WO2021035409A1 - 振动电机 - Google Patents

振动电机 Download PDF

Info

Publication number
WO2021035409A1
WO2021035409A1 PCT/CN2019/102298 CN2019102298W WO2021035409A1 WO 2021035409 A1 WO2021035409 A1 WO 2021035409A1 CN 2019102298 W CN2019102298 W CN 2019102298W WO 2021035409 A1 WO2021035409 A1 WO 2021035409A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
coil
magnetic
magnetic component
housing
Prior art date
Application number
PCT/CN2019/102298
Other languages
English (en)
French (fr)
Inventor
刘柯佳
王尧
汤赟
蓝睿智
吴融融
陈卫敏
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/102298 priority Critical patent/WO2021035409A1/zh
Priority to CN201910789744.9A priority patent/CN110445345B/zh
Priority to US16/993,283 priority patent/US20210057976A1/en
Publication of WO2021035409A1 publication Critical patent/WO2021035409A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the invention relates to the technical field of motors and control, in particular to a vibration motor.
  • vibration motors for system feedback, such as mobile phones. Incoming call reminder, information reminder, navigation reminder, vibration feedback of game console, etc.
  • vibration motors for system feedback, such as mobile phones.
  • Incoming call reminder, information reminder, navigation reminder, vibration feedback of game console, etc. Such a wide range of applications has higher requirements on the vibration performance of the vibration motor.
  • the vibration motor can be simplified as a single degree of freedom system, which has a large response at the resonance frequency and a small response far away from the resonance frequency. Therefore, in order to ensure that the vibration motor has a better vibration performance, it is required that the vibration motor has a sufficiently high response in a wider frequency band.
  • the purpose of the present invention is to provide a vibration motor that can adjust the resonance frequency, so that the vibration motor can have a sufficiently high response in a wider frequency band.
  • a vibration motor which includes a housing with an inner cavity, a magnetic vibrator respectively accommodated in the inner cavity of the housing, and a magnetic component that drives the vibrator to vibrate.
  • a first coil is fixed on the housing, and a second coil is fixed on the magnetic component;
  • An alternating current is applied to the first coil to drive the vibrator to vibrate in the direction of the cavity of the housing;
  • an adjustable current is applied to the second coil to make the magnetic field of the magnetic component and the magnetic field of the vibrator correspond Repulsion, to provide a resilient restoring force for the vibrator, so that the vibrator reciprocates in the inner cavity of the housing;
  • the magnitude of the magnetic field generated by the magnetic component By adjusting the magnitude of the magnetic field generated by the magnetic component, the magnitude of the restoring force generated by the magnetic component is changed, and the resonance frequency when the vibrator vibrates is adjusted.
  • a cover plate is provided at both ends of the housing, and the magnetic components at both ends of the housing are located close to the cover plate, and each of the magnetic components passes through a limit stop.
  • the blocks are limited at two ends in the housing, and the vibrator vibrates between the limiting blocks.
  • the vibrator is a permanent magnet.
  • the magnetic component includes an iron core, which is embedded in the second coil, and an adjustable current is applied to the second coil, so that the iron core generates The magnetic field repels the magnetic field generated by the vibrator and provides a resilient restoring force to the vibrator.
  • the magnetic component further includes an iron core plus permanent magnet structure
  • the iron core plus permanent magnet structure is composed of an iron core and a permanent magnet spliced with each other, the iron core plus permanent magnet structure Embedded in the second coil, by applying an adjustable current to the second coil, so that the magnetic field generated by the iron core plus the permanent magnet repels the magnetic field generated by the vibrator, and provides a return to the vibrator The resilience of the bomb.
  • the magnitude of the current applied to the second coil is adjusted to change the magnitude of the restoring force generated by the magnetic component, thereby adjusting the resonant frequency when the vibrator vibrates;
  • a vibration motor including a housing with an inner cavity, a magnetic vibrator respectively accommodated in the inner cavity of the housing, a magnetic component that drives the vibrator to vibrate, and a vibration motor located between the vibrator and the housing.
  • a first coil is fixed on the housing, and a second coil is fixed on the magnetic part;
  • An alternating current is applied to the first coil to drive the vibrator to vibrate in the direction of the inner cavity of the housing, and the elastic force generated by the elastic member causes the vibrator to reciprocate in the inner cavity of the housing;
  • the second coil applies an adjustable current to change the magnetic field of the magnetic component, so that the magnetic field of the magnetic component repels or attracts the magnetic field of the vibrator to provide repulsive force or attractive force for the vibrator;
  • the repulsive force or attractive force generated by the magnetic component can be changed, and the resonant frequency when the vibrator vibrates is adjusted.
  • the direction of the magnetic field generated by the magnetic component is changed by adjusting the direction of the current applied to the second coil, thereby adjusting the resonant frequency when the vibrator vibrates;
  • the magnetic component When a current in the first direction is applied to the second coil, the magnetic component generates a repulsive force on the vibrator, and the resonant frequency when the vibrator vibrates increases;
  • the magnetic component When a current in the second direction is applied to the second coil, the magnetic component generates an attractive force on the vibrator, and the resonant frequency of the vibrator decreases when the vibrator vibrates; the second direction is the same as the first direction in contrast.
  • the magnitude of the magnetic field generated by the magnetic component is changed by adjusting the magnitude of the current applied to the second coil, thereby adjusting the resonant frequency when the vibrator vibrates;
  • the elastic component is a spring.
  • the beneficial effect of the present invention is that by arranging a magnetic vibrator and a magnetic component supporting the vibrator to vibrate in a shell with a cylindrical cavity, the magnetic field generated by the magnetic component repels the magnetic field generated by the vibrator after being energized to provide
  • the rebound driving force drives the vibrator to move in the direction of the driving force, so that the vibrator reciprocates in the inner cavity of the housing.
  • the size of the magnetic field generated by the magnetic component is adjusted to change the size of the driving force generated by the magnetic component. Then adjust the resonant frequency when the vibrator vibrates.
  • the resonance frequency of the vibration motor can be adjusted, so that the vibration motor can have a sufficiently high response in a wide frequency band, so that the vibration motor can adapt to the working frequency requirements in different scenarios and achieve better vibration effect.
  • Figure 1 is a structural cross-sectional view of a vibration motor in an embodiment of the present invention
  • Figure 2 is a schematic diagram of the overall structure of the vibration motor corresponding to Figure 1;
  • FIG. 3 is a schematic diagram of the principle of adjusting the resonance frequency of a vibration motor in an embodiment of the present invention
  • Figure 4 is a structural cross-sectional view of a vibration motor in another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the principle of adjusting the resonance frequency of a vibration motor in another embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the principle of adjusting the resonant frequency of a vibration motor in another embodiment of the present invention.
  • Figure 1 is a structural cross-sectional view of the vibration motor in an embodiment
  • Figure 2 is a schematic diagram of the overall structure of the vibration motor corresponding to Figure 1.
  • the vibration motor can adjust the resonance frequency so that the vibration motor can have sufficient High response.
  • the vibration motor includes a housing 102 with a cylindrical cavity, a magnetic vibrator 103 accommodated in the cavity of the housing 102, and a magnetic component that supports the vibration of the vibrator 103.
  • the housing is fixed with
  • the first coil 101 optionally, the first coil 101 may be sleeved outside the housing 102. In other embodiments, the first coil 101 may also be provided in the housing 102.
  • Cover plates 107 are respectively provided at both ends of the housing 102, so that the housing 102 forms a closed hollow structure.
  • the magnetic components at both ends of the inside of the housing 102 are arranged close to the cover plate 107, and the vibrator 103 is arranged between the two magnetic components.
  • the second coil 105 is fixed to the magnetic component. More specifically, the magnetic component includes an iron core 106 embedded in the second coil 105.
  • an alternating current is applied to the first coil 101, and the vibrator 103 is driven to vibrate in the direction of the cavity of the housing 102 with the reaction force of the ampere force.
  • the inner wall surface of the casing 102 is smooth. Because the vibrator 103 has magnetism, when an alternating current is applied to the first coil 101, the vibrator 103 is provided with a reciprocating driving force, so that the vibrator 103 slides inside the casing 102.
  • the vibrator 103 is a mass block, that is, the vibrator 103 is a block-like object with a certain mass. More specifically, the vibrator 103 is a permanent magnet. It can be understood that the vibrator can be a whole permanent magnet or a splicing of multiple permanent magnets.
  • the structure of the vibrator can be composed of permanent magnets on both sides.
  • the magnet and the iron core sandwiched in the middle are spliced together, and the same electrodes in the permanent magnets on both sides are arranged oppositely. That is, the vibrator can be designed as a pure permanent magnet, a permanent magnet plus an iron core, or a coil plus an iron core.
  • the magnetic field generated by the magnetic component inside the housing 102 provides the vibrator 103 with a resilient restoring force.
  • an adjustable current is applied to the second coil 105 in the magnetic component, so that the magnetic field generated by the magnetic component repels the magnetic field generated by the vibrator 103, and the vibrator 103 is provided with a resilient restoring force, and the vibrator 103 is driven toward the restoring force. That is, the vibrator 103 is driven to move away from the magnetic component, so that the vibrator 103 reciprocates in the inner cavity of the housing, acting like a spring, which is equivalent to a "magnetic spring".
  • the magnitude of the magnetic field generated by the magnetic component is changed, and then the resonance frequency of the vibrator 103 when vibrating is adjusted.
  • the magnitude of the current applied to the second coil 105 is adjusted to change the magnitude of the restoring force generated by the magnetic component, thereby adjusting the resonant frequency when the vibrator vibrates.
  • the greater the current applied to the second coil the stronger the magnetic field generated by the magnetic component, the greater the restoring force provided by the magnetic component to the vibrator, and the higher the resonant frequency when the vibrator vibrates .
  • the stiffness of the "magnetic spring” can be adjusted. The greater the current, the stronger the magnetic field generated by the magnetic component. The greater the stiffness of the "magnetic spring", the higher the resonance frequency of the motor.
  • a magnetic part is provided in the housing near the cover plates at both ends, and a magnetic vibrator is provided in the channel between the two magnetic parts. After the power is turned on, the two magnetic parts are paired with each other. The vibrator generates electromagnetic restoring force. By adjusting the size of the magnetic field generated by the magnetic component, the restoring force generated by the magnetic component is changed, and then the resonant frequency of the vibrator when vibrating is adjusted.
  • the resonance frequency of the vibration motor can be adjusted, so that the vibration motor can have a sufficiently high response in a wide frequency band, so that the vibration motor can adapt to the working frequency requirements in different scenarios and achieve better vibration effect.
  • the magnetic component may also include an iron core plus permanent magnet structure, that is, the magnetic component may be designed as an iron core plus permanent magnet structure, and the iron core plus permanent magnet structure is composed of an iron core and a permanent magnet spliced with each other.
  • the iron core plus permanent magnet structure is embedded in the second coil, by applying an adjustable current to the second coil, so that the magnetic field generated by the iron core plus permanent magnet repels the magnetic field generated by the vibrator, and provides rebounding to the vibrator Resilience.
  • each magnetic component is limited by a limiting block 104 at both ends of the housing 102, and the vibrator 103 vibrates between the two limiting blocks 104. More specifically, the two limiting blocks 104 are symmetrically arranged inside the housing 102, so that the two magnetic components in the housing 102 provide a balanced restoring force to the vibrator 103.
  • the first coil of the vibration motor is electrically connected to the first signal output terminal
  • the second coil of the two magnetic components in the vibration motor is electrically connected to the second signal output terminal.
  • the first coil is the main coil of the vibration motor
  • the second coil is the auxiliary coil on the two magnetic components in the vibration motor
  • the main coil is connected to the first power amplifier circuit through the first signal output terminal
  • the two The auxiliary coil is connected to the second power amplifier circuit through the second signal output terminal, that is, the two auxiliary coils are simultaneously controlled by the second power amplifier circuit.
  • the two second coils can also be connected to the two power amplifier circuits respectively, that is, the two auxiliary coils can be controlled by the two power amplifier circuits respectively.
  • the magnetic component can be controlled to not be energized at this time; while the vibrator is close to another magnetic component, the coil of the magnetic component It is electrified to generate a magnetic field to provide a restoring force to the vibrator.
  • the restoring force drives the vibrator to bounce back and forth to make a reciprocating motion, thereby adjusting the resonant frequency when the vibrator vibrates.
  • FIG 4 is a schematic diagram of the principle of adjusting the resonant frequency of the vibration motor in an embodiment.
  • the vibration motor is simplified to the structure shown in Figure 4.
  • F is the electromagnetic restoring force provided by the first coil. After the second coil is energized, the electromagnet generates The magnetic field and the poles of the magnetic field generated by the vibrator repel each other and provide electromagnetic repulsion to the vibrator.
  • the electromagnetic force (repulsive force) provided by the electromagnets on both sides to the vibrator is basically the same.
  • the vibrator moves to the right, close to the right electromagnet, and the electromagnetic repulsion between the right electromagnet and the right electromagnet increases rapidly, and the repulsion between the left electromagnet and the left electromagnet decreases, and the combined force of the two points to the original The equilibrium position (that is, the position where the A state is located).
  • the vibrator moves to the left, close to the left electromagnet, the electromagnetic repulsion between the left electromagnet and the left electromagnet rapidly increases, and the repulsion between the right electromagnet decreases, and the combined force of the two points to the original The equilibrium position (that is, the position where the A state is located).
  • the effect of the second coils on both sides of the vibrating motor after being energized is equivalent to a "magnetic spring". Since the electromagnetic force is inversely proportional to the square of the distance, the "magnetic spring” is a non-linear spring.
  • Figure 5 is a structural cross-sectional view of a vibration motor in another embodiment. As shown in Figure 5, it includes a housing 502 with an inner cavity, a magnetic vibrator 503 and a driving vibrator 503 respectively accommodated in the inner cavity of the housing 502.
  • a first coil 501 is fixed on the housing 502
  • a second coil 505 is fixed on the magnetic component
  • an elastic component 504 located between the vibrator 503 and the magnetic component.
  • An alternating current is applied to the first coil 501 to drive the vibrator 503 to vibrate in the direction of the inner cavity of the housing 502, and the elastic force generated by the elastic member 504 makes the vibrator 503 reciprocate in the inner cavity of the housing 502;
  • the current is adjusted to change the magnetic field of the magnetic component, so that the magnetic field of the magnetic component and the magnetic field of the vibrator 503 repel or attract each other, and provide a repulsive force or an attractive force for the vibrator 503.
  • the elastic component 504 is a spring.
  • the elastic component 504 may also be other elastic components, such as elastic pieces, rubber bands, airbags, and the like.
  • the direction of the driving force generated by the magnetic component is changed, thereby adjusting the resonance frequency of the vibrator 503 when vibrating.
  • Figure 6 is a schematic diagram of the principle of adjusting the resonant frequency of a vibration motor in another embodiment.
  • the vibration motor is simplified to the structure shown in Figure 6.
  • a spring is added between the vibrator and the magnetic component of the vibration motor to form a hybrid spring adjustment vibration motor. Resonant frequency scheme.
  • the second coil on the vibration motor when the second coil on the vibration motor is not energized, it is equivalent to a conventional linear motor, and the additional rigidity is zero. It is understandable that in fact, since the iron core is magnetized by the first coil and the vibrator, a small amount of additional rigidity will also be generated.
  • the electromagnet When a current in the first direction is applied to the second coil, the electromagnet generates a repulsive force on the vibrator. At this time, the repulsive force generated by the electromagnet on the vibrator is in the same direction as the elastic force generated by the spring, which is equivalent to providing additional positive stiffness.
  • the resonant frequency during vibration increases.
  • the second direction is opposite to the first direction, and the electromagnet produces attractive force on the vibrator.
  • the attractive force generated by the electromagnet to the vibrator is opposite to the elastic force generated by the spring, which is equivalent to Provides additional negative stiffness and reduces the resonant frequency when the vibrator vibrates.
  • the magnitude of the magnetic field generated by the magnetic component can be changed by adjusting the magnitude of the current applied to the second coil, thereby adjusting the resonant frequency when the vibrator vibrates.
  • the current applied to the second coil in the first direction is greater, the repulsive force generated by the magnetic component to the vibrator is greater, and the resonant frequency when the vibrator vibrates is higher;
  • the greater the current in the second direction of the two coils the greater the attractive force of the magnetic component to the vibrator, and the lower the resonance frequency when the vibrator vibrates.
  • the resonance frequency of the vibration motor can be adjusted more flexibly, and more abundant functions can be provided.
  • the above-mentioned vibration motor can adjust the resonance frequency of the vibration motor, so that the vibration motor can have a sufficiently high response in a wide frequency band, so that the vibration motor can adapt to the working frequency requirements in different scenarios and achieve better vibration effects .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明提供了一种振动电机,该振动电机包括具有内腔的壳体、分别收容于所述壳体的内腔的带磁性的振子以及驱动所述振子振动的磁性部件,所述壳体上固定有第一线圈,所述磁性部件上固定有第二线圈;对所述第一线圈施加交流电流,驱动所述振子沿所述壳体的内腔方向振动;对所述第二线圈施加可调电流,使所述磁性部件的磁场与所述振子的磁场相斥,为所述振子提供回弹的回复力,以使得所述振子在所述壳体的内腔做往复运动;通过调节所述磁性部件产生的磁场大小,以改变所述磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率。本发明的振动电机可以调节谐振频率,使得振动电机可以在一个较宽的频带范围内具有足够高的响应。

Description

振动电机 技术领域
本发明涉及电机与控制技术领域,特别是涉及一种振动电机。
背景技术
随着电子技术的发展,便携式消费性电子产品越来越受人们的追捧,如手机、掌上游戏机、导航装置或掌上多媒体娱乐设备等,一般都会用到振动电机来做系统反馈,比如手机的来电提示、信息提示、导航提示、游戏机的振动反馈等。如此广泛的应用,对振动电机的振动性能有更高的要求。
技术问题
在智能设备中,对应于不同的情景,往往需要电机在不同的频率下工作。振动电机可以简化为一个单自由度系统,在谐振频率处响应大,在远离谐振频率的地方响应较小。因此为保证振动电机具有较好的振动性能,这就要求振动电机在一个较宽的频带范围内都有足够高的响应。
传统的增加阻尼降Q值从而扩大带宽的方法已经接近极限,改进空间有限。因此,有必要提供一种可以调节谐振频率的振动电机。
技术解决方案
本发明的目的在于提供一种可以调节谐振频率的振动电机,使得振动电机可以在一个较宽的频带范围内具有足够高的响应。
本发明的技术方案如下:一方面,提供一种振动电机,包括具有内腔的壳体、分别收容于所述壳体的内腔的带磁性的振子以及驱动所述振子振动的磁性部件,所述壳体上固定有第一线圈,所述磁性部件上固定有第二线圈;
对所述第一线圈施加交流电流,驱动所述振子沿所述壳体的内腔方向振动;对所述第二线圈施加可调电流,使所述磁性部件的磁场与所述振子的磁场相斥,为所述振子提供回弹的回复力,以使得所述振子在所述壳体的内腔做往复运动;
通过调节所述磁性部件产生的磁场大小,以改变所述磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率。
可选的,在其中一个实施例中,所述壳体两端分别设置有盖板,所述壳体内部两端的磁性部件靠近所述盖板设置,每个所述磁性部件各通过一个限位块限位于所述壳体内的两端,所述振子在所述限位块之间发生振动。
可选的,在其中一个实施例中,所述振子为永磁体。
可选的,在其中一个实施例中,所述磁性部件包括铁芯,其内嵌于所述第二线圈内,通过对所述第二线圈施加可调电流,以使得所述铁芯产生的磁场与所述振子产生的磁场相斥,对所述振子提供回弹的回复力。
可选的,在其中一个实施例中,所述磁性部件还包括铁芯加永磁体结构,所述铁芯加永磁体结构由铁芯与永磁体相互拼接组成,所述铁芯加永磁体结构内嵌于所述第二线圈内,通过对所述第二线圈施加可调电流,以使得所述铁芯加永磁体产生的磁场与所述振子产生的磁场相斥,对所述振子提供回弹的回复力。
可选的,在其中一个实施例中,通过调节施加于所述第二线圈上的电流大小,以改变所述磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率;
当施加于所述第二线圈上的电流越大,所述磁性部件产生的磁场越强,所述磁性部件对所述振子提供的回复力越大,所述振子发生振动时的谐振频率越高。
另一方面,还提供一种振动电机,包括具有内腔的壳体、分别收容于所述壳体的内腔的带磁性的振子、驱动所述振子振动的磁性部件以及位于所述振子与所述磁性部件之间的弹性部件,所述壳体上固定有第一线圈,所述磁性部件上固定有第二线圈;
对所述第一线圈施加交流电流,驱动所述振子沿所述壳体的内腔方向振动,通过所述弹性部件产生的弹力使得所述振子在所述壳体的内腔做往复运动;对所述第二线圈施加可调电流,以改变所述磁性部件的磁场,使所述磁性部件的磁场与所述振子的磁场相斥或相吸,为所述振子提供排斥力或吸引力;
通过调节所述磁性部件产生的磁场大小及方向,以改变所述磁性部件产生的排斥力或吸引力,进而调节所述振子发生振动时的谐振频率。
可选的,在其中一个实施例中,通过调节施加于所述第二线圈上的电流方向,以改变所述磁性部件产生的磁场方向,进而调节所述振子发生振动时的谐振频率;
当对所述第二线圈施加第一方向的电流时,所述磁性部件对所述振子产生排斥力,所述振子发生振动时的谐振频率增大;
当对所述第二线圈施加第二方向的电流时,所述磁性部件对所述振子产生吸引力,所述振子发生振动时的谐振频率减小;所述第二方向与所述第一方向相反。
可选的,在其中一个实施例中,通过调节施加于所述第二线圈上的电流大小,以改变所述磁性部件产生的磁场大小,进而调节所述振子发生振动时的谐振频率;
当施加于所述第二线圈的第一方向的电流越大,所述磁性部件对所述振子产生的排斥力越大,所述振子发生振动时的谐振频率越高;
当施加于所述第二线圈的第二方向的电流越大,所述磁性部件对所述振子产生的吸引力越大,所述振子发生振动时的谐振频率越低。
可选的,在其中一个实施例中,所述弹性部件为弹簧。
有益效果
本发明的有益效果在于:通过在具有筒形内腔的壳体设置带磁性的振子以及支撑振子振动的磁性部件,,通电后使磁性部件产生的磁场与振子产生的磁场相斥,为振子提供回弹的驱动力,驱动振子朝着所述驱动力的方向运动,以使得振子在壳体的内腔做往复运动,通过调节磁性部件产生的磁场大小,以改变磁性部件产生的驱动力大小,进而调节振子发生振动时的谐振频率。通过上述振动电机,可以调节振动电机的谐振频率,使振动电机可以在一个较宽的频带范围内具有足够高的响应,以使得振动电机可以适应不同场景下的工作频率需求,实现更好的振动效果。
附图说明
图1为本发明一个实施例中振动电机的结构剖面图;
图2为为与图1对应的振动电机整体结构示意图;
图3为本发明一个实施例中振动电机调节谐振频率的原理示意图;
图4为本发明另一个实施例中振动电机的结构剖面图;
图5为本发明另一个实施例中振动电机调节谐振频率的原理示意图;
图6为本发明另一个实施例中振动电机调节谐振频率的原理示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
图1为一个实施例中振动电机的结构剖面图,图2为与图1对应的振动电机整体结构示意图,该振动电机可以调节谐振频率,使振动电机可以在一个较宽的频带范围内具有足够高的响应。参阅图1和图2所示,该振动电机包括具有筒形内腔的壳体102、收容于壳体102内腔的带磁性的振子103以及支撑振子103振动的磁性部件,壳体上固定有第一线圈101,可选的,第一线圈101可以套设于壳体102外部,在其他实施例中,第一线圈101还可以设置于壳体102内。壳体102两端分别设置有盖板107,使得壳体102形成封闭的中空结构。在壳体102内部两端的磁性部件靠近盖板107设置,振子103设置在在两个磁性部件之间。磁性部件上固定有第二线圈105。更为具体的,磁性部件包括铁芯106,其内嵌于第二线圈105内。
在本实施例中,对第一线圈101施加交流电流,以其受到安培力的反作用力驱动振子103沿壳体102的内腔方向振动。壳体102的内壁面光滑,由于振子103具有磁性,当对第一线圈101施加交流电流时,对振子103提供往复运动的驱动力,以使得振子103在壳体102内部滑动。其中振子103为质量块,也即振子103为具有一定质量的块状物体。更为具体的,振子103为永磁体,可以理解的是,振子既可以为一整个永磁体也可以为多个永磁体拼接而成,如图3所示,振子的结构可以由两侧的永磁体和夹在中间的铁芯拼接组成,且两侧的永磁体中相同的电极相对设置。也即振子可以设计为纯永磁体形式,也可以设计为永磁体加铁芯的形式,也可以设计为线圈加铁芯等形式。
进一步的,壳体102内部的磁性部件产生的磁场为振子103提供回弹的回复力。具体的,对磁性部件中的第二线圈105施加可调电流,以使得磁性部件产生的磁场与振子103产生的磁场相斥,对振子103提供回弹的回复力,驱动振子103朝着回复力的方向运动,也即驱动振子103朝着远离磁性部件的方向运动,以使得振子103在所述壳体的内腔做往复运动,起到类似于弹簧的作用,等同于“磁弹簧”。
进一步的,通过调节磁性部件产生的磁场大小,以改变磁性部件产生的回复力大小,进而调节振子103发生振动时的谐振频率。具体的,通过调节施加于第二线圈105上的电流大小,以改变磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率。当施加于所述第二线圈上的电流越大,所述磁性部件产生的磁场越强,所述磁性部件对所述振子提供的回复力越大,所述振子发生振动时的谐振频率越高。类似于通过调节第二线圈105上的电流大小,可以调节“磁弹簧”的刚度,电流越大,磁性部件产生的磁场越强,“磁弹簧”的刚度越大,电机的谐振频率越高。
本实施例提供的振动电机,通过在壳体内部靠近两端的盖板处分别设有一个磁性部件,在两个磁性部件之间的通道内设有带磁性的振子,通电后两个磁性部件对振子产生电磁回复力,通过调节磁性部件产生的磁场大小,以改变磁性部件产生的回复力大小,进而调节振子发生振动时的谐振频率。通过上述振动电机,可以调节振动电机的谐振频率,使振动电机可以在一个较宽的频带范围内具有足够高的响应,以使得振动电机可以适应不同场景下的工作频率需求,实现更好的振动效果。
在一个实施例中,磁性部件还可以包括铁芯加永磁体结构,也即磁性部件可以设计为铁芯加永磁体的结构,该铁芯加永磁体结构由铁芯与永磁体相互拼接组成。该铁芯加永磁体结构内嵌于第二线圈内,通过对第二线圈施加可调电流,以使得该铁芯加永磁体产生的磁场与振子产生的磁场相斥,对振子提供回弹的回复力。
在一个实施例中,请继续参阅图1,每个磁性部件各通过一个限位块104限位于壳体102内的两端,振子103在两个限位块104之间发生振动。更为具体的,两个限位块104在壳体102内部对称设置,以使得壳体102内的两个磁性部件对振子103提供平衡的回复力。
在一个实施例中,该振动电机的第一线圈与第一信号输出端电连接,该振动电机内的两个磁性部件中的第二线圈与第二信号输出端电连接。具体的,第一线圈为该振动电机的主线圈,第二线圈为该振动电机内的两个磁性部件上的辅线圈,主线圈通过第一信号输出端连接至第一功率放大电路,两个辅线圈通过第二信号输出端连接至第二功率放大电路,也即通过第二功率放大电路同时控制两个辅线圈。
可选的,还可以将两个第二线圈分别连接至两个功率放大电路,即通过两个功率放大电路分别控制两个辅线圈。具体的,当振子远离一个磁性部件时,由于该磁性部件对振子产生的回复力较小,则此时可以控制该磁性部件不通电;而振子靠近另一个磁性部件,此时该磁性部件的线圈通电,产生磁场而对振子提供回复力,该回复力驱使振子反弹做往复运动,从而调节振子发生振动时的谐振频率。
图4为一个实施例中振动电机调节谐振频率的原理示意图,该振动电机简化为如图4所示的结构,F为第一线圈提供的电磁回复力,第二线圈通电后,电磁铁产生的磁场和振子产生的磁场的极向相斥,对振子提供电磁斥力。
当处于A状态时,两侧电磁铁对振子提供的电磁力(斥力)基本相同。
当处于B状态时,振子移动至右侧,靠近右侧电磁铁,和右侧电磁铁之间的电磁斥力迅速增大,和左侧电磁铁之间的斥力减小,两者的合力指向原始的平衡位置(即A状态所处位置)。
当处于C状态时,振子移动至左侧,靠近左侧电磁铁,和左侧电磁铁之间的电磁斥力迅速增大,和右侧电磁铁之间的斥力减小,两者的合力指向原始的平衡位置(即A状态所处位置)。
可以理解的是,该振动电机两侧的第二线圈通电后起到的效果相当于“磁弹簧”,由于电磁力和距离的平方呈反比,该“磁弹簧”是一根非线性弹簧。
图5为另一个实施例中振动电机的结构剖面图,如图5所示,包括具有内腔的壳体502、分别收容于壳体502的内腔的带磁性的振子503、驱动振子503振动的磁性部件以及位于振子503与所述磁性部件之间的弹性部件504,壳体502上固定有第一线圈501,所述磁性部件上固定有第二线圈505;
对第一线圈501施加交流电流,驱动振子503沿壳体502的内腔方向振动,通过弹性部件504产生的弹力使得振子503在壳体502的内腔做往复运动;对第二线圈505施加可调电流,以改变所述磁性部件的磁场,使所述磁性部件的磁场与振子503的磁场相斥或相吸,为振子503提供排斥力或吸引力。通过调节所述磁性部件产生的磁场大小及方向,以改变所述磁性部件产生的排斥力或吸引力,进而调节振子503发生振动时的谐振频率。更为具体的,该弹性部件504为弹簧,可选的,在其他实施例中,弹性部件504还可以是其他具有弹性的部件,如弹片、橡皮筋、气囊等。
进一步的,通过调节施加于第二线圈505上的电流方向,以改变所述磁性部件产生的驱动力方向,进而调节振子503发生振动时的谐振频率。
图6为另一个实施例中振动电机调节谐振频率的原理示意图,该振动电机简化为如图6所示的结构,在振动电机的振子与磁性部件之间增加弹簧,形成混合弹簧调节振动电机的谐振频率的方案。
具体的,当振动电机上的第二线圈不通电时,相当于常规的线性电机,附加刚度为零。可以理解的是,实际上由于铁芯被第一线圈及振子磁化,也会产生少量的附加刚度。
当对第二线圈施加第一方向的电流时,电磁铁对振子产生排斥力,此时电磁铁对振子产生的排斥力与弹簧产生的弹力方向相同,相当于提供了额外的正刚度,振子发生振动时的谐振频率增大。
当对第二线圈施加第二方向的电流时,第二方向与第一方向相反,电磁铁对振子产生吸引力,此时电磁铁对振子产生的吸引力与弹簧产生的弹力方向相反,相当于提供了额外的负刚度,振子发生振动时的谐振频率减小。
可选的,通过调节施加于所述第二线圈上的电流大小,以改变所述磁性部件产生的磁场大小,进而调节所述振子发生振动时的谐振频率。当施加于所述第二线圈的第一方向的电流越大,所述磁性部件对所述振子产生的排斥力越大,所述振子发生振动时的谐振频率越高;当施加于所述第二线圈的第二方向的电流越大,所述磁性部件对所述振子产生的吸引力越大,所述振子发生振动时的谐振频率越低。
本实施例通过混合弹簧设计,可以更灵活的调节振动电机的谐振频率,并提供更加丰富的功能。
上述振动电机,可以调节振动电机的谐振频率,使振动电机可以在一个较宽的频带范围内具有足够高的响应,以使得振动电机可以适应不同场景下的工作频率需求,实现更好的振动效果。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种振动电机,其特征在于,包括具有内腔的壳体、分别收容于所述壳体的内腔的带磁性的振子以及驱动所述振子振动的磁性部件,所述壳体上固定有第一线圈,所述磁性部件上固定有第二线圈;
    对所述第一线圈施加交流电流,驱动所述振子沿所述壳体的内腔方向振动;对所述第二线圈施加可调电流,使所述磁性部件的磁场与所述振子的磁场相斥,为所述振子提供回弹的回复力,以使得所述振子在所述壳体的内腔做往复运动;
    通过调节所述磁性部件产生的磁场大小,以改变所述磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率。
  2. 根据权利要求1所述的振动电机,其特征在于,所述壳体两端分别设置有盖板,所述壳体内部两端的磁性部件靠近所述盖板设置,每个所述磁性部件各通过一个限位块限位于所述壳体内的两端,所述振子在所述限位块之间发生振动。
  3. 根据权利要求1所述的振动电机,其特征在于,所述振子为永磁体。
  4. 根据权利要求1所述的振动电机,其特征在于,所述磁性部件包括铁芯,其内嵌于所述第二线圈内,通过对所述第二线圈施加可调电流,以使得所述铁芯产生的磁场与所述振子产生的磁场相斥,对所述振子提供回弹的回复力。
  5. 根据权利要求4所述的振动电机,其特征在于,所述磁性部件还包括铁芯加永磁体结构,所述铁芯加永磁体结构由铁芯与永磁体相互拼接组成,所述铁芯加永磁体结构内嵌于所述第二线圈内,通过对所述第二线圈施加可调电流,以使得所述铁芯加永磁体产生的磁场与所述振子产生的磁场相斥,对所述振子提供回弹的回复力。
  6. 根据权利要求5所述的振动电机,其特征在于,通过调节施加于所述第二线圈上的电流大小,以改变所述磁性部件产生的回复力大小,进而调节所述振子发生振动时的谐振频率;
    当施加于所述第二线圈上的电流越大,所述磁性部件产生的磁场越强,所述磁性部件对所述振子提供的回复力越大,所述振子发生振动时的谐振频率越高。
  7. 一种振动电机,其特征在于,包括具有内腔的壳体、分别收容于所述壳体的内腔的带磁性的振子、驱动所述振子振动的磁性部件以及位于所述振子与所述磁性部件之间的弹性部件,所述壳体上固定有第一线圈,所述磁性部件上固定有第二线圈;
    对所述第一线圈施加交流电流,驱动所述振子沿所述壳体的内腔方向振动,通过所述弹性部件产生的弹力使得所述振子在所述壳体的内腔做往复运动;对所述第二线圈施加可调电流,以改变所述磁性部件的磁场,使所述磁性部件的磁场与所述振子的磁场相斥或相吸,为所述振子提供排斥力或吸引力;
    通过调节所述磁性部件产生的磁场大小及方向,以改变所述磁性部件产生的排斥力或吸引力,进而调节所述振子发生振动时的谐振频率。
  8. 根据权利要求7所述的振动电机,其特征在于,通过调节施加于所述第二线圈上的电流方向,以改变所述磁性部件产生的磁场方向,进而调节所述振子发生振动时的谐振频率;
    当对所述第二线圈施加第一方向的电流时,所述磁性部件对所述振子产生排斥力,所述振子发生振动时的谐振频率增大;
    当对所述第二线圈施加第二方向的电流时,所述磁性部件对所述振子产生吸引力,所述振子发生振动时的谐振频率减小;所述第二方向与所述第一方向相反。
  9. 根据权利要求8所述的振动电机,其特征在于,通过调节施加于所述第二线圈上的电流大小,以改变所述磁性部件产生的磁场大小,进而调节所述振子发生振动时的谐振频率;
    当施加于所述第二线圈的第一方向的电流越大,所述磁性部件对所述振子产生的排斥力越大,所述振子发生振动时的谐振频率越高;
    当施加于所述第二线圈的第二方向的电流越大,所述磁性部件对所述振子产生的吸引力越大,所述振子发生振动时的谐振频率越低。
  10. 根据权利要求7所述的振动电机,其特征在于,所述弹性部件为弹簧。
PCT/CN2019/102298 2019-08-23 2019-08-23 振动电机 WO2021035409A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/102298 WO2021035409A1 (zh) 2019-08-23 2019-08-23 振动电机
CN201910789744.9A CN110445345B (zh) 2019-08-23 2019-08-26 振动电机
US16/993,283 US20210057976A1 (en) 2019-08-23 2020-08-14 Vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102298 WO2021035409A1 (zh) 2019-08-23 2019-08-23 振动电机

Publications (1)

Publication Number Publication Date
WO2021035409A1 true WO2021035409A1 (zh) 2021-03-04

Family

ID=68437567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102298 WO2021035409A1 (zh) 2019-08-23 2019-08-23 振动电机

Country Status (3)

Country Link
US (1) US20210057976A1 (zh)
CN (1) CN110445345B (zh)
WO (1) WO2021035409A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127906A1 (zh) * 2019-12-23 2021-07-01 瑞声声学科技(深圳)有限公司 线性振动电机
WO2021127913A1 (zh) * 2019-12-23 2021-07-01 瑞声声学科技(深圳)有限公司 线性振动电机
CN111564944A (zh) * 2020-05-26 2020-08-21 歌尔股份有限公司 电子终端
CN111564943A (zh) * 2020-05-26 2020-08-21 歌尔股份有限公司 电子终端
CN114252182A (zh) * 2021-12-14 2022-03-29 苏州索迩电子技术有限公司 一种测力装置
CN116526723A (zh) * 2023-04-17 2023-08-01 中船澄西扬州船舶有限公司 一种水能发电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266032A (ja) * 1995-03-23 1996-10-11 Yazaki Corp リニアモータ
CN102187553A (zh) * 2008-10-15 2011-09-14 地震声公司 用于产生期望低频振动或者消除非期望低频振动的电磁电机
CN104660004A (zh) * 2015-02-02 2015-05-27 瑞声光电科技(常州)有限公司 扁平线性振动电机
CN205430021U (zh) * 2016-01-22 2016-08-03 常州阿木奇声学科技有限公司 一种磁力振动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266032A (ja) * 1995-03-23 1996-10-11 Yazaki Corp リニアモータ
CN102187553A (zh) * 2008-10-15 2011-09-14 地震声公司 用于产生期望低频振动或者消除非期望低频振动的电磁电机
CN104660004A (zh) * 2015-02-02 2015-05-27 瑞声光电科技(常州)有限公司 扁平线性振动电机
CN205430021U (zh) * 2016-01-22 2016-08-03 常州阿木奇声学科技有限公司 一种磁力振动器

Also Published As

Publication number Publication date
CN110445345B (zh) 2021-04-16
CN110445345A (zh) 2019-11-12
US20210057976A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CN110445345B (zh) 振动电机
US9815085B2 (en) Haptic actuator
US10079531B2 (en) Linear vibration motor
JP6184622B2 (ja) ハプティックアクチュエータ
JP7188851B2 (ja) 振動アクチュエータ、及びこれを備える携帯型電子機器
WO2016114384A1 (ja) 振動アクチュエータ
CN105703593B (zh) 线性振动马达
JP2019201486A (ja) リニア振動モータ及び電子機器
CN111082630B (zh) 一种振动装置
WO2017088359A1 (zh) 线性振动马达
US11515773B2 (en) Linear vibration motor and electronic device
US10931185B2 (en) Linear vibration motor
WO2016194762A1 (ja) リニア振動モータ
US10384232B2 (en) Linear vibration motor
KR20190121098A (ko) 수평형 리니어 진동발생장치
WO2022242537A1 (zh) 振动马达及电子设备
KR101793072B1 (ko) 수평 진동 디바이스
US20210218324A1 (en) Vibration actuator and electronic apparatus
JP2002192073A (ja) 振動発生器
KR102042633B1 (ko) 자기력이 집중되는 수평 진동 디바이스
WO2018008280A1 (ja) リニア振動モータ
JP6333194B2 (ja) 振動アクチュエータ
WO2018216301A1 (ja) 往復運動装置
JP2019193511A (ja) リニア振動モータ及び電子機器
CN218888369U (zh) 振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942852

Country of ref document: EP

Kind code of ref document: A1