WO2021033637A1 - 円筒状加熱式たばこ製品 - Google Patents

円筒状加熱式たばこ製品 Download PDF

Info

Publication number
WO2021033637A1
WO2021033637A1 PCT/JP2020/030866 JP2020030866W WO2021033637A1 WO 2021033637 A1 WO2021033637 A1 WO 2021033637A1 JP 2020030866 W JP2020030866 W JP 2020030866W WO 2021033637 A1 WO2021033637 A1 WO 2021033637A1
Authority
WO
WIPO (PCT)
Prior art keywords
tobacco
section
burn
heat
reconstituted
Prior art date
Application number
PCT/JP2020/030866
Other languages
English (en)
French (fr)
Inventor
和正 荒栄
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN202080058555.5A priority Critical patent/CN114269172A/zh
Priority to EP20855714.0A priority patent/EP4018850A4/en
Priority to JP2021540760A priority patent/JP7066925B2/ja
Publication of WO2021033637A1 publication Critical patent/WO2021033637A1/ja
Priority to US17/668,808 priority patent/US20220160027A1/en
Priority to JP2022072942A priority patent/JP2022106856A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/17Filters specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/01Making cigarettes for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the present invention relates to a cylindrical heat-not-burn tobacco product.
  • Smoking articles composed of elongated cylindrical containers filled with (for example, granular) reconstituted cigarettes are currently on the market. In the production of such smoking articles, it is required to strictly control the filling amount of reconstituted tobacco, particularly reconstituted tobacco granules.
  • a device in which a pair of electrostatic electrodes are arranged so as to face each other with a tobacco rod sandwiched between them, and the filling amount of the tobacco is measured from the capacitance between the pair of electrostatic electrodes (for example, see Patent Document 1).
  • Patent Document 1 a device that irradiates an object to be measured with microwaves and evaluates the characteristics of the object to be measured based on the ratio of the amplitude and phase of the microwave transmitted through the object to be measured.
  • Reconstituted tobacco contained in heat-not-burn tobacco products contains various additives, unlike conventional cigarette raw materials for cigarettes.
  • Various additives disturb by changing the amplitude and phase of the irradiated microwaves. Disturbances cannot be eliminated by conventional methods.
  • the tobacco section and tobacco rod of the heat-not-burn tobacco product which is constructed by filling the reconstituted tobacco, has a higher density of tobacco raw material and a higher packing density of the tobacco raw material than the conventional cigarette rod. Therefore, the conventional method for measuring the density of tobacco raw materials by irradiating microwaves, which is known for cigarettes, cannot be applied to such heat-not-burn tobacco products. In particular, the microwave frequency band is different.
  • a tobacco section containing reconstituted tobacco as a tobacco raw material, a material section not containing a tobacco raw material, and a filter section are continuous.
  • the material section and the filter section which do not contain the tobacco raw material, disturb by changing the amplitude and phase of the irradiated microwave with a value different from that of the tobacco raw material. Disturbances cannot be eliminated by conventional methods.
  • the filling amount of the reconstituted tobacco, the reconstituted tobacco granules, and the reconstituted tobacco sheet as a tobacco raw material is such that consumers prefer one heat-not-burn tobacco product. Since it is highly likely that this is linked to the level of sensuality and taste experience obtained and the number of times consumers can enjoy one heated tobacco product, the amount of tobacco raw material is set for each cigarette. It is required to manage all of them and guarantee them within the standard. Heating configured by filling reconstituted tobacco due to the inapplicability of conventional methods and the lack of a density measurement method that could accommodate the very high production rates of heat-not-burn tobacco products (1500 cigarettes / minute or more). The amount of tobacco raw material in the formula tobacco product could not be guaranteed within the appropriate amount.
  • the present invention has been made in view of the above circumstances, and one of the objects thereof is to provide a smoking article filled with an appropriate amount of reconstituted tobacco, particularly reconstituted tobacco granules.
  • one aspect of the present invention is a cylindrical heat-not-burn tobacco product composed of a plurality of sections having a diameter of 5.4 mm to 7.8 mm, and at least one having a length of 4 mm or more and 8 mm or less.
  • a filter section and at least one tobacco section having a length of 8 mm or more and 18 mm or less are included, and when irradiated with microwaves having a frequency of 8 GHz, the microwaves transmitted through the tobacco section are -0.25 (rad) to 0.
  • Another aspect of the present invention is a cylindrical heat-not-burn tobacco product composed of a plurality of sections having a diameter of 5.4 mm to 7.8 mm, which comprises at least one filter section having a length of 4 mm or more and 8 mm or less and a length. It includes at least one tobacco section having a diameter of 8 mm or more and 18 mm or less, and the tobacco section is -15.84 (deg) or more and -5.88 (deg) or less when irradiated with microwaves having a frequency of 8 GHz. It is a cylindrical heat-not-burn tobacco product that gives a phase change to microwaves.
  • Another aspect of the present invention is a cylindrical heat-not-burn tobacco product composed of a plurality of sections having a diameter of 5.4 mm to 7.8 mm, which comprises at least one filter section having a length of 4 mm or more and 8 mm or less and a length. It comprises at least one tobacco section having a diameter of 8 mm or more and 18 mm or less, and the tobacco section is -15.84 (deg) or more and less than -5.88 (deg) when irradiated with microwaves having a frequency of 8 GHz. It is a cylindrical heat-not-burn tobacco product that gives a phase change to microwaves.
  • Another aspect of the present invention is a cylindrical heat-not-burn tobacco product composed of a plurality of sections having a diameter of 5.4 mm to 7.8 mm, which comprises at least one filter section having a length of 4 mm or more and 8 mm or less and a length. It includes at least one tobacco section having a diameter of 8 mm or more and 18 mm or less, and the tobacco section is -15.84 (deg) or more and -7.32 (deg) or less when irradiated with microwaves having a frequency of 8 GHz. It is a cylindrical heat-not-burn tobacco product that gives a phase change to microwaves.
  • the filter section and the tobacco section are alternately arranged in the longitudinal direction.
  • the tobacco section comprises reconstituted tobacco or reconstituted tobacco granules.
  • the tobacco section does not include chopped tobacco.
  • the tobacco section does not include swollen tobacco.
  • the tobacco section does not include regenerated tobacco.
  • FIG. 1 is a schematic configuration diagram of a cylindrical heat-not-burn tobacco product according to an embodiment of the present invention, and shows a cross section thereof along the longitudinal direction.
  • the heat-not-burn tobacco product 100 has a cylindrical shape having a diameter of, for example, 5.4 mm to 7.8 mm, and a plurality of filter sections 120 and a plurality of tobacco sections 140 are alternately arranged in the longitudinal direction.
  • the cylindrical sides of the filter section 120 and the tobacco section 140 are integrally covered with exterior paper 160 so that the filter section 120 and the tobacco section 140 do not fall apart.
  • the filter section 120 is made of, for example, acetate fiber, and has a function of filtering the aerosol generated from the tobacco section 140.
  • the filter section 120 may additionally contain activated carbon.
  • the length of the filter section 120 in the longitudinal direction of the heat-not-burn tobacco product 100 can be, for example, 4 mm or more and 8 mm or less.
  • the tobacco section 140 is configured by filling a predetermined amount of reconstituted tobacco 145 into a cavity provided between two consecutive filter sections 120.
  • the reconstituted tobacco 145 is a tobacco material obtained by once powdering dried leaf tobacco, kneading it with a binder such as polysaccharide or calcium carbonate, and then molding it into a predetermined shape such as a sheet or granules. is there. For example, by extruding a kneaded product of leaf tobacco powder and a binder, granular reconstituted tobacco 145 can be obtained.
  • the length of the tobacco section 140 in the longitudinal direction of the heat-not-burn tobacco product 100 can be, for example, 8 mm or more and 18 mm or less.
  • Leaf tobacco consists of the leaves, leaf stalks, stems, and flowers of Nicotiana tabacum and Nicotiana rustica as cultivated species, and Nicotiana genus tobacco as a wild species. Nicotiana tabacum varieties are roughly classified into yellow varieties, Burley varieties, and Orient cultivars.
  • Dried leaf tobacco is dried leaf tobacco.
  • Dried leaf tobacco is a raw material for tobacco in the tobacco manufacturing industry.
  • Dried leaf tobacco is separated into lamina: mesophyll / leaf vein and stem: leaf vein / petiole / stem during the tobacco manufacturing process.
  • the mesophyll, some stems, petioles, and veins are chopped and chopped.
  • chopped tobacco the plant tissue or vascular structure of leaf tobacco is preserved.
  • Swelled tobacco is obtained by inflating stems, petioles, veins, and some mesophyll by compression and decompression treatment.
  • the puffed tobacco is similarly chopped and mixed with the chopped tobacco.
  • the plant tissue or vascular structure of leaf tobacco is expanded and conserved.
  • Dried leaf tobacco, chopped tobacco, or puffed tobacco fragments and dust damaged in the tobacco manufacturing process are dissolved, strained, and recycled into regenerated tobacco or regenerated tobacco sheet.
  • Recycled tobacco is similarly chopped and mixed with chopped tobacco.
  • regenerated tobacco the plant tissue or vascular structure or cell wall structure of leaf tobacco is preserved.
  • Homogeneous tobacco can be obtained by crushing, grinding and mixing leaf tobacco, dried tobacco leaves, chopped tobacco, swollen tobacco or regenerated tobacco.
  • the homogenized tobacco is kneaded with a binder, a gelling agent, a cross-linking agent, a fragrance, a hydrophilic fragrance, a lipophilic fragrance, a viscosity modifier, a moisturizing agent, or a reinforcing material as examples of additives, and then liquid Reconstituted tobacco can be obtained by making a gel sol or a slurry that is a soft solid, and then drying, dehydrating, abstracting, and extrusion molding.
  • Binders and gelling agents include, for example, natural polymers, gelatin, chondroitin phosphate, polysaccharides and polysaccharide salts: alginate, carrageenan, gellan gum, guar gum, agarose, sorbitol, converted sugar, starch, dextrin, starch decomposition products. -Oxidized starch can be used.
  • the cross-linking agent for example, inorganic salts, calcium salts, calcium carbonate, potassium salts, potassium carbonate, magnesium salts, magnesium carbonate, sodium salts, sodium carbonate, and triethyl citrate can be used.
  • the fragrance may be, for example, plant essential oil, leaf tobacco extract, leaf tobacco grinding solution, menthol, synthetic fragrance, natural fragrance, essential oil, etc., and can be used regardless of lipophilicity or hydrophilicity.
  • oil-based fragrance for example, vanillin, ethylvanillin, guarinalol, timol, methylsalicylate, linalool, eugenol, menthol, clove, anis, cinnamon, bergamot oil, geranium, lemon oil, sparemint oil and ginger oil
  • hydrophilic fragrance for example, glycerin, propylene glycol, ethyl acetate, and isoamyl alcohol can be used.
  • the viscosity modifier for example, water, fats and oils, fatty acids, hydrophilic solvents, alcohols, ethanol, glycerin, and propylene glycol can be used.
  • the moisturizer for example, water, glycerin, or propylene glycol can be used.
  • the reinforcing material for example, tobacco fiber, tobacco cellulose fiber, wood pulp, cellulose fiber, non-tobacco cellulose fiber, etc.
  • a reconstituted tobacco sheet is a reconstituted tobacco slurry of a liquid or gel kneaded with homogenized tobacco, a binder, a gelling agent, a cross-linking agent, a fragrance, and a viscosity modifier, and molded into a sheet shape.
  • the reconstituted tobacco papermaking sheet is made by straining the reconstituted tobacco slurry, and the reconstituted tobacco slurry sheet (reconstructed tobacco cast sheet) is obtained by drying and dehydrating the reconstituted tobacco slurry developed on a flat plate.
  • the reconstituted tobacco granules are granulated from the reconstituted tobacco slurry which is a liquid, a gel, a sol, or a soft solid.
  • Numerous reconstruction processes for producing homogenized tobacco material sheets are well known in the industry. These include, for example, the type of papermaking process described in US-A-3, 860, 012, eg, the type of casting or "cast leaf” process described in US-A-5, 724, 998. Included, for example, the type of soft mass reconstruction process described in US-A-3, 894, 544, and the type of extrusion process described in, for example, GB-A-983, 928. Not limited to.
  • the density of the homogenized tobacco material sheets produced by the extrusion process and the soft mass reconstruction process is higher than the density of the homogenized tobacco material sheets produced by the casting process.
  • the reconstituted tobacco sheet and reconstituted tobacco granules are crushed and ground for homogenization, which destroys the plant tissue and cell wall structure of leaf tobacco, and the additives fill the cell wall structure.
  • the weight (bulk density) or the weight per unit area (basis weight) is large.
  • reconstituted tobacco slurry sheet, room temperature 26 ° C., under the conditions of 60% humidity can have a basis weight of about 100 g / m 2 ⁇ about 300 g / m 2.
  • the reconstituted tobacco granules can have a bulk specific gravity of about 40 g / 100 ml to about 60 g / 100 ml under the conditions of room temperature of 26 ° C. and humidity of 60%.
  • Reconstructed tobacco is chopped tobacco, swollen tobacco, and regenerated tobacco because the plant tissue, vascular bundle structure, and cell wall structure of leaf tobacco are lost due to grinding, and the running direction of cellulose fibers is messed up by kneading. Inferior in elasticity to tobacco. In particular, reconstituted tobacco granules are fragile granules with almost no elasticity.
  • the tobacco rod is composed of a cigarette raw material wrapped with rolling paper.
  • the rolling paper and the tobacco raw material work together to resist external forces and maintain the structure of the tobacco rod.
  • the wrapping paper bears the stress against the tensile force in the long axis direction, and the tobacco raw material bears the stress against the compressive force in the long axis direction and the shear force parallel to the plane crossing the long axis, and maintains the structure of the tobacco rod.
  • Tobacco raw material is a mixture of shards, but the elasticity of each shard bears the stress.
  • Tobacco rods are generally 40 mm or more and 100 mm or less in length.
  • the tobacco raw material contained in the cigarette rod part of the cigarette is a mixture of chopped tobacco, puffed tobacco, and regenerated tobacco sheet.
  • the main raw material is chopped tobacco
  • the auxiliary raw material is puffed tobacco or regenerated tobacco sheet.
  • chopped tobacco, swollen tobacco, and regenerated tobacco sheets preserve the plant tissue and cell wall structure of leaf tobacco and do not contain additives in the cell wall structure, so the density of the tobacco raw material that is a mixture thereof is low. Since chopped tobacco, puffed tobacco, and recycled tobacco sheet have excellent elasticity, the amount required to maintain the structure of the tobacco rod is small.
  • the packing density of the tobacco raw material in the cigarette rod of the cigarette is generally about 0.2 g / cm 3 .
  • chopped tobacco is the main raw material and accounts for 72.5% by weight
  • puffed tobacco is the auxiliary raw material and accounts for 18.1% by weight
  • recycled tobacco sheet is 9.2% by weight.
  • the tobacco raw material which accounts for% and is a mixture of chopped tobacco, puffed tobacco, and regenerated tobacco sheet contained in the tobacco rod portion, has a filling density of 0.216 g / cm 3.
  • the tobacco raw materials in other products of typical cigarettes are chopped tobacco as the main raw material and 72.8% by weight, puffed tobacco as the auxiliary raw material and 22.4% by weight, and recycled tobacco sheet as the auxiliary raw material.
  • the tobacco raw material which accounts for 4.8% by weight and is a mixture of chopped tobacco, swollen tobacco, and regenerated tobacco sheet contained in the tobacco rod portion, has a filling density of 0.191 g / cm 3.
  • the portion containing the tobacco raw material may be in the form of a tobacco section, a tobacco rod, or a tobacco capsule.
  • the tobacco raw material may be reconstituted tobacco, reconstituted tobacco sheet, reconstituted tobacco slurry sheet, reconstituted tobacco papermaking sheet, or reconstituted tobacco granules.
  • the tobacco rod may be a reconstituted tobacco sheet, a reconstructed tobacco slurry sheet, or a reconstructed tobacco papermaking sheet wrapped in rolling paper as fragments.
  • Reconstructed tobacco is inferior in elasticity, so it is inferior in the ability to cooperate with rolled paper to bear stress on external compressive and shearing forces, and it has the ability to maintain the structure of heat-not-burn tobacco products. Inferior. Reconstruction of heat-not-burn tobacco products The inferior ability of tobacco to maintain its structure is compensated for by the design of heat-not-burn tobacco products.
  • two acetate fiber sections are arranged at appropriate intervals, and a structure is formed in which the two acetate fiber sections (filter sections 120) are connected by rolling paper, and the reconstructed tobacco is not responsible for maintaining the structure.
  • the preferred spacing is within 18 mm.
  • a tobacco rod structure 0.25 g / cm 3 or more, preferably 0.26 g / cm 3 or more or 0.27 g / cm, which exceeds the density (0.2 g / cm 3) of the tobacco raw material in conventional cigarettes.
  • Reconstituted tobacco is filled with a filling density of 3 or more, more preferably 0.3 g / cm 3 or more, which is higher than that of conventional cigarettes.
  • the reconstituted tobacco granules are filled inside a hard plastic capsule capable of resisting an external force, and the reconstituted tobacco does not participate in the drag force.
  • the portion containing the tobacco raw material may be the tobacco rod / tobacco section.
  • the tobacco raw material, the reconstituted tobacco granules / reconstituted tobacco sheet, the reconstructed tobacco slurry sheet, and the reconstructed tobacco papermaking sheet at a higher density than that of cigarettes.
  • the filling density is too high, the air flow flowing through the heat-not-burn tobacco product becomes high, that is, the ventilation resistance becomes too high, and suction becomes difficult.
  • the tobacco section 140 includes a reconstituted tobacco, a reconstituted tobacco sheet, and a reconstituted tobacco granule.
  • the heat-not-burn tobacco product may be a rod-shaped article in which one tobacco section 140 and one or two acetate fiber sections (filter sections 120) breathable from the tobacco section 140 are continuous in the long axis direction.
  • the tobacco section 140 and the acetate fiber section may be articulated.
  • the tobacco section 140 and the acetate fiber section may be concatenated with a tobacco-free and acetate fiber-free intersection.
  • Heat-not-burn tobacco products are first-class continuous rod-shaped articles in which the tobacco section 140 and the acetate fiber section (filter section 120) are repeatedly connected in order in the long axis direction, or the tobacco section 140, the intersection and the acetate fiber section (the tobacco section 140, the intersection and the acetate fiber section).
  • the filter section 120 as a repeating unit, after obtaining a type 2 continuous rod-shaped article connected in order in the long axis direction, the type 1 or type 2 continuous rod-shaped article is placed at a position approximately in the middle of the acetate fiber section or an acetate fiber. Obtained by cutting the connecting surface of the section and the tobacco section 140.
  • the first-class continuous rod-shaped article can be obtained by the following method 1-1 or 1-2.
  • Method 1-1 An acetate fiber section, particularly a substantially cylindrical acetate fiber section pre-wrapped with a roll paper, is placed on a U-shaped rolled paper that moves in a substantially horizontal direction at regular intervals. , Then fill the reconstituted tobacco granules between the acetate fiber sections. After filling the reconstituted tobacco granules, both ends of the wrapping paper are overlapped and the edges of the wrapping paper are adhered with a sealing glue to obtain a first-class continuous rod-shaped article.
  • Method 1-2 A reconstructed tobacco sheet in which an acetate fiber section, particularly a substantially cylindrical acetate fiber section previously wrapped with rolling paper, is placed on a U-shaped rolled paper that moves in a substantially horizontal direction. After placing the section, especially the substantially cylindrical reconstructed tobacco section 140 pre-wrapped with rolling paper, the ends of the rolling paper are overlapped and the edges of the rolling paper are glued with a seal glue to obtain a first-class continuous bar-shaped article. ..
  • the second type continuous rod-shaped article can be obtained by the following method 2.
  • Tobacco raw material is wrapped with rolling paper.
  • the main raw material for tobacco raw materials is reconstituted tobacco.
  • the tobacco rod portion or tobacco capsule portion of the heat-not-burn tobacco product is composed of a raw material having a high apparent density.
  • the amount of the reconstituted tobacco sheet included in the tobacco section 140 containing the reconstituted tobacco sheet may include a quantification by cutting the reconstituted tobacco sheet to a fixed length, but includes the tobacco section 140 containing the reconstituted tobacco granules. The amount of reconstituted tobacco is difficult to quantify.
  • the heat-not-burn tobacco product 100 shown in FIG. 1 is manufactured as follows.
  • a plurality of filter sections 120 are arranged at predetermined intervals inside the exterior paper 160 that is curved in a U shape so as to have an opening at the top.
  • the empty portion sandwiched between the filter sections 120 is called a cavity portion.
  • the outer paper 160 and the plurality of filter sections 120 arranged inside the outer paper 160 are conveyed by a transfer device (for example, a transfer unit 210 shown in FIG. 2).
  • a vibrating conveyor is installed above the conveyor.
  • Reconstructed tobacco granules are supplied from the buffer tank to the vibrating conveyor, and the reconstructed tobacco granules vibrate at a predetermined timing synchronized with the cavity moving on the conveyor and at a predetermined rate according to the filling amount of the cavity.
  • the conveyor and the vibrating conveyor are controlled so that they fall from the tobacco supply holes provided in the conveyor. In this way, the cavity portion between the filter sections 120 is filled with the reconstructed tobacco 145 to form the tobacco section 140, and then the upper opening of the outer paper 160 is closed, so that the heat-not-burn tobacco product 100 of FIG. 1 is formed. Complete.
  • the heat-not-burn tobacco product 100 in which a large number of filter sections 120 and tobacco sections 140 are connected in this way is cut perpendicularly in the longitudinal direction at the middle portion of each filter section 120 after the reconstituted tobacco filling amount inspection described later. As a result, it is separated into individual capsules 102.
  • One capsule 102 is a unit used in one smoking. When smoking, the tobacco section 140 of the capsule 102 is heated by an electric heater or the like to generate an aerosol containing a tobacco component from the reconstituted tobacco 145.
  • FIG. 2 is a schematic configuration diagram of a measuring device 200 for measuring the weight of the reconstituted tobacco 145 filled in the tobacco section 140 of the heat-not-burn tobacco product 100.
  • the measuring device 200 includes a transport unit 210, a transmission antenna 220, a reception antenna 230, a calculation unit (for example, a computer having a processor) 240, and a storage unit (for example, a computer-readable storage device) 250.
  • the measuring device 200 can be incorporated as a part of a manufacturing device for manufacturing the heat-not-burn tobacco product 100 and the capsule 102 as described above.
  • Such a measuring device 200 is available as a granule inspection device (model number HMW-GM100) from, for example, Yakko Automation Co., Ltd. (located in Fukuoka Prefecture).
  • Example 2 Measurement of microwave phase change amount of heat-not-burn tobacco product sample A and acquisition of calibration curve
  • the heat-not-burn tobacco product 100 in which the filter section 120 and the tobacco section 140 are connected is , Transported by transport unit 210.
  • the heat-not-burn tobacco product 100 on the transport unit 210 is continuously irradiated with microwaves having a frequency of, for example, 8 GHz or more and 24 GHz or less from the transmitting antenna 220, and the microwave transmitted through the heat-not-burn tobacco product 100 is transmitted to the receiving antenna.
  • Received by 230 Received by 230.
  • the phase of the microwave changes depending on the permittivity of the substance through which the microwave passes.
  • the phase of the microwave received by the receiving antenna 230 when there is no heat-not-burn tobacco product 100 is set to ⁇ 1, and the phase of the microwave received by the receiving antenna 230 after passing through the tobacco section 140 of the heated tobacco product 100 is set to ⁇ 2.
  • the horizontal axis of FIG. 3 shows the weight of the reconstructed tobacco included in the tobacco section 140, and the vertical axis shows the phase difference ⁇ .
  • the phase difference ⁇ and the weight of the reconstituted tobacco 145 have a linear relationship (more specifically, when the weight of the reconstructed tobacco 145 increases from 0 mg to 400 mg, the phase difference ⁇ becomes It decreases linearly from 0.02 (rad) to -0.25 (rad)). Therefore, if the measurement result as shown in FIG. 3 is obtained in advance, the reconstructed tobacco included in the tobacco section 140 can be obtained from the value of the phase difference ⁇ measured for the heat-not-burn tobacco product 100 as the object to be measured. The weight can be calculated.
  • the calculation unit 240 reads out the coefficient of the calibration curve from the storage unit 250 and applies the value of the phase difference ⁇ measured for the heat-not-burn tobacco product 100, which is the object to be measured, to the calibration curve, thereby forming each tobacco section 140. Calculate the weight of the reconstituted tobacco that is filled.
  • the reconstructed tobacco granules may move in the tobacco section 140 to cause a bias in the distribution and cause the microwave phase ⁇ 2 to fluctuate.
  • obtain. 4 and 5 are examples of experimental results showing the effect of bias of reconstituted tobacco granules within the tobacco section 140.
  • the phase ⁇ 2 of the microwave transmitted through the tobacco section 140 was measured with the heat-not-burn tobacco product 100 tilted at a predetermined angle from the horizontal plane H.
  • the surface formed by the reconstituted tobacco granules in the tobacco section 140 is a heat-not-burn tobacco as shown in FIG. It is considered that the distribution of the reconstituted tobacco granules is biased in the tobacco section 140 due to the slant in the longitudinal direction of the product 100.
  • the horizontal axis represents the tilt angle of the heat-not-burn tobacco product 100 from the horizontal plane
  • the vertical axis represents the measured microwave phase ⁇ 2.
  • the phase ⁇ 2 of the microwave transmitted through the tobacco section 140 is the heat-not-burn tobacco. It can be seen that it does not depend much on the tilt angle of the product 100.
  • the phase ⁇ 2 of the microwave transmitted through the tobacco section 140 largely depends on the tilt angle of the heat-not-burn tobacco product 100. You can see that it doesn't.
  • the filling rate of the reconstituted tobacco granules in the tobacco section 140 is high in the configuration of these dimensions, so that the reconstituted tobacco granules are less likely to be biased in the tobacco section 140.
  • the inclination angle of the heat-not-burn tobacco product 100 is about 30 ° or less, the phase ⁇ 2 of the microwave is substantially constant regardless of the inclination angle. Therefore, under the assumption that the bias of the reconstituted tobacco granules in the tobacco section 140 is small, the filling weight of the reconstructed tobacco 145 can be calculated with relatively good accuracy from the value of the phase difference ⁇ .
  • Example 3 Prototype of heat-not-burn tobacco product sample B
  • the amount of reconstituted tobacco granules is 0.0 mg, 50.0 mg, 100.0 mg, 150.0 mg, 200.0 mg, 250.0 mg, 300.0 mg 7
  • samples of heat-not-burn tobacco products were prototyped according to the following procedure.
  • the packing densities of the reconstituted tobacco granules of Samples B1 to B7 were 0.0 mg / cm 3 , 87.3 mg / cm 3 , 174.6 mg / cm 3 , 262.0 mg / cm 3 , 349.3 mg / cm 3 , 436.
  • the target was .6 mg / cm 3 , 523.9 mg / cm 3 .
  • a wrapping paper (model number) with a basis weight of 150 g / m 2 wound on a bobbin, a thickness of 220 ⁇ m, a sandrami S52 / # 85, a width of 26.5 mm, and a length of 1000 m was prepared (manufactured by Nippon Paper Papylia). ).
  • extruded reconstituted tobacco slurry obtained by kneading powder, fragrance, additive or moisturizer or viscosity modifier of crushed Burley and yellow and Orient dried leaf tobacco with water and calcium carbonate.
  • the reconstituted tobacco granules were pulverized and the particle size distribution was adjusted to a mesh size of 250 to 710.
  • a filter section a filter section having an outer circumference length of 24.5 mm, a diameter of 7.8 mm, and a length of 4 mm, in which acetate fibers were wound with filter molding paper, was prepared (manufactured by Japan Filter Technology).
  • the glue vinyl acetate glue and hot melt glue were prepared.
  • the heat-not-burn tobacco product 100 shown in FIG. 1 was manufactured from the above materials as follows.
  • the outer paper 160 is mounted on a manufacturing machine including a transport device and is continuously fed out from the bobbin, and a glue coating device (not shown) continuously produces vinyl acetate glue from 0.8 mm in a direction substantially parallel to the transport direction.
  • a hot melt glue having a width of 1.0 mm and a width of 0.5 mm was applied to the upper surface of the exterior paper 160.
  • the outer paper 160 was conveyed in the longitudinal direction by a conveying device (for example, the conveying section 210 shown in FIG. 2).
  • filter sections 120 are arranged near the center in the width direction at a predetermined interval (12 mm in this case) in the longitudinal direction of the exterior paper 160. It was.
  • the outer paper 160 and the filter section 120 are bent so that the edge of the outer paper 160 faces upward while being continuously moved in the longitudinal direction by the transport portion 210, and the filter section 120 arranged with the outer paper 160 is upward.
  • the filter section 120 partitions the groove of the open U-shaped outer paper 160 (this section becomes a cavity at the end of the process, and is therefore referred to as a cavity for convenience).
  • a belt conveyor was installed above the transport unit 210. Reconstructed tobacco granules are supplied from the buffer tank to the belt conveyor, and the reconstructed tobacco granules are delivered at a predetermined timing synchronized with the cavity moving on the transport device and at a predetermined rate according to the filling amount of the cavity.
  • the conveyor and belt conveyor were controlled so that they would fall through the tobacco supply holes provided in the vibrating conveyor. As a result, the cavity portion on the transport portion 210 was filled with the reconstituted tobacco granules from above through the tobacco supply hole, and the tobacco section 140 was formed.
  • a vinyl acetate glue having a width of 0.8 mm to 1.0 mm is continuously formed in a direction substantially parallel to the transport direction by a glue coating device (not shown) near the edge of one side of the exterior paper 160 bent upward. Then, the hot melt glue was applied with a width of 0.5 mm. The one-sided edge of the glue-coated exterior paper 160 was overlapped with the vicinity of the other edge of the exterior paper 160, and the exterior paper 160 was bonded in the vicinity of the two edges with a width of about 2.0 mm.
  • the intermediate of the continuous rod-shaped heat-not-burn tobacco product is cut into a fixed length so as to include the tobacco section 140 for 6 sections, and the heat-not-burn tobacco product 100 has a length of 120 mm, a diameter of 7.8 mm, and a circumference of 24.5 mm.
  • the amount of microwave phase change in the intermediate of the heat-not-burn tobacco product on the transport unit 210 was measured by the measuring device 200.
  • the phase of the microwave changes according to the dielectric constant of each tobacco section 140 of the heat-not-burn tobacco product 100 through which the microwave is transmitted.
  • the amount of phase change was measured.
  • the measurement result obtained over time was stored in the storage unit 250 as phase change amount data via the calculation unit 240.
  • the antenna 230 received microwaves transmitted through the tobacco section 140 of the heat-not-burn tobacco product 100.
  • the heat-not-burn tobacco product 100 was irradiated with microwaves having a phase of ⁇ 0, the phase of the microwaves transmitted through the filter section 120 changed to ⁇ 1, and the phase of the microwaves transmitted through the tobacco section 140 changed to ⁇ 2.
  • the change from ⁇ 1 to ⁇ 2 was a periodic change due to the structure in which the heat-not-burn tobacco product 100 had the tobacco section 140 and the filter section 120 arranged alternately.
  • the path length from the receiving / transmitting antenna of the measuring device 200 to the cutting portion is registered in the storage unit 250.
  • the path length was an integral multiple of the total length of the tobacco section 140, in this case three times.
  • the total length of the heat-not-burn tobacco product 100, the length of the tobacco section 140, the length of the filter section 120, and the ratio of each section to the total length of the heat-not-burn tobacco product 100 are registered in advance.
  • the periodic and continuous raw data acquired by the measuring device 200 is processed by the calculation unit 240, and the length of the tobacco section 140, which is 12 mm, is 12 mm based on the center position of each tobacco section 140 of the heat-not-burn tobacco product 100.
  • the peak of the phase change amount is detected within the section of ⁇ 5%, that is, within the section of about 6.0 mm ⁇ 0.6 mm from the position where the filter section 120 and the tobacco section 140 abut, and the phase change amount value of the peak is extracted. Then, the phase change amount of the tobacco section was used. Furthermore, the number of peaks of the amount of phase change was captured and counted.
  • These processing results by the calculation unit 240 are stored in the storage unit 250. This made it possible to collate each tobacco section 140 with its phase change amount.
  • Sample B-7 which targets a filling amount of 300.0 mg of the reconstituted tobacco granules, was not properly filled with the cavity passing directly under the tobacco supply hole before all the reconstituted tobacco granules were filled. .. Therefore, sample B-7 was excluded from the following Example 4.
  • Table 1 shows the target granule weights of Samples B-1 to 6 and the average value of the amount of phase change measured for 100 heat-not-burn tobacco products 100 continuously produced for each sample.
  • Example 4 Weight measurement of reconstituted tobacco granules of heat-not-burn tobacco product samples B1 to 6 From at least 100 samples B-1 to 6 obtained in Example 3 above, 10 samples each were randomly selected. Was selected, and the weight was measured one by one with a precision balance (ME4001T / 00 manufactured by Metrator Toledo). The weights of the exterior paper, filter section, and glue, which are materials other than the reconstituted tobacco granules, were subtracted from the weight of the sample, and the measured weight of the reconstructed tobacco granules filled in one sample was calculated. The weight of the reconstituted tobacco granules contained in one cavity was calculated by dividing the calculated weight of the reconstituted tobacco granules by the number of cavities of 6. Table 2 shows the target granule weights of Samples B-1 to 6, the average weight of the reconstituted tobacco granules contained in one cavity, and the granule density.
  • the heat-not-burn tobacco product 100 manufactured with the target granule weight using the phase change amount of the tobacco section 140 obtained by irradiating the microwave at 8 GHz as an index has the target value granule weight and the actual measurement.
  • the difference in the weight of the granules was within 5%.
  • FIG. 7 A graph plotting the X-axis with the filling amount of the reconstituted tobacco granules of Samples B-1 to 6 obtained in Example 4 and the phase change amount of Samples B-1 to 6 obtained in Example 3 on the Y-axis. It is shown in FIG. As is clear from the linear approximation formula and the correlation coefficient, FIG. 7, a sample of the heated tobacco product 100 produced with each target granule weight using the amount of phase change obtained by irradiating 8 GHz microwaves as an index. It was shown that the phase change amount of the tobacco section 140 was in the range of 0.00 to -10.00 (deg), and the phase change amount and the granule weight were in a linear relationship. Therefore, if the measurement result as shown in FIG. 3 is obtained in advance, the reconstructed tobacco included in the tobacco section 140 can be obtained from the value of the phase difference ⁇ measured for the heat-not-burn tobacco product 100 as the object to be measured. It was confirmed that the weight can be calculated.
  • the inventors have stated that the filling amount of the tobacco raw material (reconstituted tobacco, reconstituted tobacco granules, reconstituted tobacco sheet) is one heating by the consumer. There is a high possibility that it is linked to the level of sensuality and tasting experience obtained by liking a type of tobacco product and the number of times a consumer can taste one heat-not-burn tobacco product, and the amount of tobacco raw material is one. I was aware of the issues of managing all of them and guaranteeing them within the standard.
  • the method of measuring tobacco materials well known in the tobacco manufacturing process cannot be applied to the heat-not-burn tobacco manufacturing process, and can cope with the very high production speed (1500 cigarettes / minute or more) of the heat-not-burn tobacco product. Since there was no method for measuring density, the amount of tobacco raw material for heat-not-burn tobacco products could not be guaranteed within the standard.
  • the inventors have stated that the distribution of the filling amount per tobacco raw material (reconstituted tobacco, reconstituted tobacco granules, reconstituted tobacco sheet) to be filled in the heat-not-burn tobacco product may follow a normal distribution. If it is confirmed that the amount of phase change for each cigarette obtained by 8 GHz microwave irradiation follows a normal distribution in the samples B-1 to 6 obtained in Example 3 after making a hypothesis, the heat-not-burn tobacco product The amount of phase change obtained for each cigarette at the same time during production is compared with the finite average value and standard deviation, and the filling amount of the reconstituted tobacco granules of the produced heat-not-burn tobacco is guaranteed within the 100% standard. I came up with the idea that quality control is possible.
  • heat-not-burn tobacco products can be quality-controlled by measuring the amount of phase change of microwaves with a frequency of 8 GHz transmitted through the tobacco section and using the mean value ⁇ and standard deviation ⁇ of the measured data obtained over time as indicators.
  • Heat-not-burn tobacco products are reconstituted tobacco granules based on the measured data of the phase change of microwaves with a frequency of 8 GHz transmitted through the tobacco section, with the phase change of ⁇ ⁇ 3 ⁇ , ⁇ ⁇ 2 ⁇ , and ⁇ ⁇ ⁇ as the control level. It is possible to control the filling amount of.
  • B-3 sample and one B-3 sample showing a maximum value of -9.99 were excluded in the manufacturing process because they deviated from the control level, and the minimum value-11.59 in the basic statistics table.
  • One B-4 sample showing the above value and one B-4 sample showing the maximum value of -12.28 are excluded in the manufacturing process because they deviate from the control level, and are the minimum in the basic statistics table.
  • One B-5 sample showing a value of -13.68 and one B-5 sample showing a maximum value of -14.31 are excluded in the manufacturing process because they deviate from the control level.
  • One B-6 sample showing a minimum value of -15.45 and one B-6 sample showing a maximum value of -16.09 in the statistics table deviate from the control level, so the manufacturing process Is eliminated by.
  • heat-not-burn tobacco products that are not excluded by quality control have a phase change amount within the range of ⁇ 5.88 ⁇ 0.18 [deg] based on the data actually measured in Samples B-1 to 6.
  • Heat-not-burn tobacco products in the range of -7.32 ⁇ 0.27 [deg] heat-not-burn tobacco products in the range of -9.73 ⁇ 0.27 [deg]
  • Heat-not-burn tobacco products in the above, heat-not-burn tobacco products whose phase change amount is within the range of -15.84 ⁇ 0.36 [deg] and such heat-not-burn tobacco products are filled with reconstituted tobacco granules.
  • Quality control is performed with a quantity of ⁇ ⁇ 3 ⁇ .
  • heat-not-burn tobacco products that are not excluded by quality control have a phase change amount within the range of ⁇ 5.88 ⁇ 0.12 [deg] based on the data actually measured in Samples B-1 to 6.
  • Heat-not-burn tobacco products in the range of -7.32 ⁇ 0.18 [deg] heat-not-burn tobacco products in the range of -9.73 ⁇ 0.18 [deg]
  • Heat-not-burn tobacco products in the above, heat-not-burn tobacco products whose phase change amount is in the range of -15.84 ⁇ 0.24 [deg] and such heat-not-burn tobacco products are filled with reconstituted tobacco granules.
  • Quality control is performed with a quantity of ⁇ ⁇ 2 ⁇ .
  • heat-not-burn tobacco products that are not excluded by quality control have a phase change amount within the range of ⁇ 5.88 ⁇ 0.06 [deg] based on the data actually measured in Samples B-1 to 6.
  • Heat-not-burn tobacco products in the range of -7.32 ⁇ 0.09 [deg] heat-not-burn tobacco products in the range of -9.73 ⁇ 0.09 [deg]
  • Heat-not-burn tobacco products in the above, heat-not-burn tobacco products whose phase change amount is within the range of -15.84 ⁇ 0.12 [deg] and such heat-not-burn tobacco products are filled with reconstituted tobacco granules.
  • Quality control is performed with the quantity ⁇ ⁇ ⁇ .
  • the heat-not-burn tobacco product whose phase change amount is within the above range by irradiating the microwave of 8 GHz to obtain the phase change amount is an excellent heat-not-burn tobacco product whose quality control of the granule filling amount is performed.
  • Heat-not-burn tobacco products with such quality control can only be sent to the next packaging process. Similarly, only they can be stored in the warehouse. Similarly, only they can be shipped. Similarly, only they can be distributed. Similarly, only those can be used by consumers.
  • Heat-not-burn tobacco products that show a phase change of -0.25 (rad) to 0.02 (rad) when irradiated with 8 GHz microwaves are excellent in that the sensory that consumers expect is guaranteed by quality control. It is a high quality heat-not-burn tobacco product.
  • a heat-not-burn tobacco product containing a tobacco section showing a phase change amount of -15.84 (deg) or more and -5.88 (deg) or less when irradiated with microwaves of 8 GHz. Is an excellent quality heat-not-burn tobacco product that guarantees the sensuality that consumers expect.
  • heat-not-burn tobacco products containing a tobacco section showing a phase change of -15.84 (deg) or more and less than -5.88 (deg) when irradiated with 8 GHz microwaves Is an excellent quality heat-not-burn tobacco product that guarantees the sensuality that consumers expect.
  • Example 5 when irradiated with 8 GHz microwaves, within the range of -15.84 ⁇ 0.36 (deg), or within the range of -15.84 ⁇ 0.24 (deg), or- Heat-not-burn tobacco products that include a tobacco section that exhibits a phase change in the range of 15.84 ⁇ 0.12 (deg) are excellent quality heat-not-burn tobacco products that guarantee the sensory that consumers expect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

適正量の再構成たばこが充填された喫煙物品を提供する。 円筒状加熱式たばこ製品は、直径5.4mmから7.8mmの複数のセクションからなり、長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、を含み、周波数8GHzのマイクロ波を照射した際に、前記たばこセクションを透過したマイクロ波は-0.25(rad)~0.02(rad)の位相変化量を示す。

Description

円筒状加熱式たばこ製品
 本発明は、円筒状加熱式たばこ製品に関する。
 細長い円筒容器内に(例えば顆粒状の)再構成たばこが充填されて構成された喫煙物品が現在市販されている。このような喫煙物品の製造において、再構成たばこ、特に再構成たばこ顆粒の充填量を厳格に管理することが求められている。
 従来、紙巻たばこの製造工程では、たばこロッドを挟んで一対の静電電極を対向配置し、この一対の静電電極間の静電容量から刻みたばこの充填量を計測する装置が知られている(例えば、特許文献1を参照)。また、被測定物にマイクロ波を照射し、被測定物を透過したマイクロ波の振幅と位相の比に基づいて当該被測定物の特性を評価する装置も知られている(例えば、特許文献2を参照)。
特開平11-346747号公報 特開2015-161597号公報
 加熱式たばこ製品に含まれる再構成たばこは、従来の紙巻きたばこのたばこ原料と異なり、種々の添加物を含む。種々の添加物は照射されたマイクロ波の振幅と位相を変化させて外乱する。従来の方法では外乱を排除できない。
 再構成たばこが充填されて構成された加熱式たばこ製品のたばこセクション・たばこロッドは、従来の紙巻たばこのたばこロッドより、たばこ原料の密度が大きく、たばこ原料の充填密度も大きい。そのため、このような加熱式たばこ製品には、従来の紙巻きたばこで公知のマイクロ波を照射する方式でのたばこ原料の密度測定方法が適用できない。特にマイクロ波の周波数帯が異なる。
 再構成たばこが充填されて構成された加熱式たばこ製品では、たばこ原料として再構成たばこを含むたばこセクションとたばこ原料を含まない材料セクション、フィルターセクションが連続する。加熱式たばこ製品の製造工程において、たばこ原料を含まない材料セクション、フィルターセクションは、照射されたマイクロ波の振幅と位相をたばこ原料と異なる値で変化させ外乱する。従来の方法では外乱を排除できない。
 再構成たばこが充填されて構成された加熱式たばこ製品において、たばこ原料としての再構成たばこ、再構成たばこ顆粒、再構成たばこシートの充填量は、消費者が1本の加熱式たばこ製品を嗜むことで得られる官能や喫味体験の水準や消費者が1本の加熱式たばこ製品を嗜むことが出来る回数と連動している可能性が高いと考えられるため、たばこ原料の量を1本毎に全数管理して規格内に保証することが求められる。従来の方法が適用できないこと、加熱式たばこ製品の非常に高速(1500本/分以上)の製造速度に対応し得る密度測定方法がなかったことから、再構成たばこが充填されて構成された加熱式たばこ製品のたばこ原料の量を適正量内に保証できなかった。
 したがって、再構成たばこが充填されて構成された加熱式たばこ製品において、たばこ原料の量が適正量内に品質管理された加熱式たばこ製品が求められている。
 本発明は、上記の事情に鑑みてなされたものであり、その目的の1つは、適正量の再構成たばこ、特に再構成たばこ顆粒が充填された喫煙物品を提供することにある。
 上述した課題を解決するために、本発明の一態様は、直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、を含み、周波数8GHzのマイクロ波を照射した際に、前記たばこセクションを透過したマイクロ波は-0.25(rad)~0.02(rad)の位相変化量を示す、円筒状加熱式たばこ製品である。
 また、本発明の他の一態様は、直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-5.88(deg)以下の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品である。
 また、本発明の他の一態様は、直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-5.88(deg)未満の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品である。
 また、本発明の他の一態様は、直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-7.32(deg)以下の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品である。
 また、本発明の他の一態様は、上記一態様において、前記フィルターセクションと前記たばこセクションは長手方向に交互に配置されている。
 また、本発明の他の一態様は、上記一態様において、前記たばこセクションは再構成たばこ又は再構成たばこ顆粒を含む。
 また、本発明の他の一態様は、上記一態様において、前記たばこセクションは刻みたばこを含まない。
 また、本発明の他の一態様は、上記一態様において、前記たばこセクションは膨化たばこを含まない。
 また、本発明の他の一態様は、上記一態様において、前記たばこセクションは再生たばこを含まない。
 本発明によれば、適正量の再構成たばこが充填された喫煙物品を提供することができる。
本発明の一実施形態に係る円筒状加熱式たばこ製品の概略構成図である。 本発明の一実施形態に係る、喫煙物品のたばこセクションに充填されている再構成たばこの重量を測定するための測定装置の概略構成図である。 マイクロ波を用いて喫煙物品を測定した結果の一例である。 マイクロ波を用いて喫煙物品を測定した結果の一例である。 マイクロ波を用いて喫煙物品を測定した結果の一例である。 マイクロ波を用いて喫煙物品を測定する際の配置の一例である。 再構成たばこ顆粒の充填量と位相変化量の相関をプロットしたグラフである。 試料B-1についての位相変化量とその期待値との正規確率プロットである。 試料B-2についての位相変化量とその期待値との正規確率プロットである。 試料B-3についての位相変化量とその期待値との正規確率プロットである。 試料B-4についての位相変化量とその期待値との正規確率プロットである。 試料B-5についての位相変化量とその期待値との正規確率プロットである。 試料B-6についての位相変化量とその期待値との正規確率プロットである。
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 図1は、本発明の一実施形態に係る円筒状加熱式たばこ製品の概略構成図であり、その長手方向に沿った断面を示している。加熱式たばこ製品100は、直径が例えば5.4mmから7.8mmの円筒形状を有し、複数のフィルターセクション120と複数のたばこセクション140が交互に長手方向に並んで構成されている。フィルターセクション120とたばこセクション140の円筒側面は、フィルターセクション120とたばこセクション140がばらばらにならないように、外装紙160によって一体的に被覆されている。
 フィルターセクション120は、例えばアセテート繊維からなり、たばこセクション140から発生したエアロゾルを濾過する働きを有する。フィルターセクション120は、付加的に活性炭を含んでもよい。加熱式たばこ製品100の長手方向におけるフィルターセクション120の長さは、例えば4mm以上8mm以下とすることができる。
 たばこセクション140は、連続する2つのフィルターセクション120の間に設けられた空洞部分に、所定量の再構成たばこ145が充填されることによって構成されている。再構成たばこ145は、乾燥させた葉タバコを一旦粉末にし、多糖類や炭酸カルシウム等のバインダーと混錬したものを、再度シート状や顆粒状など所定の形に成形して得られるたばこ材料である。例えば、葉タバコの粉末とバインダーとの混錬物を押し出し成形することで、顆粒状の再構成たばこ145を得ることができる。加熱式たばこ製品100の長手方向におけるたばこセクション140の長さは、例えば8mm以上18mm以下とすることができる。
 ここで、葉タバコから再構成たばこを製造する方法について、より詳しく説明する。
 葉タバコは、栽培種としてのNicotiana tabacum種とNicotiana rustica種のタバコ植物、野生種としてのNicoatiana属のタバコ植物の葉・葉柄・茎・花からなる。Nicotiana tabacum種には大別して黄色種、バーレー種、オリエント種の栽培品種が知られる。
 葉タバコを乾燥させたものが乾燥葉たばこである。乾燥葉たばこは、たばこ製造業におけるたばこ原料である。乾燥葉たばこは、たばこ製造工程中で、ラミナ:葉肉・葉脈と、ステム:葉脈・葉柄・茎に分離される。
 葉肉、一部の茎・葉柄・葉脈は裁刻され刻みたばことなる。刻みたばこにおいては、葉タバコの植物組織又は維管束構造は保存されている。
 茎・葉柄・葉脈、一部の葉肉を圧縮減圧処理で膨らませたものが膨化たばこである。膨化たばこは、同様に裁刻されて刻みたばこに混和される。膨化たばこにおいて、葉タバコの植物組織又は維管束構造は拡張されて保存されている。
 たばこ製造工程において破損した乾燥葉たばこ・刻みたばこ又は膨化たばこの断片・粉塵は、溶解され、漉いて、再生たばこ又は再生たばこシートへ再生される。再生たばこは、同様に裁刻されて刻みたばこに混和される。再生たばこにおいて、葉タバコの植物組織又は維管束構造又は細胞壁構造は保存されている。
 葉タバコ・乾燥たばこ葉・刻みたばこ・膨化たばこ又は再生たばこを、粉砕・磨砕して混和すると、均質化たばこが得られる。
 均質化たばこに、添加物として以下に例示するような結合剤・ゲル化剤・架橋剤・香料・親水性香料・親油性香料・粘度調整剤・保湿剤または補強材を混錬し、液体・ゲル・ゾルまたは軟弱な固体であるスラリーとした後、乾燥処理・脱水処理・抄造処理・押出成形することで、再構成たばこが得られる。
 結合剤やゲル化剤は、例えば天然高分子・ゼラチン・コンドロイチン流酸塩、多糖類や多糖類塩:アルギン酸塩・カラギーナン・ジェランガム・グアーガム・アガロース・ソルビトール・転化糖・デンプン・デキストリン・でんぷん分解物・酸化デンプンを用いることができる。架橋剤は、例えば無機塩・カルシウム塩・炭酸カルシウム・カリウム塩・炭酸カリウム・マグネシウム塩、炭酸マグネシウム・ナトリウム塩・炭酸ナトリウム・クエン酸トリエチルを用いることができる。香料は、例えば植物精油・葉タバコ抽出液・葉タバコ磨砕液・メンソール、合成香料、天然香料、精油などでよく、また親油性、親水性を問わず用いることができる。親油性香料は、例えばバニリン、エチルバニリン、グアリナロール、チモル、メチルサリシレート、リナロール、オイゲノール、メントール、クローブ、アニス、シナモン、ベルガモット油、ゼラニウム、レモン油、スペアミント油、ショウガオールを用いることができる。親水性香料は、例えばグリセリン、プロピレングリコール、エチルアセテート、イソアミルアルコールを用いることが出来る。粘度調整剤は、例えば水・油脂・脂肪酸・親水性溶媒・アルコール・エタノール・グリセリン・プロピレングリコールを用いることができる。保湿剤は、例えば水・グリセリン・プロピレングリコールを用いることができる。補強材は、例えばたばこ繊維・たばこセルロース繊維・木質パルプ・セルロース繊維・非たばこセルロース繊維等)を用いることができる。
 均質化たばこと、結合剤やゲル化剤・架橋剤・香料・粘度調整剤を混錬した液体又はゲルの再構成たばこスラリーを、シート状に成型したものが再構成たばこシートである。再構成たばこスラリーを漉いたものが再構成たばこ抄造シート、平板上に展開した再構成たばこスラリーを乾燥・脱水したものが再構成たばこスラリーシート(再構成たばこキャストシート)である。
 均質化たばこと、結合剤やゲル化剤・架橋剤・香料・粘度調整剤を混錬したゲル又は軟弱な固体である再構成たばこスラリーを押出成形したもの、さらに乾燥したもの、さらに粉砕したもの又は液体・ゲル・ゾル・軟弱な固体である再構成たばこスラリーから造粒したものが、再構成たばこ顆粒である。
 均質化されたたばこ材料シートを製造するための多数の再構成プロセスが当業界で周知である。これらには、例えばUS-A-3、860、012号に記載されているタイプの製紙プロセス、例えばUS-A-5、724、998号に記載されているタイプのキャスティングまたは「キャストリーフ」プロセス、例えばUS-A-3、894、544号に記載されているタイプの軟塊再構成プロセス、および例えばGB-A-983、928号に記載されているタイプの押出プロセスが含まれるが、これらに限定されない。
 一般に、押出プロセスおよび軟塊再構成プロセスにより製造された均質化されたたばこ材料シートの密度は、キャスティングプロセスにより製造した均質化されたたばこ材料シートの密度よりも大きい。再構成たばこシート、再構成たばこ顆粒は、均質化するため破砕・磨砕される工程で葉タバコの植物組織、細胞壁構造が破壊され、さらに添加物が細胞壁構造内を充填することから単位容積当たりの重量(嵩密度)又は単位面積当たりの重量(坪量)が大きい。例えば、再構成たばこスラリーシートは、室温26℃、湿度60%の条件下で、約100g/m~約300g/mの坪量を持ちうる。また例えば、再構成たばこ顆粒は、室温26℃、湿度60%の条件下で、約40g/100ml~約60g/100mlの嵩比重を持ち得る。
 再構成たばこは、葉たばこの植物組織・維管束構造・細胞壁構造が磨砕により失われていること、混錬してセルロース繊維の走行方向が乱雑になっていることから、刻みたばこ・膨化たばこ・再生たばこと比して弾性が劣る。特に再構成たばこ顆粒は、弾性が殆ど認められない脆弱な顆粒である。
 以下、従来の紙巻きたばこの構造と本発明の実施形態に係る加熱式たばこ製品の構造を対比して説明する。
 従来の紙巻たばこにおいて、たばこロッドは、たばこ原料を巻紙で巻いて構成される。巻紙とたばこ原料は、共働で外力に抗し、たばこロッドの構造を維持する。巻紙は長軸方向への引張力に対する応力を担い、たばこ原料は長軸方向の圧縮力・長軸を横断する面と平行なせん断力への応力を担い、たばこロッドの構造を維持する。たばこ原料は砕片の混合物であるが個々の砕片が有する弾性が応力を担う。たばこロッドは一般的に40mm以上100mm以下の長さである。
 紙巻きたばこのたばこロッド部が含むたばこ原料は、刻みたばこ・膨化たばこ・再生たばこシートの混合物であり、一般的に、主原料は刻みたばこであり、副原料は膨化たばこや再生たばこシートである。
 紙巻きたばこにおいて、刻みたばこ・膨化たばこ・再生たばこシートは、葉タバコの植物組織、細胞壁構造が保存され、細胞壁構造内に添加物を含まないことから、その混合物であるたばこ原料の密度は小さい。刻みたばこ・膨化たばこ・再生たばこシートは、弾性が優れることから、たばこロッドの構造を維持するために必要な量は少ない。紙巻きたばこのたばこロッドにおけるたばこ原料の充填密度は一般的に約0.2g/cmである。
 例えば、代表的な紙巻たばこのある製品におけるたばこ原料は、刻みたばこが主原料であり72.5重量%、膨化たばこが副原料であり18.1重量%を占め、再生たばこシートが9.2重量%を占め、たばこロッド部に含まれる刻みたばこ・膨化たばこ・再生たばこシートの混合物であるたばこ原料は0.216g/cmの充填密度である。また例えば、代表的な紙巻たばこの別の製品におけるたばこ原料は、刻みたばこが主原料であり72.8重量%、膨化たばこが副原料であり22.4重量%、再生たばこシートが副原料であり4.8重量%を占め、たばこロッド部に含まれる刻みたばこ・膨化たばこ・再生たばこシートの混合物であるたばこ原料は0.191g/cmの充填密度である。
 本発明の実施形態に係る加熱式たばこ製品において、たばこ原料を含む部位は、たばこセクション・たばこロッド・たばこカプセルの形態で良い。たばこ原料は再構成たばこ、再構成たばこシート・再構成たばこスラリーシート・再構成たばこ抄造シート・再構成たばこ顆粒でよい。たばこロッドは、再構成たばこシート・再構成たばこスラリーシート・再構成たばこ抄造シートを断片として巻紙で包んで良い。
 再構成たばこは、弾性が劣ることから、紙巻きたばこのように巻紙と共働して外部からの圧縮力・せん断力への応力を担う能力に劣り、加熱式たばこ製品の構造維持を担う能力が劣る。加熱式たばこ製品の再構成たばこが構造維持を担う能力に劣る欠点は、加熱式たばこ製品の設計で補う。
 例えば、たばこセクション構造では、2つのアセテート繊維セクション(フィルターセクション120)を適宜の間隔で配置し、その間を巻紙で繋いだ構造をとり、再構成たばこには構造維持を担わせない。好ましい間隔は18mm以内である。
 また例えば、たばこロッド構造では、従来の紙巻きたばこにおけるたばこ原料の密度(0.2g/cm)を超える0.25g/cm以上、好ましくは0.26g/cm以上または0.27g/cm以上、更に好ましくは0.3g/cm以上の、従来の紙巻きたばこより高い充填密度で再構成たばこを充填する。また例えば、たばこカプセル構造では、外力に抗し得る硬質のプラスチック製カプセル内部に再構成たばこ顆粒を充填し、再構成たばこは抗力に関与しない。
 本発明の実施形態に係る加熱式たばこ製品において、たばこ原料を含む部位は、たばこロッド・たばこセクションで良い。たばこセクション・たばこロッドの構造維持のため、たばこ原料、再構成たばこ顆粒・再構成たばこシート、再構成たばこスラリーシート、再構成たばこ抄造シートを、紙巻きたばこより高密度で充填する必要がある。しかしながら、充填密度が高すぎる場合、加熱式たばこ製品中を流通する空気流が高くなる、すなわち通気抵抗が高くなり過ぎて吸引が困難となる。
 本発明の実施形態に係る加熱式たばこ製品において、たばこセクション140は、再構成たばこ・再構成たばこシート・再構成たばこ顆粒を含む。加熱式たばこ製品は、1つのたばこセクション140と、たばこセクション140との通気性を有する1又は2つのアセテート繊維セクション(フィルターセクション120)が、長軸方向に連続する棒状物品であって良い。たばこセクション140とアセテート繊維セクションは連接して良い。たばこセクション140とアセテート繊維セクションは、たばこを含まずアセテート繊維も含まないインターセクションと連接して良い。
 加熱式たばこ製品は、たばこセクション140とアセテート繊維セクション(フィルターセクション120)を繰り返し単位として、長軸方向に順に連接した第1種連続棒状物品、又は、たばこセクション140とインターセクションとアセテート繊維セクション(フィルターセクション120)を繰り返し単位として、長軸方向に順に連接した第2種連続棒状物品を得た後、第1種又は第2種連続棒状物品を、アセテート繊維セクションの凡そ中間の位置またはアセテート繊維セクションとたばこセクション140の連接面を切断することで得られる。
 第1種連続棒状物品は、次の方法1-1又は1-2で得られる。(方法1-1)略水平方向へ運動するU字状に成型された巻紙上に、定間隔を設けてアセテート繊維セクション、特に予め巻取紙で包まれた略円筒形のアセテート繊維セクションを載置し、次にアセテート繊維セクション間に再構成たばこ顆粒を充填する。再構成たばこ顆粒を充填した後、巻紙の両端を重ね合わせ、シール糊で巻紙の辺縁を接着して第1種連続棒状物品を得る。(方法1-2)略水平方向へ運動するU字状に成型された巻紙上に、アセテート繊維セクション、特に予め巻取紙で包まれた略円筒形のアセテート繊維セクションを載置し、再構成たばこシートセクション、特に予め巻取紙で包まれた略円筒形の再構成たばこセクション140を載置した後、巻紙の両端を重ね合わせ、シール糊で巻紙の辺縁を接着して第1種連続棒状物品を得る。
 第2種連続棒状物品は、次の方法2で得られる。(方法2)たばこ原料を巻紙で巻いて構成される。たばこ原料の主原料は再構成たばこである。加熱式たばこ製品のたばこロッド部又はたばこカプセル部は、見かけ密度の大きい原料で構成されている。特に、再構成たばこシートを含むたばこセクション140が含む再構成たばこシート量は、再構成たばこシートを定長に切断することで定量を含ませ得るが、再構成たばこ顆粒を含むたばこセクション140が含む再構成たばこ量は、定量が困難である。
 従来の紙巻きたばこ製造業において公知のマイクロ波を用いた密度測定装置は、密度の小さい刻みたばこ・膨化たばこ・再生たばこの混合物であるたばこ原料を測定対象にするものであり、紙巻たばこより密度の大きい再構成たばこが充填されて構成された加熱式たばこ製品のたばこセクション140の密度測定に用いることはできず、再構成たばこが含む葉タバコ由来の植物組織ではない添加物がマイクロ波を位相変化させることから、密度測定ができるマイクロ波の波長は異なるものである。
<実施例1>加熱式たばこ製品の製造工程、および加熱式たばこ製品試料の試作
 図1に示される加熱式たばこ製品100は、次のようにして製造される。上部に開口を有するようにU字形に湾曲させた外装紙160の内側に、複数のフィルターセクション120が所定の間隔で配置される。フィルターセクション120に挟まれた空の部分をキャビティ部と呼ぶ。外装紙160とその内側に配置された複数のフィルターセクション120は、搬送装置(例えば図2に示される搬送部210)によって搬送される。搬送装置の上方には、振動コンベアが設置されている。振動コンベアにはバッファタンクから再構成たばこ顆粒が供給され、搬送装置上を移動するキャビティ部と同期した所定のタイミング、及びキャビティ部への充填量に応じた所定のレートで再構成たばこ顆粒が振動コンベアに設けられたたばこ供給穴から落下するように、搬送装置及び振動コンベアの制御が行われる。こうしてフィルターセクション120間のキャビティ部に再構成たばこ145が充填されることで、たばこセクション140が形成され、その後、外装紙160の上部開口が封じられることにより、図1の加熱式たばこ製品100が完成する。
 このように多数のフィルターセクション120とたばこセクション140が連なった加熱式たばこ製品100は、後述する再構成たばこの充填量検査の後に、各フィルターセクション120の真ん中部分で長手方向に垂直に切断されることで、個々のカプセル102に分離される。1つのカプセル102が、1回の喫煙で使用される単位である。喫煙時には、このカプセル102のたばこセクション140を電気式ヒータ等で加熱することで、再構成たばこ145からたばこ成分を含んだエアロゾルが発生する。
 図2は、加熱式たばこ製品100のたばこセクション140に充填されている再構成たばこ145の重量を測定するための測定装置200の概略構成図である。測定装置200は、搬送部210、送信アンテナ220、受信アンテナ230、演算部(例えばプロセッサを備えるコンピュータ)240、及び記憶部(例えばコンピュータ可読記憶デバイス)250を備える。例えば、測定装置200は、上述のように加熱式たばこ製品100及びカプセル102を製造する製造装置の一部として、組み込むことが可能である。このような測定装置200は、例えば、八光オートメーション株式会社(福岡県所在)から、顆粒検査装置(型番HMW-GM100)として入手可能である。
<実施例2>加熱式たばこ製品試料Aのマイクロ波位相変化量の測定、および検量線1の取得
 図2に示されるように、フィルターセクション120とたばこセクション140が連なった加熱式たばこ製品100が、搬送部210によって搬送される。搬送部210上の加熱式たばこ製品100に対して、送信アンテナ220から、周波数が例えば8GHz以上24GHz以下のマイクロ波が連続的に照射され、加熱式たばこ製品100を透過したマイクロ波が、受信アンテナ230によって受信される。マイクロ波が透過した物質の誘電率に応じて、マイクロ波の位相に変化が生じる。加熱式たばこ製品100がない時に受信アンテナ230で受信されるマイクロ波の位相をφ1とし、加熱式たばこ製品100のたばこセクション140を透過して受信アンテナ230で受信されたマイクロ波の位相をφ2とする。演算部240は、受信されたマイクロ波の位相差Δφ=φ2-φ1に基づいて、加熱式たばこ製品100の各たばこセクション140に充填されている再構成たばこ145の重量を算出する。以下、マイクロ波の位相から再構成たばこの重量を特定する方法について説明する。
 図3は、位相差Δφ=φ2-φ1を、既知の様々な重量(100mgから400mg)の再構成たばこ145がたばこセクション140に充填されている加熱式たばこ製品100について測定した結果の一例である。測定には周波数8GHzのマイクロ波が用いられている。図3の横軸はたばこセクション140に含まれる再構成たばこ145の重量を示し、縦軸は位相差Δφを示す。この測定例のように、位相差Δφと再構成たばこ145の重量は線形の関係にあることが分かる(より具体的に、再構成たばこ145の重量が0mgから400mgまで増加すると、位相差Δφは0.02(rad)から-0.25(rad)へ線形的に減少する)。したがって、事前に図3のような測定結果を取得しておけば、被測定物である加熱式たばこ製品100について測定された位相差Δφの値から、たばこセクション140に含まれる再構成たばこ145の重量を求めることができる。
 具体的には、演算部240は、事前に取得した図3のような測定結果から検量線(図3の例ではy=-0.0007x+0.017)を特定し、得られた検量線の係数(図3の例では-0.0007と0.017)を記憶部250に格納しておく。次いで、演算部240は、記憶部250から検量線の係数を読み出し、被測定物である加熱式たばこ製品100について測定された位相差Δφの値を検量線に当てはめることで、各たばこセクション140に充填されている再構成たばこ145の重量を算出する。
 たばこセクション140に充填されている再構成たばこ顆粒の量によっては、たばこセクション140内で再構成たばこ顆粒が動くことでその分布に偏りが生じ、マイクロ波の位相φ2が変動してしまうことが起こり得る。図4及び図5は、たばこセクション140内での再構成たばこ顆粒の偏りの影響を示す実験結果の一例である。この実験では、図6に示されるように加熱式たばこ製品100を水平面Hから所定角度傾けた状態で、たばこセクション140を透過したマイクロ波の位相φ2を測定した。再構成たばこ145の充填量が少ない場合、加熱式たばこ製品100を水平面Hから傾けた状態では、たばこセクション140内の再構成たばこ顆粒によって作られる面は、図6に示されるように加熱式たばこ製品100の長手方向に対して斜めになり、たばこセクション140内で再構成たばこ顆粒の分布が偏ると考えられる。図4及び図5において、横軸は加熱式たばこ製品100の水平面からの傾き角を示し、縦軸は測定されたマイクロ波の位相φ2を示す。
 図4の実験結果から、直径5.4mmの加熱式たばこ製品100については、再構成たばこ顆粒の充填量が200mg又は240mgの場合に、たばこセクション140を透過したマイクロ波の位相φ2は加熱式たばこ製品100の傾き角にあまり依存しないことが分かる。同様に、図5の実験結果から、たばこセクション140の長さが8mmの加熱式たばこ製品100については、たばこセクション140を透過したマイクロ波の位相φ2は加熱式たばこ製品100の傾き角にあまり依存しないことが分かる。これは、これらの寸法の構成においてはたばこセクション140への再構成たばこ顆粒の充填率が高いため、たばこセクション140内で再構成たばこ顆粒の偏りが生じにくいためである。また、図4の実験結果からは、加熱式たばこ製品100の傾き角がおよそ30°以下であれば、マイクロ波の位相φ2は傾き角によらずほぼ一定であることも分かる。したがって、たばこセクション140内での再構成たばこ顆粒の偏りが小さいという仮定の下では、位相差Δφの値から再構成たばこ145の充填重量を比較的良好な精度で算出することができる。
<実施例3>加熱式たばこ製品試料Bの試作
 再構成たばこ顆粒の量が0.0mg、50.0mg、100.0mg、150.0mg、200.0mg、250.0mg、300.0mgである7種類の加熱式たばこ製品(試料B1~B7)を製造することを目標に、以下の手順で加熱式たばこ製品の試料を試作した。試料B1~B7の再構成たばこ顆粒の充填密度は、0.0mg/cm、87.3mg/cm、174.6mg/cm、262.0mg/cm、349.3mg/cm、436.6mg/cm、523.9mg/cmを目標とした。
 材料として、次のものが用意された。外装紙として、ボビンに巻き取られた坪量150g/mで、厚さ220μm、サンドラミS52/#85、幅26.5mm、長さ1000mの巻紙(型番)が用意された(日本製紙パピリア製)。再構成たばこ顆粒として、バーレー種および黄色種およびオリエント種の乾燥葉タバコを粉砕した粉末、香料、添加物または保湿剤または粘度調整剤として水と炭酸カルシウムを混錬した再構成たばこスラリーを押出成形後に粉砕し、メッシュサイズ250~710に粒径分布が整えられた再構成たばこ顆粒が用意された。フィルターセクションとして、アセテート繊維をフィルター成形紙で巻き取った外周長24.5mm、直径7.8mm、長さ4mmのフィルターセクションが用意された(日本フィルター工業製)。糊として、酢酸ビニル糊およびホットメルト糊が用意された。
 図1に示される加熱式たばこ製品100は、以上の材料から次のとおり製造された。
 外装紙160は、搬送装置を含む製造機械に架装されボビンから連続的に繰り出され、図示しない糊塗布装置により、搬送方向と略平行な方向で連続的に、酢酸ビニル糊が0.8mm~1.0mmの幅で、ホットメルト糊が0.5mm幅で、外装紙160の上面に塗布された。搬送装置(例えば図2に示される搬送部210)によって外装紙160はその長手方向へ搬送された。
 外装紙160が下に凸に湾曲させられた後、その幅方向の中央付近に、フィルターセクション120が、外装紙160の長手方向に所定の間隔(この場合は12mm)の間隔を設けて配置された。
 外装紙160とフィルターセクション120は、搬送部210により引き続き長手方向へ移動させられながら、外装紙160の端縁が上へ向くよう曲げられ、外装紙160と配置されたフィルターセクション120は、上方が開いたU字状の外装紙160の溝をフィルターセクション120が区画する形態となった(この区画は、工程終了時にキャビティ部となるので、便宜上キャビティ部と称する)。
 搬送部210の上方には、ベルトコンベアが設置された。ベルトコンベアにはバッファタンクから再構成たばこ顆粒が供給され、搬送装置上を移動するキャビティ部と同期した所定のタイミング、及びキャビティ部への充填量に応じた所定のレートで、再構成たばこ顆粒が振動コンベアに設けられたたばこ供給穴から落下するように、搬送装置及びベルトコンベアの制御が行われた。これにより、搬送部210上のキャビティ部に、再構成たばこ顆粒がたたばこ供給穴を通して上方から充填され、たばこセクション140が形成された。
 上へ向くよう曲げられた外装紙160の片側の端縁近傍に、図示しない糊塗布装置により、搬送方向と略平行な方向で連続的に、酢酸ビニル糊が0.8mm~1.0mmの幅で、ホットメルト糊が0.5mm幅で、塗布された。糊が塗布された外装紙160の片側の端縁は、外装紙160の他方の端縁近傍と重ね合わせられ、外装紙160は2つの端縁近傍で約2.0mmの幅で貼り合わされた。
 以上の工程を経て、円筒状に成形された連続棒状の加熱式たばこ製品の中間体を得た。連続棒状の加熱式たばこ製品の中間体は、たばこセクション140を6区画分含むように定長に切断されて、長さ120mm、直径7.8mm、円周長24.5mmの加熱式たばこ製品100を得た。
 搬送部210上の加熱式たばこ製品の中間体は、測定装置200により、マイクロ波の位相変化量を測定された。測定対象物に照射されたマイクロ波と受信されたマイクロ波では、マイクロ波が透過した加熱式たばこ製品100の各たばこセクション140の誘電率に応じて、マイクロ波の位相に変化が生ずるので、その位相変化量を測定された。経時的に得られる測定結果は、演算部240を介して、位相変化量データとして記憶部250に記憶された。加熱式たばこ製品100は、測定装置200に対向して設けられた送信アンテナ220と受信アンテナ230の2つのアンテナの間を通過する際に、送信アンテナ220から周波数8GHzのマイクロ波を照射され、受信アンテナ230で加熱式たばこ製品100のたばこセクション140を透過したマイクロ波が受信された。位相φ0のマイクロ波が加熱式たばこ製品100に照射されたとき、フィルターセクション120を透過したマイクロ波の位相はφ1に変化し、たばこセクション140を透過したマイクロ波の位相がφ2に変化した。φ1からφ2への変化は、加熱式たばこ製品100が、たばこセクション140とフィルターセクション120が交互に整列する構造から、周期的な変化であった。
 記憶部250には測定装置200の受信・送信アンテナから切断部までの経路長を登録しておく。経路長はたばこセクション140の全長の整数倍、この場合3倍とした。記憶部250には、予め加熱式たばこ製品100の全長、たばこセクション140の長さ、フィルターセクション120の長さ、および加熱式たばこ製品100の全長に占める各セクションの比率を登録しておく。
 測定装置200が取得した周期的で連続的な生データを演算部240で処理し、加熱式たばこ製品100の各たばこセクション140の中心位置を基準とした、たばこセクション140の長さである12mmの±5%の区間内、つまりフィルターセクション120とたばこセクション140が当接する位置から6.0mm±0.6mm前後の区間内で、位相変化量のピークを検出し,ピークの位相変化量値を抽出して、たばこセクションの位相変化量とした。さらに、位相変化量のピークの数を捉えて計数した。演算部240によるこれらの処理結果は、記憶部250へ記憶された。これにより、各たばこセクション140とその位相変化量を照合できるようにした。
 次の実施例4に十分な本数(少なくとも100本以上)の加熱式たばこ製品100の試料が製造される毎に、振動コンベアから落下する再構成たばこ顆粒の1分間当たり供給量(供給速度)は、記録された位相変化量データと前出の検量線から目標顆粒充填量を満たすと予測される供給速度へ振動コンベアの振動数を調整することで調速された。こうして、目標とする顆粒充填量を有する加熱式たばこ製品100の試料B-1、2、3、4、5、6、7が順に製造された。その他の工程条件は変更されなかった。再構成たばこ顆粒の充填量が300.0mgを目標とする試料B-7は、再構成たばこ顆粒が全て充填される前にキャビティ部がたばこ供給穴の直下を通過して適切に充填されなかった。そのため、試料B-7は次の実施例4から除外した。試料B-1~6の目標顆粒重量と、各試料の連続して製造された100本の加熱式たばこ製品100について測定された位相変化量の平均値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<実施例4>加熱式たばこ製品試料B1~6の再構成たばこ顆粒の重量測定
 上記の実施例3で得られた少なくとも100本の試料B-1~6から、無作為にそれぞれ10本の試料が選ばれ、1本ずつ上皿天秤(メトラートレド製ME4001T/00)で重量を測定された。試料の重量から、再構成たばこ顆粒以外の材料である外装紙・フィルターセクション・糊の重量が差し引かれ、試料1本に充填されていた再構成たばこ顆粒の実測重量が算出された。算出された再構成たばこ顆粒の重量をキャビティ部の個数6個で除して1個のキャビティ部が含む再構成たばこ顆粒の重量が算出された。試料B-1~6の目標顆粒重量と、1個のキャビティ部が含む再構成たばこ顆粒の平均重量、顆粒密度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、8GHzのマイクロ波を照射して得られたたばこセクション140の位相変化量を指標にして目標顆粒重量で製造された加熱式たばこ製品100は、目標値顆粒重量と実測の顆粒重量の階差5%以内であった。また、顆粒密度、すなわちたばこ原料従来の紙巻たばこより高い密度でたばこ原料を充填することが可能であった。
<実施例5>データ解析
 上記の実施例3と4で得られた、試料B-1~6の位相変化量と再構成たばこ顆粒の重量の線形性を検証するために、再構成たばこ重量と位相変化量(Δ[rad])を線形近似して相関係数を算出した。
    y=-0.0007x+0.0033、R=0.9954
 X軸に実施例4で取得した試料B-1~6の再構成たばこ顆粒の充填量、Y軸に実施例3で取得した試料B-1~6の位相変化量をとってプロットしたグラフを図7に示す。線形近似式と相関係数、図7から明らかなように、8GHzのマイクロ波を照射して得られた位相変化量を指標にして、それぞれの目標顆粒重量で製造した加熱式たばこ製品100の試料は、たばこセクション140の位相変化量が0.00から-10.00(deg)の範囲で、位相変化量と顆粒重量が線形関係にあることが示された。したがって、事前に図3のような測定結果を取得しておけば、被測定物である加熱式たばこ製品100について測定された位相差Δφの値から、たばこセクション140に含まれる再構成たばこ145の重量を求めることができることが裏付けられた。
 紙巻たばこの製造工程を熟知する発明者らは、大量生産された紙巻たばこは、例えば1000本~10000本単位の製造ロットでは、ロット全体としてはたばこ材料の充填量が規格内におさまるものの、個々の紙巻たばこ製品では稀に規格外へ逸脱することもあり、製造工程の後段の品質管理工程で抜取り検査により規格外ロットを排除して品質管理していることを知っていた。
 発明者らは、再構成たばこが充填されて構成された加熱式たばこ製品では、たばこ原料(再構成たばこ、再構成たばこ顆粒、再構成たばこシート)の充填量が、消費者が1本の加熱式たばこ製品を嗜むことで得られる官能や喫味体験の水準や、消費者が1本の加熱式たばこ製品を嗜むことが出来る回数と連動している可能性が高く、たばこ原料の量を1本毎に全数管理して規格内に保証する課題を認識していた。しかしながら、紙巻たばこの製造工程で周知のたばこ材料の測定方法が、加熱式たばこの製造工程に適用できないこと、加熱式たばこ製品の非常に高速(1500本/分以上)の製造速度に対応し得る密度測定方法がなかったことから、加熱式たばこ製品のたばこ原料の量を規格内に保証できなかった。
 そこで発明者らは、加熱式たばこ製品に充填されるたばこ原料(再構成たばこ・再構成たばこ顆粒・再構成たばこシート)の1本当たりの充填量の分布は、正規分布に従う可能性があると仮説を立て、実施例3で得られた試料B-1~6で、8GHzのマイクロ波照射により得られる1本毎の位相変化量が正規分布に従うことが確認されれば、加熱式たばこ製品の製造中に同時に1本毎に得られる位相変化量について、有限個の平均値と標準偏差と照らし合わせて、製造された加熱式たばこの再構成たばこ顆粒の充填量を、全数規格内に保証する品質管理ができると着想した。
 そこで、試料B-1~6について横軸に位相変化量、縦軸に期待値をとって正規確率プロットを描き、各試料の連続して製造された100本の加熱式たばこ製品試料の位相変化量が正規分布に従うことを検証した。結果を図8A~8Fに示す。描かれた正規確率プロットでは、試料B-1~6の位相変化量の測定値と期待値は直線に整列した。また、試料B-1~6の基本統計量を算出したところ、次の表3のようになり、平均値、中央値、最頻値がほぼ同一であることが確認された。8GHzのマイクロ波照射により得られる加熱式たばこ製品1本毎の位相変化量は、正規分布に従うことが確認された。
Figure JPOXMLDOC01-appb-T000003
 従って、加熱式たばこ製品は、たばこセクションを透過した周波数8GHzのマイクロ波の位相変化量を測定し、経時的に得られる実測データの平均値μと標準偏差σを指標として品質管理ができる。加熱式たばこ製品は、たばこセクションを透過した周波数8GHzのマイクロ波の位相変化量の実測データにもとづき、μ±3σ、μ±2σ、μ±σの位相変化量を管理水準として、再構成たばこ顆粒の充填量を管理することが出来る。
 例えば、μ±3σ、μ±2σ、μ±σを管理水準とすれば、基本統計量表(表3)で最小値-6.08を示した1本のB-1試料や、最大値-5.67を示した1本のB-1試料は管理水準を逸脱していることから製造工程で排除され、基本統計量表で最小値-7.15を示した1本のB-2試料や、最大値-7.58を示した1本のB-2試料は管理水準を逸脱していることから製造工程で排除され、基本統計量表で最小値-9.51を示した1本のB-3試料や、最大値-9.99を示した1本のB-3試料は管理水準を逸脱していることから製造工程で排除され、基本統計量表で最小値-11.59を示した1本のB-4試料や、最大値-12.28を示した1本のB-4試料は管理水準を逸脱していることから製造工程で排除され、基本統計量表で最小値-13.68を示した1本のB-5試料や、最大値-14.31を示した1本のB-5試料は管理水準を逸脱していることから製造工程で排除され、基本統計量表で最小値-15.45を示した1本のB-6試料や、最大値-16.09を示した1本のB-6試料は管理水準を逸脱していることから製造工程で排除される。
 従って、品質管理で排除されない加熱式たばこ製品は、試料B-1~6で実測されたデータに基づくと具体的には、位相変化量が-5.88±0.18[deg]の範囲内にある加熱式たばこ製品、位相変化量が-7.32±0.27[deg]の範囲内にある加熱式たばこ製品、位相変化量が-9.73±0.27[deg]の範囲内にある加熱式たばこ製品、位相変化量が-12.03±0.33[deg]の範囲内にある加熱式たばこ製品、位相変化量が-13.97±0.39[deg]の範囲内にある加熱式たばこ製品、位相変化量が-15.84±0.36[deg]の範囲内にある加熱式たばこ製品であって、このような加熱式たばこ製品は、再構成たばこ顆粒の充填量をμ±3σで品質管理がなされている。
 従って、品質管理で排除されない加熱式たばこ製品は、試料B-1~6で実測されたデータに基づくと具体的には、位相変化量が-5.88±0.12[deg]の範囲内にある加熱式たばこ製品、位相変化量が-7.32±0.18[deg]の範囲内にある加熱式たばこ製品、位相変化量が-9.73±0.18[deg]の範囲内にある加熱式たばこ製品、位相変化量が-12.03±0.22[deg]の範囲内にある加熱式たばこ製品、位相変化量が-13.97±0.26[deg]の範囲内にある加熱式たばこ製品、位相変化量が-15.84±0.24[deg]の範囲内にある加熱式たばこ製品であって、このような加熱式たばこ製品は、再構成たばこ顆粒の充填量をμ±2σで品質管理がなされている。
 従って、品質管理で排除されない加熱式たばこ製品は、試料B-1~6で実測されたデータに基づくと具体的には、位相変化量が-5.88±0.06[deg]の範囲内にある加熱式たばこ製品、位相変化量が-7.32±0.09[deg]の範囲内にある加熱式たばこ製品、位相変化量が-9.73±0.09[deg]の範囲内にある加熱式たばこ製品、位相変化量が-12.03±0.11[deg]の範囲内にある加熱式たばこ製品、位相変化量が-13.97±0.13[deg]の範囲内にある加熱式たばこ製品、位相変化量が-15.84±0.12[deg]の範囲内にある加熱式たばこ製品であって、このような加熱式たばこ製品は、再構成たばこ顆粒の充填量をμ±σで品質管理がなされている。
 8GHzのマイクロ波を照射して位相変化量を得ることにより、上記範囲内の位相変化量にある加熱式たばこ製品は、顆粒充填量の品質管理がなされた優れた加熱式たばこ製品である。そうした品質管理がなされた加熱式たばこ製品は、それらのみを次の包装工程に回すことができる。同様にそれらのみを倉庫へ保管することができる。同様に、それらのみを出荷することができる。同様に、それらのみを流通させることができる。同様に、それらのみを消費者は使用することが出来る。
 8GHzのマイクロ波を照射した際に、-0.25(rad)~0.02(rad)の位相変化量を示す加熱式たばこ製品は、消費者が期待する官能が品質管理により保証された優れた品質の加熱式たばこ製品である。
 実施例3と4に基づけば、8GHzのマイクロ波を照射した際に、-15.84(deg)以上、-5.88(deg)以下の位相変化量を示すたばこセクションを含む加熱式たばこ製品は、消費者が期待する官能が保証された優れた品質の加熱式たばこ製品である。
 実施例3と4に基づけば、8GHzのマイクロ波を照射した際に、-15.84(deg)以上、-5.88(deg)未満の位相変化量を示すたばこセクションを含む加熱式たばこ製品は、消費者が期待する官能が保証された優れた品質の加熱式たばこ製品である。
 実施例5に基づけば、8GHzのマイクロ波を照射した際に、-15.84±0.36(deg)の範囲内、または-15.84±0.24(deg)の範囲内、または-15.84±0.12(deg)の範囲内の位相変化量を示すたばこセクションを含む加熱式たばこ製品は、消費者が期待する官能が保証された優れた品質の加熱式たばこ製品である。
 以上、本発明の実施形態を説明したが、本発明はこれに限定されず、その要旨を逸脱しない範囲内において様々な変更が可能である。
100 加熱式たばこ製品
102 カプセル
120 フィルターセクション
140 たばこセクション
145 再構成たばこ
160 外装紙
200 測定装置
210 搬送部
220 送信アンテナ
230 受信アンテナ
240 演算部
250 記憶部
 

Claims (10)

  1.  直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、
     長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、
     長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、
     を含み、周波数8GHzのマイクロ波を照射した際に、前記たばこセクションを透過したマイクロ波は-0.25(rad)~0.02(rad)の位相変化量を示す、円筒状加熱式たばこ製品。
  2.  直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、
     長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、
     長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、
     を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-5.88(deg)以下の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品。
  3.  直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、
     長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、
     長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、
     を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-5.88(deg)未満の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品。
  4.  直径5.4mmから7.8mmの複数のセクションからなる円筒状加熱式たばこ製品であって、
     長さ4mm以上8mm以下の少なくとも1つのフィルターセクションと、
     長さ8mm以上18mm以下の少なくとも1つのたばこセクションと、
     を含み、前記たばこセクションは、周波数8GHzのマイクロ波が照射されると、-15.84(deg)以上、-7.32(deg)以下の位相変化をマイクロ波に与える、円筒状加熱式たばこ製品。
  5.  前記フィルターセクションと前記たばこセクションは長手方向に交互に配置されている、請求項1から4のいずれか1項に記載の円筒状加熱式たばこ製品。
  6.  前記たばこセクションは再構成たばこを含む、請求項1から5のいずれか1項に記載の円筒状加熱式たばこ製品。
  7.  前記たばこセクションは再構成たばこ顆粒を含む、請求項1から6のいずれか1項に記載の円筒状加熱式たばこ製品。
  8.  前記たばこセクションは刻みたばこを含まない、請求項1から7のいずれか1項に記載の円筒状加熱式たばこ製品。
  9.  前記たばこセクションは膨化たばこを含まない、請求項1から8のいずれか1項に記載の円筒状加熱式たばこ製品。
  10.  前記たばこセクションは再生たばこを含まない、請求項1から9のいずれか1項に記載の円筒状加熱式たばこ製品。
     
PCT/JP2020/030866 2019-08-20 2020-08-14 円筒状加熱式たばこ製品 WO2021033637A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080058555.5A CN114269172A (zh) 2019-08-20 2020-08-14 圆筒状加热式烟草制品
EP20855714.0A EP4018850A4 (en) 2019-08-20 2020-08-14 CYLINDRICAL HEATED TOBACCO PRODUCT
JP2021540760A JP7066925B2 (ja) 2019-08-20 2020-08-14 円筒状加熱式たばこ製品
US17/668,808 US20220160027A1 (en) 2019-08-20 2022-02-10 Cylindrical heated tobacco product
JP2022072942A JP2022106856A (ja) 2019-08-20 2022-04-27 円筒状加熱式たばこ製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019150242 2019-08-20
JP2019-150242 2019-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/668,808 Continuation US20220160027A1 (en) 2019-08-20 2022-02-10 Cylindrical heated tobacco product

Publications (1)

Publication Number Publication Date
WO2021033637A1 true WO2021033637A1 (ja) 2021-02-25

Family

ID=74661077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030866 WO2021033637A1 (ja) 2019-08-20 2020-08-14 円筒状加熱式たばこ製品

Country Status (6)

Country Link
US (1) US20220160027A1 (ja)
EP (1) EP4018850A4 (ja)
JP (2) JP7066925B2 (ja)
CN (1) CN114269172A (ja)
TW (1) TW202116192A (ja)
WO (1) WO2021033637A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210906A1 (ja) * 2021-03-31 2022-10-06 日本たばこ産業株式会社 非燃焼加熱式香味吸引物品及び非燃焼加熱式香味吸引製品
WO2022229186A1 (de) * 2021-04-27 2022-11-03 Tews Elektronik Gmbh & Co. Kg Verfahren zur bestimmung eines zusatzstoffgehalts in einem tabakpapier für elektrische zigaretten
WO2023248604A1 (ja) * 2022-06-23 2023-12-28 日本たばこ産業株式会社 低香味原料を含むたばこセグメント
EP4173495A4 (en) * 2021-06-21 2024-01-03 Kt & G Corp TOBACCO ROD, AEROSOL GENERATING ARTICLE THEREOF AND AEROSOL GENERATING DEVICE THEREOF
EP4144232A4 (en) * 2021-06-21 2024-01-10 Kt & G Corp AEROSOL-GENERATING ARTICLE AND AEROSOL-GENERATING DEVICE USED THEREWITH

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049261A1 (ko) * 2022-08-31 2024-03-07 주식회사 케이티앤지 에어로졸 생성 장치 및 그의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325123A (ja) * 1996-02-20 1997-12-16 Hauni Mas Bau Ag 物質の少なくとも一つの誘電特性を測定する方法とその装置
JPH11346747A (ja) 1998-06-12 1999-12-21 Japan Tobacco Inc たばこの巻上装置
JP2002522786A (ja) * 1998-07-30 2002-07-23 マルカム リミテッド ばらおよびパッケージ化されたタバコの湿分ならびに密度の非侵入性測定ならびに決定のための装置および方法
JP2015161597A (ja) 2014-02-27 2015-09-07 国立研究開発法人産業技術総合研究所 電磁波特性評価装置
WO2018050717A1 (en) * 2016-09-14 2018-03-22 British American Tobacco (Investments) Limited A container
WO2018215781A1 (en) * 2017-05-24 2018-11-29 Elucid8 Holdings Ltd. Tobacco-containing consumable for aerosol generating devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469871A (en) * 1992-09-17 1995-11-28 R. J. Reynolds Tobacco Company Cigarette and method of making same
JP3181248B2 (ja) * 1997-10-06 2001-07-03 日本たばこ産業株式会社 フィルター付きシガレットおよびシガレット用フィルター
TW201703660A (zh) * 2015-06-23 2017-02-01 菲利浦莫里斯製品股份有限公司 氣溶膠產生物件及製造氣溶膠產生物件之方法
WO2020239597A1 (en) * 2019-05-24 2020-12-03 Philip Morris Products S.A. Novel aerosol-generating substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325123A (ja) * 1996-02-20 1997-12-16 Hauni Mas Bau Ag 物質の少なくとも一つの誘電特性を測定する方法とその装置
JPH11346747A (ja) 1998-06-12 1999-12-21 Japan Tobacco Inc たばこの巻上装置
JP2002522786A (ja) * 1998-07-30 2002-07-23 マルカム リミテッド ばらおよびパッケージ化されたタバコの湿分ならびに密度の非侵入性測定ならびに決定のための装置および方法
JP2015161597A (ja) 2014-02-27 2015-09-07 国立研究開発法人産業技術総合研究所 電磁波特性評価装置
WO2018050717A1 (en) * 2016-09-14 2018-03-22 British American Tobacco (Investments) Limited A container
WO2018215781A1 (en) * 2017-05-24 2018-11-29 Elucid8 Holdings Ltd. Tobacco-containing consumable for aerosol generating devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210906A1 (ja) * 2021-03-31 2022-10-06 日本たばこ産業株式会社 非燃焼加熱式香味吸引物品及び非燃焼加熱式香味吸引製品
JP7204063B1 (ja) * 2021-03-31 2023-01-13 日本たばこ産業株式会社 非燃焼加熱式香味吸引物品及び非燃焼加熱式香味吸引製品
WO2022229186A1 (de) * 2021-04-27 2022-11-03 Tews Elektronik Gmbh & Co. Kg Verfahren zur bestimmung eines zusatzstoffgehalts in einem tabakpapier für elektrische zigaretten
EP4173495A4 (en) * 2021-06-21 2024-01-03 Kt & G Corp TOBACCO ROD, AEROSOL GENERATING ARTICLE THEREOF AND AEROSOL GENERATING DEVICE THEREOF
EP4144232A4 (en) * 2021-06-21 2024-01-10 Kt & G Corp AEROSOL-GENERATING ARTICLE AND AEROSOL-GENERATING DEVICE USED THEREWITH
WO2023248604A1 (ja) * 2022-06-23 2023-12-28 日本たばこ産業株式会社 低香味原料を含むたばこセグメント

Also Published As

Publication number Publication date
TW202116192A (zh) 2021-05-01
US20220160027A1 (en) 2022-05-26
EP4018850A4 (en) 2023-09-20
JP7066925B2 (ja) 2022-05-13
CN114269172A (zh) 2022-04-01
EP4018850A1 (en) 2022-06-29
JPWO2021033637A1 (ja) 2021-02-25
JP2022106856A (ja) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2021033637A1 (ja) 円筒状加熱式たばこ製品
RU2714779C2 (ru) Линия производства гомогенизированного табачного материала и способ поточного производства гомогенизированного табачного материала
RU2714782C2 (ru) Линия производства гомогенизированного табачного материала и способ поточного производства гомогенизированного табачного материала
CN106714588B (zh) 均质化烟草材料和生产均质化烟草材料的方法
EP3760056B1 (en) Method for the production of homogenized tobacco material
JP6788614B2 (ja) たばこカットフィラーを作製する方法
JP2021517465A (ja) エアロゾル形成ロッドの製造方法及び製造装置
CN113194759B (zh) 用于生产含有生物碱的材料片材的方法和设备
JP7317107B2 (ja) 被加熱芳香発生体及び芳香カートリッジ、並びに、被加熱芳香発生体の製造方法及び製造装置
KR102458829B1 (ko) 경질 캡슐로 구성된 캡슐 필터 세그먼트를 포함하는 에어로졸 생성 로드
EP3957197A1 (en) Heat-not-burn tobacco product and electrically heated tobacco product
KR20210108364A (ko) 담배 성분 함유 제제를 함유하는 형상화된 폼을 형성하는 방법
CN114667069A (zh) 破碎的烟草基质
US11957156B2 (en) Method for the preparation of a sheet including a homogenized material containing alkaloids and aerosol forming article comprising a component prepared from it
KR102386074B1 (ko) 향 보존성이 개선된 흡연 물품
JP7436485B2 (ja) アルカロイドを含有する材料のシートを製造するための方法および装置
RU2788369C1 (ru) Цилиндрическое нагреваемое табачное изделие (варианты)
KR20200101365A (ko) 알칼로이드 함유 물질의 제조 방법 및 이로부터 제조된 구성요소를 포함하는 에어로졸 형성 물품
WO2023119761A1 (ja) たばこスラリー、たばこ製品、及びたばこスラリーの保管方法
RU2805906C2 (ru) Способ и установка для производства листа из содержащего алкалоиды материала
EP4223150A1 (en) Tobacco sheet
WO2022259702A1 (ja) たばこ製剤
JP7093366B2 (ja) アルカロイド含有材料をキャスティングするための方法
WO2023053634A1 (ja) 非燃焼加熱型香味吸引器用たばこシート及びその製造方法、非燃焼加熱型香味吸引器、並びに非燃焼加熱型香味吸引システム
KR20220049188A (ko) 흡연재료의 가향숙성방법 및 이를 이용하여 제조된 흡연물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855714

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021540760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855714

Country of ref document: EP

Effective date: 20220321