WO2022227609A1 - 激光雷达 - Google Patents

激光雷达 Download PDF

Info

Publication number
WO2022227609A1
WO2022227609A1 PCT/CN2021/138323 CN2021138323W WO2022227609A1 WO 2022227609 A1 WO2022227609 A1 WO 2022227609A1 CN 2021138323 W CN2021138323 W CN 2021138323W WO 2022227609 A1 WO2022227609 A1 WO 2022227609A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
receiving
transmitting
unit
laser beam
Prior art date
Application number
PCT/CN2021/138323
Other languages
English (en)
French (fr)
Inventor
梁峰
陈杰
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Priority to KR1020237034094A priority Critical patent/KR20230155523A/ko
Priority to EP21939068.9A priority patent/EP4310537A1/en
Priority to DE112021007126.2T priority patent/DE112021007126T5/de
Priority to MX2023012471A priority patent/MX2023012471A/es
Priority to JP2023561898A priority patent/JP2024514846A/ja
Publication of WO2022227609A1 publication Critical patent/WO2022227609A1/zh
Priority to US18/383,429 priority patent/US20240053444A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Definitions

  • the present disclosure relates to the technical field of photoelectric detection, and in particular, to a laser radar capable of taking into account both distance measuring and near measuring performance.
  • Lidar is a radar system that emits laser beams to detect the position, speed and other characteristic quantities of targets. It is an advanced detection method that combines laser technology with photoelectric detection technology. Lidar is widely used in autonomous driving, intelligent transportation, unmanned aerial vehicle, intelligent robot, resource exploration and other fields.
  • LiDAR LiDAR
  • FOV long-distance small vertical field of view
  • the other is short-range large vertical FOV measurement, usually 15m-50m detection distance, 80°-105° vertical FOV, which is used for short-range blind spot detection.
  • the vertical FOV is directly added to the distance measuring radar (long focal length optical path, as shown in Figure 2a)
  • the height of the receiving surface of the detector will be greatly increased, as shown in Figure 3a, so that the height of the lidar will be greatly increased, It is not conducive to improving the integration of the radar.
  • increase the central area wire beam to ensure the resolution of distance measurement
  • the center due to the limitation of the size of a single detector, the center It is difficult to improve the wiring harness in the area.
  • the present invention provides a laser radar, including:
  • the first transmitting unit and the second transmitting unit are configured to respectively emit the first detection laser beam and the second detection laser beam for detecting the target object;
  • the transmitting end optical assembly including a transmitting lens
  • the receiving end optical assembly including a receiving lens
  • first receiving unit and a second receiving unit are configured to receive first echoes and second echoes of the first detection laser beam and the second detection laser beam reflected by the target object, respectively echoed back and converted into electrical signals
  • the first detection laser beam and the second detection laser beam respectively exit from the first emission unit and the second emission unit and then reach the emission lens after different optical paths.
  • the echoes reach the first receiving unit and the second receiving unit respectively through different optical paths from the receiving lens.
  • the first transmitting unit and the second transmitting unit are respectively arranged at different positions from the transmitting lens, and the first receiving unit and the second receiving unit are respectively arranged at a distance from the receiving lens at different locations.
  • the first emitting unit includes a first laser array, the first laser array is disposed on the focal plane of the emitting lens; the second emitting unit includes a second laser array, the The distance between the second laser array and the transmitting lens is smaller than the focal length of the transmitting lens; the first receiving unit includes a first detector array, and the first detector array is arranged on the focal plane of the receiving lens above; the second receiving unit includes a second detector array, and the distance between the second detector array and the receiving lens is smaller than the focal length of the receiving lens.
  • the second transmitting unit includes a transmitting-end zoom lens, the transmitting-end zoom lens is disposed between the second laser array and the transmitting lens, and the second detection laser beam passes through the The transmitting-end zoom lens and the transmitting lens are emitted to the outside of the lidar;
  • the second receiving unit includes a receiving-end zoom lens, and the receiving-end zoom lens is arranged between the second detector array and the receiving lens.
  • the second echo is incident on the second detector array after passing through the receiving lens and the zoom lens at the receiving end.
  • the lidar further includes one or more reflectors at the transmitting end and one or more reflectors at the receiving end, and the first detection laser beam is reflected by the reflecting mirrors at the transmitting end, and then passes through all the reflectors at the transmitting end.
  • the emission lens is emitted, and the first echo is incident on the first detector array after being reflected by the reflection mirror at the receiving end.
  • the transmitting end reflector includes a transmitting end reflecting mirror with an opening, wherein the first detection laser beam is reflected by the transmitting end reflecting mirror with an opening, and passes through the The transmitting lens exits, and the second detection laser beam passes through the opening and exits through the transmitting lens; wherein the receiving end reflector includes a receiving end reflector with an opening, wherein the first echo After being reflected by the reflector with the opening, it is incident on the first detector array, and the second echo passes through the opening and is incident on the second detector array .
  • the lidar has a rotating shaft and an opto-mechanical rotor rotatable around the rotating shaft, and the opto-mechanical rotor includes the first transmitting unit and the second transmitting unit, a transmitting end optical assembly and a receiving end The optical assembly, the first receiving unit and the second receiving unit, wherein the opto-mechanical rotor is disposed above the rotating shaft, or the rotating shaft penetrates the opto-mechanical rotor.
  • the transmitting end optical assembly includes a first transmitting lens and a second transmitting lens
  • the receiving end optical assembly includes a first receiving lens and a second receiving lens
  • the first detection laser beam passes through the The first emitting lens exits, the second detection laser beam exits through the second emitting lens
  • the first echo is collected to the first detection unit through the first receiving lens
  • the second The echoes are focused to the second detection unit through the second receiving lens.
  • the lidar has a rotation axis around which the first transmitting lens and the second transmitting lens are substantially opposite at 180 degrees, and the first receiving lens and the second receiving lens surround The rotating shafts are approximately 180 degrees opposite to each other.
  • the first transmitting lens and the first receiving lens include a telecentric lens group.
  • the first detection laser beam and the second detection laser beam correspond to different vertical field of view ranges of the lidar.
  • the energy of the first detection laser beam is higher than that of the second detection laser beam.
  • both the first emitting unit and the second emitting unit include multiple lasers and multi-channel driver chips, and the multiple lasers and the multi-channel driver chips are arranged on the same PCB;
  • the first Both the receiving unit and the second receiving unit include a plurality of detectors and a multi-channel front-end chip, and the plurality of detectors and the multi-channel front-end chip are arranged on the same PCB board.
  • the lidar further includes a data processing unit, the data processing unit is coupled to the first transmitting unit and the second transmitting unit and the first receiving unit and the second receiving unit, and The detection results of the first detection laser beam and the second detection laser beam are fused to generate a point cloud.
  • the embodiment of the present invention proposes a solution that can integrate small FOV distance measurement and large FOV proximity measurement.
  • the laser radar according to the embodiment of the present invention while ensuring a compact structure, it can realize the detection of short distance and large vertical angle of view. and detection of small vertical field angles at long distances.
  • FIG. 1 shows a schematic diagram of the combined use of the existing LiDAR for distance measurement and LiDAR for proximity measurement
  • Figure 2a shows a schematic diagram of the long focal length optical path of a lidar for small vertical FOV telemetry
  • Figure 2b shows a schematic diagram of the short focal length optical path of a lidar for large vertical FOV proximity
  • Figure 3a shows a schematic diagram of a long focal length optical path of a lidar with a large vertical FOV taking into account both distance and near measurement;
  • Fig. 3b shows a schematic diagram of a short focal length optical path of a lidar with a large vertical FOV taking into account both distance and near measurement;
  • Fig. 4a shows a schematic diagram of an optical path structure on the transmitting side of a lidar according to an embodiment of the present invention
  • Fig. 4b shows a schematic diagram of an optical path structure on the transmitting side of a lidar according to an embodiment of the present invention
  • Fig. 4c shows a schematic diagram of an optical path structure on the receiving side of a lidar according to an embodiment of the present invention
  • FIG. 5 shows a schematic top view of a lidar according to an embodiment of the present invention, which has a dual focal length structure
  • FIG. 6 shows a schematic diagram of a lidar according to another embodiment of the present invention, wherein there are multiple mirrors
  • Figure 7a shows a schematic diagram of a non-penetrating lidar
  • Figure 7b shows a schematic diagram of a penetration lidar
  • FIG. 8 shows a schematic diagram of a lidar according to another embodiment of the present invention.
  • FIG. 9 shows a telecentric lens group for lidar according to an embodiment of the present invention.
  • Figure 10a shows a transmit unit according to one embodiment of the present invention.
  • Figure 10b shows a receiving unit according to an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes that the first feature is directly above and diagonally above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature has a lower level than the second feature.
  • the lidar can be used in the laser radar.
  • Set up multiple transmitter units and multiple receiver units respectively such as two transmitter units and two receiver units, one transmitter unit and one receiver unit are used to detect distant targets with a small FOV, and the other transmitter unit and The other receiving unit is used to detect short-range targets with a larger FOV, and has both a transmitting lens and a receiving lens, in which different detection laser beams emitted by multiple transmitting units reach the transmitting lens after different optical paths, and pass through the transmitting lens.
  • the echoes generated on the target pass through different optical paths from the receiving lens to different receiving units, that is, a transceiver pair composed of a transmitting unit and a receiving unit and another transmitting unit.
  • the transceiver pair formed with another receiving unit corresponds to different focal lengths, so that the lidar according to the embodiment of the present invention can simultaneously integrate the functions of short-range detection of large FOV and long-distance detection of small FOV.
  • FIGs 4a, 4b and 4c show schematic diagrams of the lidar 100 according to an embodiment of the present invention, wherein Figures 4a and 4b show the optical path structure of the transmitter side of the lidar, and Figure 4c shows the receiver side of the lidar
  • the optical path structure is described in detail below with reference to the accompanying drawings.
  • the laser radar 100 includes a first transmitting unit 101 and a second transmitting unit 102 on the transmitting side, wherein the first transmitting unit 101 includes a first laser array disposed on a circuit board for transmitting the first For the detection laser beam L1, the second emitting unit 102 also includes a second laser array disposed on the circuit board for emitting the second detection laser beam L2.
  • the lasers in the first laser array and the second laser array may include vertical cavity surface emission lasers (VCSELs) or edge emitting lasers (EELs).
  • the lidar 100 also includes an optical component at the transmitting end for modulating, for example, collimating, the first detection laser beam L1 and the second detection laser beam L2, and then making them emit into the environment around the lidar for detecting targets thing.
  • the transmitting end optical assembly includes a transmitting lens 103, and the transmitting lens 103 is configured to collimate the first detection laser beam L1 and the second detection laser beam L2.
  • the first detection laser beam L1 and the second detection laser beam L2 after the first detection laser beam L1 and the second detection laser beam L2 are respectively emitted from the first emission unit 101 and the second emission unit 102, they reach the emission lens 103 after different optical paths, wherein, The optical path traveled by the first detection laser beam L1 is, for example, greater than the optical path traveled by the second detection laser beam L2.
  • the first emitting unit 101 and the second emitting unit 102 can be respectively arranged at different positions from the emitting lens 103 .
  • the first laser array of the first transmitting unit 101 is disposed on the focal plane of the transmitting lens 103, and the distance between the second laser array of the second transmitting unit 102 and the transmitting lens 103 is less than The focal length of the emission lens 103 .
  • the lidar further includes a transmitter zoom lens 104 , and the transmitter zoom lens 104 is disposed between the second laser array of the second transmitter unit 102 and the Between the emitting lenses 103 , the second detection laser beam L2 is emitted to the outside of the lidar through the emitting end zoom lens 104 and the emitting lens 103 .
  • the second detection laser beam L2 passes through the zoom lens 104 at the transmitting end, its direction or divergence changes to a certain extent, and then enters the transmitting lens 103 and exits the lidar.
  • the second laser array of the second transmitting unit 102 is located on the focal plane of the lens group formed by the transmitting end zoom lens 104 and the transmitting lens 103, and the lens group formed by the transmitting end zoom lens 104 and the transmitting lens 103 is equal to
  • the effective focal length is smaller than the focal length of the emission lens 103 .
  • Figures 4a, 4b and 4c are not only schematic diagrams of the lidar 100 according to an embodiment of the present invention, but Figures 4a and 4b are also schematic diagrams of the coaxial arrangement of the first transmitting unit 101 and the second transmitting unit 102 on the transmitting side, That is, both the first emitting unit 101 and the second emitting unit 102 are arranged along the optical axis OO of the emitting lens 103 .
  • the coaxial arrangement of the first transmitting unit 101 and the second transmitting unit 102 can be realized in different ways.
  • an opening may be formed on the circuit board of the second transmitting unit 102, and an opening may be formed in the center of the zoom lens 104 at the transmitting end for passing through the first detection laser beam L1, so the first detection laser beam L1 is not affected by the zoom lens 104 at the transmitting end modulation.
  • the first laser arrays of the first emitting unit 101 can be arranged densely, and are located at approximately the middle of the circuit board; the second laser arrays of the second emitting unit 102 can be arranged sparsely, and are located approximately in the middle of the circuit board. edge location. Additionally or alternatively, as shown in FIG.
  • the second transmitting unit 102 can also be divided into two parts up and down, spaced apart from each other, and the zoom lens 104 at the transmitting end can also be divided into two parts, spaced apart from each other, the second transmitting unit 102
  • the intermediate spaced areas and the intermediate spaced areas of the zoom lens 104 at the transmitting end can be used to pass through the first detection laser beam L1.
  • the above embodiments can also be combined, for example, a hole is opened in the middle of the circuit board of the second transmitting unit 102, and the zoom lens 104 at the transmitting end is divided into two parts, or vice versa.
  • the transmitting-end zoom lens 104 is realized by a microlens array MLA, for example, a microlens is arranged downstream of the optical path of each laser in the second laser array of the second transmitting unit 102, The second detection laser beam L2 is modulated by the micro lens and then projected to the emission lens 103 .
  • a microlens array MLA for example, a microlens is arranged downstream of the optical path of each laser in the second laser array of the second transmitting unit 102, The second detection laser beam L2 is modulated by the micro lens and then projected to the emission lens 103 .
  • other setting manners can also be conceived, which will be described in detail in the following embodiments.
  • the transmitting lens 103 can adopt a common design of laser radar for distance measurement, with a larger focal length, and the first laser array of the first transmitting unit 101 is directly disposed at the focal plane of the transmitting lens 103 , which can easily achieve high beam resolution in a small FOV range.
  • An emission zoom lens 104 is added at the second emission unit 102.
  • the focal length of the lens group formed by the emission zoom lens 104 and the emission lens 103 is relatively small, which is smaller than the focal length of the emission lens 103. Therefore, short-range detection scanning with a large FOV can be realized, and at the same time
  • the height of the emitting surface of the laser is also not very high, so a compact structure can be realized.
  • the first detection laser beam L1 (distance measuring ray) and the second detection laser beam L2 (near measuring ray) do not overlap in the vertical field of view, and the outgoing light of the lasers used for near measurement and distance measurement have different energies .
  • the energy of the first detection laser beam L1 for distance measurement is higher than the energy of the second detection laser beam L2 for proximity measurement.
  • the lidar 100 includes a first receiving unit 105 and a second receiving unit 106 on the receiving side, the first receiving unit 105 includes a first detector array, and the second receiving unit 106 includes a second receiving unit 106.
  • the detector arrays, in the first detector array and the second detector array may include various types of photodetectors, such as an avalanche photodiode APD, a single photon avalanche diode SPAD, or a silicon photomultiplier tube SiPM.
  • the first echo L1' and the second echo L2' are respectively generated and returned to the lidar, and are converged by the receiving lens 107 to the first echo L1' and the second echo L2'.
  • the first receiving unit 105 and the second receiving unit 106 are configured to respectively receive the first echo L1' and the second echo L2' and convert them into electrical signals for subsequent circuits to perform. Signal processing and analysis.
  • first echo L1' and the second echo L2' respectively travel from the receiving lens 107 to the first receiving unit 105 and the second receiving unit 106 through different optical paths, wherein the first echo L1'
  • the traversed optical path is, for example, greater than the optical path traversed by the second echo L2'.
  • the first receiving unit 105 and the second receiving unit 106 may be 106 are respectively disposed at different positions from the receiving lens 107 .
  • the first detector array of the first receiving unit 105 may be arranged on the focal plane of the receiving lens 107
  • the second detector array of the second receiving unit 106 and the receiving lens 107 may be arranged The distance is set to be smaller than the focal length of the receiving lens 107 .
  • the lidar 100 further includes a receiving-end zoom lens 108 on the receiving side, and the receiving-end zoom lens 108 is disposed on the second side of the second receiving unit 106 .
  • the second echo L2 ′ is incident on the second detector array after passing through the receiving lens 107 and the receiving end zoom lens 108 .
  • FIG. 4 c after the second echo L2 ′ passes through the zoom lens 108 at the receiving end, its direction or divergence changes to a certain extent, and then enters the second detector array.
  • the second detector array of the second receiving unit 106 is located on the focal plane of the lens group formed by the receiving end zoom lens 108 and the receiving lens 107, and the lens group formed by the receiving end zoom lens 108 and the receiving lens 107
  • the equivalent focal length is smaller than the focal length of the receiving lens 107 .
  • the receiving-end zoom lens 108 is realized by a microlens array MLA, for example, a microlens is arranged upstream of the optical path of each detector in the second detector array of the second receiving unit 106 , for modulating the second echo L2'.
  • Figures 4a, 4b and 4c are not only schematic diagrams of the lidar 100 according to an embodiment of the present invention, but Figure 4c is also a schematic diagram of the coaxial arrangement of the first receiving unit 105 and the second receiving unit 106 on the receiving side, that is, the first Both the first receiving unit 105 and the second receiving unit 106 are arranged along the optical axis O'O' of the receiving lens 107 .
  • the coaxial arrangement of the first receiving unit 105 and the second receiving unit 106 can be achieved in different ways.
  • an opening may be formed on the circuit board of the second receiving unit 106, and an opening may be formed in the center of the zoom lens 108 at the receiving end for passing through the first echo L1', so the first echo L1' is not affected by the zoom lens 108 at the receiving end modulation.
  • the first detector arrays of the first receiving unit 105 can be arranged densely and located in the approximate middle of the circuit board; the second detector arrays of the second receiving unit 106 can be arranged sparsely and located on the circuit board the approximate edge position.
  • the second receiving unit 106 can also be divided into two parts up and down, spaced apart from each other, and the zoom lens 108 at the receiving end can also be divided into two parts, spaced apart from each other, the area in the middle of the second receiving unit 106, and the receiving end An intermediate spaced area of the end zoom lens 108 may be used to pass through the first detection laser beam L1.
  • the above embodiments can also be combined, for example, a hole is opened in the middle of the circuit board of the second receiving unit 106, and the zoom lens 108 at the receiving end is divided into two parts, or vice versa.
  • the receiving-end zoom lens 108 is realized by a microlens array MLA, for example, a microlens is arranged upstream of the optical path of each detector in the second detector array of the second receiving unit 106 , the second echo L2 ′ passing through the receiving lens 107 is modulated by the microlens and then incident on the detector.
  • a microlens array MLA for example, a microlens is arranged upstream of the optical path of each detector in the second detector array of the second receiving unit 106 , the second echo L2 ′ passing through the receiving lens 107 is modulated by the microlens and then incident on the detector.
  • the receiving lens 107 can adopt the usual design of laser radar for distance measurement, and the focal length is relatively large. High beam resolution is achieved within the range.
  • a receiving zoom lens 108 is added near the second receiving unit 106.
  • the focal length of the lens group formed by the receiving zoom lens 108 and the receiving lens 107 is relatively small and smaller than the focal length of the receiving lens 107. Therefore, a large FOV can be achieved, and at the same time the detector can receive The height of the face is also not very high, so a compact structure can be achieved.
  • the sensitivity of the first detector array of the first receiving unit 105 for distance measurement is higher than the sensitivity of the second detector array of the second receiving unit 106 for proximity measurement.
  • the lidar shown in FIGS. 4a, 4b and 4c of the present invention is a lidar with a dual focal length structure, so that the lidar 100 can simultaneously realize the functions of large vertical FOV proximity measurement and small vertical FOV distance measurement, and the lidar Height does not increase significantly.
  • two transmitting units are set on the transmitting side of the lidar, which are respectively used to transmit the first detection laser beam (for distance measurement) and the second detection laser beam (for proximity measurement), and two receiving units are set on the receiving side unit, respectively used to receive the echoes generated by the first detection laser beam and the second detection laser beam, namely for distance measurement and proximity measurement, respectively, a transceiver pair composed of a transmitting unit and a receiving unit (for distance measurement) and The transceiver pair (used for proximity measurement) composed of another transmitting unit and another receiving unit corresponds to different focal lengths, thereby taking into account the distance and proximity performance of the lidar at the same time in a compact structure.
  • FIG. 5 shows a schematic top view of the lidar 100 according to an embodiment of the present invention, which also has a dual focal length structure.
  • the first transmitting unit 101 and the second transmitting unit 102 in FIG. 5 are not arranged coaxially, that is, they are not arranged along the optical axis OO of the transmitting lens 103, and the first receiving unit 105 and the second receiving unit 106 are arranged non-coaxially, that is, not arranged along the optical axis O'O' of the receiving lens 107 .
  • FIG. 4a, 4b and 4c the first transmitting unit 101 and the second transmitting unit 102 in FIG. 5 are not arranged coaxially, that is, they are not arranged along the optical axis OO of the transmitting lens 103, and the first receiving unit 105 and the second receiving unit 106 are arranged non-coaxially, that is, not arranged along the optical axis O'O' of the receiving lens 107 .
  • the laser radar 100 on the transmitting side includes a first transmitting unit 101 , a second transmitting unit 102 , a transmitting lens 103 and a transmitting zoom lens 104 , and also includes a transmitting end reflector 109 , which is located at the transmitting end.
  • the space between the first emitting unit 101 and the emitting lens 103 is used to receive the first detection laser beam L1 .
  • the first detection laser beam L1 is reflected by the emitting mirror 109 and then exits through the emitting lens 103 .
  • the second detection laser beam L2 emitted by the second emission unit 102 is modulated by the emission zoom lens 104 and then emitted through the emission lens 103 .
  • the positions of the second emitting unit 102 and the emitting zoom lens 104 are set to avoid the propagation path of the first detection laser beam L1, and both the first detection beam L1 and the second detection laser beam L2 are
  • the first detection beam L1 and the second detection laser beam L2 have a small angle difference in the horizontal direction (in Figure 5, the direction of the drawing is the horizontal direction, and the direction perpendicular to the drawing is the vertical direction) In Figures 4a, 4b and 4c, the angle difference is 0).
  • the embodiment in Figure 5 can make the structure of the laser radar transmitting side by arranging the reflector 109. More compact (lower height).
  • the lidar 100 also includes a receiving-end reflector 110 , and the receiving-end reflector 110 is located at the first receiving end.
  • the space between the receiving unit 105 and the receiving lens 107 is used to receive the first echo L1 ′, and the first echo L1 ′ is incident on the first receiving unit 105 after being reflected by the receiving end mirror 110 .
  • the second echo L2 ′ is incident on the second receiving unit 106 after passing through the receiving lens 107 and the receiving zoom lens 108 .
  • the positions of the second receiving unit 106 and the receiving zoom lens 108 are set to avoid the propagation path of the first echo L1 ′.
  • the reflector 110 By arranging the reflector 110 , the structure on the receiving side of the lidar can be made more compact.
  • the first receiving unit 105 and the second receiving unit 106 may share a signal processing unit.
  • a reflector is provided on the transmitting side and the receiving side of the laser radar, respectively.
  • the present invention is not limited to this, and multiple reflectors can also be provided. 2.
  • the directions of the detection laser beam L2 and the second echo L2' are all within the protection scope of the present invention.
  • the laser array of the first transmitting unit 101 emits a distance measuring light, which is reflected and refracted once by the reflecting mirror 109 at the transmitting end, and then exits through the transmitting lens 103 (main transmitting lens), and the distance measuring light is emitted.
  • the receiving lens 107 main receiving lens
  • the receiving end mirror 110 After the echo reflected by the obstacle is received by the receiving lens 107 (main receiving lens), it is reflected and folded by the receiving end mirror 110 and then detected by the detector array of the first receiving unit 105, and then processed by the subsequent processing unit to obtain the echo. ranging data.
  • the above detection process corresponds to long-distance small FOV detection.
  • the laser array of the second transmitting unit 102 emits the near-beam light, passes through the zoom lens 104 at the transmitting end, and then exits through the transmitting lens 103 , and the echo of the near-beam beam reflected by the obstacle is received by the receiving lens 107 and then passes through the receiving end zoom lens 108 It is then detected by the detector array of the second receiving unit 106, and then processed by the subsequent processing unit to obtain ranging data.
  • the above detection process corresponds to short-distance large-FOV detection.
  • the readout signals of the detector array of the first receiving unit 105 and the detector array of the second receiving unit 106 may share the signal processing unit.
  • FIG. 6 shows a lidar according to another embodiment of the present invention.
  • the first transmitting unit 101 and the second transmitting unit 102 are also non-coaxially arranged, that is, they are not arranged along the optical axis OO of the transmitting lens 103
  • the first receiving unit 105 and the second receiving unit 106 are also non-coaxially arranged, that is, they are not arranged along the optical axis O'O' of the receiving lens 107 .
  • the lidar in the embodiment in FIG. 6 has multiple mirrors. As shown in FIG.
  • the lidar 100 on the transmitting side of the lidar 100 , in addition to the first transmitting unit 101 , the second transmitting unit 102 , the transmitting lens 103 and the transmitting zoom lens 104 , it also includes a first transmitting end mirror 109 and a second transmitting end reflector 109 .
  • the transmitting end reflector 111, the first transmitting end reflecting mirror 109 and the second transmitting end reflecting mirror 111 are sequentially located between the first transmitting unit 101 and the transmitting lens 103, and are used to reflect the first detection laser beam L1, the first detection laser beam L1 is reflected by the first emitting end mirror 109 and the second emitting end reflective mirror 111 in sequence, and then exits through the emitting lens 103 .
  • the second detection laser beam L2 emitted by the second emission unit 102 is modulated by the emission zoom lens 104 and then emitted through the emission lens 103 .
  • the position of the first transmitting end reflection mirror 109 is set to avoid the propagation path of the second detection laser beam L2, and the second transmission end reflection mirror 111 is arranged at the second detection laser beam
  • a hole can be made on the second transmitting end reflector 111, so that the second detection laser beam L2 can pass through it, and the rest of the second transmitting end reflector 111 is used for reflecting the first detection laser light beam L1, as shown in FIG. 6 .
  • the lidar 100 also includes a first receiving end reflector 110 and a second receiving end reflector 112.
  • the first receiving end reflector 110 and the second receiving end reflector 112 are located between the first receiving unit 105 and the receiving lens 107 in sequence, and are used to reflect the first echo L1', which is sequentially determined by the After being reflected by the second receiving end mirror 112 and the first receiving end reflecting mirror 110 , it is incident on the first receiving unit 105 .
  • the second echo L2 ′ is incident on the second receiving unit 106 after passing through the receiving lens 107 and the receiving zoom lens 108 .
  • the position of the first receiving end reflector 110 is set to avoid the propagation path of the second echo L2 ′, and the second receiving end reflector 112 is set at the second echo L2
  • a hole can be made on the second receiving end reflector 112, so that the second echo L2' can pass through it, and the rest of the second receiving end reflector 112 is used to reflect the first echo L1', as shown in FIG. 6 .
  • the lidar has a rotating shaft and an opto-mechanical rotor that can rotate around the rotating shaft, and the laser shown in FIGS. 4 a , 4 b , 4 c , 5 and 6
  • the optical and electronic components on the transmitting side and the receiving side of the radar are integrated in the opto-mechanical rotor.
  • the optomechanical rotor is arranged above the rotating shaft, that is, the rotating shaft of the lidar does not protrude from the optomechanical rotor.
  • the rotating shaft does not extend into the optomechanical rotor, so it is possible to provide a larger space for the optomechanical rotor for arranging optical and electronic components, or in the case of the same components, it is possible to reduce the amount of light
  • the volume of the machine and the volume of the lidar is not limited to the laser radar with non-penetrating structure.
  • the rotating shaft of the laser radar can also penetrate the optical-mechanical rotor.
  • the through-shaft structure is more conducive to the rotational stability, and these are all within the protection scope of the present invention.
  • the lidar in the embodiment of FIG. 5 has a non-through-axis structure
  • the lidar in the embodiment of FIG. 6 has a through-axis structure.
  • FIG. 8 shows a lidar 200 according to another embodiment of the present invention.
  • the first detection laser beam and the second detection laser beam emitted by the first transmitting unit and the second transmitting unit of the lidar After passing through different transmitting lenses, the first echo and the second echo are respectively received by the first receiving unit and the second receiving unit through different receiving lenses.
  • the first transmitting unit and The transceiver pair formed by the first receiving unit (used for distance measurement) and the transceiver pair formed by the second transmitting unit and the second receiving unit (used for proximity measurement) correspond to different focal lengths, which will be described in detail below with reference to FIG. 8 .
  • the lidar 200 includes a first transmitting unit 201 and a second transmitting unit 202 on the transmitting side, which are configured to respectively emit a first detection laser beam L1 and a second detection laser beam L2 for detecting a target.
  • the transmitting end optical assembly includes a first transmitting lens 203 - 1 and a second transmitting lens 203 - 2 , which are respectively used to modulate the first detection laser beam L1 and the second detection laser beam L2 to emit to the outside of the lidar 200 .
  • the laser radar 200 further includes a first transmitting end reflector 209 and a second transmitting end reflector 211 on the transmitting side.
  • the first transmitting end reflecting mirror 209 and the second transmitting end reflecting mirror 211 are sequentially arranged between the first transmitting unit 201 and the second transmitting end reflecting mirror 211. Between the first emission lenses 203-1, the first detection laser beam L1 is reflected in sequence.
  • the first emitting end reflector 209 and the second emitting end reflector 211 are not necessary, and the emitting end reflector may not be provided, or other number of emitting end reflectors may be provided to meet the requirements of the optical path. And the layout requirements of the mechanical structure can be. In FIG.
  • the second detection laser beam L2 emitted by the second emission unit 202 is directly incident on the second emission lens 203-2, and is modulated (for example, collimated) and then emitted.
  • One or more mirrors may also be arranged between the second emitting unit 202 and the second emitting lens 203-2, which are all within the protection scope of the present invention.
  • the first transmitting lens 203 - 1 and the second transmitting lens 203 - 2 are approximately 180 degrees opposite to each other around the rotation axis of the lidar (as shown by the black circle in FIG. 8 ).
  • the optical path structure for proximity measurement and the optical path structure for distance measurement are independent of each other.
  • the arrangement of the structure of FIG. 8 is more convenient.
  • the 180-degree relative arrangement is convenient for design and subsequent signal processing.
  • the first emitting unit 201 is, for example, arranged on the focal plane of the first emitting lens 203-1
  • the second emitting unit 202 is, for example, arranged on the focal plane of the second emitting lens 203-2.
  • the laser radar 200 includes a first receiving unit 205 and a second receiving unit 206 on the receiving side, which are configured to respectively receive the first detection laser beam L1 and the second detection laser beam L2 reflected by the target object.
  • the first echo L1' and the second echo L2' are converted into electrical signals.
  • the optical assembly at the receiving end includes a first receiving lens 207-1 and a second receiving lens 207-2, which are respectively used for receiving the first echo L1' and the second echo L2'.
  • the first receiving lens 207-1 may be arranged beside the first transmitting lens 203-1
  • the second receiving lens 207-2 may be arranged beside the second transmitting lens 203-2.
  • the laser radar 200 further includes a first receiving end reflector 210 and a second receiving end reflector 212 on the receiving side.
  • the first receiving end reflector 210 and the second receiving end reflector 212 are sequentially arranged between the first receiving unit 205 and the second receiving end reflector 212. Between the first receiving lenses 207-1, the first echoes L1' are reflected in sequence.
  • the first receiving end reflector 210 and the second receiving end reflector 212 are not necessary, and the receiving end reflector may not be provided, or other numbers of receiving end reflectors may be provided to meet the requirements of the optical path. And the layout requirements of the mechanical structure can be. In FIG.
  • the second echo L2 ′ is directly converged to the second receiving unit 206 after passing through the receiving lens 207 - 2 , and converted into an electrical signal.
  • One or more mirrors may also be arranged between the second receiving unit 206 and the second receiving lens 207-2, which are all within the protection scope of the present invention.
  • the first receiving lens 207 - 1 and the second receiving lens 207 - 2 are approximately 180 degrees opposite to each other around the rotation axis of the lidar (as shown by the black circle in the center of FIG. 8 ).
  • the first receiving unit 205 is, for example, arranged on the focal plane of the first receiving lens 207-1
  • the second receiving unit 206 is, for example, arranged on the focal plane of the second receiving lens 207-2.
  • the lidar 200 shown in FIG. 8 may have a through-shaft structure or a non-through-shaft structure, preferably a non-through-shaft structure.
  • the first detection laser beam L1 and the second detection laser beam L2 are respectively emitted from the first emission unit 201 and the second emission unit 202, they reach the first emission lens after different optical paths.
  • the first echo and the second echo respectively travel from the receiving lens to the first receiving unit and the second receiving unit through different optical paths.
  • the first transmitting lens 203-1 for example, has a larger focal length
  • the first receiving lens 207-1 for example, has a larger focal length.
  • the second transmitting lens 203-2 has, for example, a smaller focal length
  • the second receiving lens 207-2 for example, has a smaller focal length, combined with the second transmitting unit 202 and the second receiving unit 206 for short Large distance FOV detection.
  • the lasers in the first emitting unit 201 and the second emitting unit 202 include vertical cavity surface emission lasers (VCSELs), which are arranged to emit light perpendicular to the PCB board, and the first receiving unit 205 and the second receiving unit 205
  • the detectors (arrays) of the receiving unit 206 include, for example, single-photon detectors SiPM or SPAD arrays.
  • the photoelectric device used for proximity measurement and the photoelectric device used for distance measurement can share a rotating platform, and power supply and signal transmission are performed wirelessly.
  • the lidar 200 has a non-penetrating shaft structure (as shown in FIG. 7 a ), that is, the rotation axis of the lidar does not protrude from the rotor, so as to increase the capacity of the rotor to measure the proximity mode Space for groups and telemetry modules.
  • the first transmitting lens 203-1 and the first receiving lens 207-1 are preferably, for example, a telecentric lens group, as shown in FIG. 9, which can reduce the overall lens height and make the structure more compact .
  • a first field mirror 213 can be arranged downstream of the optical path of the first transmitting unit 201, located near the focal plane of the first transmitting lens 203-1, and a second field mirror 214 can be arranged upstream of the optical path of the first receiving unit 205, located in the vicinity of the focal plane of the first transmitting lens 203-1. near the focal plane of the first receiving lens 207-1.
  • the optical path can be pulled back to the optical axis, and at the same time, the focal lengths of the first transmitting lens 203-1 and the first receiving lens 207-1 used for distance measurement are long and vertical
  • the field of view is small, the focal lengths of the second transmitting lens 203-2 and the second receiving lens 207-2 used for proximity measurement are short, and the vertical field of view is large, but the heights of the focal planes of the two can be relatively close. Therefore, the height of the optical path for distance measurement and near measurement is not much different, making the overall height of the lidar very compact and reasonable.
  • the driver circuits of the laser arrays of the first emitting units 101, 201 and the second emitting units 102, 202 can be integrated on the chip (multi-channel driver chip) respectively, for example, the laser array includes 8 lasers, each 4 lasers.
  • the driver circuits of each laser are integrated into one multi-channel driver chip, then the laser array corresponds to two multi-channel driver chips, and multiple lasers and the corresponding multi-channel driver chips are arranged on the same PCB, as shown in Figure 10a Show.
  • the readout circuits of the detector arrays of the first receiving unit 105, 205 and the second receiving unit 106, 206 are also integrated into the chip (multi-channel analog front-end chip), for example, the detector array includes 32 detectors, each 16 The readout circuit of each detector is integrated into one multi-channel analog front-end chip, then the detector array corresponds to two multi-channel analog front-end chips, and the multiple detectors and the multi-channel analog front-end chip are arranged on the same PCB board , as shown in Figure 10b. In this way, the space occupied by the circuit part in the rotor can be further reduced, which is more conducive to accommodating the proximity and distance measurement modules, and makes the lidar structure more compact.
  • the lidar of the present invention may further include a data processing unit, which is coupled to the first transmitting unit and the second transmitting unit and the first receiving unit and the second receiving unit, and connects the first transmitting unit and the second transmitting unit.
  • the detection results of the probe laser beam and the second probe laser beam are fused to generate a point cloud.
  • the present invention adopts a dual focal length separation design, which takes into account the distance measurement of high-resolution small FOV and the proximity measurement of low-resolution large FOV, and at the same time, the heights of the laser and the detector are not significantly increased,
  • the structure is compact, which is conducive to the installation of lidar on vehicles.
  • the lidar according to the embodiment of the present invention integrates both short-range detection of large FOV and long-range detection of small FOV.
  • the large-FOV short-range detector does not need to be at the same focal length as the distance-finding detector, so that the height of the detector panel is greatly reduced.
  • the light of the two parts of near and far measuring is emitted from the same set of main transceiver lenses, so the horizontal angle difference between near and far measuring will be very small, and the time difference for near and far measuring to sweep the same object is very small , the point clouds of near and far are easier to fuse.
  • the invention proposes a scheme that can take into account both the small FOV distance measuring and the large FOV near measuring.
  • the large FOV near measuring detector adopts a zoom structure, so that it does not have to be at the same focal length as the distance measuring detector, so that the large FOV near measuring can detect
  • the height of the device panel is greatly reduced, so that the height of the lidar does not have to be made very high, which increases the compactness of the overall structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

提供了一种激光雷达(100),包括:第一发射单元(101)和第二发射单元(102),配置成分别发出第一探测激光束(L1)和第二探测激光束(L2)用以探测目标物;发射端光学组件和接收端光学组件,发射端光学组件包括发射透镜(103),接收端光学组件包括接收透镜(107);第一接收单元(105)和第二接收单元(106),第一接收单元(105)和第二接收单元(106)配置成分别接收第一探测激光束(L1)和第二探测激光束(L2)被目标物反射的第一回波(L1')和第二回波(L2')并转换为电信号,其中第一探测激光束(L1)与第二探测激光束(L2)分别从第一发射单元(101)和第二发射单元(102)出射后经过不同的光程后到达发射透镜(103),第一回波(L1')和第二回波(L2')从接收透镜(107)分别经过不同的光程到达第一接收单元(105)和第二接收单元(106)。

Description

激光雷达 技术领域
本公开涉及光电探测技术领域,尤其涉及一种能够兼顾测远与测近性能的激光雷达。
背景技术
激光雷达是以发射激光束来探测目标的位置、速度等特征量的雷达系统,是一种将激光技术与光电探测技术相结合的先进探测方式。激光雷达因其分辨率高、隐蔽性好、抗有源干扰能力强、低空探测性能好、体积小及重量轻等优势,被广泛应用于自动驾驶、智能交通、无人机、智能机器人、资源勘探等领域。
当前用于自动驾驶的激光雷达有两种典型的应用场景,第一种是远距离小垂直视场角(FOV)测量,通常是需要探测到150m以外的物体,15°-40°的垂直FOV,用于中远距离障碍物的精细探测。另一种是近距离大垂直FOV测量,通常是15m-50m探测距离,80°-105°的垂直FOV,用于近距离的盲区探测。这两种应用通常是通过两种激光雷达来独立实现,然后一起安装在自动驾驶车等平台上,实现远近无死角探测,如图1所示。
如果这两种探测需求能在一种雷达上实现,那必然非常具有价值。但是,这两种探测需求对雷达的设计要求是完全不一样的。如果要实现尽可能远的探测距离那么需要探测器的光路设计为长焦距。而如果要实现大视角,则需要采用短焦距。
如果在测远雷达(长焦距光路,如图2a所示)上直接增加垂直FOV,那么会让探测器的接收面高度大大增加,如图3a所示,从而使激光雷达的高度大幅度增加,不利于提高雷达的集成度。如果在测近雷达(短焦距光路,如图2b所示)上,增加中心区域线束(确保测远的分辨率),如图3b所示,这样一方面受到单颗探测器尺寸的限制使得中心区域的线束很难提高,另一方面 在短焦距的光路下,测远能力很难提高。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个缺陷,本发明提供一种激光雷达,包括:
第一发射单元和第二发射单元,配置成分别发出第一探测激光束和第二探测激光束用以探测目标物;
发射端光学组件和接收端光学组件,所述发射端光学组件包括发射透镜,所述接收端光学组件包括接收透镜;和
第一接收单元和第二接收单元,所述第一接收单元和第二接收单元配置成分别接收所述第一探测激光束和第二探测激光束被目标物反射的第一回波和第二回波并转换为电信号,
其中所述第一探测激光束与第二探测激光束分别从所述第一发射单元和第二发射单元出射后经过不同的光程后到达所述发射透镜,所述第一回波和第二回波从所述接收透镜分别经过不同的光程到达所述第一接收单元和第二接收单元。
根据本发明的一个方面,所述第一发射单元和第二发射单元分别设置在距离所述发射透镜不同的位置处,所述第一接收单元和第二接收单元分别设置在距离所述接收透镜不同的位置处。
根据本发明的一个方面,所述第一发射单元包括第一激光器阵列,所述第一激光器阵列设置在所述发射透镜的焦平面上;所述第二发射单元包括第二激光器阵列,所述第二激光器阵列与所述发射透镜之间的距离小于所述发射透镜的焦距;所述第一接收单元包括第一探测器阵列,所述第一探测器阵列设置在所述接收透镜的焦平面上;所述第二接收单元包括第二探测器阵列,所述第二探测器阵列与所述接收透镜之间的距离小于所述接收透镜的焦距。
根据本发明的一个方面,所述第二发射单元包括发射端变焦透镜,所述发射端变焦透镜设置在所述第二激光器阵列与所述发射透镜之间,所述第二探测激光束经所述发射端变焦透镜和所述发射透镜后出射到激光雷达外部;所述第二接收单元包括接收端变焦透镜,所述接收端变焦透镜设置在所述第二探测器阵列与所述接收透镜之间,所述第二回波经所述接收透镜与所述接收端变焦透镜后入射到所述第二探测器阵列上。
根据本发明的一个方面,所述激光雷达还包括一个或多个发射端反射镜和一个或多个接收端反射镜,所述第一探测激光束由所述发射端反射镜反射后,经过所述发射透镜出射,所述第一回波由所述接收端反射镜反射后,入射到所述第一探测器阵列上。
根据本发明的一个方面,所述发射端反射镜包括带有开孔的发射端反射镜,其中所述第一探测激光束由所述带有开孔的发射端反射镜反射后,经过所述发射透镜出射,所述第二探测激光束穿过所述开孔,经过所述发射透镜出射;其中所述接收端反射镜包括带有开孔的接收端反射镜,其中所述第一回波由所述带有开孔的接射端反射镜反射后,入射到所述第一探测器阵列上,所述第二回波穿过所述开孔,入射到所述第二探测器阵列上。
根据本发明的一个方面,所述激光雷达具有转轴和可围绕所述转轴旋转的光机转子,所述光机转子包括所述第一发射单元和第二发射单元、发射端光学组件和接收端光学组件、第一接收单元和第二接收单元,其中所述光机转子设置在所述转轴的上方,或者所述转轴贯穿所述光机转子。
根据本发明的一个方面,所述发射端光学组件包括第一发射透镜和第二发射透镜,所述接收端光学组件包括第一接收透镜和第二接收透镜,所述第一探测激光束通过所述第一发射透镜出射,所述第二探测激光束通过所述第二发射透镜出射;所述第一回波通过所述第一接收透镜被汇聚到所述第一探测单元,所述第二回波通过所述第二接收透镜被汇聚到所述第二探测单元。
根据本发明的一个方面,所述激光雷达具有旋转轴,所述第一发射透镜和第二发射透镜围绕所述旋转轴大致呈180度对置,所述第一接收透镜和第 二接收透镜围绕所述旋转轴大致呈180度对置。
根据本发明的一个方面,所述第一发射透镜和第一接收透镜包括远心透镜组。
根据本发明的一个方面,所述第一探测激光束和第二探测激光束对应于激光雷达的不同的垂直视场范围。
根据本发明的一个方面,所述第一探测激光束的能量高于所述第二探测激光束。
根据本发明的一个方面,所述第一发射单元和第二发射单元均包括多个激光器和多通道驱动芯片,所述多个激光器和多通道驱动芯片设置于同一PCB板上;所述第一接收单元和第二接收单元均包括多个探测器和多通道前端芯片,所述多个探测器和多通道前端芯片设置于同一PCB板上。
根据本发明的一个方面,所述激光雷达还包括数据处理单元,所述数据处理单元与所述第一发射单元和第二发射单元以及所述第一接收单元和第二接收单元耦接,并将所述第一探测激光束和第二探测激光束的探测结果融合,以生成点云。
本发明的实施例提出了一种可以融合小FOV测远和大FOV测近的方案,根据本发明实施例的激光雷达,在保证紧凑结构的同时,能够实现对近距离大垂直视场角探测和对远距离小垂直视场角的探测。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了现有的用于测远的激光雷达和用于测近的激光雷达组合使用的示意图;
图2a示出了用于小垂直FOV测远的激光雷达的长焦距光路的示意图;
图2b示出了用于大垂直FOV测近的激光雷达的短焦距光路的示意图;
图3a示出了大垂直FOV兼顾测远测近的激光雷达的长焦距光路的示意图;
图3b示出了大垂直FOV兼顾测远测近的激光雷达的短焦距光路的示意图;
图4a示出了根据本发明一个实施例的激光雷达的发射侧的光路结构的示意图;
图4b示出了根据本发明一个实施例的激光雷达的发射侧的光路结构的示意图;
图4c示出了根据本发明一个实施例的激光雷达的接收侧的光路结构的示意图;
图5示出了根据本发明一个实施例的激光雷达的俯视示意图,其具有双焦距结构;
图6示出了根据本发明另一个实施例的激光雷达的示意图,其中具有多个反射镜;
图7a示出了非贯穿式激光雷达的示意图;
图7b示出了贯穿式激光雷达的示意图;
图8示出了根据本发明另一个实施例的激光雷达的示意图;
图9示出了根据本发明一个实施例的用于激光雷达的远心透镜组;
图10a示出了根据本发明一个实施例的发射单元;和
图10b示出了根据本发明一个实施例的接收单元。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、" 长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供 了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在现有光电器件(激光器、探测器)的基础上,为了使得激光雷达能够同时兼顾测远和测近性能,且不显著增加雷达的高度,本发明的发明人构思出,可以在激光雷达中分别设置多个发射单元以及多个接收单元,例如两个发射单元以及两个接收单元,其中一个发射单元和一个接收单元用于以较小的FOV探测远距离的目标物,另一个发射单元和另一个接收单元用于以较大的FOV探测近距离的目标物,同时具有发射透镜和接收透镜,其中多个发射单元发出的不同探测激光束经过不同的光程后到达发射透镜,通过发射透镜后出射到周围环境中,在目标物上产生的回波从所述接收透镜分别经过不同的光程到达不同的接收单元,也即一个发射单元和一个接收单元组成的收发对和另一个发射单元和另一个接收单元组成的收发对对应不同的焦距,从而根据本发明实施例的激光雷达能够同时集成了大FOV近距离探测和小FOV远距离探测的功能。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图4a、4b和4c示出了根据本发明一个实施例的激光雷达100的原理图,其中图4a和4b示出了激光雷达的发射侧的光路结构,图4c示出了激光雷达的接收侧的光路结构,下面参考附图详细描述。
如图4a所示,激光雷达100在其发射侧包括第一发射单元101和第二发射单元102,其中第一发射单元101包括设置于电路板上的第一激光器阵列,用于发射出第一探测激光束L1,第二发射单元102同样包括设置于电路板上的第二激光器阵列,用于发射出第二探测激光束L2。所述第一激光器阵列和第二激光器阵列中的激光器可以包括垂直腔面出射激光器(VCSEL)或者边发射型激光器(EEL)。
激光雷达100还包括发射端光学组件,用于对第一探测激光束L1和第二探测激光束L2进行调制,例如准直,然后再使其出射到激光雷达周围的环境 中,用于探测目标物。如图4a所示,发射端光学组件包括发射透镜103,发射透镜103配置成可对第一探测激光束L1和第二探测激光束L2进行准直。如图4a所示,第一探测激光束L1与第二探测激光束L2分别从所述第一发射单元101和第二发射单元102出射后,经过不同的光程后到达发射透镜103,其中,第一探测激光束L1经过的光程例如大于第二探测激光束L2经过的光程。
为了使得第一探测激光束L1与第二探测激光束L2具有不同的光程,例如可以使得所述第一发射单元101和第二发射单元102分别设置在距离所述发射透镜103不同的位置处。优选的,所述第一发射单元101的第一激光器阵列设置在所述发射透镜103的焦平面上,所述第二发射单元102的第二激光器阵列与所述发射透镜103之间的距离小于所述发射透镜103的焦距。
根据本发明的一个优选实施例,如图4a所示,所述激光雷达还包括发射端变焦透镜104,所述发射端变焦透镜104设置在所述第二发射单元102的第二激光器阵列与所述发射透镜103之间,第二探测激光束L2经所述发射端变焦透镜104和所述发射透镜103后出射到激光雷达外部。如图4a所示,第二探测激光束L2经过发射端变焦透镜104之后,其方向或者发散度产生了一定的变化,然后入射到发射透镜103并出射到激光雷达外部。优选的,所述第二发射单元102的第二激光器阵列位于由发射端变焦透镜104和发射透镜103构成的透镜组的焦平面上,发射端变焦透镜104和发射透镜103构成的透镜组的等效焦距小于发射透镜103的焦距。
另外,图4a、4b和图4c不仅是根据本发明一个实施例的激光雷达100的原理图,图4a和4b同样是发射侧第一发射单元101和第二发射单元102同轴布置的示意图,即第一发射单元101和第二发射单元102均沿着发射透镜103的光轴OO布置。可以通过不同的方式实现第一发射单元101和第二发射单元102同轴布置。例如可以在第二发射单元102的电路板上开口,在发射端变焦透镜104的中心开口,用于穿过第一探测激光束L1,因此第一探测激光束L1并未受到发射端变焦透镜104的调制。在此情况下,第一发射单元 101的第一激光器阵列可以设置的较为密集,位于电路板的大致中间位置;第二发射单元102的第二激光器阵列可以设置的较为稀疏,位于电路板的大致边缘位置。另外或者可替换的,如图4b所示的,第二发射单元102也可以上下分成两部分,相互间隔开,发射端变焦透镜104也可以分为两部分,相互间隔开,第二发射单元102中间间隔的区域、以及发射端变焦透镜104中间间隔的区域,可用于穿过第一探测激光束L1。另外,也可以将上述实施例进行组合,例如第二发射单元102的电路板中间开孔,发射端变焦透镜104分为两部分,或者反之亦然。
另外,本领域技术人员也可以构思,通过微透镜阵列MLA来实现所述发射端变焦透镜104,例如在所述第二发射单元102的第二激光器阵列中每个激光器的光路下游设置微透镜,第二探测激光束L2经微透镜调制后再投射至发射透镜103。除此之外,也可以构思其他的设置方式,将在下面的实施例中详细描述。
在图4a和4b的结构中,发射透镜103可采用通常的用于测远的激光雷达的设计,焦距较大,第一发射单元101的第一激光器阵列直接设置在发射透镜103的焦平面处,可以方便的在小FOV范围内实现高线束高分辨率。第二发射单元102处加设一个发射变焦透镜104,发射变焦透镜104与发射透镜103构成的透镜组的焦距较小,小于发射透镜103的焦距,因此可以实现大FOV的近距离探测扫描,同时激光器的发射面的高度也不会很高,因此可以实现紧凑的结构。优选的,第一探测激光束L1(测远光线)和第二探测激光束L2(测近光线)在垂直视场上不重合,用于测近和测远的激光器的出射光具有不同的能量。根据本发明的一个优选实施例,用于测远的第一探测激光束L1的能量高于用于测近的第二探测激光束L2的能量。
如图4c所示,激光雷达100在其接收侧包括第一接收单元105和第二接收单元106,所述第一接收单元105包括第一探测器阵列,所述第二接收单元106包括第二探测器阵列,所述第一探测器阵列和第二探测器阵列中,可包括各种类型的光电探测器,例如雪崩光电二极管APD、单光子雪崩二极管 SPAD或硅光电倍增管SiPM。第一探测激光束L1和第二探测激光束L2在目标物上发生漫反射后,分别产生第一回波L1'和第二回波L2'并返回激光雷达,由接收透镜107汇聚到第一接收单元105和第二接收单元106上,第一接收单元105和第二接收单元106配置成分别接收第一回波L1'和第二回波L2'并转换为电信号,供后续的电路进行信号处理和分析。其中,第一回波L1'和第二回波L2'从所述接收透镜107分别经过不同的光程到达所述第一接收单元105和第二接收单元106,其中,第一回波L1'经过的光程例如大于第二回波L2'经过的光程。
为了使得第一回波L1'和第二回波L2'分别经过不同的光程到达所述第一接收单元105和第二接收单元106,可以将所述第一接收单元105和第二接收单元106分别设置在距离所述接收透镜107不同的位置处。例如可以将所述第一接收单元105的第一探测器阵列设置在所述接收透镜107的焦平面,将所述第二接收单元106的第二探测器阵列与所述接收透镜107之间的距离设置成小于所述接收透镜107的焦距。
根据本发明的一个优选实施例,如图4c所示,所述激光雷达100在接收侧还包括接收端变焦透镜108,所述接收端变焦透镜108设置在所述第二接收单元106的第二探测器阵列与所述接收透镜107之间,第二回波L2'经所述接收透镜107与所述接收端变焦透镜108后入射到所述第二探测器阵列上。如图4c所示,第二回波L2'经过接收端变焦透镜108之后,其方向或者发散度产生了一定的变化,然后入射到所述第二探测器阵列上。优选的,所述第二接收单元106的第二探测器阵列位于由接收端变焦透镜108和接收透镜107构成的透镜组的焦平面上,接收端变焦透镜108和接收透镜107构成的透镜组的等效焦距小于接收透镜107的焦距。
另外,本领域技术人员也可以构思,通过微透镜阵列MLA来实现所述接收端变焦透镜108,例如在第二接收单元106的第二探测器阵列中的每个探测器的光路上游设置微透镜,用于调制所述第二回波L2'。
另外,图4a、4b和图4c不仅是根据本发明一个实施例的激光雷达100 的原理图,图4c同样是接收侧第一接收单元105和第二接收单元106同轴布置的示意图,即第一接收单元105和第二接收单元106均沿着接收透镜107的光轴O'O'布置。同样地,可以通过不同的方式实现第一接收单元105和第二接收单元106同轴布置。例如可以在第二接收单元106的电路板上开口,在接收端变焦透镜108的中心开口,用于穿过第一回波L1',因此第一回波L1'并未受到接收端变焦透镜108的调制。在此情况下,第一接收单元105的第一探测器阵列可以设置的较为密集,位于电路板的大致中间位置;第二接收单元106的第二探测器阵列可以设置的较为稀疏,位于电路板的大致边缘位置。
另外或者可替换的,第二接收单元106也可以上下分成两部分,相互间隔开,接收端变焦透镜108也可以分为两部分,相互间隔开,第二接收单元106中间间隔的区域、以及接收端变焦透镜108中间间隔的区域,可用于穿过第一探测激光束L1。另外,也可以将上述实施例进行组合,例如第二接收单元106的电路板中间开孔,接收端变焦透镜108分为两部分,或者反之亦然。
另外,本领域技术人员也可以构思,通过微透镜阵列MLA来实现所述接收端变焦透镜108,例如在第二接收单元106的第二探测器阵列中的每个探测器的光路上游设置微透镜,通过接收透镜107的第二回波L2'经微透镜调制后再入射至探测器。除此之外,也可以有其他的设置方式,将在下面的实施例中详细描述。
接收透镜107可采用通常的用于测远的激光雷达的设计,焦距较大,第一接收单元105的第一探测器阵列可直接设置在接收透镜107的焦平面处,可以方便的在小FOV范围内实现高线束高分辨率。第二接收单元106的附近加设一个接收变焦透镜108,接收变焦透镜108与接收透镜107构成的透镜组的焦距较小,小于接收透镜107的焦距,因此可以实现大FOV,同时探测器的接收面的高度也不会很高,因此可以实现紧凑的结构。根据本发明的一个优选实施例,用于测远的第一接收单元105的第一探测器阵列的灵敏度高 于用用于测近的第二接收单元106的第二探测器阵列的灵敏度。
本发明的图4a、4b和图4c所示的激光雷达是一种双焦距结构的激光雷达,使得激光雷达100可以同时实现大垂直FOV测近和小垂直FOV测远的功能,并且激光雷达的高度并不会显著增加。具体的,在激光雷达的发射侧设置两个发射单元,分别用于发射第一探测激光束(用于测远)和第二探测激光束(用于测近),在接收侧设置两个接收单元,分别用于接收第一探测激光束和第二探测激光束产生的回波,即分别用于测远和测近,一个发射单元和一个接收单元组成的收发对(用于测远)和另一个发射单元和另一个接收单元组成的收发对(用于测近)对应不同的焦距,从而以紧凑的结构同时兼顾了激光雷达的测远和测近性能。
图5示出了根据本发明一个实施例的激光雷达100的俯视示意图,同样具有双焦距结构。与图4a、4b和图4c不同的是,图5中第一发射单元101和第二发射单元102非同轴布置,即并未沿发射透镜103的光轴OO布置,以及第一接收单元105和第二接收单元106非同轴布置,即并未沿接收透镜107的光轴O'O'布置。如图5所示,激光雷达100在发射侧除了包括第一发射单元101、第二发射单元102、发射透镜103以及发射变焦透镜104以外,还包括发射端反射镜109,发射端反射镜109位于第一发射单元101与发射透镜103之间,用于接收第一探测激光束L1,第一探测激光束L1由所述发射端反射镜109反射后,再经过所述发射透镜103出射。第二发射单元102发射的第二探测激光束L2由所述发射变焦透镜104调制后,再经过所述发射透镜103出射。优选的,如图5所示,第二发射单元102和发射变焦透镜104的位置设置成避让开所述第一探测激光束L1的传播路径,第一探测光束L1和第二探测激光束L2均指向透镜中心出射,第一探测光束L1和第二探测激光束L2在水平方向(图5中,图面的方向为水平方向,垂直图面的方向为垂直方向)有较小的角度差(在图4a、4b和图4c中该角度差为0),相较于图4a、4b和图4c中的实施例,图5中的实施例通过设置反射镜109,能够使得激光雷达发射侧的结构更加紧凑(高度更低)。
类似的,在接收侧,激光雷达100除了包括第一接收单元105、第二接收单元106、接收透镜107以及接收变焦透镜108以外,还包括接收端反射镜110,接收端反射镜110位于第一接收单元105与接收透镜107之间,用于接收第一回波L1',第一回波L1'由所述接收端反射镜110反射后,入射到所述第一接收单元105。第二回波L2'经所述接收透镜107和所述接收变焦透镜108后入射到第二接收单元106上。优选的,如图5所示,第二接收单元106和接收变焦透镜108的位置设置成避让开所述第一回波L1'的传播路径。通过设置反射镜110,能够使得激光雷达接收侧的结构更加紧凑。第一接收单元105和第二接收单元106可共用信号处理单元。
图5所示的实施例中,分别在激光雷达的发射侧和接收侧设置了一个反射镜,本发明不限于此,也可以设置多个反射镜,另外也可以设置反射镜分别用于改变第二探测激光束L2以及第二回波L2'的方向,这些都在本发明的保护范围内。
在如图5所述的实施例中,第一发射单元101的激光器阵列出射测远光线,经发射端反射镜109一次反射折转后,经发射透镜103(主发射透镜)出射,测远光线被障碍物反射后的回波被接收透镜107(主接收透镜)接收后,经接收端反射镜110一次反射折转后被第一接收单元105的探测器阵列探测,随后经后续处理单元处理获得测距数据。上述探测过程对应长距离小FOV探测。
第二发射单元102的激光器阵列出射测近光线,经发射端变焦透镜104后再经发射透镜103出射,测近光线被障碍物反射后的回波被接收透镜107接收后经接收端变焦透镜108后被第二接收单元106的探测器阵列探测,随后经后续处理单元处理获得测距数据。上述探测过程对应短距离大FOV探测。第一接收单元105的探测器阵列和第二接收单元106的探测器阵列的读出信号可共用信号处理单元。
图6示出了根据本发明另一个实施例的激光雷达,图6中第一发射单元101和第二发射单元102同样为非同轴布置,即并未沿发射透镜103的光轴 OO布置,以及第一接收单元105和第二接收单元106亦为非同轴布置,即并未沿接收透镜107的光轴O'O'布置。与图5中实施例不同的是,图6实施例的激光雷达具有多个反射镜。如图6所示,在激光雷达100的发射侧,除了包括第一发射单元101、第二发射单元102、发射透镜103以及发射变焦透镜104以外,还包括第一发射端反射镜109和第二发射端反射镜111,第一发射端反射镜109和第二发射端反射镜111依次位于第一发射单元101与发射透镜103之间,用于反射第一探测激光束L1,第一探测激光束L1依次由所述第一发射端反射镜109和第二发射端反射镜111反射后,再经过所述发射透镜103出射。第二发射单元102发射的第二探测激光束L2由所述发射变焦透镜104调制后,再经过所述发射透镜103出射。优选的,如图6所示,第一发射端反射镜109的位置设置成避让开所述第二探测激光束L2的传播路径,第二发射端反射镜111设置在所述第二探测激光束L2的传播路径上,可以在第二发射端反射镜111上面开孔,使得所述第二探测激光束L2能够穿过其中,第二发射端反射镜111的其余位置用于反射第一探测激光束L1,如图6所示的。
类似的,在接收侧,激光雷达100除了包括第一接收单元105、第二接收单元106、接收透镜107以及接收变焦透镜108以外,还包括第一接收端反射镜110和第二接收端反射镜112,第一接收端反射镜110和第二接收端反射镜112依次位于第一接收单元105与接收透镜107之间,用于反射第一回波L1',第一回波L1'依次由所述第二接收端反射镜112和第一接收端反射镜110反射后,入射到所述第一接收单元105。第二回波L2'经所述接收透镜107和所述接收变焦透镜108后入射到第二接收单元106上。优选的,如图6所示,第一接收端反射镜110的位置设置成避让开所述第二回波L2'的传播路径,第二接收端反射镜112设置在所述第二回波L2'的传播路径上,可以在第二接收端反射镜112上面开孔,使得所述第二回波L2'能够穿过其中,第二接收端反射镜112的其余位置用于反射第一回波L1',如图6所示的。
根据本发明的一个优选实施例,如图7所示,激光雷达具有转轴和可围 绕所述转轴旋转的光机转子,图4a、图4b、图4c、图5和图6中所示的激光雷达发射侧和接收侧的光学和电子元器件均集成在所述光机转子中。如图7a所示,光机转子设置在所述转轴的上方,即激光雷达的转轴未突出于光机转子。通过这种非贯穿结构,转轴未延伸进入所述光机转子中,因此能够为光机转子提供更大空间用于设置光学和电子元器件,或者在元器件相同的情况下,能够减小光机的体积以及激光雷达的体积。当然,本发明不限于非贯穿结构的激光雷达,激光雷达的转轴也可以贯穿所述光机转子,如图7b所示的,贯穿轴结构更利于旋转稳定性,这些都在本发明的保护范围内。特别优选的,图5实施例的激光雷达具有非贯穿轴结构,图6实施例的激光雷达具有贯穿轴结构。
图8示出了根据本发明另一个实施例的激光雷达200,在图8的实施例中,激光雷达的第一发射单元和第二发射单元发出的第一探测激光束和第二探测激光束分别通过不同的发射透镜后出射,与此相对应的,第一回波和第二回波分别通过不同的接收透镜被第一接收单元和第二接收单元进行接收,同样地第一发射单元和第一接收单元组成的收发对(用于测远)和第二发射单元和第二接收单元组成的收发对(用于测近)对应不同的焦距,下面参考图8详细描述。
如图8所示,激光雷达200在发射侧包括第一发射单元201和第二发射单元202,配置成分别发出第一探测激光束L1和第二探测激光束L2用以探测目标物。发射端光学组件包括第一发射透镜203-1和第二发射透镜203-2,分别用于调制第一探测激光束L1和第二探测激光束L2后使其出射到激光雷达200的外部。另外,激光雷达200在发射侧还包括第一发射端反射镜209和第二发射端反射镜211,第一发射端反射镜209和第二发射端反射镜211依次设置在第一发射单元201与第一发射透镜203-1之间,用于依次反射第一探测激光束L1。本领域技术人员容易理解,第一发射端反射镜209和第二发射端反射镜211并非是必须的,也可以不设置发射端反射镜,或者设置其他数目的发射端反射镜,满足光路的需求以及机械结构的布局要求即可。图 8中,第二发射单元202发出的第二探测激光束L2直接入射到第二发射透镜203-2上,经调制(例如准直)后出射。也可以在第二发射单元202与第二发射透镜203-2之间设置一个或多个反射镜,这些都在本发明的保护范围内。如图8所示,所述第一发射透镜203-1和第二发射透镜203-2围绕激光雷达的旋转轴(如图8中的黑色圆圈所示)大致呈180度对置。通过图8的结构,用于测近的光路结构和用于测远的光路结构是相互独立的,相对于前面实施例的结构,图8结构的装调更加方便。另外呈180度相对布置,能够便于设计以及后续信号处理,测近和测远的数据在水平方向上有180度角度差。第一发射单元201例如布置在第一发射透镜203-1的焦平面上,第二发射单元202例如布置在第二发射透镜203-2的焦平面上。
如图8所示,激光雷达200在接收侧包括第一接收单元205和第二接收单元206,配置成分别接收所述第一探测激光束L1和第二探测激光束L2被目标物反射的第一回波L1'和第二回波L2'并转换为电信号。接收端光学组件包括第一接收透镜207-1和第二接收透镜207-2,分别用于接收第一回波L1'和第二回波L2'。如图8所示,第一接收透镜207-1可布置在第一发射透镜203-1旁边,第二接收透镜207-2可布置在第二发射透镜203-2旁边。另外,激光雷达200在接收侧还包括第一接收端反射镜210和第二接收端反射镜212,第一接收端反射镜210和第二接收端反射镜212依次设置在第一接收单元205与第一接收透镜207-1之间,用于依次反射第一回波L1'。本领域技术人员容易理解,第一接收端反射镜210和第二接收端反射镜212并非是必须的,也可以不设置接收端反射镜,或者设置其他数目的接收端反射镜,满足光路的需求以及机械结构的布局要求即可。图8中,第二回波L2'经接收透镜207-2后直接汇聚到第二接收单元206,并被转换为电信号。也可以在第二接收单元206与第二接收透镜207-2之间设置一个或多个反射镜,这些都在本发明的保护范围内。如图8所示,所述第一接收透镜207-1和第二接收透镜207-2围绕激光雷达的旋转轴(如图8中中心的黑色圆圈所示)大致呈180度对置。第一接收单元205例如布置在第一接收透镜207-1的焦平面上,第 二接收单元206例如布置在第二接收透镜207-2的焦平面上。图8所示的激光雷达200,可以为贯穿轴结构,也可以为非贯穿轴结构,优选为非贯穿轴结构。
如图8所示,第一探测激光束L1与第二探测激光束L2分别从所述第一发射单元201和第二发射单元202出射后,经过不同的光程后到达所述第一发射透镜203-1和第二发射透镜203-2,所述第一回波和第二回波从所述接收透镜分别经过不同的光程到达所述第一接收单元和第二接收单元。
在图8的实施例中,第一发射透镜203-1例如具有较大的焦距,第一接收透镜207-1例如具有较大的焦距,结合第一发射单元201和第一接收单元205,用于长距离小FOV探测;第二发射透镜203-2例如具有较小的焦距,第二接收透镜207-2例如具有较小的焦距,结合第二发射单元202和第二接收单元206用于短距离大FOV探测。
根据本发明的一个优选实施例,所述第一发射单元201和第二发射单元202中的激光器包括垂直腔面出射激光器(VCSEL),设置为垂直PCB板出光,第一接收单元205和第二接收单元206的探测器(阵列)例如包括单光子探测器SiPM或者SPAD阵列。另外,用于测近的光电器件和用于测远的光电器件可共用旋转平台,通过无线的方式进行供电和信号传输。优选地,在图8所示的实施例中,激光雷达200为非贯穿轴结构(如图7a所示的结构),即激光雷达的旋转轴未突出于转子,以增加转子容置测近模组和测远模组的空间。
根据本发明的一个优选实施例,第一发射透镜203-1和第一接收透镜207-1优选地例如为远心透镜组,如图9所述,能够减小整体透镜高度,使结构更加紧凑。可以在第一发射单元201的光路下游设置第一场镜213,位于所述第一发射透镜203-1的焦平面附近,在第一接收单元205的光路上游设置第二场镜214,位于所述第一接收透镜207-1的焦平面附近。通过设置第一场镜213和第二场镜214,能够把光路拉回光轴上,同时,用于测远的第一发射透镜203-1和第一接收透镜207-1的焦距长,垂直视场小,用于测 近的第二发射透镜203-2和第二接收透镜207-2的焦距短,垂直视场大,两者的焦平面高度却可以比较接近。因此,测远和测近的光路的高度相差不大,使得激光雷达的整体高度非常紧凑合理。
另外优选地,可以将第一发射单元101、201和第二发射单元102、202各自的激光器阵列的驱动电路分别集成于芯片(多通道驱动芯片)上,例如激光器阵列包括8个激光器,每4个激光器的驱动电路集成到1个多通道驱动芯片上,则激光器阵列和2个多通道驱动芯片相对应,多个激光器和对应的多通道驱动芯片设置于同一块PCB板上,如图10a所示。优选的,第一接收单元105、205和第二接收单元106、206的探测器阵列的读出电路同样集成于芯片(多通道模拟前端芯片),例如探测器阵列包括32个探测器,每16个探测器的读出电路集成到1个多通道模拟前端芯片,则探测器阵列和2个多通道模拟前端芯片相对应,多个探测器和与多通道模拟前端芯片设置于同一块PCB板上,如图10b所示的。通过这样的方式,可以进一步减小电路部分在转子中的占据空间,更有利于容置测近和测远模组,使激光雷达结构更加紧凑。
本发明的激光雷达还可包括数据处理单元,所述数据处理单元与所述第一发射单元和第二发射单元以及所述第一接收单元和第二接收单元耦接,并将所述第一探测激光束和第二探测激光束的探测结果融合,以生成点云。
从上述实施例可以看出,本发明采用了双焦距分离设计,兼顾了高分辨率小FOV的测远和低分辨率大FOV的测近,同时使得激光器和探测器的高度并没有明显增加,结构紧凑,有利于激光雷达在车辆上的安装。
根据本发明实施例的激光雷达同时集成了大FOV近距离探测和小FOV远距离探测。通过采用变焦结构,使得大FOV近距离探测器不必与测远探测器处于同一焦距,从而使得探测器面板的高度大大减小。对于共用主透镜的方案,测近测远这两部分的光线从同一组收发主透镜中发出,因此测近测远的水平角度差会很小,测近测远扫过同一物体的时间差很小,测近测远的点云更加容易融合。
本发明提出了一种可以兼顾小FOV测远和大FOV测近的方案,对于大FOV测近探测器采用变焦结构,使其不必与测远探测器处于同一焦距,从而使得大FOV测近探测器面板的高度大大缩小,从而使得激光雷达的高度不必做得很高,增加整体结构的紧凑性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种激光雷达,包括:
    第一发射单元和第二发射单元,配置成分别发出第一探测激光束和第二探测激光束用以探测目标物;
    发射端光学组件和接收端光学组件,所述发射端光学组件包括发射透镜,所述接收端光学组件包括接收透镜;和
    第一接收单元和第二接收单元,所述第一接收单元和第二接收单元配置成分别接收所述第一探测激光束和第二探测激光束被目标物反射的第一回波和第二回波并转换为电信号,
    其中所述第一探测激光束与第二探测激光束分别从所述第一发射单元和第二发射单元出射后经过不同的光程后到达所述发射透镜,所述第一回波和第二回波从所述接收透镜分别经过不同的光程到达所述第一接收单元和第二接收单元。
  2. 如权利要求1所述的激光雷达,其中所述第一发射单元和第二发射单元分别设置在距离所述发射透镜不同的位置处,所述第一接收单元和第二接收单元分别设置在距离所述接收透镜不同的位置处。
  3. 如权利要求1或2所述的激光雷达,其中所述第一发射单元包括第一激光器阵列,所述第一激光器阵列设置在所述发射透镜的焦平面上;所述第二发射单元包括第二激光器阵列,所述第二激光器阵列与所述发射透镜之间的距离小于所述发射透镜的焦距;所述第一接收单元包括第一探测器阵列,所述第一探测器阵列设置在所述接收透镜的焦平面上;所述第二接收单元包括第二探测器阵列,所述第二探测器阵列与所述接收透镜之间的距离小于所述接收透镜的焦距。
  4. 如权利要求1或2所述的激光雷达,其中所述第二发射单元包括发射端变焦透镜,所述发射端变焦透镜设置在所述第二激光器阵列与所述发射透镜之间,所述第二探测激光束经所述发射端变焦透镜和所述发射透镜后出射到激光雷达外部;所述第二接收单元包括接收端变焦透镜,所述接收端变焦透镜设置在所述第二探测器阵列与所述接收透镜之间,所述第二回波经所述接收透镜与所述接收端变焦透镜后入射到所述第二探测器阵列上。
  5. 如权利要求4所述的激光雷达,还包括一个或多个发射端反射镜和一个或多个接收端反射镜,所述第一探测激光束由所述发射端反射镜反射后,经过所述发射透镜出射,所述第一回波由所述接收端反射镜反射后,入射到所述第一探测器阵列上。
  6. 如权利要求5所述的激光雷达,其中所述发射端反射镜包括带有开孔的发射端反射镜,其中所述第一探测激光束由所述带有开孔的发射端反射镜反射后,经过所述发射透镜出射,所述第二探测激光束穿过所述开孔,经过所述发射透镜出射;
    其中所述接收端反射镜包括带有开孔的接收端反射镜,其中所述第一回波由所述带有开孔的接射端反射镜反射后,入射到所述第一探测器阵列上,所述第二回波穿过所述开孔,入射到所述第二探测器阵列上。
  7. 如权利要求1或2所述的激光雷达,其中所述激光雷达具有转轴和可围绕所述转轴旋转的光机转子,所述光机转子包括所述第一发射单元和第二发射单元、发射端光学组件和接收端光学组件、第一接收单元和第二接收单元,其中所述光机转子设置在所述转轴的上方,或者所述转轴贯穿所述光机转子。
  8. 如权利要求1所述的激光雷达,其中所述发射端光学组件包括第一发射透镜和第二发射透镜,所述接收端光学组件包括第一接收透镜和第二接收 透镜,所述第一探测激光束通过所述第一发射透镜出射,所述第二探测激光束通过所述第二发射透镜出射;所述第一回波通过所述第一接收透镜被汇聚到所述第一探测单元,所述第二回波通过所述第二接收透镜被汇聚到所述第二探测单元。
  9. 如权利要求8所述的激光雷达,其中所述激光雷达具有旋转轴,所述第一发射透镜和第二发射透镜围绕所述旋转轴大致呈180度对置,所述第一接收透镜和第二接收透镜围绕所述旋转轴大致呈180度对置。
  10. 如权利要求8或9所述的激光雷达,其中所述第一发射透镜和第一接收透镜包括远心透镜组。
  11. 如权利要求1、2、8或9中任一项所述的激光雷达,其中所述第一探测激光束和第二探测激光束对应于激光雷达的不同的垂直视场范围。
  12. 如权利要求1、2、8或9中任一项所述的激光雷达,其中所述第一探测激光束的能量高于所述第二探测激光束。
  13. 如权利要求1、2、8或9中任一项所述的激光雷达,其中所述第一发射单元和第二发射单元均包括多个激光器和多通道驱动芯片,所述多个激光器和多通道驱动芯片设置于同一PCB板上;所述第一接收单元和第二接收单元均包括多个探测器和多通道前端芯片,所述多个探测器和多通道前端芯片设置于同一PCB板上。
  14. 如权利要求1、2、8或9中任一项所述的激光雷达,还包括数据处理单元,所述数据处理单元与所述第一发射单元和第二发射单元以及所述第一接收单元和第二接收单元耦接,并将所述第一探测激光束和第二探测激光束的探测结果融合,以生成点云。
PCT/CN2021/138323 2021-04-25 2021-12-15 激光雷达 WO2022227609A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237034094A KR20230155523A (ko) 2021-04-25 2021-12-15 레이저 레이더
EP21939068.9A EP4310537A1 (en) 2021-04-25 2021-12-15 Laser radar
DE112021007126.2T DE112021007126T5 (de) 2021-04-25 2021-12-15 Lidar
MX2023012471A MX2023012471A (es) 2021-04-25 2021-12-15 Radar laser.
JP2023561898A JP2024514846A (ja) 2021-04-25 2021-12-15 レーザーレーダー
US18/383,429 US20240053444A1 (en) 2021-04-25 2023-10-24 Laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110446511.6A CN115327551A (zh) 2021-04-25 2021-04-25 激光雷达
CN202110446511.6 2021-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/383,429 Continuation US20240053444A1 (en) 2021-04-25 2023-10-24 Laser radar

Publications (1)

Publication Number Publication Date
WO2022227609A1 true WO2022227609A1 (zh) 2022-11-03

Family

ID=83846626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138323 WO2022227609A1 (zh) 2021-04-25 2021-12-15 激光雷达

Country Status (8)

Country Link
US (1) US20240053444A1 (zh)
EP (1) EP4310537A1 (zh)
JP (1) JP2024514846A (zh)
KR (1) KR20230155523A (zh)
CN (1) CN115327551A (zh)
DE (1) DE112021007126T5 (zh)
MX (1) MX2023012471A (zh)
WO (1) WO2022227609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240192326A1 (en) * 2022-12-09 2024-06-13 Attollo Engineering, LLC Optical detector, systems, and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107056B1 (en) * 2008-09-17 2012-01-31 University Of Central Florida Research Foundation, Inc. Hybrid optical distance sensor
CN106291509A (zh) * 2016-10-12 2017-01-04 北京万集科技股份有限公司 激光雷达光学系统
CN109814084A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光雷达系统
US20200088859A1 (en) * 2018-09-17 2020-03-19 Waymo Llc Array of Light Detectors with Corresponding Array of Optical Elements
CN111045018A (zh) * 2019-12-27 2020-04-21 广东博智林机器人有限公司 机器人的光学装置及定位系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107056B1 (en) * 2008-09-17 2012-01-31 University Of Central Florida Research Foundation, Inc. Hybrid optical distance sensor
CN106291509A (zh) * 2016-10-12 2017-01-04 北京万集科技股份有限公司 激光雷达光学系统
US20200088859A1 (en) * 2018-09-17 2020-03-19 Waymo Llc Array of Light Detectors with Corresponding Array of Optical Elements
CN109814084A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光雷达系统
CN111045018A (zh) * 2019-12-27 2020-04-21 广东博智林机器人有限公司 机器人的光学装置及定位系统

Also Published As

Publication number Publication date
KR20230155523A (ko) 2023-11-10
MX2023012471A (es) 2023-11-03
JP2024514846A (ja) 2024-04-03
US20240053444A1 (en) 2024-02-15
CN115327551A (zh) 2022-11-11
EP4310537A1 (en) 2024-01-24
DE112021007126T5 (de) 2023-12-14

Similar Documents

Publication Publication Date Title
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN215641806U (zh) 激光雷达
CN110632618B (zh) 激光雷达及其控制方法以及自动驾驶装置
US20190257924A1 (en) Receive path for lidar system
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
WO2021196194A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
CN116299342A (zh) 激光雷达系统
CN210015229U (zh) 一种距离探测装置
CN109738880A (zh) 一种激光雷达系统及激光测距装置
CN113030911A (zh) 一种激光雷达系统
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
CN112068150A (zh) 激光雷达和测距方法
CN108710118A (zh) 一种激光雷达
CN112219130B (zh) 一种测距装置
CN112965044A (zh) 一种激光雷达
CN113640819A (zh) 激光雷达
CN211718520U (zh) 一种多线激光雷达
CN212008925U (zh) 一种多线激光雷达
US20240053444A1 (en) Laser radar
CN110531369A (zh) 一种固态激光雷达
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
WO2022041137A1 (zh) 激光雷达和测距方法
CN117607830A (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
CN112639514B (zh) 激光接收装置、激光雷达及智能感应设备
CN112888957B (zh) 激光发射装置、激光雷达和智能感应设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237034094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034094

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023561898

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021007126

Country of ref document: DE

Ref document number: 2021939068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012471

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2021939068

Country of ref document: EP

Effective date: 20231016

WWE Wipo information: entry into national phase

Ref document number: 2301006956

Country of ref document: TH