WO 2016112603 A1 WO2016112603 A1 WO 2016112603A1 CN 2015078500 W CN2015078500 W CN 2015078500W WO 2016112603 A1 WO2016112603 A1 WO 2016112603A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
dispersion
hydrophobic
ultrafiltration membrane
cavity
Prior art date
Application number
PCT/CN2015/078500
Other languages
English (en)
French (fr)
Inventor
李兆敏
张超
王鹏
孙乾
董全伟
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US14/917,875 priority Critical patent/US10071349B2/en
Publication of WO2016112603A1 publication Critical patent/WO2016112603A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2111Flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/181Preventing generation of dust or dirt; Sieves; Filters
    • B01F35/189Venting, degassing or ventilating of gases, fumes or toxic vapours during mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2215Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • B01F35/717613Piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/49Mixing drilled material or ingredients for well-drilling, earth-drilling or deep-drilling compositions with liquids to obtain slurries
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/38Gaseous or foamed well-drilling compositions

Definitions

  • the invention relates to a preparation device and application of a hydrophobic nanoparticle and a surfactant complex dispersion, and belongs to the technical field of nanoparticle synergistic surfactant to improve foam stability.
  • foam As an intelligent fluid, foam is widely used in oil and gas field development, covering drilling, cementing, oil and gas well operations, stimulation measures, and enhanced oil recovery.
  • foam flow process due to its own thermodynamically unstable characteristics, the foam flow process is extremely easy to be destroyed, which makes the characteristics such as profile control and plugging greatly reduced. Therefore, the key to the efficient use of foam-assisted oil and gas field development is to improve foam stability.
  • the rapid development of nanotechnology provides nanomaterials with a wide range of potential applications ranging from electronics, communications, and biology to energy. Due to the small size of the nanoparticles, large volume effect and large surface effect, and strong adsorption performance, a method of synergistically improving the foam stability by using nanoparticles and surfactants has been proposed.
  • the main advantage is that the adsorption of nanoparticles at the gas-liquid interface can inhibit the coalescence and disproportionation of the foam; the nanoparticle forms a bridging structure in the bubble liquid film to improve the stability of the foam.
  • hydrophilic nano-silica particles and the surfactant bis-decyl dimethylammonium bromide (di-C 10 DMAB) synergistically stabilize the foam indicating that the appropriate di-C 10 DMAB
  • the wetting angle of the hydrophilic nano-silica particles can be changed from 8° to 63°, which makes the hydrophobicity enhanced, and it is by a certain degree of increasing its hydrophobicity that the two can synergistically stabilize the foam
  • Chinese Patent No. CN102746841A discloses a composite foam system for adding nanometer particles for oil and gas fields and a preparation method thereof, and discloses a method for preparing a composite foam system by compounding modified nano silica particles with sodium lauryl sulfate.
  • the hydrophobicity and electrical properties of the particles are two important factors in the synergistic stabilization of the surfactant with the surfactant, and the hydrophobicity of the particles is more important.
  • the foam is best stabilized only when the nanoparticles are in a suitable hydrophobicity (extremely hydrophobic and not stable, with a wetting angle of 60° to 120°). Therefore, people Hydrophilic nanoparticles are often used in combination with surfactants to adsorb the hydrophilic and hydrophobic properties of the hydrophilic nanoparticles on the surface of the hydrophilic nanoparticles, thereby obtaining a stable foam system.
  • hydrophobic nanoparticles and surfactants Rarely adopting hydrophobic nanoparticles and surfactants to reduce the hydrophobicity of hydrophobic nanoparticles to improve foam stability, mainly because hydrophobic nanoparticles can not form hydrophobic nanoparticles due to their hydrophobicity when compounded with surfactants. The granules and the surfactant dispersion are unable to reconstitute the foam.
  • anhydrous ethanol is added as an auxiliary agent.
  • anhydrous ethanol when the amount of anhydrous ethanol added is small, the nanoparticles are easily aggregated in the dispersion, affecting the foam stabilization effect, increasing the amount of use, and invisibly increasing the production cost; when the amount of anhydrous ethanol is added More often, because anhydrous ethanol is an antifoaming agent, it loses its stabilizing effect.
  • Chinese patent CN103127744A discloses a method for transferring oil phase nanoparticles into an aqueous phase, and discloses forming an oil-in-water microemulsion by means of ultrasonic emulsification, evaporating and drying the microemulsion to obtain a stabilizer-nanoparticle composite.
  • the dry gum is then added with a polar solvent capable of dissolving the stabilizer, thereby achieving the purpose of dispersing the nanoparticles into a polar solvent.
  • the method requires coating the nanoparticles with oleic acid or oleylamine, and then dispersing them in a volatile non-polar organic reagent, and further adding an auxiliary agent such as anhydrous ethanol and a stabilizer such as polyvinylpyrrolidone.
  • the method of dispersing nanoparticles into an aqueous phase cannot achieve the effect of using a surfactant to regulate the hydrophilicity of the nanoparticles in a reasonable range, thereby achieving a stable foam.
  • the main purpose of the patent is to disperse the nanoparticles synthesized in the oil phase. In the aqueous phase, the range of application is increased, and the dispersion of the nanoparticles and the surfactant complex system in the aqueous phase is not considered.
  • the present invention provides a preparation device for a hydrophobic nanoparticle-surfactant compound dispersion, which uses ultrasonic cavitation to disperse hydrophobic nanoparticles into a surfactant solution which can be compounded thereto, and Under the action of ultrasonic cavitation, using the high surface energy and high adsorption properties of the dispersed nanoparticles, the surfactant molecules in the solution are adsorbed on the surface of the nanoparticles, which can not only adjust the hydrophilicity of the nanoparticles, but also A stable dispersion system is formed by the repulsion between surfactant molecules adsorbed on the surface of the nanoparticles.
  • the present invention also provides a method of preparing a hydrophobic nanoparticle-surfactant compounded dispersion using the above-described preparation apparatus.
  • a device for preparing a hydrophobic nanoparticle and a surfactant complex dispersion comprising a water supply pipeline, a compound mixing pipeline and a collecting pipeline;
  • the compound mixing pipeline includes an ultrasonic disperser and a liquid storage tank connected in series, and a second plunger pump for unidirectional circulation of the material is disposed between the ultrasonic disperser and the liquid storage tank;
  • the water supply line is connected to a top of the ultrasonic disperser
  • the collecting line is connected to a discharge end of the liquid storage tank.
  • the ultrasonic disperser includes an instrument barrel, and a first ultrafiltration membrane and a second ultrafiltration membrane are disposed in the instrument barrel from top to bottom to divide the instrument barrel into three chambers. , in order: a first cavity, a second cavity, and a third cavity, wherein a first ultrasonic transmitting probe is disposed in the first cavity; a second ultrasonic transmitting probe is disposed in the second cavity;
  • the surface of the barrel of the instrument barrel is connected with a surfactant delivery pipe and communicates with the first cavity; a hydrophobic nanoparticle delivery pipe is disposed through the barrel wall of the instrument barrel and communicates with the second cavity.
  • the ultrasonic disperser comprises a movable open top cover.
  • the advantage of the design here is that it is convenient to carry out maintenance and maintenance on the entire device, which facilitates replacement or cleaning of the ultrafiltration membrane.
  • the inner barrel wall of the instrument barrel is provided with a first snap ring and a second snap ring, and the first ultrafiltration membrane and the second ultrafiltration membrane respectively pass through the first snap ring and the second snap ring. They are respectively placed in the instrument barrel.
  • the water supply line is connected to the ultrasonic disperser and the liquid storage tank through a tee pipe; the water supply line includes a water storage tank, a first plunger pump, and a flow meter.
  • the collecting line is connected to the liquid storage tank and the ultrasonic disperser through a tee; the collecting line comprises a compounded dispersion tank and a third plunger pump.
  • the instrument barrel is entirely rectangular, and a temperature control device is disposed inside the barrel wall; and a first ultrasonic wave transmitting probe or a second ultrasonic wave is respectively disposed on the adjacent barrel wall of the temperature control device. Launch the probe.
  • the first ultrafiltration membrane has a pore diameter of 10 nm to 100 nm
  • the second ultrafiltration membrane has a pore diameter of 10 nm to 100 nm.
  • the circumference is fixed by copper wire, and the copper wire is wrapped by the sealing ring.
  • the upper and lower layers of the ultrafiltration membrane are fixed at a certain height by the snap ring on the inner wall of the cavity.
  • the first ultrasonic transmitting probe and the second ultrasonic transmitting probe have an effective frequency of 15 kHz to 40 kHz and a power of 2000 watts; the first ultrasonic transmitting probe and the second ultrasonic transmitting probe each include a plurality of probes, and the probe and the The barrel walls are vertically disposed, and the distance between the adjacently disposed probes is 5 cm.
  • a method for preparing a hydrophobic nanoparticle and a surfactant complex dispersion by using the above preparation device comprising the following steps:
  • the device and method of the invention realizes the preparation and production of hydrophobic nanoparticle and surfactant complex dispersion, which can meet the needs of laboratory-level dosage, and can also meet multi-well group and large dose in oilfield operation area. Need for injection;
  • the device and method of the present invention utilizes the physicochemical mechanism of ultrasonic cavitation combined with the high-efficiency adsorption of surfactant-nanoparticle surface to achieve stable dispersion of hydrophobic nanoparticles in the aqueous phase, making the hydrophobic nanometer Particles can also be applied to nanoparticle stabilized foam systems;
  • the apparatus and method of the present invention can control the dispersed particle size of the nanoparticles in the compounded dispersion according to the experimental or on-site construction requirements by controlling the size of the pore size of the ultrafiltration membrane, and satisfying the different dispersed particle size requirements of different foam systems.
  • the device and method of the present invention can stably disperse hydrophobic nanoparticles in the aqueous phase, thereby increasing the probability of contact between the nanoparticles and the surfactant, thereby improving the adsorption and assembly of the nanoparticles and the surfactant.
  • Efficiency which reduces the amount of both, saves costs, and provides economic feasibility for the application of nanoparticles in oil and gas field development;
  • the hydrophobic nanoparticle prepared by the device and method of the invention and the surfactant complex dispersion have low viscosity, good fluidity and good stability, are convenient for on-site production and injection, and can be used for ground foaming during injection.
  • the injection method can also be used to inject the underground foaming method with the gas source slug to meet the site demand.
  • FIG. 1 is a schematic view showing the overall structure of a device for preparing a hydrophobic nanoparticle and a surfactant complex dispersion according to the present invention
  • Figure 2 is a top view of the top cover of the ultrasonic disperser
  • Figure 3 is a top plan cross-sectional view of the ultrasonic disperser
  • Figure 4 is a comparative photograph of the complex dispersion obtained in Examples 7-10 and a conventional method for preparing a complex dispersion
  • the dispersion solution in the No. 1 tube was prepared by a conventional method, that is, the concentration of SiO 2 in the compounded dispersion was controlled to be 1%, the AOT concentration was 0.4%, and then stirred by a magnetic stirrer at 1000 rpm for 30 minutes. ;
  • Tubes Nos. 2, 3, 4 and 5 in Figure 4 correspond to photographs of the complex dispersions obtained in Examples 7-10, respectively.
  • Figure 5 is a TEM micrograph of a conventional dispersion prepared by a conventional method
  • Figures 6-9 are TEM micrographs of the complex dispersions obtained in Examples 7-10, respectively.
  • a hydrophobic nanoparticle-surfactant compounding dispersion preparation device comprises a water supply pipeline 1, a compound mixing pipeline 2 and a collecting pipeline 3;
  • the compound mixing line 2 includes an ultrasonic disperser 4 and a liquid storage tank 5 connected in series, and a second plunger pump for unidirectional circulation of materials is disposed between the ultrasonic disperser 4 and the liquid storage tank 5. 6;
  • the water supply line 1 is connected to the top of the ultrasonic disperser 4;
  • the collecting line 3 is connected to the discharge end of the liquid storage tank 5.
  • a hydrophobic nanoparticle-surfactant compounding dispersion preparation device as described in Embodiment 1, wherein the ultrasonic disperser 4 includes an instrument barrel 7, which is in turn from top to bottom in the instrument barrel 7.
  • the first ultrafiltration membrane 8 and the second ultrafiltration membrane 9 are arranged to divide the instrument barrel into three cavities, which are: a first cavity 10, a second cavity 11 and a third cavity 12, in the a first ultrasonic wave transmitting probe 13 is disposed in a cavity 10; a second ultrasonic wave transmitting probe 14 is disposed in the second cavity 11; and a surfactant delivery pipe is disposed through the barrel wall of the instrument barrel 7 15 is in communication with the first cavity 10; a hydrophobic nanoparticle delivery conduit 16 is disposed through the barrel wall of the instrument barrel 7 and communicates with the second cavity 11.
  • the ultrasonic disperser includes a top cover 17 that is actively opened and closed.
  • the inner barrel wall of the instrument barrel 7 is provided with a first snap ring 18 and a second snap ring 19, and the first ultrafiltration membrane 8 and the second ultrafiltration membrane 9 pass through the first snap ring 18 and the second snap ring, respectively. 19 are respectively disposed in the instrument barrel 7.
  • the water supply line 1 includes a water storage tank 20, a first plunger pump 21, and a flow meter 22.
  • the collecting line 3 is connected to the liquid storage tank 5 and the ultrasonic disperser 4 through a tee pipe; the collecting line 3 includes a compounding dispersion tank 23 and a third plunger pump 24.
  • a hydrophobic nanoparticle-surfactant compounding dispersion preparation device wherein the instrument barrel 7 is entirely rectangular, and a temperature control device 25 is disposed inside the barrel wall;
  • the first ultrasonic wave transmitting probe 13 or the second ultrasonic wave transmitting probe 14 is disposed on the adjacent barrel wall of the temperature control device 25, respectively.
  • a hydrophobic nanoparticle-surfactant compounded dispersion preparation apparatus according to any of the embodiments 1-5, wherein the first ultrafiltration membrane 8 has a pore diameter of 10 nm to 100 nm, and the second ultrafiltration membrane 9 pore diameter is 10 nm to 100 nm.
  • the circumference is fixed by copper wire, and the copper wire is wrapped by the sealing ring.
  • the upper and lower layers of the ultrafiltration membrane are fixed at a certain height by the snap ring on the inner wall of the cavity.
  • the first ultrasonic transmitting probe and the second ultrasonic transmitting probe have an effective frequency of 15 kHz to 40 kHz and a power of 2000 watts; the first ultrasonic transmitting probe and the second ultrasonic transmitting probe each include a plurality of probes, and the probe and the The barrel walls are vertically disposed, and the distance between the adjacently disposed probes is 5 cm.
  • hydrophobic nano-particles of the desired mass are placed into the second cavity 11 of the ultrasonic disperser 4 by the hydrophobic nanoparticle delivery conduit, ie, 100 g of hydrophobic nano-silica particles are added, wherein the hydrophobic nano-particles
  • the particle size of the silica particles is 20 nm; after the end of the application, the surfactant delivery pipe 15 and the hydrophobic nanoparticle delivery pipe 16 are closed;
  • the hydrophobic nanoparticles, the surfactant and the water are circulated in one direction in the compound mixing line by the second plunger pump 6, and the first ultrasonic wave transmitting probe 13 and the second ultrasonic wave transmitting probe are turned on. 14; during the circulation of the water in the ultrasonic disperser 4, the water is first mixed with the surfactant in the upper space of the ultrasonic disperser 4, and the surfactant and water are formed under the action of ultrasonic cavitation of the first ultrasonic wave transmitting probe 13.
  • the dispersion solution is then introduced into the second chamber 11 via the first ultrafiltration membrane 8, and the size required to reach the first ultrafiltration membrane 8 will be retained in the first chamber 10 until passing through the first ultrasonic wave transmitting probe 13
  • Ultrasonic cavitation can reach the size of the first ultrafiltration membrane 8 to enter the second cavity 11; form a closed loop between the ultrasonic disperser and the liquid storage tank, and simultaneously open the first ultrasonic transmitting probe 13 and
  • the second ultrasonic wave transmitting probe 14 the effective frequency is set to 20 kHz, the temperature control device 25 is turned on and the temperature is set to be constant at 25 ° C;
  • Hydrophobic nanoparticles dispersed into a suitable size and a surfactant complex dispersion enter the third cavity 12 via the second ultrafiltration membrane 9, and then circulate again via the liquid storage tank 5 and the second plunger pump 6.
  • the collecting line 3 is communicated with the liquid storage tank 5, and the compound dispersion is collected by the third plunger pump 24 to the compound dispersion storage tank 23.
  • the hydrophobic disperser 24 and the hydrophobic nanoparticle inside the reservoir 27 and the surfactant complex dispersion are then pumped into the compounded dispersion storage tank 34 via the plunger pump 32.
  • a hydrophobic nanoparticle-surfactant complex dispersion is obtained.
  • the surfactant was added to 40 g of AOT, that is, the concentration of SiO 2 in the compounded dispersion was controlled to be 1%, the AOT concentration was 0.4%, and the concentration ratio of AOT to SiO 2 was 0.4.
  • the surfactant was added to 60 g of AOT, that is, the concentration of SiO 2 in the compounded dispersion was controlled to be 1%, the AOT concentration was 0.6%, and the concentration ratio of AOT to SiO 2 was 0.6.
  • the surfactant was added to 60 g of SDS, that is, the concentration of SiO 2 in the control dispersion was 1%, the concentration of SDS was 0.6%, and the concentration ratio of SDS to SiO 2 was 0.6.
  • Figure 4 is a comparative photograph of the compound dispersion obtained in Examples 7-10.
  • the solution of the dispersion in the No. 1 tube was prepared by a conventional method, that is, the concentration of SiO 2 in the control compound dispersion was 1 %, AOT concentration was 0.4%, and then stirred by a magnetic stirrer at 1000 rpm for 30 min; in Figure 4, tubes No. 2, No. 3, No. 4 and No. 5 correspond to the compounding obtained in Examples 7-10, respectively. Dispersion photo.
  • Figure 5 is a TEM micrograph of a conventional dispersion prepared by a conventional process
  • Figures 6-9 are TEM micrographs of the composite dispersions obtained in Examples 7-10, respectively.
  • the nanoparticles in the compound dispersion prepared by the conventional method have obvious agglomeration and form a large cluster structure, and the compound dispersion prepared by the apparatus and method of the present invention can exhibit a very good dispersion state.
  • the dispersion state is the best.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

一种疏水纳米颗粒与表面活性剂复配分散体制备装置,该装置包括供水管路(1)、复配混合管路(2)和集料管路(3);复配混合管路(2)包括串联成回路的超声波分散仪(4)和储液罐(5),在超声波分散仪(4)和储液罐(5)之间设置有供物料单向循环的第二柱塞泵(6);供水管路(1)与超声波分散仪(4)的顶部相连;集料管路(3)与储液罐(5)的出料端相连。

Description

一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用 技术领域
本发明涉及一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用,属于纳米颗粒协同表面活性剂提高泡沫稳定性的技术领域。
背景技术
泡沫作为一种智能流体被广泛地应用于油气田开发领域,涵盖了钻井、固井、油气井作业、增产措施、提高采收率等各个方面。然而,在将泡沫应用于油气田开发过程中,由于其自身热力学不稳定的特性,导致泡沫流动过程中极易破灭,使得其调剖、封堵等特性大大降低。因此,高效利用泡沫辅助油气田开发的关键环节是提高泡沫稳定性。
纳米科技的蓬勃发展,为纳米材料提供了从电子、通信、生物到能源等极其广泛的潜在应用范围。由于纳米颗粒尺度小、体积效应和表面效应大、吸附性能强等特性,使得人们提出了利用纳米颗粒与表面活性剂复配来协同提高泡沫稳定性的方法。其优势主要在于:纳米颗粒在气液界面的吸附能够抑制泡沫的聚并和歧化现象的发生;纳米颗粒在气泡液膜中形成架桥结构提高泡沫的稳定性。
张水燕在其博士论文《锂皂石及HMHEC与表面活性剂协同稳定的泡沫》中指出亲水的锂皂石颗粒与表面活性剂十六烷基三甲基溴化铵(CTAB)在合适的配比条件下具有非常好的协同稳泡效果,其协同稳泡的机理是CTAB在锂皂石上吸附从而改变了锂皂石颗粒的亲水性,使其具有合适的亲疏水性质,实现协同稳定泡沫的作用。Bernard P.Binks等人研究了亲水纳米二氧化硅颗粒与表面活性剂双癸基二甲基溴化铵(di-C10DMAB)协同稳定泡沫的机理,指出在合适的di-C10DMAB浓度下,能够将亲水纳米二氧化硅颗粒的润湿角由8°变为63°,使其疏水性增强,并且正是通过一定程度地增加其疏水性从而使得二者能够协同稳定泡沫[Soft Matter,2008,4(12):2373-2382]。孙乾等人研究了部分疏水纳米二氧化硅颗粒与表面活性剂十二烷基硫酸钠(SDS)协同稳泡的机理,指出合适配比的纳米二氧化硅颗粒与SDS能够明显提升泡沫的稳定性,进而提高原油采收率[Energy&Fuels,2014,28(4):2384-2394]。
中国专利CN102746841A公开一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法,公开了用改性纳米二氧化硅颗粒与十二烷基硫酸钠复配制备复合泡沫体系的方法。
通过以上研究可以发现,纳米颗粒在与表面活性剂协同稳泡过程中,颗粒的疏水性和电性质是两个重要因素,并且颗粒的疏水性更为重要。只有纳米颗粒处于一个合适的疏水性时(极度疏水也无法稳定泡沫,润湿角在60°~120°最佳),才能最佳地稳定泡沫。因此,人们 多采用亲水纳米颗粒与表面活性剂复配,利用表面活性剂在亲水纳米颗粒表面吸附改变其亲疏水的性质,进而得到稳定的泡沫体系。很少采用疏水纳米颗粒与表面活性剂复配,以降低疏水纳米颗粒疏水性提高泡沫稳定性的方法,主要是因为疏水纳米颗粒在与表面活性剂复配时由于其疏水性,无法形成疏水纳米颗粒与表面活性剂分散液,进而无法复配稳泡。中国专利CN102746841A中为了形成疏水纳米颗粒与表面活性剂分散液,采用了加入无水乙醇作为助剂。但是当无水乙醇的加入量较少时,纳米颗粒极易在分散液中产生聚并,影响其稳泡效果,增大了使用量,无形中增加了生产成本;当无水乙醇的加入量较多时,反而由于无水乙醇是一种消泡剂,使其丧失了稳泡作用。
因此,能否找到一种合适的方法将疏水纳米颗粒分散到水中,与表面活性剂形成复配体系,提高纳米颗粒的利用效率,降低生产成本,为纳米材料在油气田开发中应用的推广提供可行性显得尤为重要。
中国专利CN103127744A公开了一种将油相纳米颗粒转移到水相中的方法,公开了利用超声乳化的方式形成水包油微乳液,对该微乳液进行蒸发、干燥,得到稳定剂-纳米颗粒复合干胶状物,然后加入能够溶解稳定剂的极性溶剂,进而实现将纳米颗粒分散到极性溶剂中的目的。该方法需要将纳米颗粒用油酸或油胺包覆,然后分散在易挥发的非极性有机试剂中,另外还需要加入无水乙醇等助剂以及聚乙烯吡咯烷酮等稳定剂。该种将纳米颗粒分散至水相的方法无法实现利用表面活性剂来调控纳米颗粒亲疏水性处于一个合理的范围,进而实现稳定泡沫的作用,该专利主要目的是将油相中合成的纳米颗粒分散在水相中,增加其应用范围,并没有考虑将纳米颗粒与表面活性剂复配体系分散在水相中。
发明内容
针对现有技术的不足,本发明提供一种疏水纳米颗粒与表面活性剂复配分散体制备装置,利用超声波空化作用将疏水纳米颗粒分散到能与之复配的表面活性剂溶液中,并在超声波空化作用下,利用分散开的纳米颗粒高表面能、高吸附性等特性,使溶液中的表面活性剂分子吸附在纳米颗粒表面,不仅能够实现对纳米颗粒亲疏水性的调节,还能利用吸附在纳米颗粒表面的表面活性剂分子间的斥力作用,形成稳定的分散体系。
本发明还提供一种利用上述制备装置制备疏水纳米颗粒与表面活性剂复配分散体的方法。
本发明的技术方案在于:
一种疏水纳米颗粒与表面活性剂复配分散体制备装置,包括供水管路、复配混合管路和集料管路;
所述复配混合管路包括串联成回路的超声波分散仪和储液罐,在所述超声波分散仪和储液罐之间设置有供物料单向循环的第二柱塞泵;
所述供水管路与所述超声波分散仪的顶部相连;
所述集料管路与所述储液罐的出料端相连。
根据本发明优选的,所述超声波分散仪包括仪器桶、在所述仪器桶内由上而下依次设置有第一超滤膜和第二超滤膜将所述仪器桶分为三个腔体,依次为:第一腔体、第二腔体和第三腔体,在第一腔体内设置有第一超声波发射探头;在所述第二腔体内设置有第二超声波发射探头;在所述仪器桶的桶壁上贯通设置有表面活性剂投放管道和第一腔体相连通;在所述仪器桶的桶壁上贯通设置有疏水纳米颗粒投放管道和所述第二腔体相连通。
根据本发明优选的,所述超声波分散仪包括活动启闭的顶盖。此处设计的优点在于,便于对整个装置进行维护、保养,利于对所述超滤膜进行更换或清理。
根据本发明优选的,所述仪器桶的内桶壁上设置有第一卡环和第二卡环,所述第一超滤膜和第二超滤膜分别通过第一卡环和第二卡环分别搭设在所述仪器桶内。
根据本发明优选的,所述供水管路通过三通管与所述超声波分散仪和储液罐相连;所述供水管路包括储水罐、第一柱塞泵和流量计。
根据本发明优选的,所述集料管路通过三通管与所述储液罐和超声波分散仪相连;所述集料管路包括复配分散体储罐和第三柱塞泵。
根据本发明优选的,所述仪器桶整体为矩形,在所述桶壁内侧设置有温控装置;在所述温控装置相邻的桶壁上分别设置有第一超声波发射探头或第二超声波发射探头。
根据本发明优选的,所述第一超滤膜孔径为10nm~100nm,所述第二超滤膜孔径为10nm~100nm。根据实验需求进行选择,其四周由铜丝固定,并由密封圈包裹铜丝,上下两层超滤膜由腔体内壁上的卡环在特定高度进行固定。所述第一超声波发射探头和第二超声波发射探头的效频率均为15kHz~40kHz,功率为2000w;所述第一超声波发射探头和第二超声波发射探头均包括多个探头,所述探头与所述桶壁垂直设置,所述相邻设置的探头的间距为5cm。
一种利用上述制备装置制备疏水纳米颗粒与表面活性剂复配分散体的方法,包括步骤如下:
(1)根据实验需要选择合适孔径的第一超滤膜和第二超滤膜,并先将第二超滤膜安装第二卡环上,然后将第一超滤膜安装在第一卡环上;
(2)盖紧超声波分散仪顶盖,由表面活性剂投放管道向超声波分散仪的第一腔体内投放所需质量的表面活性剂,由疏水纳米颗粒投放管道向超声波分散仪的第二腔体内投放所需质量的疏水纳米颗粒;投放结束后关闭表面活性剂投放管道和疏水纳米颗粒投放管道;
(3)利用第一柱塞泵将储水罐中的水注入超声波分散仪中;流量计用于记录注入水的量;
(4)注入水后,通过第二柱塞泵使所述疏水纳米颗粒、表面活性剂和水在复配混合管路内单向循环,开启第一超声波发射探头和第二超声波发射探头;在超声波分散仪内水体循环流动过程中,水首先在超声波分散仪内上部空间与表面活性剂混合,在第一超声波发射探头 超声空化的作用下形成表面活性剂与水的分散溶液,然后经由第一超滤膜进入第二腔体,未到达第一超滤膜尺寸要求的将被滞留在所述第一腔体内,直至经第一超声波发射探头超声空化使其粒径尺寸达到第一超滤膜尺寸要求才能进入第二腔体内;
(5)进入第二腔体的表面活性剂与水的分散溶液与疏水纳米颗粒混合,在第二超声波发射探头超声空化作用下,疏水纳米颗粒不仅在外界能量的供给下剧烈运动使其自身分散,而且在其分散过程中由于其自身所具有的高表面能、高吸附性的特性,使表面活性剂在其表面吸附,从而增加其分散稳定性;
(6)分散成合适尺寸的疏水纳米颗粒与表面活性剂复配分散体经由第二超滤膜进入所述第三腔体,然后经由储液罐、第二柱塞泵再次循环至超声波分散仪;
(7)重复循环步骤(1)-(6),形成疏水纳米颗粒与表面活性剂的复配分散体;
(8)将所述疏水纳米颗粒与表面活性剂的复配分散体循环至储液罐;
(9)将所述集料管路与所述储液罐连通,利用所述第三柱塞泵将所述复配分散体收集至复配分散体储罐。
本发明具有以下优点及突出性效果:
1、本发明所述的装置及方法实现了疏水纳米颗粒与表面活性剂复配分散体的制备及生产,既能满足实验室级用量的需要,也能满足油田作业区多井组、大剂量注入的需要;
2、本发明所述的装置及方法利用超声波空化作用与表面活性剂—纳米颗粒表面高效吸附相结合的物理化学作用机理,实现了疏水纳米颗粒在水相中的稳定分散,使得疏水型纳米颗粒也能应用于纳米颗粒稳定泡沫体系;
3、本发明所述的装置及方法通过控制超滤膜孔径的大小,可以按照实验或现场施工需求控制复配分散体中纳米颗粒的分散粒径,满足不同泡沫体系需要不同分散粒径复配分散体的要求,实现稳定泡沫的作用;
4、本发明所述的装置及方法由于能够将疏水纳米颗粒稳定的分散在水相中,增加了纳米颗粒与表面活性剂接触吸附的几率,从而提高了纳米颗粒与表面活性剂的吸附复配效率,从而降低了二者的用量,节约了成本,为纳米颗粒在油气田开发中的应用提供了经济可行性;
5、本发明所述的装置及方法制备的疏水纳米颗粒与表面活性剂复配分散体粘度低、流动性好、稳定性好,便于现场生产、注入,并且在注入时既可以采用地面起泡注入的方式,也可以采用与气源段塞式注入地下起泡的注入方式,满足现场需求。
附图说明
图1为本发明所述疏水纳米颗粒与表面活性剂复配分散体的制备装置的整体结构示意图;
图2为超声波分散仪顶盖俯视图;
图3为超声波分散仪的内部俯视剖面图;
图4为实施例7-10中所得到的复配分散体与常规方法制备复配分散体的对比照片;
图4中1号试管内复配分散体溶液为常规方法制得,即控制复配分散体中SiO2浓度为1%,AOT浓度为0.4%,然后用磁力搅拌器以1000rpm的速度搅拌30min所得;
图4中2号、3号、4号和5号试管分别对应于实施例7-10中所得到的复配分散体照片。
图5为常规方法制得复配分散体的TEM显微照片;
图6-图9分别为实施例7-10中所得到的复配分散体的TEM显微照片。
在图1-3中,1供水管路、2复配混合管路、3集料管路、4超声波分散仪、5储液罐、6第二柱塞泵、7仪器桶、8第一超滤膜、9第二超滤膜、10第一腔体、11第二腔体、12第三腔体、13、第一超声波发射探头、14第二超声波发射探头、15表面活性剂投放管道、16疏水纳米颗粒投放管道、17顶盖、18第一卡环、19第二卡环、20储水罐、21第一柱塞泵、22流量计、23复配分散体储罐、24第三柱塞泵、25温控装置;26用于固定顶盖的螺栓、27用于密封顶盖的密封圈、28阀门。
具体实施方式
下面结合附图进一步说明本发明的原理、具体结构及最佳实施方式,但不限于此。
实施例1、
一种疏水纳米颗粒与表面活性剂复配分散体制备装置,包括供水管路1、复配混合管路2和集料管路3;
所述复配混合管路2包括串联成回路的超声波分散仪4和储液罐5,在所述超声波分散仪4和储液罐5之间设置有供物料单向循环的第二柱塞泵6;
所述供水管路1与所述超声波分散仪4的顶部相连;
所述集料管路3与所述储液罐5的出料端相连。
实施例2、
如实施例1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其区别在于,所述超声波分散仪4包括仪器桶7、在所述仪器桶7内由上而下依次设置有第一超滤膜8和第二超滤膜9将所述仪器桶分为三个腔体,依次为:第一腔体10、第二腔体11和第三腔体12,在第一腔体10内设置有第一超声波发射探头13;在所述第二腔体11内设置有第二超声波发射探头14;在所述仪器桶7的桶壁上贯通设置有表面活性剂投放管道15和第一腔体10相连通;在所述仪器桶7的桶壁上贯通设置有疏水纳米颗粒投放管道16和所述第二腔体11相连通。
实施例3、
如实施例1、2所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其区别在于, 所述超声波分散仪包括活动启闭的顶盖17。
所述仪器桶7的内桶壁上设置有第一卡环18和第二卡环19,所述第一超滤膜8和第二超滤膜9分别通过第一卡环18和第二卡环19分别搭设在所述仪器桶7内。
实施例4、
如实施例1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其区别在于,所述供水管路1通过三通管与所述超声波分散仪4和储液罐5相连;所述供水管路1包括储水罐20、第一柱塞泵21和流量计22。
所述集料管路3通过三通管与所述储液罐5和超声波分散仪4相连;所述集料管路3包括复配分散体储罐23和第三柱塞泵24。
实施例5、
如实施例4所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其区别在于,所述仪器桶7整体为矩形,在所述桶壁内侧设置有温控装置25;在所述温控装置25相邻的桶壁上分别设置有第一超声波发射探头13或第二超声波发射探头14。
实施例6、
如实施例1-5所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其区别在于,所述第一超滤膜8孔径为10nm~100nm,所述第二超滤膜9孔径为10nm~100nm。根据实验需求进行选择,其四周由铜丝固定,并由密封圈包裹铜丝,上下两层超滤膜由腔体内壁上的卡环在特定高度进行固定。所述第一超声波发射探头和第二超声波发射探头的效频率均为15kHz~40kHz,功率为2000w;所述第一超声波发射探头和第二超声波发射探头均包括多个探头,所述探头与所述桶壁垂直设置,所述相邻设置的探头的间距为5cm。
实施例7、
一种利用如实施例1-6所述制备装置制备疏水纳米颗粒与表面活性剂复配分散体的方法,包括步骤如下:
(1)根据实验需要选择合适孔径的第一超滤膜8和第二超滤膜9,并先将第二超滤膜9安装第二卡环19上,然后将第一超滤膜8安装在第一卡环18上;所述第一超滤膜8和第二超滤膜9的孔径为30~50nm,然后在超声波分散仪顶盖加装密封圈27,最后用螺栓26固定超声波分散仪顶盖17;
(2)盖紧超声波分散仪顶盖17,由表面活性剂投放管道向超声波分散仪4的第一腔体10内投放所需质量的表面活性剂,即加入20g双(2-乙基己基)琥珀酸酯磺酸钠(AOT);由疏水纳米颗粒投放管道向超声波分散仪4的第二腔体11内投放所需质量的疏水纳米颗粒,即加入100g疏水纳米二氧化硅颗粒,其中疏水纳米二氧化硅颗粒的粒径20nm;投放结束后关闭表面活性剂投放管道15和疏水纳米颗粒投放管道16;
(3)利用第一柱塞泵21将储水罐20中的水注入超声波分散仪4中;控制注入水量为 10L,即控制复配分散体中SiO2浓度为1%,AOT浓度为0.2%,AOT和SiO2浓度比为0.2;
(4)注入水后,通过第二柱塞泵6使所述疏水纳米颗粒、表面活性剂和水在复配混合管路内单向循环,开启第一超声波发射探头13和第二超声波发射探头14;在超声波分散仪4内水体循环流动过程中,水首先在超声波分散仪4内上部空间与表面活性剂混合,在第一超声波发射探头13超声空化的作用下形成表面活性剂与水的分散溶液,然后经由第一超滤膜8进入第二腔体11,未到达第一超滤膜8尺寸要求的将被滞留在所述第一腔体10内,直至经第一超声波发射探头13超声空化使其粒径尺寸达到第一超滤膜8尺寸要求才能进入第二腔体11内;形成超声波分散仪与储液罐之间的闭合循环回路,同时开启第一超声波发射探头13和第二超声波发射探头14,有效频率设定为20kHz,开启温控装置25并设定温度恒定为25℃;
(5)进入第二腔体11的表面活性剂与水的分散溶液与疏水纳米颗粒混合,在第二超声波发射探头14超声空化作用下,疏水纳米颗粒不仅在外界能量的供给下剧烈运动使其自身分散,而且在其分散过程中由于其自身所具有的高表面能、高吸附性的特性,使表面活性剂在其表面吸附,从而增加其分散稳定性;
(6)分散成合适尺寸的疏水纳米颗粒与表面活性剂复配分散体经由第二超滤膜9进入所述第三腔体12,然后经由储液罐5、第二柱塞泵6再次循环至超声波分散仪4;
(7)重复循环步骤(1)-(6),形成疏水纳米颗粒与表面活性剂的复配分散体;
(8)将所述疏水纳米颗粒与表面活性剂的复配分散体循环至储液罐5;
(9)将所述集料管路3与所述储液罐5连通,利用所述第三柱塞泵24将所述复配分散体收集至复配分散体储罐23。该过程循环所设定次数后,然后经由柱塞泵32将超声波分散仪24及储液罐27内部的疏水纳米颗粒与表面活性剂复配分散体泵入复配分散体储罐34中,至此得到了疏水纳米颗粒与表面活性剂复配分散体。
实施例8、
如实施例7所述制备疏水纳米颗粒与表面活性剂复配分散体的方法,不同之处在于:通过表面活性剂投放管道15向超声波分散仪4的第一腔体10内投放所需质量的表面活性剂,加入40g AOT,即控制复配分散体中SiO2浓度为1%,AOT浓度为0.4%,AOT和SiO2浓度比为0.4。
实施例9、
如实施例7所述制备疏水纳米颗粒与表面活性剂复配分散体的方法,不同之处在于:通过表面活性剂投放管道15向超声波分散仪4的第一腔体10内投放所需质量的表面活性剂,加入60g AOT,即控制复配分散体中SiO2浓度为1%,AOT浓度为0.6%,AOT和SiO2浓度比为0.6。
实施例10、
如实施例7所述制备疏水纳米颗粒与表面活性剂复配分散体的方法,不同之处在于:通 过表面活性剂投放管道15向超声波分散仪4的第一腔体10内投放所需质量的表面活性剂,加入60g SDS,即控制复配分散体中SiO2浓度为1%,SDS浓度为0.6%,SDS和SiO2浓度比为0.6。
图4为实施例7-10中所得到的复配分散体的对比照片,图4中1号试管内复配分散体溶液为常规方法制得,即控制复配分散体中SiO2浓度为1%,AOT浓度为0.4%,然后用磁力搅拌器以1000rpm的速度搅拌30min所得;图4中2号、3号、4号和5号试管分别对应于实施例7-10中所得到的复配分散体照片。
图5为常规方法制得复配分散体的TEM显微照片;图6-图9分别为实施例7-10中所得到的复配分散体的TEM显微照片。对比可以发现,常规方法制得的复配分散体中纳米颗粒存在明显的团聚,形成了较大的团簇结构,而利用本发明装置及方法制备的复配分散体可以呈现非常好的分散状态,并且在3号图中(即实施例8中所设置AOT和SiO2浓度比为0.4时)分散状态最好。

Claims (9)

  1. 一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,该装置包括供水管路、复配混合管路和集料管路;
    所述复配混合管路包括串联成回路的超声波分散仪和储液罐,在所述超声波分散仪和储液罐之间设置有供物料单向循环的第二柱塞泵;
    所述供水管路与所述超声波分散仪的顶部相连;
    所述集料管路与所述储液罐的出料端相连。
  2. 根据权利要求1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述超声波分散仪包括仪器桶、在所述仪器桶内由上而下依次设置有第一超滤膜和第二超滤膜将所述仪器桶分为三个腔体,依次为:第一腔体、第二腔体和第三腔体,在第一腔体内设置有第一超声波发射探头;在所述第二腔体内设置有第二超声波发射探头;在所述仪器桶的桶壁上贯通设置有表面活性剂投放管道和第一腔体相连通;在所述仪器桶的桶壁上贯通设置有疏水纳米颗粒投放管道和所述第二腔体相连通。
  3. 根据权利要求1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述超声波分散仪包括活动启闭的顶盖。
  4. 根据权利要求1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述仪器桶的内桶壁上设置有第一卡环和第二卡环,所述第一超滤膜和第二超滤膜分别通过第一卡环和第二卡环分别搭设在所述仪器桶内。
  5. 根据权利要求1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述供水管路通过三通管与所述超声波分散仪和储液罐相连;所述供水管路包括储水罐、第一柱塞泵和流量计。
  6. 根据权利要求1所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述集料管路通过三通管与所述储液罐和超声波分散仪相连;所述集料管路包括复配分散体储罐和第三柱塞泵。
  7. 根据权利要求2所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述仪器桶整体为矩形,在所述桶壁内侧设置有温控装置;在所述温控装置相邻的桶壁上分别设置有第一超声波发射探头或第二超声波发射探头。
  8. 根据权利要求2所述的一种疏水纳米颗粒与表面活性剂复配分散体制备装置,其特征在于,所述第一超滤膜孔径为10nm~100nm,所述第二超滤膜孔径为10nm~100nm。
  9. 一种利用如权利要求1-8所述制备装置制备疏水纳米颗粒与表面活性剂复配分散体的方法,其特征在于,该方法包括步骤如下:
    (1)根据实验需要选择合适孔径的第一超滤膜和第二超滤膜,并先将第二超滤膜安装第 二卡环上,然后将第一超滤膜安装在第一卡环上;
    (2)盖紧超声波分散仪顶盖,由表面活性剂投放管道向超声波分散仪的第一腔体内投放所需质量的表面活性剂,由疏水纳米颗粒投放管道向超声波分散仪的第二腔体内投放所需质量的疏水纳米颗粒;投放结束后关闭表面活性剂投放管道和疏水纳米颗粒投放管道;
    (3)利用第一柱塞泵将储水罐中的水注入超声波分散仪中;
    (4)注入水后,通过第二柱塞泵使所述疏水纳米颗粒、表面活性剂和水在复配混合管路内单向循环,开启第一超声波发射探头和第二超声波发射探头;在超声波分散仪内水体循环流动过程中,水首先在超声波分散仪内上部空间与表面活性剂混合,在第一超声波发射探头超声空化的作用下形成表面活性剂与水的分散溶液,然后经由第一超滤膜进入第二腔体,未到达第一超滤膜尺寸要求的将被滞留在所述第一腔体内,直至经第一超声波发射探头超声空化使其粒径尺寸达到第一超滤膜尺寸要求才能进入第二腔体内;
    (5)进入第二腔体的表面活性剂与水的分散溶液与疏水纳米颗粒混合;
    (6)分散成合适尺寸的疏水纳米颗粒与表面活性剂复配分散体经由第二超滤膜进入所述第三腔体,然后经由储液罐、第二柱塞泵再次循环至超声波分散仪;
    (7)重复循环步骤(1)-(6),形成疏水纳米颗粒与表面活性剂的复配分散体;
    (8)将所述疏水纳米颗粒与表面活性剂的复配分散体循环至储液罐;
    (9)将所述集料管路与所述储液罐连通,利用所述第三柱塞泵将所述复配分散体收集至复配分散体储罐。
PCT/CN2015/078500 2015-01-13 2015-05-07 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用 WO2016112603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/917,875 US10071349B2 (en) 2015-01-13 2015-05-07 Apparatus for preparing compound dispersoids of hydrophobic nanoparticles and surfactants and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510016949.5 2015-01-13
CN201510016949.5A CN104549021B (zh) 2015-01-13 2015-01-13 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用

Publications (1)

Publication Number Publication Date
WO2016112603A1 true WO2016112603A1 (zh) 2016-07-21

Family

ID=53066734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078500 WO2016112603A1 (zh) 2015-01-13 2015-05-07 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用

Country Status (3)

Country Link
US (1) US10071349B2 (zh)
CN (1) CN104549021B (zh)
WO (1) WO2016112603A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549021B (zh) * 2015-01-13 2015-12-30 中国石油大学(华东) 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用
CN105749792A (zh) * 2016-05-20 2016-07-13 昆明纳太科技有限公司 超声分散装置及其超声分散方法
CN208275319U (zh) * 2018-08-07 2018-12-25 南京万源千纳纳米科技有限公司 一种用于纳米润滑添加剂的便携多效混合器
CN109456747A (zh) * 2018-10-29 2019-03-12 中国石油大学(华东) 含石墨颗粒的高稳定性泡沫的生产系统及方法
DE102018128064A1 (de) * 2018-11-09 2020-05-14 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Herstellung eines Öl-in-Wasser Gemischs und Vorrichtung zur Herstellung eines Öl-in-Wasser Gemischs
CN109999684B (zh) 2019-04-22 2021-07-13 中国石油大学(华东) 一种二氧化碳流度控制装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619135A1 (en) * 1993-04-05 1994-10-12 S.I.F.RA. SOCIETA ITALIANA FARMACEUTICI RAVIZZA S.p.A. System for preparing fluid for medical treatment
CN1994541A (zh) * 2006-12-19 2007-07-11 刘铮 一种连续式工业化纳米分散装置及方法
CN101391184A (zh) * 2008-10-23 2009-03-25 上海交通大学 碳纳米管减阻纳米流体的制备方法
CN102225320A (zh) * 2011-03-25 2011-10-26 泉州师范学院 一种微/纳米颗粒悬浮液的分散装置
CN104549021A (zh) * 2015-01-13 2015-04-29 中国石油大学(华东) 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703698B2 (en) * 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
GB0711680D0 (en) * 2007-06-18 2007-07-25 Prosonix Ltd Process
US8215822B2 (en) * 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
CN101391183B (zh) * 2008-10-23 2010-12-01 上海交通大学 氧化铜减阻纳米流体的制备方法
CN101543740A (zh) * 2009-04-09 2009-09-30 姚明勤 超声强磁聚能调控乳化器
CN201735398U (zh) * 2010-06-10 2011-02-09 南京师范大学 超声强化膜集成反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619135A1 (en) * 1993-04-05 1994-10-12 S.I.F.RA. SOCIETA ITALIANA FARMACEUTICI RAVIZZA S.p.A. System for preparing fluid for medical treatment
CN1994541A (zh) * 2006-12-19 2007-07-11 刘铮 一种连续式工业化纳米分散装置及方法
CN101391184A (zh) * 2008-10-23 2009-03-25 上海交通大学 碳纳米管减阻纳米流体的制备方法
CN102225320A (zh) * 2011-03-25 2011-10-26 泉州师范学院 一种微/纳米颗粒悬浮液的分散装置
CN104549021A (zh) * 2015-01-13 2015-04-29 中国石油大学(华东) 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用

Also Published As

Publication number Publication date
US20160361696A1 (en) 2016-12-15
CN104549021B (zh) 2015-12-30
CN104549021A (zh) 2015-04-29
US10071349B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2016112603A1 (zh) 一种疏水纳米颗粒与表面活性剂复配分散体制备装置及应用
US10188995B2 (en) Method for preparing compound dispersoids of hydrophobic nanoparticles and surfactants
WO2020216142A1 (zh) 一种二氧化碳流度控制装置及方法
CN109536137B (zh) 一种同时具有磁性和光热转换特性的相变微胶囊及其制备方法
US20190046939A1 (en) Nano-Silica Dispersion Having Amphiphilic Properties And A Double-Particle Structure And Its Production Method
CN109943313A (zh) 一种超临界二氧化碳微乳液与粉煤灰颗粒复配分散体制备设备及方法
Li et al. Recent progress on asymmetric carbon-and silica-based nanomaterials: from synthetic strategies to their applications
CN103205013A (zh) 一种聚合物超临界二氧化碳发泡成核剂及其制备方法和应用
Adil et al. Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review
JP5274809B2 (ja) 低誘電率膜の製造方法
WO2021035831A1 (zh) 一种可非等动量受限射流撞击混合的方法
CN113053549B (zh) 一种适用于压水堆核电站的纳米流体注射系统
Zhang et al. High electrocapacitive performance of bowl-like monodispersed porous carbon nanoparticles prepared with an interfacial self-assembly process
CN111560241A (zh) 一种纤维素纳米晶体强化泡沫体系及其制备方法
Zhang et al. Recyclable ZnO/Fe3O4 nanocomposite with piezotronic effect for high performance photocatalysis
CN105502480A (zh) 一种绣球花状钛酸锶纳米粉体的制备方法
NL2026222B1 (en) Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide
CN111569749B (zh) 一种非常规气藏压裂用纳米颗粒强化泡沫发生装置及其应用
Kusrini et al. Effects of sequence preparation of titanium dioxide-water nanofluid using cetyltrimethylammonium bromide surfactant and TiO2 nanoparticles for enhancement of thermal conductivity
Chi et al. Preparation and application of pH-Responsive and high salt-tolerant silica-based amphiphilic Janus nanosheets for enhanced heavy oil recovery
Cui et al. Aqueous foams stabilized solely by CoOOH nanoparticles and the resulting construction of hierarchically hollow structure
CN106311074A (zh) 消泡可控型多相泡沫体系及其制备方法
CN106543976A (zh) 一种高分散稳定性的TiO2‑H2O纳米流体及其制备方法和应用
CN113000851B (zh) 一种利用微通道反应器制备粒径可控超顺磁性纳米铁的方法
CN110066650A (zh) 一种纳米聚硅乳液及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14917875

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877521

Country of ref document: EP

Kind code of ref document: A1