WO2021035743A1 - 压力感应装置、压力感应方法及设备 - Google Patents

压力感应装置、压力感应方法及设备 Download PDF

Info

Publication number
WO2021035743A1
WO2021035743A1 PCT/CN2019/103866 CN2019103866W WO2021035743A1 WO 2021035743 A1 WO2021035743 A1 WO 2021035743A1 CN 2019103866 W CN2019103866 W CN 2019103866W WO 2021035743 A1 WO2021035743 A1 WO 2021035743A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
sensor
mounting surfaces
strain amplification
bridge circuit
Prior art date
Application number
PCT/CN2019/103866
Other languages
English (en)
French (fr)
Inventor
李灏
林学朋
Original Assignee
深圳纽迪瑞科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纽迪瑞科技开发有限公司 filed Critical 深圳纽迪瑞科技开发有限公司
Priority to PCT/CN2019/103866 priority Critical patent/WO2021035743A1/zh
Priority to US17/639,247 priority patent/US20220334011A1/en
Priority to CN201980099214.XA priority patent/CN114245864A/zh
Publication of WO2021035743A1 publication Critical patent/WO2021035743A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type

Definitions

  • This application relates to the technical field of pressure sensing, and in particular to a pressure sensing device, a pressure sensing method using the pressure sensing device, and a device having the pressure sensing device.
  • One of the objectives of the embodiments of the present application is to provide a pressure sensing device, a pressure sensing method, and equipment, which are intended to solve the problem of pressure signal distortion caused by temperature drift in the existing pressure sensing structure.
  • a pressure sensing device including:
  • the rigid structure is used to fit the object under test and follow the deformation of the object under test.
  • the rigid structure includes rigid blocks arranged at intervals along a predetermined direction.
  • a strain amplification zone is formed between two adjacent rigid blocks.
  • the structure has two opposite mounting surfaces, one of which is used as a bonding surface with the object to be measured; and
  • the force sensor is divided into a first sensor arranged in the strain amplification zone and capable of following the deformation of the measured object, and a second sensor arranged on the rigid block and arranged close to the first sensor corresponding to the first sensor.
  • the output signal of the second sensor is used as the temperature compensation amount of the first sensor;
  • the two mounting surfaces of the strain amplification zone are respectively provided with at least one first sensor;
  • the two mountings of the rigid block Each surface is provided with at least one of the second sensors; at least four of the force sensors are connected to form a bridge circuit, and the bridge circuit is electrically connected to the signal processing circuit to detect the deformation of the rigid structure and obtain the measured The force of the object.
  • a pressure sensing method which adopts the above-mentioned pressure sensing device, and includes the following steps:
  • At least four of the force sensors are connected to form the bridge circuit, and the bridge circuit is electrically connected to a signal processing circuit to detect the deformation of the rigid structure and obtain the force of the measured object, and the second The output signal of the sensor is used as the temperature compensation amount of the first sensor.
  • a device which includes a measured object and the aforementioned pressure sensing device, and the rigid structure is attached to the measured object.
  • the rigid structure includes rigid blocks arranged at intervals, and a strain amplification zone is formed between two adjacent rigid blocks.
  • the force sensor is divided into a first sensor and a second sensor.
  • the first sensor is installed on the two installation surfaces of the strain amplification zone and follows the deformation of the measured object.
  • the second sensor and the corresponding first sensor are close to the two installations installed on the rigid block. Surface.
  • At least four force sensors are connected to form a bridge circuit.
  • the rigid structure is attached to the measured object, and the bridge circuit is electrically connected to the signal processing circuit to detect the deformation of the rigid structure and obtain the force of the measured object.
  • the strain of the rigid structure When the measured object is deformed by force, the strain of the rigid structure is concentrated in the strain amplification zone, the first sensor obtains the pressure signal, the second sensor’s pressure signal is close to zero, the first sensor and the second sensor’s temperature signal are close, and the second The output signal of the sensor is used as the temperature compensation signal of the first sensor, so that a relatively clean pressure signal can be obtained.
  • the pressure sensing device, the pressure sensing method and the equipment with the pressure sensing device do not distort the pressure signal in a high temperature or low temperature environment, so that the pressure sensing device has the advantages of easy installation, simple circuit, low cost, low temperature drift and the like.
  • FIG. 1 is an assembly schematic diagram of a pressure sensing device provided by an embodiment of the present application
  • Figure 2 is a front view of the pressure sensing device of Figure 1;
  • FIG. 3 is a three-dimensional structure diagram of the pressure sensing device of FIG. 2;
  • FIG. 4 is a circuit diagram of the bridge circuit of the pressure sensing device of FIG. 3;
  • Fig. 5(a) is a curve diagram of the resistance change rate of two first sensors and two second sensors in the two bridge circuits of Fig. 4;
  • Fig. 5(b) is a curve diagram of the resistance change rate difference between the first sensor and the corresponding second sensor in Fig. 5(a);
  • Fig. 6 is a diagram of output signals of the two bridge circuits of Fig. 4;
  • FIG. 7 is a front view of a pressure sensing device provided by another embodiment of the application.
  • FIG. 8 is a three-dimensional structure diagram of the pressure sensing device of FIG. 7;
  • FIG. 9 is a circuit diagram of the bridge circuit of the pressure sensing device of FIG. 8;
  • Figure 10 is a front view of a pressure sensing device provided by another embodiment of the application.
  • FIG. 11 is a three-dimensional structure diagram of the pressure sensing device of FIG. 10;
  • Fig. 12 is a circuit diagram of the pressure sensing device bridge of Fig. 11;
  • Figure 13 is a front view of a pressure sensing device provided by another embodiment of the application.
  • FIG. 14 is a three-dimensional structure diagram of the pressure sensing device of FIG. 13;
  • Fig. 15 is a bridge circuit diagram of the pressure sensing device of Fig. 14.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it may be a fixed connection or a fixed connection.
  • the specific meanings of the above-mentioned terms in the embodiments of the present application can be understood according to specific circumstances.
  • the pressure sensing device provided by some embodiments of the present application includes a rigid structure 10 and a force sensor.
  • the rigid structure 10 is used to fit the measured object (not shown) and follow the deformation of the measured object.
  • the rigid structure 10 includes rigid blocks 11 spaced apart along a predetermined direction, and a strain amplification zone is formed between two adjacent rigid blocks 11 12.
  • the rigid structure 10 has two opposite mounting surfaces 10a (10b), and one of the mounting surfaces 10a serves as a bonding surface with the measured object.
  • the force sensor is divided into a first sensor R1 (R2) which is arranged in the strain amplification zone 12 and can follow the deformation of the measured object, and a second sensor R5 which is arranged on the rigid block 11 and is arranged close to the first sensor R1 (R2).
  • the output signal of the second sensor R5 (R6) is used as the temperature compensation amount of the first sensor R1 (R2);
  • the two mounting surfaces 10a (10b) of the strain amplification zone 12 are respectively provided with at least one first sensor R1 ( R2);
  • the two mounting surfaces 10a (10b) of the rigid block 11 are respectively provided with at least one second sensor R5 (R6);
  • at least four force sensors are connected to form a bridge circuit, and the bridge circuit is electrically connected to the signal processing circuit to The deformation of the rigid structure 10 is detected and the force of the measured object is obtained.
  • the rigid structure 10 includes rigid blocks 11 arranged at intervals, and a strain amplification zone 12 is formed between two adjacent rigid blocks 11.
  • the force sensor is divided into a first sensor R1 (R2) and a second sensor R5 (R6).
  • the first sensor R1 (R2) is set on the two mounting surfaces 10a (10b) of the strain amplification zone 12 and follows the deformation of the measured object.
  • the two sensors R5 (R6) and the corresponding first sensor R1 (R2) are arranged close to the two mounting surfaces 10a (10b) of the rigid block 11. At least four force sensors are connected to form a bridge circuit.
  • the rigid structure 10 is attached to the object to be measured, and the bridge circuit is electrically connected to the signal processing circuit to detect the deformation of the rigid structure 10 and obtain the force of the object to be measured.
  • the strain of the rigid structure 10 is concentrated in the strain amplification zone 12.
  • the first sensor R1 (R2) obtains the pressure signal
  • the second sensor R5 (R6) has a pressure signal close to zero
  • the first sensor R1 (R2) is close to the temperature signal of the second sensor R5 (R6)
  • the output signal of the second sensor R5 (R6) is used as the temperature compensation signal of the first sensor R1 (R2), so that a relatively clean pressure signal can be obtained.
  • the pressure sensing device does not distort the pressure signal in a high temperature or low temperature environment, so that the pressure sensing device has the advantages of easy installation, simple circuit, low cost, low temperature drift and the like.
  • the signal processing circuit is electrically connected with the bridge circuit, analyzes and processes the electrical signal of the force sensor, and converts the force analog signal into a force digital signal. This part belongs to the prior art.
  • the rigid structure 10 has a certain rigidity
  • the strain amplification area 12 is a hollow area
  • the first sensor R1 (R2) is provided in the strain amplification area 12.
  • the rigid structure 10 follows the deformation of the measured object, and the deformation of the strain amplification zone 12 is amplified, which facilitates the detection of the deformation of the rigid structure 10 by the first sensor R1 (R2).
  • the rigid structure 10 may be steel sheet, aluminum sheet, glass sheet, FR4 sheet or other composite rigid materials, which can be selected as required.
  • a flexible substrate 21 is provided on the two mounting surfaces 10a (10b), and the force sensors respectively provided on the two mounting surfaces 10a (10b) are respectively mounted on the corresponding flexible substrate 21.
  • the flexible substrate 21 with the force sensor is pressed through the glue 30 to a discrete rigid block 11 of a certain size.
  • the first sensor R1 (R2) is directly opposite or adjacent to the strain amplification zone 12, and the second sensor R5 (R6)
  • the rigid block 11 forms a pressure sensing device, and the structure is easy to form.
  • the flexible substrate 21 can be FPC (flexible circuit board), PET (high temperature resistant polyester film), PI film (polyimide film) or other flexible substrates with good flatness, which can be selected as required.
  • two flexible substrates 21 are formed by bending one mother substrate 20.
  • the force sensor is attached to a mother substrate 20, and then the center of the mother substrate 20 is folded and the two inner surfaces are bonded to the two mounting surfaces 10a (10b).
  • the processing is simple and the cost is low.
  • the flexible substrate 21 and the mounting surface 10a (10b) are bonded by a glue 30.
  • This structure facilitates the connection between the rigid structure 10 and the flexible substrate 21, and allows the flexible substrate 21 and the rigid structure 10 to follow the object to be tested and deform when the object to be tested is deformed by force.
  • the glue 30 can be epoxy glue film, 502 glue, thermosetting glue, silica gel and other materials, which can be selected as required.
  • the length direction of the force sensor and the arrangement direction of the rigid block 11 are parallel to each other.
  • This structure is easy to assemble a force sensor, and the deformation of the first sensor R1 (R2) is greater when the measured object is pressed, and the pressure signal is better output.
  • the first sensor R1 (R2) and the corresponding second sensor R5 (R6) are arranged close to and on the same mounting surface 10a (10b), so that the first sensor R1 (R2) and the second sensor R5 (R6) are The temperature signal is close, and the output signal of the second sensor R5 (R6) can be used as the temperature compensation signal of the first sensor R1 (R2), and the position of the second sensor R5 (R6) can be adjusted at will.
  • any second sensor R5 (R6) can be placed on one of the rigid blocks 11 adjacent to the strain amplification zone 12.
  • At least one second sensor R5 (R6) is split into two or more resistors connected in series or parallel to form an equivalent resistor, and the split resistors are distributed in two adjacent to the strain amplification zone 12
  • the temperature signal of the second sensor R5 (R6) is close to the temperature signal of the first sensor R1 (R2), whether it is pressed on the center of the strain amplification zone 12 or outside the strain amplification zone 12. Compensation is more balanced.
  • the first sensor R1 (R2) is provided on the two mounting surfaces 10a (10b) of one or more strain amplification zones 12, and the first sensor R1 (R2) is arranged on two rigid blocks 11 adjacent to the strain amplification zone 12
  • the mounting surface 10a (10b) is provided with a second sensor R5 (R6), and at least four force sensors are connected to form a bridge circuit to detect the pressure corresponding to the strain amplification zone 12.
  • the number of strain amplification areas 12 for setting the force sensor is determined according to the size of the pressure sensing area.
  • a full bridge circuit is used to achieve pressure detection, and another full bridge circuit is used to achieve temperature compensation.
  • two mounting surfaces 10a (10b) of at least one strain amplification zone 12 are respectively provided with two first sensors R1, R4 (R2, R3), and four first sensors R1, R2, R3, R4 are connected to form a whole Bridge circuit, two first sensors R1, R4 (R2, R3) located on the same mounting surface 10a (10b) as a set of opposite bridge arms; two mounting surfaces 10a of the rigid block 11 adjacent to the strain amplification zone 12 (10b)
  • Two second sensors R5, R8 (R6, R7) are respectively provided, and the four second sensors R5, R6, R7, R8 are connected to form another full bridge circuit, which is located on the same mounting surface 10a (10b)
  • the two second sensors R5, R8 (R6, R7) serve as a set of opposite bridge arms.
  • Vp1-Vn1 (R2R3-R1R4)Ui/[(R1+R2)(R3+R4)];
  • Vp2-Vn2 (R6R7-R5R8)Ui/[(R5+R6)(R7+R8)];
  • U2 increases with the increase of R6 and R7, and decreases with the increase of R5 and R8.
  • Pressure signal analysis Attach the pressure sensing device to the measured object.
  • the strain of the measured object is concentrated in the strain amplification zone 12 near the applied force, and the force sensor is arranged in the strain amplification zone 12
  • the impedance of the force sensor changes accordingly, and the force sensor is electrically connected to the signal processing circuit to generate a pressure signal.
  • the direction, size and position of the force can be identified; because the rigid block 11 is relatively strong, it is measured When an object exerts force, the deformation of the rigid block 11 itself is very small.
  • the second sensors R5, R6, R7, and R8 in the rigid block 11 are deformed together with the rigid block 11.
  • the second sensors R5, R5 and R8 of the rigid block 11 are deformed together.
  • the deformation of R6, R7, and R8 is also very small.
  • R1 and R4 become smaller, R2 and R3 become larger, R5, R6, R7 and R8 hardly change, so U1 is a larger positive pressure signal, U2 is a Almost zero pressure signal.
  • Temperature signal analysis Assuming that the resistance of the force sensor increases with the increase of temperature, the pressure sensing device is in a high temperature state, and the human hand directly presses the measured object, and heat will be instantly transferred from the measured object and the pressure sensing device to the human hand. .
  • R1 and R4 on the surface of the object being tested are closer to the human hand, while R2 and R3 on the opposite side are farther away from the human hand, so at this time R1 and R4 are cooled first and the resistance value changes, and then R2 and R3 cool down and The resistance value changes. At this time, the change in the temperature of the force sensor will produce a larger temperature signal.
  • R1 and R5 are in the same plane
  • R2 and R6 are in the same plane
  • R1 and R2 are in the strain amplification zone 12
  • R5 and R6 are in the rigid block 11.
  • a half-bridge circuit is used to realize pressure detection and realize temperature compensation.
  • two mounting surfaces 10a (10b) of at least one strain amplification zone 12 are respectively provided with a first sensor R1 (R2), and two mounting surfaces 10a (10b) of the rigid block 11 adjacent to the strain amplification zone 12 are provided.
  • a second sensor R3 (R4) is respectively provided.
  • first sensors R1, R2 and two second sensors R3, R4 are connected to form a half-bridge circuit, which is located in the corresponding strain amplification area 12 of one of the mounting surfaces 10a (10b)
  • the first sensor R1 (R2) and the second sensor R4 (R3) corresponding to the rigid block 11 on the other mounting surface 10b (10a) are used as a set of opposite bridge arms.
  • ⁇ VP1- ⁇ VP2 F1+T1-T2.
  • a full bridge circuit is used to achieve pressure detection, and a half bridge is added to achieve temperature compensation.
  • two mounting surfaces 10a (10b) of at least one strain amplification zone 12 are respectively provided with two first sensors R1, R4 (R2, R3), and four first sensors R1, R2, R3, R4 are connected to form a whole Bridge circuit, two first sensors R1, R4 (R2, R3) located on the same mounting surface 10a (10b) as a set of opposite bridge arms; two mounting surfaces 10a of the rigid block 11 adjacent to the strain amplification zone 12 (10b)
  • a second sensor R5 (R6) is respectively provided, and the two second sensors R5 and R6 are connected with two of the first sensors R1 and R2 respectively located on the two mounting surfaces 10a (10b) to form a half-bridge circuit,
  • the first sensor R1 (R2) corresponding to the strain amplification zone 12 on one of the mounting surfaces 10a (10b) and the second sensor
  • Vp1-Vn1 (R2R3-R1R4)Ui/[(R1+R2)(R3+R4)];
  • Vp1-Vp2 (R2R5-R1R6)Ui/[(R1+R2)(R5+R6)];
  • the advantage of this scheme is: on the basis of the full-bridge circuit, only one half-bridge is added, which can carry out effective temperature compensation without loss of pressure signal.
  • one of the strain amplification zones 12 adopts a full-bridge circuit to achieve pressure detection, and the other full-bridge circuit is used for pressure detection.
  • the bridge circuit realizes temperature compensation; the other strain amplification zone 12 adopts another full bridge circuit to realize pressure detection, and realizes temperature compensation by adding a half bridge.
  • two mounting surfaces 10a (10b) of one strain amplification zone 12 are respectively provided with two first sensors R1, R4 (R2, R3), corresponding to the same
  • the four first sensors R1, R2, R3, R4 of a strain amplification zone 12 are connected to form a full bridge circuit, and the two first sensors R1, R4 (R2, R3) located on the same mounting surface 10a (10b) as a group Opposite the bridge arm;
  • the two mounting surfaces 10a (10b) of each rigid block 11 adjacent to the strain amplification zone 12 are respectively provided with a second sensor R9 (R10, R11, R12), adjacent to the same strain amplification zone
  • the four second sensors R9, R10, R11, R12 on the two rigid blocks 11 of 12 are connected to form another full bridge circuit, and the two second sensors R9, R12 (R10, R12) on the same mounting surface 10a (10b) R11) as a set of relative bridge arms;
  • the two mounting surfaces 10a (10b) of the other strain amplification zone 12 are respectively provided with two first sensors R5, R8 (R6, R7), corresponding to the four first sensors R5, R6, R7 of the strain amplification zone 12 , R8 is connected to form a full bridge circuit, and the two first sensors R5 and R8 (R6, R7) on the same mounting surface 10a (10b) serve as a set of opposite bridge arms; one of the rigidity adjacent to the strain amplification zone 12
  • the two mounting surfaces 10a (10b) of the block 11 have been respectively provided with a second sensor R11 (R12), and the two mounting surfaces 10a (10b) of the other rigid block 11 adjacent to the strain amplification zone 12 are respectively provided with R13 (R14), the four second sensors R11, R12, R13, R14 on the two rigid blocks 11 adjacent to the strain amplification zone 12 are connected to form another full bridge circuit, which is located on the same mounting surface 10a (10b)
  • the two second sensors R12, R13 (R11, R14)
  • ⁇ U3 can perform temperature compensation on ⁇ U1
  • ⁇ U4 can perform temperature compensation on ⁇ U2.
  • ⁇ U3 and ⁇ U4 share the output signal Vn3 of the detection end of the second sensor R11 and R12 in series.
  • the force sensor is a strain sensing resistor, which is composed of polycrystalline semiconductor materials, amorphous semiconductor materials, polysilicon, graphene, copper-nickel alloys, carbon nanotubes, thin metal wires, conductor insulator composite materials Made of at least one material.
  • the above schemes can all realize pressure sensing, which can be selected according to needs.
  • Some embodiments of the present application provide a pressure sensing method, which adopts the above-mentioned pressure sensing device, and includes the following steps:
  • the bridge circuit is electrically connected to the signal processing circuit to detect the deformation of the rigid structure 10 and obtain the force of the measured object.
  • the output signal of the second sensor is used as the output signal of the first sensor. The amount of temperature compensation.
  • the rigid structure 10 includes rigid blocks 11 arranged at intervals, and a strain amplification zone 12 is formed between two adjacent rigid blocks 11.
  • the force sensor is divided into a first sensor and a second sensor.
  • the first sensor is arranged on the two mounting surfaces 10a (10b) of the strain amplification zone 12 and follows the deformation of the measured object.
  • the second sensor and the corresponding first sensor are set close to the rigid On the two mounting surfaces 10a (10b) of the block 11.
  • At least four force sensors are connected to form a bridge circuit.
  • the rigid structure 10 is attached to the object to be measured, and the bridge circuit is electrically connected to the signal processing circuit to detect the deformation of the rigid structure 10 and obtain the force of the object to be measured.
  • the first sensor obtains the pressure signal
  • the second sensor's pressure signal is close to zero
  • the first sensor and the second sensor's temperature signal are close.
  • the output signal of the second sensor is used as the temperature compensation signal of the first sensor, so that a relatively clean pressure signal can be obtained.
  • the pressure signal is not distorted in a high temperature or low temperature environment, so that it has the advantages of easy installation, simple circuit, low cost, and small temperature drift.
  • Some embodiments of the present application provide a device that includes an object under test and the aforementioned pressure sensing device, and the rigid structure 10 is attached to the object under test. Since this device adopts all the technical solutions of all the foregoing embodiments, it also has all the beneficial effects brought about by the technical solutions of the foregoing embodiments, which will not be repeated here.
  • the object to be measured is a panel or a frame.
  • the panel or frame can be made of glass, plastic, ceramic and other non-metallic materials.
  • the panel may be a touch screen, a display or other electronic terminal with a rigid structure 10.
  • the frame can be the frame of various electronic terminals.
  • the pressure sensing device is attached to the surface of the object to be measured by glue (not shown), which is easy to assemble.
  • glue (not shown), which is easy to assemble.
  • the rigid structure 10 follows the deformation of the measured object, the deformation of the strain amplification zone 12 is amplified, and the impedance of the force sensor changes accordingly.
  • the force sensor is electrically connected to the signal processing circuit to generate a pressure signal for analysis
  • the characteristics of the pressure signal can identify the direction, size and location of the force.
  • the glue can be VHB, double-sided tape, 502 glue, thermosetting glue, etc., which can be selected as required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Abstract

一种压力感应装置、压力感应方法及设备。在压力感应装置中,刚性结构(10)包括间隔设置的刚性块(11),相邻两个刚性块(11)之间形成应变放大区(12)。力传感器分为第一传感器(R1、R2)与第二传感器(R5、R6),第一传感器(R1、R2)设于应变放大区(12)的两个安装面(10a、10b)并跟随被测物体变形,第二传感器(R5、R6)与对应的第一传感器(R1、R2)靠近设置在刚性块(11)的两个安装面(10a、10b)上。至少四个力传感器连接形成电桥电路。在使用时,将刚性结构(10)贴合在被测物体上,电桥电路电连接于信号处理电路,进而检测刚性结构(10)的形变并得出被测物体的作用力。第二传感器(R5、R6)的输出信号作为第一传感器(R1、R2)的温度补偿信号,这样就可以获得比较干净的压力信号。该压力感应装置在高温或低温环境下压力信号也不失真,使压力感应装置具有容易安装、电路简单、低成本、温漂小等优点。

Description

压力感应装置、压力感应方法及设备 技术领域
本申请涉及压力感应技术领域,具体涉及压力感应装置、应用该压力感应装置的压力感应方法及具有该压力感应装置的设备。
背景技术
压力感应领域有着多种压力感应技术,这些技术使用不同类型的传感器,结合特定的结构和电路,可以检测被测物体在一定程度的形变。目前常见的有电阻应变片、压力电感技术、MEMS(微机电系统)压力传感器技术、微应变传感器技术等,而这些传感器除了具有压力感应的特征外,还存在温度漂移的现象,即电信号由压力信号和温度信号组成,当装置检测压力的同时装置自身的温度发生快速变化,温度信号会附加到压力信号中而导致压力信号失真。
申请内容
本申请实施例的目的之一在于:提供一种压力感应装置、压力感应方法及设备,旨在解决现有压力感应结构存在温度漂移导致压力信号失真的问题。
本申请实施例采用的技术方案是:
第一方面,提供了一种压力感应装置,包括:
刚性结构,用于与被测物体贴合且跟随被测物体变形,所述刚性结构包括沿预定方向间隔设置的刚性块,相邻两个所述刚性块之间形成应变放大区,所述刚性结构具有两个相对设置的安装面,其中一个所述安装面作为与被测物体的贴合面;以及
力传感器,其分为设置于所述应变放大区且能够跟随被测物体变形的第一传感器,以及设置于所述刚性块上且与所述第一传感器对应靠近设置的第二传感器,所述第二传感器的输出信号作为所述第一传感器的温度补偿量;所述应变放大区的两个所述安装面分别设置有至少一个所述第一传感器;所述刚性块的两个所述安装面分别设置有至少一个所述第二传感器;至少四个所述力传感器连接形成电桥电路,且所述电桥电路电连接于信号处理电路以检测所述刚性结构的形变并得出被测物体的作用力。
第二方面,提供了一种压力感应方法,其采用上述的压力感应装置,包括以下步骤:
将所述刚性结构贴合在被测物体上;
将至少四个所述力传感器连接形成所述电桥电路,所述电桥电路电连接于信号处理电路以检测所述刚性结构的形变并得出被测物体的作用力,将所述第二传感器的输出信号作为所述第一传感器的温度补偿量。
第三方面,提供一种设备,包括被测物体及上述的压力感应装置,所述刚性结构贴合 在所述被测物体上。
本申请实施例提供的压力感应装置、压力感应方法及设备的有益效果在于:在压力感应装置中,刚性结构包括间隔设置的刚性块,相邻两个刚性块之间形成应变放大区。力传感器分为第一传感器与第二传感器,第一传感器设于应变放大区的两个安装面并跟随被测物体变形,第二传感器与对应的第一传感器靠近设置在刚性块的两个安装面上。至少四个力传感器连接形成电桥电路。在使用时将刚性结构贴合在被测物体上,电桥电路电连接于信号处理电路,进而检测刚性结构的形变并得出被测物体的作用力。在被测物体受力变形时,刚性结构的应变集中在应变放大区,第一传感器获得压力信号,第二传感器的压力信号接近于零,第一传感器与第二传感器的温度信号接近,第二传感器的输出信号作为第一传感器的温度补偿信号,这样就可以获得比较干净的压力信号。该压力感应装置、压力感应方法及具有该压力感应装置的设备,在高温或低温环境下压力信号也不失真,使压力感应装置具有容易安装、电路简单、低成本、温漂小等优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的压力感应装置的装配示意图;
图2为图1的压力感应装置的正视图;
图3为图2的压力感应装置的立体结构图;
图4为图3的压力感应装置的电桥电路图;
图5(a)为图4的两个电桥电路中的两个第一传感器与两个第二传感器的电阻变化率曲线图;
图5(b)为图5(a)中的第一传感器与对应的第二传感器的电阻变化率差值曲线图;
图6为图4的两个电桥电路的输出信号图;
图7为本申请另一实施例提供的压力感应装置的正视图;
图8为图7的压力感应装置的立体结构图;
图9为图8的压力感应装置的电桥电路图;
图10为本申请另一实施例提供的压力感应装置的正视图;
图11为图10的压力感应装置的立体结构图;
图12为图11的压力感应装置电桥电路图;
图13为本申请另一实施例提供的压力感应装置的正视图;
图14为图13的压力感应装置的立体结构图;
图15为图14的压力感应装置的电桥电路图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
为了说明本申请的技术方案,以下结合具体附图及实施例进行详细说明。
参阅图1至图4,本申请一些实施例提供的压力感应装置,其包括刚性结构10与力传感器。刚性结构10用于与被测物体(图未示)贴合且跟随被测物体变形,刚性结构10包括沿预定方向间隔设置的刚性块11,相邻两个刚性块11之间形成应变放大区12,刚性结构10具有两个相对设置的安装面10a(10b),其中一个安装面10a作为与被测物体的贴合面。力传感器分为设置于应变放大区12且能够跟随被测物体变形的第一传感器R1(R2),以及设置于刚性块11上且与第一传感器R1(R2)对应靠近设置的第二传感器R5(R6),第二传感器R5(R6)的输出信号作为第一传感器R1(R2)的温度补偿量;应变放大区12的两个安装面 10a(10b)分别设置有至少一个第一传感器R1(R2);刚性块11的两个安装面10a(10b)分别设置有至少一个第二传感器R5(R6);至少四个力传感器连接形成电桥电路,且电桥电路电连接于信号处理电路以检测刚性结构10的形变并得出被测物体的作用力。
在压力感应装置中,刚性结构10包括间隔设置的刚性块11,相邻两个刚性块11之间形成应变放大区12。力传感器分为第一传感器R1(R2)与第二传感器R5(R6),第一传感器R1(R2)设于应变放大区12的两个安装面10a(10b)并跟随被测物体变形,第二传感器R5(R6)与对应的第一传感器R1(R2)靠近设置在刚性块11的两个安装面10a(10b)上。至少四个力传感器连接形成电桥电路。在使用时将刚性结构10贴合在被测物体上,电桥电路电连接于信号处理电路,进而检测刚性结构10的形变并得出被测物体的作用力。在被测物体受力变形时,刚性结构10的应变集中在应变放大区12,第一传感器R1(R2)获得压力信号,第二传感器R5(R6)的压力信号接近于零,第一传感器R1(R2)与第二传感器R5(R6)的温度信号接近,第二传感器R5(R6)的输出信号作为第一传感器R1(R2)的温度补偿信号,这样就可以获得比较干净的压力信号。该压力感应装置在高温或低温环境下压力信号也不失真,使压力感应装置具有容易安装、电路简单、低成本、温漂小等优点。
需要说明的是,信号处理电路与电桥电路电连接,对力传感器的电信号进行分析处理,并将力模拟信号转换为力数字信号,这部分属于现有技术。
在本申请另一实施例中,刚性结构10具有一定刚性,应变放大区12为镂空区域,第一传感器R1(R2)设于应变放大区12。被测物体在受到作用力时,刚性结构10跟随被测物体变形,应变放大区12的变形放大,便于由第一传感器R1(R2)检测刚性结构10的变形。具体地,刚性结构10可以为钢片、铝片、玻璃片、FR4片或其他复合刚性材料,按需选用。
在一个实施例中,两个安装面10a(10b)上均设有柔性基材21,分别设于两个安装面10a(10b)上的力传感器分别安装于对应的柔性基材21。将附有力传感器的柔性基材21,通过胶体30压合到一定尺寸大小的分立的刚性块11上,第一传感器R1(R2)正对或相邻设于应变放大区12,第二传感器R5(R6)正对于刚性块11,组成压力感应装置,该结构容易成型。具体地,柔性基材21可以是FPC(柔性电路板)、PET(耐高温聚酯薄膜)、PI膜(聚酰亚胺薄膜)或其它平整度较好的柔性基材,按需选用。
在一个实施例中,两个柔性基材21通过一个母基材20弯折形成。将力传感器附于一张母基材20上,然后将母基材20的中心翻折后将两个内表面黏合到两个安装面10a(10b),加工简单,成本低。
在一个实施例中,柔性基材21与安装面10a(10b)之间通过胶体30粘接。该结构便于刚性结构10与柔性基材21的连接,并且在被测物体受作用力而变形时让柔性基材21与刚 性结构10跟随被测物体变形。该胶体30可以是环氧胶膜、502胶、热固胶、硅胶等材料,按需选用。
在一个实施例中,力传感器的长度方向与刚性块11的排列方向相互平行。该结构容易装配力传感器,并且在按压被测物体时第一传感器R1(R2)的变形量更大,更好地输出压力信号。具体地,第一传感器R1(R2)与对应的第二传感器R5(R6)在同一安装面10a(10b)上并靠近设置,使得第一传感器R1(R2)与第二传感器R5(R6)的温度信号接近,第二传感器R5(R6)的输出信号作为第一传感器R1(R2)的温度补偿信号即可,可以随意调整第二传感器R5(R6)的位置。例如,可以将任一个第二传感器R5(R6)放置在与应变放大区12相邻的其中一个刚性块11上。
在一个实施例中,至少一个第二传感器R5(R6)拆分为两个或多个电阻进行串联或并联之后组成一个等效电阻,拆分的电阻分布在相邻于应变放大区12的两个刚性块11上,这样无论是按压在应变放大区12中心或者应变放大区12之外,第二传感器R5(R6)的温度信号均和第一传感器R1(R2)的温度信号接近,使温度补偿更均衡。
在一个实施例中,在一个或多个应变放大区12的两个安装面10a(10b)设置第一传感器R1(R2),并在相邻于该应变放大区12的刚性块11的两个安装面10a(10b)设置第二传感器R5(R6),每至少四个力传感器连接形成电桥电路以检测该应变放大区12对应的压力。设置力传感器的应变放大区12的数量,根据压力感应区域的大小而定。
在一个实施例中,参阅图2至图4,对于一个应变放大区12与相邻的刚性块11,采用一个全桥电路来实现压力检测,并采用另一个全桥电路实现温度补偿。具体地,至少一个应变放大区12的两个安装面10a(10b)分别设置有两个第一传感器R1、R4(R2、R3),四个第一传感器R1、R2、R3、R4连接形成全桥电路,位于同一安装面10a(10b)上的两个第一传感器R1、R4(R2、R3)作为一组相对桥臂;相邻于应变放大区12的刚性块11的两个安装面10a(10b)分别设置有两个第二传感器R5、R8(R6、R7),四个第二传感器R5、R6、R7、R8连接形成另一个全桥电路,位于同一安装面10a(10b)上的两个第二传感器R5、R8(R6、R7)作为一组相对桥臂。
图4所示的电路图,设VCC=Ui,得:
Vp1=R2Ui/(R1+R2);Vn1=R4Ui/(R3+R4);
U1=Vp1-Vn1=(R2R3-R1R4)Ui/[(R1+R2)(R3+R4)];
对R1、R2、R3和R4分别求导,可知U1随R2和R3的增大而增大,随R1和R4的增大而减小。
同理,得:
U2=Vp2-Vn2=(R6R7-R5R8)Ui/[(R5+R6)(R7+R8)];
U2随R6和R7的增大而增大,随R5和R8的增大而减小。
已知,力传感器的阻值受形变和温度的影响,所以U1和U2都包含一个压力信号和温度信号。假设压力信号为F,温度信号为T,则有:
△U1=F1+T1;△U2=F2+T2。
压力信号分析:将压力感应装置贴合到被测物体上,当有力作用于被测物体时,被测物体的应变集中到作用力附近的应变放大区12,设置于应变放大区12的力传感器的阻抗随之发生改变,力传感器电连于信号处理电路,进而产生压力信号,分析压力信号的特征便可识别作用力的方向、大小和位置;由于刚性块11的刚度比较强,所以被测物体发生作用力时刚性块11自身发生的形变十分微小,处于刚性块11的第二传感器R5、R6、R7、R8是跟随刚性块11一起形变的,此时刚性块11的第二传感器R5、R6、R7、R8的形变也十分微小。简而言之,在对被测物体施加力,R1和R4变小,R2和R3变大,R5、R6、R7和R8几乎没有变化,所以U1为一个较大的正压力信号,U2为一个几乎为零的压力信号。
温度信号分析:假设力传感器随温度的升高而阻值变大,压力感应装置处于一个高温状态下,人手直接按压被测物体,此时热量将瞬间从被测物体和压力感应装置向人手传递。位于与被测物体的贴合面的R1和R4离人手更接近,而相对一面上的R2和R3离人手较远,所以此时R1和R4先降温并且阻值改变,R2和R3后降温并且阻值改变。此时,力传感器温度的变化将会产生较大的温度信号。
信号失真的不良结果分析:当压力撤除之后,压力信号F1≈0,力传感器还在缓慢恢复到原来的环境温度,即温度信号将缓慢下降,此时U1≈T1。如果温度信号T1大于压力的触发阈值,T1将会被错误识别为压力信号,造成信号延时的结果。
下面是进行温度补偿以解决温度延时的分析。
假设由温度效应产生的各个力传感器的电阻变化率为:
Figure PCTCN2019103866-appb-000001
Figure PCTCN2019103866-appb-000002
同理,
Figure PCTCN2019103866-appb-000003
Figure PCTCN2019103866-appb-000004
Figure PCTCN2019103866-appb-000005
Figure PCTCN2019103866-appb-000006
假设
Figure PCTCN2019103866-appb-000007
Figure PCTCN2019103866-appb-000008
假定
Figure PCTCN2019103866-appb-000009
所以
Figure PCTCN2019103866-appb-000010
Figure PCTCN2019103866-appb-000011
Figure PCTCN2019103866-appb-000012
同理:∴
Figure PCTCN2019103866-appb-000013
Figure PCTCN2019103866-appb-000014
∴γ≈1
Figure PCTCN2019103866-appb-000015
已知R1和R5处于同一平面,R2和R6处于同一平面,R1和R2位于应变放大区12, R5和R6位于刚性块11。当被测物体的温度瞬间改变时,K1、K5、K2、K6会随着温度改变发生快速变化。两个靠近设置的力传感器的温度信号接近,即力传感器的电阻变化率接近,进而两个靠近设置的力传感器的电阻变化率之差与另外靠近设置的力传感器的电阻变化率之差相接近,即K1-K5≈K2-K6。由图5(a)的实测数据作差运算可以得到图5(b)的电阻变化率差值曲线,也可以验证上述结论。
所以由温度效应产生ΔVp1≈ΔVp2。
同理,可以证明ΔVn1≈ΔVn2 ∴T1≈T2
已知,第二传感器R5、R6、R7、R8处于刚性块11位置,由上文可知,对被测物体施加压力时,F2≈0。
∴ΔU2=F2+T2≈T2
∴ΔU1-ΔU2=F1+T1-(F2+T2)=F1
在实际测量中,T2并不一定完全等于T1,但基本满足T2=β*T1。其中,β为待定系数,理想情况下β=1,但是因为力传感器特性和制作工艺等因素,实际测量后,β为一个小于1的固定系数。
假设T2=β*T1,则有:△U2=T2=β*T1。
所以,△U1-△U2/β=F1+T1-(β*T1)/β=F1。
通过F1=ΔU1-ΔU2/β可以得到更干净的压力信号。由图6的两个电桥电路的输出信号实测数据也可以验证上述结论。
所以通过△U2进行补偿可以得到一个去除温度信号的纯压力信号,有效地解决由温度效应产生的信号失真。同理,其它通道也可以进行相同方式的温度补偿。
在一个实施例中,参阅图7至图9,对于一个应变放大区12与相邻的刚性块11,采用一个半桥电路来实现压力检测并实现温度补偿。具体地,至少一个应变放大区12的两个安装面10a(10b)分别设置有一个第一传感器R1(R2),相邻于应变放大区12的刚性块11的两个安装面10a(10b)分别设置有一个第二传感器R3(R4),两个第一传感器R1、R2与两个第二传感器R3、R4连接形成半桥电路,位于其中一个安装面10a(10b)的对应应变放大区12的第一传感器R1(R2)与位于另外一个安装面10b(10a)的对应刚性块11的第二传感器R4(R3)作为一组相对桥臂。
图9所示的电路图,参考上文分析,可得:
Vp1=R2Ui/(R1+R2);Vp2=R4Ui/(R3+R4);
下面是进行温度补偿以解决温度延时的分析。
假设
Figure PCTCN2019103866-appb-000016
以及
Figure PCTCN2019103866-appb-000017
则有,
Figure PCTCN2019103866-appb-000018
已知:ΔVp1=F1+T1;ΔVp2=F2+T2。
压力信号分析:对被测物体施加压力时,R1减小,R2增大,R3和R4几乎不变,F1为一个较大的正信号,F2≈0。
温度效应:对被测物体施加压力时,温度变化产生的力传感器的电阻变化率满足:
K2-K1≈K4-K3。
∴T1≈T2
∴ΔVP1-ΔVP2=F1+T1-T2。
在压力撤离阶段的实际测量中,T2并不一定完全等于T1,但基本满足T2=βT1。其中,β为待定系数,理想情况下β=1,但是因为力传感器特性和制作工艺等因素,实际测量后,β为一个小于1的固定系数。假设0.9<β<1,则有:
F1=ΔVP1-ΔVP2=F1+T1-βT1=F1+(1-β)T1;
此时T1已经被补偿了大部分,仅残余不到0.1的比例,所以通过F1=ΔVP1-ΔVP2基本可以补偿绝大部分的温度信号,有效地解决由温度效应产生的温度延时。这样可以减少通道数量的要求,也降低了力传感器需求,使压力感应装置可以做得更小,节约成本。
在一个实施例中,参阅图10至图12,对于一个应变放大区12与相邻的刚性块11,采用一个全桥电路来实现压力检测,并增加一个半桥实现温度补偿。具体地,至少一个应变放大区12的两个安装面10a(10b)分别设置有两个第一传感器R1、R4(R2、R3),四个第一传感器R1、R2、R3、R4连接形成全桥电路,位于同一安装面10a(10b)上的两个第一传感器R1、R4(R2、R3)作为一组相对桥臂;相邻于应变放大区12的刚性块11的两个安装面10a(10b)分别设置有一个第二传感器R5(R6),两个第二传感器R5、R6与其中两个分别位于两个安装面10a(10b)的第一传感器R1、R2连接形成半桥电路,位于其中一个安装面10a(10b)的对应应变放大区12的第一传感器R1(R2)与位于另外一个安装面10b(10a)的对应刚性块 11的第二传感器R6(R5)作为一组相对桥臂。
图12所示的电路图,参考上文分析,可得:
Vp1=R2Ui/(R1+R2);Vn1=R4Ui/(R3+R4);Vp2=R6Ui/(R5+R6);
U1=Vp1-Vn1=(R2R3-R1R4)Ui/[(R1+R2)(R3+R4)];
U2=Vp1-Vp2=(R2R5-R1R6)Ui/[(R1+R2)(R5+R6)];
ΔU1=ΔVp1-ΔVn1=F1+T1
ΔU2=ΔVp1-ΔVp2=F2+T2
在实际测量中,T2并不一定完全等于T1,但基本满足F2=αF1;T2=βT1。其中,α,β为待定系数。理想情况下α=1/2,因为F2主要发生形变的力传感器为R1和R2,但是刚性块上的R5和R6也发生形变,实际测量中F2≈0.45F1,所以α≈0.45。理想情况下β=1,但是因为力传感器特性和制作工艺等因素,实际测量后,β为一个小于1的固定系数。通过公式F1=(ΔU2-βU1)/(α-β)即可得到一个比较干净的压力信号,从而完成比较有效的温度补偿。这个方案优势是:在全桥电路的基础上,只增加一个半桥,可以进行有效的温度补偿,而且不损失压力信号。
在一个实施例中,参阅图13至图15,对于至少两个应变放大区12与相邻的刚性块11,其中一个应变放大区12采用一个全桥电路来实现压力检测,并通过另一个全桥电路实现温度补偿;另一个应变放大区12采用另一个全桥电路来实现压力检测,并通过增加一个半桥实现温度补偿。具体地,至少两个相邻设置的应变放大区12,其中一个应变放大区12的两个安装面10a(10b)分别设置有两个第一传感器R1、R4(R2、R3),对应于同一个应变放大区12的四个第一传感器R1、R2、R3、R4连接形成全桥电路,位于同一安装面10a(10b)上的两个第一传感器R1、R4(R2、R3)作为一组相对桥臂;相邻于应变放大区12的每一个刚性块11的两个安装面10a(10b)分别设置有一个第二传感器R9(R10、R11、R12),相邻于同一个应变放大区12的两个刚性块11上的四个第二传感器R9、R10、R11、R12连接形成另一全桥电路,位于同一安装面10a(10b)上的两个第二传感器R9、R12(R10、R11)作为一组相对桥臂;
另外一个应变放大区12的两个安装面10a(10b)分别设置有两个第一传感器R5、R8(R6、R7),对应于该应变放大区12的四个第一传感器R5、R6、R7、R8连接形成全桥电路,位于同一安装面10a(10b)上的两个第一传感器R5、R8(R6、R7)作为一组相对桥臂;相邻于该应变放大区12的其中一个刚性块11的两个安装面10a(10b)已经分别设置有一个 第二传感器R11(R12),相邻于该应变放大区12的另一个刚性块11的两个安装面10a(10b)分别设置R13(R14),相邻于该应变放大区12的两个刚性块11上的四个第二传感器R11、R12、R13、R14连接形成另一全桥电路,位于同一安装面10a(10b)上的两个第二传感器R12、R13(R11、R14)作为一组相对桥臂。两个相邻设置且由四个第二传感器连接形成的全桥电路共用由两个第二传感器R11、R12组成的串联支路。
图15所示的电路图,参考上文分析,可得:
ΔU1=ΔVp1-ΔVn1=F1+T1
ΔU2=ΔVp2-ΔVn2=F2+T2
ΔU3=ΔVp3-ΔVn3=F3+T3
ΔU4=ΔVp4-ΔVn3=F4+T4
由上文可知,△U3可以对△U1进行温度补偿,△U4可以对△U2进行温度补偿。区别是△U3和△U4共用了第二传感器R11与R12串联支路上的检测端的输出信号Vn3。以此类推,每多加一个应变放大区12,只需要多增加一个半桥,就可以很好地完成对应变放大区12的全桥电路信号的温度补偿。这个方案降低了力传感器空间需求,使压力感应装置可以做得更小,节约成本。
在一个实施例中,力传感器为应变感应电阻,应变感应电阻由多晶半导体材料、非晶半导体材料、多晶硅、石墨烯、铜镍合金、碳纳米管、金属细线、导体绝缘体复合材料中的至少一种材料制作。上述方案均能实现压力感应,按需选用。
本申请一些实施例提供压力感应方法,其采用上述的压力感应装置,包括以下步骤:
将刚性结构10贴合在被测物体上;
将至少四个力传感器连接形成电桥电路,电桥电路电连接于信号处理电路以检测刚性结构10的形变并得出被测物体的作用力,将第二传感器的输出信号作为第一传感器的温度补偿量。
在压力感应装置中,刚性结构10包括间隔设置的刚性块11,相邻两个刚性块11之间形成应变放大区12。力传感器分为第一传感器与第二传感器,第一传感器设于应变放大区12的两个安装面10a(10b)并跟随被测物体变形,第二传感器与对应的第一传感器靠近设置在刚性块11的两个安装面10a(10b)上。至少四个力传感器连接形成电桥电路。在使用时将刚性结构10贴合在被测物体上,电桥电路电连接于信号处理电路,进而检测刚性结构10 的形变并得出被测物体的作用力。在被测物体受力变形时,刚性结构10的应变集中在应变放大区12,第一传感器获得压力信号,第二传感器的压力信号接近于零,第一传感器与第二传感器的温度信号接近,第二传感器的输出信号作为第一传感器的温度补偿信号,这样就可以获得比较干净的压力信号。应用该压力感应装置的压力感应方法,在高温或低温环境下压力信号也不失真,使其具有容易安装、电路简单、低成本、温漂小等优点。
本申请一些实施例提供设备,包括被测物体及上述的压力感应装置,刚性结构10贴合在被测物体上。由于本设备采用了上述所有实施例的全部技术方案,因此同样具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
在本申请另一实施例中,被测物体为面板或边框。实现面板或边框的作用力感应。面板或边框可以采用玻璃、塑料、陶瓷等非金属材料制作。面板可以为具有刚性结构10的触摸屏、显示器或其他电子终端。边框可以为各种电子终端的边框。通过将力传感器与面板或边框连接,能够在实现精准识别触控压力的大小,为电子终端在产品应用、人机交互及消费体验上扩展了应用空间。用户通过触按触摸屏、显示器或电子终端,可以直接获得精确地作用力级别及量数。
在一个实施例中,压力感应装置通过胶体(图未示)贴合到被测物体的表面,容易装配。被测物体在受到作用力时,刚性结构10跟随被测物体变形,应变放大区12的变形放大,力传感器的阻抗随之发生改变,力传感器电连于信号处理电路,进而产生压力信号,分析压力信号的特征便可识别作用力的方向、大小和位置。具体地,胶体可以为VHB、双面胶、502胶、热固胶等,按需选用。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 压力感应装置,其特征在于,包括:
    刚性结构,用于与被测物体贴合且跟随被测物体变形,所述刚性结构包括沿预定方向间隔设置的刚性块,相邻两个所述刚性块之间形成应变放大区,所述刚性结构具有两个相对设置的安装面,其中一个所述安装面作为与被测物体的贴合面;以及
    力传感器,其分为设置于所述应变放大区且能够跟随被测物体变形的第一传感器,以及设置于所述刚性块上且与所述第一传感器对应靠近设置的第二传感器,所述第二传感器的输出信号作为所述第一传感器的温度补偿量;所述应变放大区的两个所述安装面分别设置有至少一个所述第一传感器;所述刚性块的两个所述安装面分别设置有至少一个所述第二传感器;至少四个所述力传感器连接形成电桥电路,且所述电桥电路电连接于信号处理电路以检测所述刚性结构的形变并得出被测物体的作用力。
  2. 如权利要求1的压力感应装置,其特征在于,两个所述安装面上均设有柔性基材,分别设于两个所述安装面上的所述力传感器分别安装于对应的所述柔性基材。
  3. 如权利要求2的压力感应装置,其特征在于,两个所述柔性基材通过一个母基材弯折形成。
  4. 如权利要求2的力感应装置,其特征在于,所述柔性基材与所述安装面之间通过胶体粘接。
  5. 如权利要求1的压力感应装置,其特征在于,所述力传感器的长度方向与所述刚性块的排列方向相互平行。
  6. 如权利要求1的压力感应装置,其特征在于,至少一个所述第二传感器拆分为两个或多个电阻进行串联或并联之后组成一个等效电阻,拆分的电阻分布在相邻于应变放大区的两个所述刚性块上。
  7. 如权利要求1的压力感应装置,其特征在于,至少一个所述应变放大区的两个所述安装面分别设置有两个所述第一传感器,四个所述第一传感器连接形成全桥电路,位于同一所述安装面上的两个所述第一传感器作为一组相对桥臂;
    相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有两个所述第二传感器,四个所述第二传感器连接形成另一个全桥电路,位于同一所述安装面上的两个所述第二传感器作为一组相对桥臂;
    或者,至少一个所述应变放大区的两个所述安装面分别设置有一个所述第一传感器,相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有一个所述第二 传感器,两个所述第一传感器与两个所述第二传感器连接形成半桥电路,位于其中一个所述安装面的对应所述应变放大区的所述第一传感器与位于另外一个所述安装面的对应所述刚性块的所述第二传感器作为一组相对桥臂;
    或者,至少一个所述应变放大区的两个所述安装面分别设置有两个所述第一传感器,四个所述第一传感器连接形成全桥电路,位于同一所述安装面上的两个所述第一传感器作为一组相对桥臂;
    相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有一个所述第二传感器,两个所述第二传感器与其中两个分别位于两个所述安装面的所述第一传感器连接形成半桥电路,位于其中一个所述安装面的对应所述应变放大区的所述第一传感器与位于另外一个所述安装面的对应所述刚性块的所述第二传感器作为一组相对桥臂;
    或者,至少两个相邻设置的所述应变放大区的两个所述安装面分别设置有两个所述第一传感器,对应于同一个所述应变放大区的四个所述第一传感器连接形成全桥电路,位于同一所述安装面上的两个所述第一传感器作为一组相对桥臂;
    相邻于所述应变放大区的每一个所述刚性块的两个所述安装面分别设置有一个所述第二传感器,相邻于同一个所述应变放大区的两个所述刚性块上的四个所述第二传感器连接形成另一全桥电路,位于同一所述安装面上的两个所述第二传感器作为一组相对桥臂,两个相邻设置且由四个所述第二传感器连接形成的全桥电路共用由两个所述第二传感器组成的串联支路。
  8. 如权利要求1的压力感应装置,其特征在于,所述力传感器为应变感应电阻,所述应变感应电阻由多晶半导体材料、非晶半导体材料、多晶硅、石墨烯、铜镍合金、碳纳米管、金属细线、导体绝缘体复合材料中的至少一种材料制作。
  9. 如权利要求1的压力感应装置,其特征在于,所述刚性结构为钢片、铝片、玻璃片或FR4片。
  10. 压力感应方法,其特征在于,其采用如权利要求7所述的压力感应装置,包括以下步骤:
    将所述刚性结构贴合在被测物体上;
    将至少四个所述力传感器连接形成所述电桥电路,所述电桥电路电连接于信号处理电路以检测所述刚性结构的形变并得出被测物体的作用力,将所述第二传感器的输出信号作为所述第一传感器的温度补偿量。
  11. 如权利要求10的压力感应方法,其特征在于,在至少一个所述应变放大区的 两个所述安装面分别设置有两个所述第一传感器,且相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有两个所述第二传感器时,设四个所述第一传感器连接形成的全桥电路的输出信号变化量为△U1,四个所述第二传感器连接形成的全桥电路的输出信号变化量为△U2,在温度补偿后的压力信号为F1,待定系数为β,则有:
    F1=△U1-△U2/β;
    或者,在至少一个所述应变放大区的两个所述安装面分别设置有一个所述第一传感器,且相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有一个所述第二传感器时,设两个所述第一传感器与两个所述第二传感器连接形成的半桥电路的其中一个检测端的输出信号变化量为△Vp1,另外一个检测端的输出信号变化量为△Vp2,在温度补偿后的压力信号为F1,则有:
    F1=△Vp1-△Vp2;
    或者,在至少一个所述应变放大区的两个所述安装面分别设置有两个所述第一传感器,且相邻于所述应变放大区的所述刚性块的两个所述安装面分别设置有一个所述第二传感器时,设四个所述第一传感器连接形成的全桥电路的输出信号变化量为△U1,两个所述第二传感器与其中两个分别位于两个所述安装面的所述第一传感器连接的半桥电路的输出信号变化量为△U2,在温度补偿后的压力信号为F1,两个待定系数分别为α、β,则有:
    F1=(ΔU2-βU1)/(α-β);
    或者,在至少两个相邻设置的所述应变放大区的两个所述安装面分别设置有两个所述第一传感器,且相邻于所述应变放大区的每一个所述刚性块的两个所述安装面分别设置有一个所述第二传感器时,设对应于其中一个所述应变放大区的四个所述第一传感器连接形成的全桥电路的输出信号变化量为△U1,对应于另外一个所述应变放大区的四个所述第一传感器连接形成的全桥电路的输出信号变化量为△U2,相邻于其中一个所述应变放大区的两个所述刚性块上的四个所述第二传感器连接形成的全桥电路的输出信号变化量为△U3,相邻于另外一个所述应变放大区的两个所述刚性块上的四个所述第二传感器连接形成的全桥电路的输出信号变化量为△U4,其中两个在温度补偿后的压力信号为Fa、Fb,则有:
    Fa=△U1-△U3;Fb=△U2-△U4。
  12. 设备,其特征在于,包括被测物体及如权利要求1所述的压力感应装置,所述刚性结构贴合在所述被测物体上。
  13. 如权利要求12的设备,其特征在于,所述压力感应装置通过胶体贴合到所述被测物体的表面。
PCT/CN2019/103866 2019-08-30 2019-08-30 压力感应装置、压力感应方法及设备 WO2021035743A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/103866 WO2021035743A1 (zh) 2019-08-30 2019-08-30 压力感应装置、压力感应方法及设备
US17/639,247 US20220334011A1 (en) 2019-08-30 2019-08-30 Pressure sensing device, pressure sensing method, and equipment
CN201980099214.XA CN114245864A (zh) 2019-08-30 2019-08-30 压力感应装置、压力感应方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103866 WO2021035743A1 (zh) 2019-08-30 2019-08-30 压力感应装置、压力感应方法及设备

Publications (1)

Publication Number Publication Date
WO2021035743A1 true WO2021035743A1 (zh) 2021-03-04

Family

ID=74684458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103866 WO2021035743A1 (zh) 2019-08-30 2019-08-30 压力感应装置、压力感应方法及设备

Country Status (3)

Country Link
US (1) US20220334011A1 (zh)
CN (1) CN114245864A (zh)
WO (1) WO2021035743A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227850A1 (de) * 1985-12-20 1987-07-08 Hottinger Baldwin Messtechnik Gmbh Kraftaufnehmer
US5035148A (en) * 1989-02-01 1991-07-30 Wacoh Corporation Force detector using resistance elements
CN104995587A (zh) * 2014-08-14 2015-10-21 深圳纽迪瑞科技开发有限公司 一种压力检测结构及触控装置
CN106643463A (zh) * 2016-12-19 2017-05-10 华中科技大学 一种柔性全桥式电阻应变片
CN107924243A (zh) * 2015-07-09 2018-04-17 深圳纽迪瑞科技开发有限公司 压力感应触摸系统及具有压力感应触摸系统的计算装置
CN108204870A (zh) * 2016-12-19 2018-06-26 深圳纽迪瑞科技开发有限公司 压力感应组件及具有该压力感应组件的电子设备
CN208653681U (zh) * 2018-06-15 2019-03-26 深圳纽迪瑞科技开发有限公司 压力感应组件及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1333167A (en) * 1971-02-23 1973-10-10 Peak Components Ltd Strain measuremenet
AU2015100011B4 (en) * 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
CN104990658B (zh) * 2015-06-19 2017-08-11 南京航空航天大学 一种针对大变形柔性体应力测量的传感器组件
CN206420601U (zh) * 2016-12-30 2017-08-18 安徽中航电子科技发展有限公司 穿轴式张力传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227850A1 (de) * 1985-12-20 1987-07-08 Hottinger Baldwin Messtechnik Gmbh Kraftaufnehmer
US5035148A (en) * 1989-02-01 1991-07-30 Wacoh Corporation Force detector using resistance elements
CN104995587A (zh) * 2014-08-14 2015-10-21 深圳纽迪瑞科技开发有限公司 一种压力检测结构及触控装置
CN107924243A (zh) * 2015-07-09 2018-04-17 深圳纽迪瑞科技开发有限公司 压力感应触摸系统及具有压力感应触摸系统的计算装置
CN106643463A (zh) * 2016-12-19 2017-05-10 华中科技大学 一种柔性全桥式电阻应变片
CN108204870A (zh) * 2016-12-19 2018-06-26 深圳纽迪瑞科技开发有限公司 压力感应组件及具有该压力感应组件的电子设备
CN208653681U (zh) * 2018-06-15 2019-03-26 深圳纽迪瑞科技开发有限公司 压力感应组件及电子设备

Also Published As

Publication number Publication date
US20220334011A1 (en) 2022-10-20
CN114245864A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN106482631B (zh) 柔性显示装置
US10496215B2 (en) Sensing for touch and force
CN108603799B (zh) 压力传感器、电子设备及该压力传感器的制作方法
JP2004317403A (ja) 面圧分布センサ
CN106486039A (zh) 具有弯曲感测装置的柔性显示装置
CN108604149B (zh) 压力传感器、电子设备及该压力传感器的制作方法
CN206818338U (zh) 压力感应组件及具有该压力感应组件的电子设备
WO2018133054A1 (zh) 压力感应式结构及电子产品
JP5907337B2 (ja) タッチパネル及びタッチパネル付表示装置
WO2022036550A1 (zh) 压力检测模组及电子设备
US20230144931A1 (en) Pressure-sensitive structure and electronic device
WO2022170688A1 (zh) 压力检测模组及电子设备
WO2019014866A1 (zh) 一种压力感应装置及压力感应设备
WO2021035743A1 (zh) 压力感应装置、压力感应方法及设备
WO2017132968A1 (zh) 压力传感装置及具有该压力传感装置的电子设备
CN213715902U (zh) 压力触摸板
CN210442010U (zh) 硅芯片压力感应装置及设备
TWI496039B (zh) 觸控裝置及其控制方法
WO2021035742A1 (zh) 压力感应组件、压力感应方法及设备
WO2021035741A1 (zh) 力感应装置、力感应方法及设备
WO2020186475A1 (zh) 压力感应装置、压力感应方法及电子终端
CN206757568U (zh) 一种带有柔性接线的触控模组
WO2022047738A1 (zh) 压力感应装置及电子设备
WO2020124477A1 (zh) 压力感应装置、压力感应方法及电子终端
CN217591270U (zh) 触控装置及电子产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943158

Country of ref document: EP

Kind code of ref document: A1