WO2021035689A1 - 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法 - Google Patents

用于激光雷达的接收系统、激光雷达和抑制鬼线的方法 Download PDF

Info

Publication number
WO2021035689A1
WO2021035689A1 PCT/CN2019/103724 CN2019103724W WO2021035689A1 WO 2021035689 A1 WO2021035689 A1 WO 2021035689A1 CN 2019103724 W CN2019103724 W CN 2019103724W WO 2021035689 A1 WO2021035689 A1 WO 2021035689A1
Authority
WO
WIPO (PCT)
Prior art keywords
lidar
light beam
detector
diaphragm
ghost
Prior art date
Application number
PCT/CN2019/103724
Other languages
English (en)
French (fr)
Inventor
杨金涛
向少卿
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Priority to CN201980097646.7A priority Critical patent/CN114096870A/zh
Priority to PCT/CN2019/103724 priority patent/WO2021035689A1/zh
Priority to CN201911137252.8A priority patent/CN111090082A/zh
Publication of WO2021035689A1 publication Critical patent/WO2021035689A1/zh
Priority to US17/563,305 priority patent/US20220120869A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements

Definitions

  • the present disclosure relates to the technical field of lidar, and in particular to a receiving system that can be used for lidar, lidar, and a method for suppressing ghost lines.
  • lidar is the core sensor for realizing environmental perception.
  • the working principle of lidar is to detect a target by emitting a laser beam, and to form a point cloud and obtain data by collecting the reflected beam. These data can be generated into an accurate three-dimensional image after photoelectric processing. With this technology, high-precision physical space environment information can be accurately obtained, and the ranging accuracy can reach centimeter level.
  • the lidar with a folding mirror structure (there are two or more mirrors between the lidar receiving lens and the detector to form the mirror structure to fold the optical path), under the same lens focal length, a smaller structure size can be obtained, which is currently The architecture of mainstream multi-line mechanical lidar.
  • a high-reflection board high-reflectivity obstacles, such as road signs
  • ghost lines appear in the obtained lidar point cloud, namely Some non-existent point clouds will appear on the left and right sides of the high reflector.
  • the lidar scans a high-reflectivity street sign
  • the ghost line generated in the lidar point cloud will be recognized as an obstacle, leading to automatic parking.
  • the present disclosure aims to provide an improved scheme that can be used for lidar to suppress ghost lines.
  • a receiving system that can be used for lidar, including:
  • a receiving lens configured to receive a light beam from the outside
  • a reflecting mirror structure arranged downstream of the optical path of the receiving lens, receiving the light beam from the receiving lens and changing the propagation direction of the light beam through reflection;
  • a detector arranged downstream of the reflecting mirror structure to receive the light beam from the reflecting mirror;
  • the ghost line elimination device is arranged between the mirror structure and the detector to block the light beam that would cause ghost lines in the point cloud of the lidar to be incident on the detector.
  • the ghost line elimination device includes a diaphragm.
  • the diaphragm and the detector satisfy the following relationship:
  • D is the diameter of the receiving lens
  • f is the focal length of the receiving lens
  • h is the distance from the diaphragm to the detector
  • d is the width of the diaphragm.
  • the diaphragm is in the shape of a strip hole or a circular hole, and the diaphragm is made of any one of the following materials: metal, glass that can absorb or reflect light, or ceramic.
  • the ghost line elimination device includes a light barrier.
  • the ghost line elimination device includes a plurality of different light-insulating sheets.
  • the mirror structure includes a plurality of mirrors
  • the ghost line elimination device is configured to block a light beam that is not reflected by the mirror structure at a time.
  • the reflector structure includes a first reflector and a second reflector that are arranged opposite to each other, the detector includes a photodiode, and the ghost line elimination device is configured to block those that are reflected by the first reflector.
  • the mirror and the second mirror reflect light beams other than the light beam once, respectively.
  • the ghost line elimination device includes a diaphragm and a light barrier.
  • a lidar including:
  • a launching system configured to emit a detection laser beam
  • the receiving system is configured to receive the echo of the detection laser beam reflected on the object.
  • a method for suppressing ghost lines that can be used in lidar including:
  • the step of blocking the light beam from the mirror structure that may cause ghost lines in the point cloud of the lidar includes: blocking the light beam at the point of the lidar by an aperture and/or a light barrier. A beam of light causing ghost lines in the cloud.
  • Fig. 4A shows a schematic diagram of a receiving system for suppressing ghost lines by an aperture according to an embodiment of the present disclosure
  • Fig. 4B shows a schematic diagram of the parameters of the diaphragm and the detector
  • Fig. 5B shows a schematic diagram of a strip hole diaphragm according to another embodiment of the present disclosure
  • Fig. 6A shows a schematic diagram of a circular aperture diaphragm according to an embodiment of the present disclosure
  • Fig. 6B shows a schematic diagram of a circular aperture diaphragm according to another embodiment of the present disclosure
  • Fig. 7 shows a schematic diagram of a receiving system for suppressing ghost lines by a light barrier according to an embodiment of the present disclosure
  • Fig. 8 shows a schematic diagram of a light barrier according to an embodiment of the present disclosure.
  • Fig. 9 shows a method for suppressing ghost lines in the point cloud of lidar according to an embodiment of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, they can be fixed or detachable.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relationship.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • Figure 2 shows a schematic diagram of the ghost line caused by the transmitter.
  • the laser radar transmitting end since the transmittance of the coating of the transmitting lens 22 is not 100%, the laser light emitted by the laser 23 forms multiple reflections at each glass-air interface of the transmitting lens 22 and the mask 21, and then exits, and finally illuminates a short distance.
  • the target is a very large light spot. Although the energy of the light spot except the center is very low, when the reflectivity of the target is high, there is still the possibility of being detected.
  • Figure 3 shows a schematic diagram of the ghost line caused by the receiver.
  • the field of view of the lidar includes: the main field of view FOV B and the ghost line field of view FOV A, FOV C.
  • the detector 32 can still pass through the ghost The optical path of the line-of-view FOV C receives the reflected light beam of the high-reflective plate, and thus a ghost line on the left side of the high-reflective plate is generated.
  • the ghost line field of view FOV C sees the high reflector plate before the main field of view FOV B.
  • the detector 32 may be But not limited to photodiodes, such as avalanche photodiodes (APD).
  • APD avalanche photodiodes
  • the present disclosure provides a receiving system that can be used for lidar, including: a receiving lens, a mirror structure, a detector, and a ghost line elimination device.
  • the reflecting mirror structure is arranged downstream of the optical path of the receiving lens
  • the detector is arranged downstream of the optical path of the reflecting mirror structure
  • the ghost line elimination device is arranged between the reflecting mirror structure and the detector .
  • the external light beam enters the reflector structure through the receiving lens, changes its propagation direction through multiple reflectors in the reflector structure, and then passes through the ghost line elimination device. Part or all of it will be in the point cloud of the lidar.
  • the light beam causing the ghost line is blocked by the ghost line elimination device, and finally the remaining light beam reaches the detector.
  • the Lidar field of view of the embodiment of the present disclosure includes: a main field of view and a ghost line field of view, the main field of view is the field of view where the light beam is reflected once on each mirror, and the ghost line field of view is that the light beam is not reflected on the mirror. And/or the field of view where the total number of reflections on the mirror exceeds the number of mirrors. Because there is a gap between the ghost line field of view and the main field of view at a specific position on the optical path, a diaphragm and/or a light barrier device can be used as the ghost line elimination device to block the ghost line
  • the optical path of the field of view realizes the suppression of ghost lines in the lidar point cloud caused by the high-reflection plate at close range.
  • FIG. 4A shows a schematic diagram of a receiving system 40 that can be used for lidar according to an embodiment of the present disclosure.
  • a receiving system 40 that can be used for lidar includes: a receiving lens 41, a mirror structure, an aperture 44, and a detector 43.
  • the mirror structure includes a first mirror 421 and a second mirror 422.
  • the receiving lens 41 can receive an external light beam, for example, a light beam reflected back by an outgoing laser beam of a lidar by an external obstacle.
  • the first reflecting mirror 421 and the second reflecting mirror 422 are arranged downstream of the optical path of the receiving lens 41, and they are arranged opposite to each other.
  • the light beam reflected by the mirror 422 and finally reflected by the second mirror 422 can pass through the diaphragm 44 and irradiate the detector 43 to generate an electric signal.
  • the light beam corresponding to the ghost line field of view FOV A after passing through the receiving lens 41, is not incident on the first reflector 421 or the second reflector 422, but directly irradiates the diaphragm 44, and is blocked by the diaphragm 44. It is blocked or absorbed to prevent it from irradiating the detector 43 and causing ghost lines to be generated in the point cloud of the lidar.
  • the light beam corresponding to the ghost line field of view FOV C passes through the receiving lens 41, is incident on the first reflector 421, is reflected by the first reflector 421 to the second reflector 422, and then is reflected by the second reflector 422 to the 421 is then reflected once by the first mirror 421 and the second mirror 422, and finally incident on the diaphragm 44, blocked or absorbed by the diaphragm 44, to prevent it from irradiating the detector 43 above and produce ghost lines in the lidar point cloud.
  • the diaphragm 44 between the mirror structure and the detector 43, as a ghost line elimination device, it is possible to at least partially block the light that will cause ghost lines in the lidar point cloud from entering the detector 43. .
  • the number of reflectors in the embodiment of FIG. 4A is two, which is only illustrative, and a larger number of reflectors may also be included.
  • the number of reflectors may also be three or Four, the present disclosure does not impose any limitation on the number of mirrors.
  • the mirror structure may include a plurality of mirrors, and the ghost line elimination device, such as the diaphragm 44, is configured to block light beams that are not once reflected by the mirror structure.
  • the light beam reflected once by the mirror structure refers to the light beam reflected once by each mirror in the mirror structure (such as the field of view FOV B in FIG. 4A);
  • the light beam reflected once by the mirror structure means that the light beam is not reflected by at least one of the mirrors (such as the light beam corresponding to the ghost line field of view FOV A in Figure 4A), or is reflected by at least one of the mirrors more than twice (such as Figure 4A).
  • the light beam corresponding to the FOV C in the middle ghost line field of view ).
  • the aperture includes: a strip-shaped hole or a round-shaped hole.
  • FIGS. 5A and 5B show schematic diagrams of an embodiment of the strip-shaped aperture diaphragm of the present disclosure
  • FIGS. 6A and 6B A schematic diagram of an embodiment of the circular aperture diaphragm of the present disclosure is shown.
  • the shape of the aperture of the diaphragm may also be square or elliptical, and the present disclosure does not impose any limitation on the shape of the aperture of the diaphragm.
  • FIG. 5A shows a schematic diagram of a strip hole diaphragm according to an embodiment of the present disclosure.
  • the hole of the diaphragm 52 is a strip hole 51
  • the horizontal width of the hole is d
  • the diaphragm 52 is set
  • the diaphragm 52 can be attached to the support 53, which is arranged in front of the circuit board 55
  • the detectors 54 can be arranged in a linear array on the circuit board 55.
  • an area array where the detector 54 may be, but is not limited to, a photodiode, such as APD, and the distance between the diaphragm 52 and the detector 54 is h. d and h satisfy the above restriction relationship.
  • the horizontal width of the aperture of the diaphragm as d, take the above restriction relationship equation to equal sign to determine the distance between the diaphragm 52 and the detector 54 Distance h.
  • the number of linear arrays (number of columns) of the detector 54 corresponds to the number of strip-shaped holes of the diaphragm 52. As shown in FIG. 5A, 6 rows of detectors 54 are provided on the circuit board 55.
  • FIG. 5B shows a schematic diagram of a strip-shaped hole diaphragm according to another embodiment of the present disclosure. The difference from FIG. 5A is that in the circuit board There are 6 rows of detectors 54 on 55, and 3 strip-shaped holes 51 on the diaphragm 52, which can block part of the APD array of light beams from the ghost line field of view as required.
  • the detector 54 rotates and scans around the rotation axis of the lidar, the light beams of the ghost line field of view FOV A and FOV C are blocked by the left and right sides of the strip-shaped hole 51 of the diaphragm 52, which limits the ghost line field of view FOV A and FOV
  • the light beam of C passes, but the light beam of the main field of view FOV B can pass through the strip-shaped hole 51 of the diaphragm 52 and reach the detector 54.
  • each detector 64 corresponds to a circular hole 61 of the diaphragm 62.
  • the number of linear arrays (number of columns) of the detector 64 corresponds to the number of columns of the circular hole 61 of the diaphragm 62.
  • three rows of detectors 64 are provided on the circuit board 65, and Correspondingly, three rows of circular holes 61 are provided on the diaphragm 62, which can block all the light beams from the ghost line field of view of the APD array.
  • FIG. 6B shows a schematic diagram of a circular aperture diaphragm according to another embodiment of the present disclosure.
  • the difference from FIG. 6A is that the circular holes 61
  • the number of columns is smaller than the number of linear arrays (number of columns) of the detector 64.
  • 6 rows of detectors 64 are provided on the circuit board 65, and 3 rows of circular holes 61 are provided on the diaphragm 62. If necessary, shield part of the APD array from the ghost line of light beams.
  • the detector 64 rotates and scans around the rotation axis of the lidar, the beams of the ghost line field of view FOV A and FOV C are blocked by the circumference of the circular hole 61 of the diaphragm 62, which limits the ghost line field of view FOV A and FOV C.
  • the light beam passes, but the light beam of the main field of view FOV B can pass through the circular hole 61 of the diaphragm 62 to reach the detector 64.
  • the detectors 73 can be arranged on the circuit board in a linear array or area array.
  • part of the light barriers can be multiplexed as needed to reduce the number of light barriers used, and At the same time, the effect of suppressing the ghost lines in the lidar point cloud by the close-range high-reflection plate can be achieved.
  • the number of light barriers in the present disclosure may be multiple, such as two, three, or four, and the present disclosure does not impose any limitation on the number of light barriers.
  • Step S101 receiving a light beam from the outside of the lidar through a receiving lens
  • Step S102 receiving the light beam from the receiving lens through the reflector structure and changing the propagation direction of the light beam through reflection
  • Step S103 blocking the light beam from the mirror structure that will cause ghost lines in the point cloud of the lidar
  • Step S104 receiving the unblocked light beam from the mirror structure through the detector.
  • the step of blocking the light beam from the mirror structure that may cause ghost lines in the point cloud of the lidar includes: blocking the light beam from the lidar by an aperture and/or a light barrier. Light beams that cause ghost lines in the point cloud.
  • the lidar receiving system of the present disclosure uses ghost line elimination devices, such as specific apertures and/or light barriers, to solve the problem of ghost lines generated by short-distance high-reflectivity obstacles in the lidar point cloud.
  • ghost line elimination devices such as specific apertures and/or light barriers.

Abstract

提供了一种可用于激光雷达的接收系统(40),包括:接收透镜(41),接收透镜(41)配置成可从外部接收光束;反射镜结构,设置在接收透镜(41)的光路下游,接收来自接收透镜(41)的光束并通过反射改变光束的传播方向;探测器(43),设置在反射镜结构的下游,以接收来自反射镜的光束;和鬼线消除装置,设置在反射镜结构和探测器(43)之间,以阻挡会在激光雷达的点云中造成鬼线的光束入射到探测器(43)。激光雷达接收系统(40)通过使用鬼线消除装置,例如特定的光阑(44)和/或隔光片(74),解决了近距离高反射率障碍物在激光雷达点云中产生鬼线,带来的激光雷达误识别的问题,提高了激光雷达的探测准确度。

Description

用于激光雷达的接收系统、激光雷达和抑制鬼线的方法 技术领域
本公开涉及激光雷达技术领域,尤其涉及一种可用于激光雷达的接收系统、激光雷达以及一种抑制鬼线的方法。
背景技术
当前,在人工智能的重要应用场景如智能网联汽车的自动驾驶和辅助驾驶,服务机器人等领域中,激光雷达是实现环境感知的核心传感器。激光雷达的工作原理为,通过发射激光光束来探测目标,并通过搜集反射回来的光束来形成点云和获取数据,这些数据经光电处理后可生成为精确的三维立体图像。采用这项技术,可以准确的获取高精度的物理空间环境信息,测距精度可达厘米级。
折叠反射镜结构的激光雷达(在激光雷达接收透镜和探测器之有两片以上反射镜构成反射镜结构来折叠光路),在相同透镜焦距的情况下,能够获得更小的结构尺寸,是目前主流多线机械激光雷达的架构。折叠反射镜结构的激光雷达,在扫描到近距离处的高反板(高反射率障碍物,如路牌等)时,如图1所示,得到的激光雷达点云中会出现鬼线,即在高反板的左右两侧会出现一些实际不存在的点云。在无人驾驶过程中,激光雷达扫描到高反射率的路牌时,会将其在激光雷达点云中产生的鬼线识别成障碍物,导致自动停车。
如何设计出抑制近距离高反板的鬼线的激光雷达具有很重要的意义,本公开通过提供一种可用于激光雷达的接收系统及方法,有效的抑制了近距离高反射率障碍物在激光雷达点云中产生的鬼线,并且将对测远能力的影响最小化。
背景技术部分的内容仅仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
公开内容
有鉴于此,本公开旨在提供一种改进的可用于激光雷达抑制鬼线的方案。
在一个方面,提供一种可用于激光雷达的接收系统,包括:
接收透镜,所述接收透镜配置成可从外部接收光束;
反射镜结构,设置在所述接收透镜的光路下游,接收来自所述接收透镜的光束并通过反射改变所述光束的传播方向;
探测器,设置在所述反射镜结构的下游,以接收来自所述反射镜的光束;和
鬼线消除装置,设置在所述反射镜结构和探测器之间,以阻挡会在激光雷达的点云中造成鬼线的光束入射到所述探测器。
在一个实施例中,所述鬼线消除装置包括光阑。
在一个实施例中,所述光阑和所述探测器满足以下关系:
Figure PCTCN2019103724-appb-000001
其中,D为所述接收透镜的直径,f为所述接收透镜的焦距,h为所述光阑到所述探测器的距离,d所述光阑的宽度。
在一个实施例中,所述光阑为条形孔状或圆孔状,所述光阑由以下材料中的任一种制成:金属,可吸收光或反射光的玻璃,或陶瓷。
在一个实施例中,所述鬼线消除装置包括隔光片。
在一个实施例中,所述鬼线消除装置包括多片不同的隔光片。
在一个实施例中,所述反射镜结构包括多个反射镜,所述鬼线消除装置配置成可遮挡未经所述反射镜结构一次反射的光束。
在一个实施例中,所述反射镜结构包括相向设置的第一反射镜和第二反射镜,所述探测器包括光电二极管,所述鬼线消除装置配置成可遮挡那些被所述第一反射镜和第二反射镜分别反射一次的光束以外的其他光束。
在一个实施例中,所述鬼线消除装置包括光阑和隔光片。
在另一个方面,还提供一种激光雷达,包括:
发射系统,所述发射系统配置成可发射出探测激光束;
如上所述的接收系统,所述接收系统配置成可接收所述探测激光束在物体上反射后的回波。
在又一个方面,还提供一种可用于激光雷达的抑制鬼线的方法,包括:
通过接收透镜从激光雷达的外部接收光束;
通过反射镜结构,接收来自所述接收透镜的光束并通过反射改变所述光束的传播方向;
阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束;和
通过探测器接收来自所述反射镜结构的、未被阻挡的光束。
在一个实施例中,所述阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束的步骤包括:通过光阑和/或隔光片阻挡会在激光雷达的点云中造成鬼线的光束。
根据本公开的实施方式,通过遮挡鬼线视场的光路,实现了有效抑制近距离高反板产生的鬼线数量。
本公开的激光雷达接收系统通过使用鬼线消除装置,例如光阑和/或隔光片,解决了抑制近距离高反板的鬼线的难题,避免了无人驾驶应用中将路牌的左右鬼线识别成障碍物,提高了激光雷达的分辨率。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开一个实施例的激光雷达点云中鬼线的示意图;
图2示出了根据本公开一个实施例的发射端产生鬼线示意图;
图3示出了根据本公开一个实施例的接收端产生鬼线示意图;
图4A示出了根据本公开一个实施例的光阑抑制鬼线的接收系统示意图;
图4B示出了光阑与探测器的参数示意图;
图5A示出了根据本公开一个实施例的条形孔状光阑示意图;
图5B示出了根据本公开另一个实施例的条形孔状光阑示意图;
图6A示出了根据本公开一个实施例的圆孔状光阑示意图;
图6B示出了根据本公开另一个实施例的圆孔状光阑示意图;
图7示出了根据本公开一个实施例的隔光片抑制鬼线的接收系统示意图;
图8示出了根据本公开一个实施例的隔光片示意图;以及
图9示出了根据本公开一个实施例的一种抑制激光雷达的点云中产生鬼线的方法。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本公开的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连 通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本公开的优实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
申请人发现,折叠反射镜结构的激光雷达,鬼线产生可能是由于多种原因造成的。图2示出了发射端的原因造成鬼线的示意图。在激光雷达发射端,由于发射透镜22镀膜的透过率不是100%,激光器23发射的激光在发射透镜22以及光罩21的每个玻璃—空气界面形成多次反射后出射,最终照明近距离目标的是一个非常大的光斑,虽然光斑除正中心之外的能量很低,但是当目标物的反射率很高时,仍然存在被探测到的可能性。
图3示出了接收端原因造成鬼线的示意图。在激光雷达接收端,在折叠反射镜的光路中,除了存在光束在反射镜上各反射一次的主视场之外,还存光束不在反射镜上反射的视场和在反射镜上反射总次数超过反射镜数量的视场。当激光雷达扫描时,接收端的探测器会接收到不在反射镜上反射和/或在 反射镜上反射总次数超过反射镜数量的光束,因而产生了鬼线。如图3所示,激光雷达的视场包括:主视场FOV B和鬼线视场FOV A、FOV C。所述主视场FOV B为光束在第一反射镜311和第二反射镜312上各反射一次的视场,所述鬼线视场FOV A为光束未在第一反射镜311和第二反射镜312上反射的视场,所述鬼线视场FOV C为光束在第一反射镜311和第二反射镜312上反射总次数超过两次的视场。
假设激光雷达逆时针扫描,当所述主视场FOV B还在高反板外侧时,所述鬼线视场FOV A就已经能看到所述高反板了,因所述高反板距离较近,所述高反板被发射端很大的光斑照明,所以探测器32通过所述鬼线视场FOV A的光路接收到光束,产生了所述高反板右侧的鬼线;所述激光雷达继续扫描,当所述主视场FOV B离开所述高反板,所述鬼线视场FOV C仍在所述高反板上时,所述探测器32仍然可通过所述鬼线视场FOV C的光路接收到所述高反板的反射光束,因而产生了所述高反板左侧的鬼线。可替换的,所述激光雷达顺时针扫描时,所述鬼线视场FOV C先于主视场FOV B看到高反板,当所述主视场FOV B离开所述高反板,所述鬼线视场FOV A仍在所述高反板上,鬼线视场FOV A、FOV C分别导致所述高反板的右侧和左侧的鬼线,其中所述探测器32可以是但不限于光电二极管,例如雪崩光电二极管(APD)。
为了减小或者抑制上述鬼线的问题,本公开提供一种可用于激光雷达的接收系统,包括:接收透镜、反射镜结构、探测器、鬼线消除装置。所述反射镜结构设置在所述接收透镜的光路下游,所述探测器设置在所述反射镜结构的光路下游,所述鬼线消除装置设置在所述反射镜结构和所述探测器之间。外部光束通过所述接收透镜进入所述反射镜结构,在所述反射镜结构内经过多个反射镜反射改变传播方向,再经过所述鬼线消除装置,部分或者全部会在激光雷达的点云中造成鬼线的光束被所述鬼线消除装置阻挡,最后剩余光束到达所述探测器。
本公开的实施例的激光雷达视场包括:主视场和鬼线视场,主视场为光束在每一反射镜上反射一次的视场,鬼线视场为光束未在反射镜上反射和/ 或在反射镜上反射总次数超过反射镜数量的视场。因为所述鬼线视场与主视场在光路上的特定位置是有间隙的,所以可通过使用光阑和/或隔光片装置作为所述鬼线消除装置,用于阻挡所述鬼线视场的光路,实现抑制近距离高反板在激光雷达点云中产生鬼线。
下面结合图4A-图6详细介绍本公开的一个实施例。
图4A示出了根据本公开一个实施例的可用于激光雷达的接收系统40的示意图。如图4A所示,可用于激光雷达的接收系统40包括:接收透镜41、反射镜结构、光阑44、探测器43,所述反射镜结构包括第一反射镜421和第二反射镜422。所述接收透镜41可接收外部光束,例如激光雷达的出射激光束经外部障碍物反射回的光束。第一反射镜421和第二反射镜422设置在所述接收透镜41的光路下游,二者相向设置,由所述接收透镜接收的所述光束入射至反射镜结构,通过第一反射镜421和第二反射镜422的反射改变所述光束的传播方向。探测器43设置在反射镜结构的光路下游,其用于接收来自反射镜结构的光束,并产生电信号,所述电信号经过进一步的信号处理,例如滤波、放大、AD转换、数字信号处理等,形成激光雷达的点云数据。光阑44设置在所述反射镜结构与探测器43之间,可允许主视场的光线穿过并入射到所述探测器43上,同时可限制部分光束通过,例如可部分或者全部阻挡那些会在激光雷达的点云中造成鬼线的光束,防止这些会造成鬼线的光束入射到所述探测器上。如图4A所示,主视场FOV B对应的光束,经过所述接收透镜41后产生一定的偏折,然后入射至第一反射镜421并被第一反射镜421反射,随后经过第二反射镜422反射,最终经过第二反射镜422反射后的光束可穿过光阑44,照射到所述探测器43上,产生电信号。鬼线视场FOV A对应的光束,经过所述接收透镜41后,未入射到所述第一反射镜421或第二反射镜422上,而是直接照射到光阑44上,被光阑44所阻挡或吸收,避免其照射到所述探测器43上而导致在激光雷达的点云中产生鬼线。鬼线视场FOV C对应的光束经过接收透镜41后,入射到第一反射镜421上,被第一反射镜421上反射到第二反射镜422上,然后被第二反射镜422上反射至421 上,随后又被所述第一反射镜421和第二反射镜422各反射一次,最终入射到所述光阑44上,被光阑44所阻挡或吸收,避免其照射到所述探测器43上而在激光雷达点云中产生鬼线。
因此,通过在所述反射镜结构与探测器43之间设置光阑44,作为鬼线消除装置,可以至少部分地阻挡那些会在激光雷达的点云中造成鬼线的光线入射到探测器43。
另外,本领域技术人员容易理解,图4A实施例中反射镜的数量为两个,这仅是示意性的,也可以包括更多数目的反射镜,例如反射镜的数量还可以为三个或者四个,本公开对于反射镜的数量不做任何限制。
根据本公开一个优选实施例,所述光阑44与所述探测器43的距离满足一定关系时,可更好地实现遮挡所述鬼线视场FOV A和FOV C的光束。
具体地,假设接收透镜41的直径为D,其焦距为f,所述光阑44到探测器43(例如单个APD,或APD线阵或面阵)的距离为h,所述光阑44的孔的水平宽度为d(如图4B所示),那么当所述光阑44的孔的水平宽度d和所述光阑44到所述探测器43的距离h满足下面的关系式时,可以更好地实现遮挡所述鬼线视场FOV A和FOV C的光束:
Figure PCTCN2019103724-appb-000002
如图4A所示,当激光雷达逆时针或者顺时针扫描时,所述鬼线视场FOVA和FOV C的光束被所述光阑44阻挡,而无法到达所述探测器43,但是所述主视场FOV B的光束可通过所述光阑44的孔到达所述探测器43,进而实现了抑制甚至消除近距离高反板在激光雷达点云中产生鬼线,避免了激光雷达的误识别,提高探测准确度。
如上所述,反射镜结构可包括多个反射镜,所述鬼线消除装置例如光阑44配置成可遮挡未经所述反射镜结构一次反射的光束。本发明中,经所述反射镜结构一次反射的光束,是指经所述反射镜结构中的每一个反射镜反射一次的光束(诸如图4A中的视场FOV B);未经所述反射镜结构一次反射的光束,是指该光束未经其中至少一个反射镜反射(诸如图4A中鬼线视场FOV A 对应的光束),或者被其中至少一个反射镜反射两次以上(诸如图4A中鬼线视场FOV C对应的光束)。
根据本公开一个实施例的接收系统,制作所述光阑的材料可为金属、可吸收光或反射光的玻璃、或者陶瓷。
根据本公开一个实施例的接收系统,所述光阑包括:条形状孔或者圆形状孔,图5A和图5B示出了本公开条形孔状光阑的实施例示意图,图6A和图6B示出了本公开圆孔状光阑的实施例示意图。或者可替换的,所述光阑的孔的形状还可以是方形或者椭圆形,本公开对于光阑的孔的形状不做任何限制。
图5A示出了根据本公开一个实施例的条形孔状光阑示意图,如图5A所示,光阑52的孔为条形状孔51,孔的水平宽度为d,所述光阑52设置在支架53上,例如,所述光阑52可贴置于所述支架53上,所述支架53设置在电路板55前方,所述探测器54可在所述电路板55上排列成线阵或者面阵,其中所述探测器54可以是但不限于是光电二极管,例如APD,所述光阑52到所述探测器54的距离为h。d和h满足如上所述限制关系,例如当我们确定了光阑的孔的水平宽度为d后,将上述限制关系式取等号,即可确定所述光阑52到所述探测器54的距离h。所述探测器54的线阵数(列数)与所述光阑52的条形状孔的数量相对应。如图5A所示,在电路板55上设置有6列探测器54,与之相对应的,在光阑52上设置有6个条形状孔51(条形状孔51的宽度为d,相邻形状孔51的中心间距参照电路板55上相邻探测器54线阵的中心间距设定,条形状孔的长度亦参照电路板55上探测器54线阵的长度设定),即可以遮挡所有APD列阵的来自鬼线视场的光束。在本发明的其他实施例里也可以根据需要调整条形状孔的数量,图5B示出了根据本公开另一个实施例的条形孔状光阑示意图,与图5A不同的是,在电路板55上设置有6列探测器54,在光阑52上设置有3个条形状孔51,可根据需要遮挡部分APD列阵的来自鬼线视场的光束。
当探测器54围绕激光雷达转轴旋转扫描时,鬼线视场FOV A和FOV C的光束被所述光阑52的条形状孔51的左右两侧阻挡,限制了鬼线视场FOV A和FOV C的光束通过,但是主视场FOV B的光束可通过所述光阑52的条形状 孔51,到达所述探测器54。
图6A示出了根据本公开一个实施例的圆孔状光阑示意图,如图6A所示,所述光阑62的孔为圆形状孔61,孔的水平宽度为d(即孔的直径为d),所述光阑62设置在支架63上,例如,所述光阑62可贴置于所述支架63上,所述支架63设置在电路板65前方,位于电路板65上的探测器64的前方,其中所述探测器64可以是但不限于是光电二极管,例如APD。所述光阑62到所述探测器64的距离为h。d和h满足如上所述限制关系,例如当我们确定了光阑的孔的水平宽度为d(即孔的直径)后,将上述限制关系式取等号,即可确定所述光阑52到所述探测器54的距离h。每一探测器64对应一个所述光阑62的圆形状孔61。所述探测器64的线阵数(列数)与所述光阑62的圆形状孔61的列数相对应,如图6A所示,在电路板65上设置有3列探测器64,与之相对应的,在光阑62上设置有3列圆形状孔61,可以遮挡所有APD列阵的来自鬼线视场的光束。
在本发明的其他实施例里也可以根据需要调整圆形状孔的数量,图6B示出了根据本公开另一个实施例的圆孔状光阑示意图,与图6A不同的是,圆形状孔61的列数小于探测器64的线阵数(列数),如图6B所示,在电路板65上设置有6列探测器64,在光阑62上设置有3列圆形状孔61,可根据需要遮挡部分APD列阵的来自鬼线视场的光束。
当探测器64围绕激光雷达转轴旋转扫描时,鬼线视场FOV A和FOV C的光束被所述光阑62的圆形状孔61的四周阻挡,限制了鬼线视场FOV A和FOV C的光束的通过,但是主视场FOV B的光束可通过所述光阑62的圆形状孔61,到达所述探测器64。
下面结合图7、图8详细介绍本公开的另一个实施例。
图7示出了根据本公开一个实施例的可用于激光雷达的接收系统70示意图。如图7所示,可用于激光雷达的接收系统70包括:接收透镜71、反射镜结构、隔光片74、探测器73,所述反射镜结构包括第一反射镜721和第二反射镜722。所述接收透镜71可接收外部光束,相向设置在所述接收透镜71 的光路下游的第一反射镜721和第二反射镜722可接收所述光束,并通过反射改变所述光束的传播方向,设置在所述第一反射镜721和所述第二反射镜722的光路下游的隔光片74可阻挡部分或者全部会在激光雷达的点云中造成鬼线的光束,最后设置在所述隔光片74的光路下游的探测器73接收未被所述隔光片74阻挡的光束。所述探测器73可围绕激光雷达转轴进行旋转。可替换的,反射镜的数量还可以为三个或者四个,本公开对于反射镜的数量不做任何限制。
所述隔光片74可设置在所述探测器73的左右两侧,可直接设置于电路板上。当探测器73围绕激光雷达转轴旋转扫描时,鬼线视场FOV A和FOV C的光束被所述探测器73左右两侧的隔光片74阻挡,限制了鬼线视场FOV A和FOV C的光束到达所述探测器73,但是主视场FOV B的光束未被所述隔光片74阻挡,可到达所述探测器73,其中所述探测器73可以是但不限于是光电二极管,例如APD。
所述探测器73可在所述电路板上排列成线阵或者面阵,对于多个探测器阵列的情况,可以根据需要复用部分隔光片,以减小隔光片的使用数量,且可同时达到抑制近距离高反板在激光雷达点云中产生鬼线的效果。本公开的隔光片数量可为多个,例如两个、三个、或者四个,本公开对隔光片的数量不做任何限制。
图8示出了根据本公开一个实施例的隔光片示意图。a为主视图,b为右视图,如图8中a所示,探测器阵列81、82和83设置在电路板87上,隔光片84、85和86也设置在电路板87上,优选地所述隔光片84、85和86垂直设置在电路板87上。所述探测器阵列81和82共用所述隔光片85,所述探测器阵列82和83共用所述隔光片86。在减少了隔光片的使用数量的同时,可达到了抑制近距离高反板在激光雷达点云中产生鬼线的效果。
根据本公开一个优选实施例,设置所述接收系统的接收透镜的焦距为69mm,第一反射镜与水平方向的夹角为45度,第二反射镜与水平方向的夹角为51度,如图8中a所示,从左到右,每列APD的中心到隔光片的水平距离分别为2.45mm、1.95mm、1.25mm,从左到右,隔光片的高度分别为4mm、4mm、 3.2mm时,可取得很好的约束鬼线视场的效果。
上述实施例中,激光雷达的系统分别包括光阑或者隔光片,作为鬼线消除装置。根据本公开一个实施例的接收系统,其中所述鬼线消除装置还可以同时使用光阑和隔光片,来达到抑制近距离高反板在激光雷达点云中产生鬼线的目的。
本公开还提供一种激光雷达,包括:发射系统和如上所述的接收系统。所述发射系统可发射出探测目标的激光束,所述接收系统可接收所述激光束在目标上反射后的回波。当探测的目标为近距离高反射率障碍物时,所述接收系统可抑制所述高反射率障碍物在激光雷达点云中产生鬼线,避免了激光雷达的误识别,提高探测准确度,同时由于所述鬼线消除装置不遮挡主视场光束,因此对所述激光雷达的测远能力的影响达到最小化。
图9示出了根据本公开一个实施例的一种抑制激光雷达的点云中产生鬼线的方法100。如图9所示,具体包括如下步骤:
步骤S101,通过接收透镜从激光雷达的外部接收光束;
步骤S102,通过反射镜结构,接收来自所述接收透镜的光束并通过反射改变所述光束的传播方向;
步骤S103,阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束;
步骤S104,通过探测器接收来自所述反射镜结构的、未被阻挡得光束。
根据本公开的一个实施例,所述阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束的步骤包括:通过光阑和/或隔光片阻挡会在激光雷达的点云中造成鬼线的光束。
本公开的激光雷达接收系统通过使用鬼线消除装置,例如特定的光阑和/或隔光片,解决了近距离高反射率障碍物在激光雷达点云中产生鬼线,带来的激光雷达误识别的问题。在无人驾驶应用中,本公开的激光雷达扫描近距离的高反射率的路牌时,能够避免路牌在激光雷达的点云中产生鬼线,提高 了探测准确度。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
最后应说明的是:以上所述仅为本公开的优选实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种可用于激光雷达的接收系统,包括:
    接收透镜,所述接收透镜配置成可从外部接收光束;
    反射镜结构,设置在所述接收透镜的光路下游,接收来自所述接收透镜的光束并通过反射改变所述光束的传播方向;
    探测器,设置在所述反射镜结构的下游,以接收来自所述反射镜的光束;和
    鬼线消除装置,设置在所述反射镜结构和探测器之间,以阻挡会在激光雷达的点云中造成鬼线的光束入射到所述探测器。
  2. 根据权利要求1所述的接收系统,其中所述鬼线消除装置包括光阑。
  3. 根据权利要求2所述的接收系统,其中所述光阑和所述探测器满足以下关系:
    Figure PCTCN2019103724-appb-100001
    其中,D为所述接收透镜的直径,f为所述接收透镜的焦距,h为所述光阑到所述探测器的距离,d所述光阑的宽度。
  4. 根据权利要求2或3所述的接收系统,其中所述光阑为条形孔状或圆孔状,所述光阑由以下材料中的任一种制成:金属,可吸收光或反射光的玻璃,或陶瓷。
  5. 根据权利要求1所述的接收系统,其中所述鬼线消除装置包括隔光片。
  6. 根据权利要求5所述的接收系统,其中所述鬼线消除装置包括多片不同的隔光片。
  7. 根据权利要求1-3、5-6中任一项所述的接收系统,其中所述反射镜 结构包括多个反射镜,所述鬼线消除装置配置成可遮挡未经所述反射镜结构一次反射的光束。
  8. 根据权利要求1-3、5-6中任一项所述的接收系统,其中所述反射镜结构包括相向设置的第一反射镜和第二反射镜,所述探测器包括光电二极管,所述鬼线消除装置配置成可遮挡那些被所述第一反射镜和第二反射镜分别反射一次的光束以外的其他光束。
  9. 根据权利要求1所述的接收系统,其中所述鬼线消除装置包括光阑和隔光片。
  10. 一种激光雷达,包括:
    发射系统,所述发射系统配置成可发射出探测激光束;
    如权利要求1-9中任一项所述的接收系统,所述接收系统配置成可接收所述探测激光束在物体上反射后的回波。
  11. 一种可用于激光雷达的抑制鬼线的方法,包括:
    通过接收透镜从激光雷达的外部接收光束;
    通过反射镜结构,接收来自所述接收透镜的光束并通过反射改变所述光束的传播方向;
    阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束;和
    通过探测器接收来自所述反射镜结构的、未被阻挡的光束。
  12. 根据权利要求11所述的方法,其中所述阻挡来自所述反射镜结构的、会在激光雷达的点云中造成鬼线的光束的步骤包括:通过光阑和/或隔光片阻挡会在激光雷达的点云中造成鬼线的光束。
PCT/CN2019/103724 2019-08-30 2019-08-30 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法 WO2021035689A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980097646.7A CN114096870A (zh) 2019-08-30 2019-08-30 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法
PCT/CN2019/103724 WO2021035689A1 (zh) 2019-08-30 2019-08-30 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法
CN201911137252.8A CN111090082A (zh) 2019-08-30 2019-11-19 激光雷达和利用其进行探测的方法
US17/563,305 US20220120869A1 (en) 2019-08-30 2021-12-28 Receiving system for lidar, lidar and method for inhibiting ghost lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103724 WO2021035689A1 (zh) 2019-08-30 2019-08-30 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,305 Continuation US20220120869A1 (en) 2019-08-30 2021-12-28 Receiving system for lidar, lidar and method for inhibiting ghost lines

Publications (1)

Publication Number Publication Date
WO2021035689A1 true WO2021035689A1 (zh) 2021-03-04

Family

ID=74684402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103724 WO2021035689A1 (zh) 2019-08-30 2019-08-30 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法

Country Status (3)

Country Link
US (1) US20220120869A1 (zh)
CN (1) CN114096870A (zh)
WO (1) WO2021035689A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567954A (zh) * 2021-03-29 2021-10-29 华为技术有限公司 一种激光发射方法、装置、探测装置及移动平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333592A (ja) * 2006-06-15 2007-12-27 Denso Corp 距離測定装置
CN101963869A (zh) * 2009-07-24 2011-02-02 一品光学工业股份有限公司 微机电扫描的坐标侦测方法及其触控荧幕
CN103018735A (zh) * 2012-12-13 2013-04-03 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达大视场外差探测装置
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN108594263A (zh) * 2018-01-30 2018-09-28 北醒(北京)光子科技有限公司 一种激光雷达及无人驾驶系统
CN208421218U (zh) * 2018-06-08 2019-01-22 上海禾赛光电科技有限公司 一种用于激光雷达的接收系统
CN109814082A (zh) * 2019-01-21 2019-05-28 上海禾赛光电科技有限公司 光接收模块、及激光雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333592A (ja) * 2006-06-15 2007-12-27 Denso Corp 距離測定装置
CN101963869A (zh) * 2009-07-24 2011-02-02 一品光学工业股份有限公司 微机电扫描的坐标侦测方法及其触控荧幕
CN103018735A (zh) * 2012-12-13 2013-04-03 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达大视场外差探测装置
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN108594263A (zh) * 2018-01-30 2018-09-28 北醒(北京)光子科技有限公司 一种激光雷达及无人驾驶系统
CN208421218U (zh) * 2018-06-08 2019-01-22 上海禾赛光电科技有限公司 一种用于激光雷达的接收系统
CN109814082A (zh) * 2019-01-21 2019-05-28 上海禾赛光电科技有限公司 光接收模块、及激光雷达系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567954A (zh) * 2021-03-29 2021-10-29 华为技术有限公司 一种激光发射方法、装置、探测装置及移动平台
CN113567954B (zh) * 2021-03-29 2023-01-06 华为技术有限公司 一种激光发射方法、装置、探测装置及移动平台

Also Published As

Publication number Publication date
US20220120869A1 (en) 2022-04-21
CN114096870A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN215641806U (zh) 激光雷达
CN212623082U (zh) 用于激光雷达的扫描装置及激光雷达
US10996322B2 (en) Lidar sensor
KR102604050B1 (ko) 잡음 적응형 솔리드-스테이트 lidar 시스템
CN107209265B (zh) 光探测和测距装置
CN111090082A (zh) 激光雷达和利用其进行探测的方法
CN211236225U (zh) 一种大视场激光雷达光机系统
WO2020200206A1 (zh) 光扫描装置和激光雷达
CN112219130B (zh) 一种测距装置
JPWO2017183530A1 (ja) 対象物検出装置
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
CN113030911A (zh) 一种激光雷达系统
CN111398933B (zh) 激光雷达探测系统及激光雷达
WO2021035689A1 (zh) 用于激光雷达的接收系统、激光雷达和抑制鬼线的方法
CN112639514B (zh) 激光接收装置、激光雷达及智能感应设备
CN218978799U (zh) 清洁装置及其应用的透光罩、自移动装置
WO2023015563A1 (zh) 一种接收光学系统、激光雷达系统及终端设备
WO2021083016A1 (zh) 激光雷达和利用其进行探测的方法
CN214473947U (zh) 一种无机械运动扫描的激光测距系统
CN115267726A (zh) 激光雷达及激光雷达的探测方法
CN111913165A (zh) 探测系统及其探测方法
CN110007291B (zh) 一种接收系统和激光雷达
CN220212836U (zh) 清洁装置及其应用的透光罩、自移动装置
WO2022227609A1 (zh) 激光雷达
CN116125436B (zh) 一种用于单光子雷达的集成化同轴收发装置及单光子雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943677

Country of ref document: EP

Kind code of ref document: A1