WO2021033396A1 - Wafer appearance inspection device and method - Google Patents

Wafer appearance inspection device and method Download PDF

Info

Publication number
WO2021033396A1
WO2021033396A1 PCT/JP2020/022707 JP2020022707W WO2021033396A1 WO 2021033396 A1 WO2021033396 A1 WO 2021033396A1 JP 2020022707 W JP2020022707 W JP 2020022707W WO 2021033396 A1 WO2021033396 A1 WO 2021033396A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
image
wafer
macro
reference image
Prior art date
Application number
PCT/JP2020/022707
Other languages
French (fr)
Japanese (ja)
Inventor
朋宏 仲田
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to KR1020227004416A priority Critical patent/KR20220044741A/en
Priority to CN202080057347.3A priority patent/CN114222909A/en
Publication of WO2021033396A1 publication Critical patent/WO2021033396A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • G01N2021/95615Inspecting patterns on the surface of objects using a comparative method with stored comparision signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving

Definitions

  • the present invention captures a repetitive appearance pattern of a device chip or the like formed on a wafer or an appearance image of a non-patterned section set on a wafer to be inspected, and captures the captured inspection image and a pre-registered reference image.
  • the present invention relates to a wafer visual inspection apparatus and method for inspecting the device chip and the like.
  • a semiconductor device is formed into a large number of semiconductor device circuits (that is, a repeating appearance pattern of a device chip) on one semiconductor wafer, then individualized into individual chip components, and the chip components are packaged. , It is shipped as an electronic component alone or incorporated into an electric product.
  • the inspection image obtained by capturing the repeated appearance pattern of the device chip formed on the wafer is compared with the reference image, and the wiring pattern or the like is missing or short-circuited. Inspections (so-called visual inspections, also referred to as pattern inspections and microinspections) for abnormal line widths, adhesion of foreign substances, etc. are performed (for example, Patent Document 1).
  • macro inspection was required to be automated by inspection equipment.
  • conventional automatic inspection equipment is specialized for micro inspection and does not support inspection across multiple chips, so relatively large size scratches, dirt, and foreign matter, which are in the category of macro inspection, are included. It was not possible to inspect for adhesion.
  • the present invention has been made in view of the above problems.
  • one aspect of the present invention is A wafer visual inspection device that captures an external image of a repeating pattern formed on an inspection target wafer or a non-patterned section set on an inspection target wafer and compares the captured image with a pre-registered reference image for inspection.
  • An imaging unit that images the inspection target site set for each repeating pattern or non-patterned section
  • An image processing unit that processes the image captured by the imaging unit
  • a reference image registration unit that pre-registers a reference image that serves as a reference for quality judgment for the image of the inspection target part
  • It is equipped with a comparative inspection unit that inspects defects hidden in the inspection target site by comparing the inspection image of the inspection target site with the reference image.
  • the comparative inspection department A micro inspection mode that inspects defects hidden in the part to be inspected, It is equipped with a macro inspection mode that inspects potential defects in the inspection target wafer across multiple inspection target wafers.
  • another aspect according to the present invention is In a wafer appearance inspection method in which an appearance image of a repeating pattern or a non-patterned section formed on a wafer to be inspected is imaged, and the captured image is compared with a pre-registered reference image for inspection.
  • Wafer holding means for holding the wafer and An imaging means that captures a predetermined range set for each repeating pattern or non-patterned section, and Relative moving means for moving the wafer holding unit and the imaging unit relative to each other, Using an image processing means that processes the image captured by the image pickup unit, Steps to hold the standard wafer that serves as the inspection standard, The repeating pattern formed on the reference wafer is divided and imaged while sequentially changing the imaging location, and the dividedly imaged reference images are joined to generate a large size macro inspection reference image, and then the large size is obtained.
  • Steps to compress the macro inspection reference image to generate a small size macro inspection reference image Steps to hold the wafer to be inspected and The repeating pattern formed on the wafer to be inspected is divided and imaged while sequentially changing the imaging location, and the dividedly imaged inspection images are joined to generate a large size macro inspection inspection image, and then the large size is obtained.
  • To generate a small-sized macro inspection inspection image by compressing the macro inspection inspection image of It has a step of comparing a small-sized macro inspection inspection image with a small-sized macro inspection reference image and performing a macro inspection of the wafer to be inspected.
  • Micro inspection and macro inspection can be performed automatically with one inspection device.
  • the three axes of the Cartesian coordinate system are expressed as X, Y, and Z
  • the horizontal direction is expressed as the X direction and the Y direction
  • the direction perpendicular to the XY plane that is, the gravity direction
  • the Z direction is expressed as the direction against gravity
  • the direction in which gravity acts is expressed as down.
  • the direction of rotation about the Z direction as the central axis is defined as the ⁇ direction.
  • FIG. 1 is a schematic view showing an overall configuration of an example of a form embodying the present invention.
  • FIG. 1 schematically shows each part constituting the wafer visual inspection apparatus 1 according to the present invention.
  • the wafer visual inspection device 1 captures a repeated appearance pattern of the device chip C formed on the wafer W to be inspected, compares it with the reference image Pf, and inspects the wafer W to be inspected and the device chip C. is there.
  • the wafer appearance inspection device 1 images the inspection target portion over the entire surface of the wafer W while sequentially changing the imaging location of the imaging region F set on the inspection target wafer W, and processes the captured image. To generate an inspection image Px. Then, by comparing the inspection image Px with the reference image Pd, a desired inspection is performed over the entire surface of the wafer W, such as whether the circuit pattern of the device chip C is short-circuited or broken, or whether foreign matter or scratches are attached. (That is, micro inspection) is performed automatically. Further, the waiha visual inspection apparatus 1 processes the inspection image Px (so-called divided image) to generate the macro inspection inspection image Pm (so-called whole image), and the macro inspection inspection image Pm is registered in advance. Compared with the reference image Pf for macro inspection, the macro inspection of the entire waha W is automatically performed.
  • the wafer visual inspection device 1 includes a wafer holding unit 2, an imaging unit 3, a relative moving unit 4, a chip layout registration unit 5, a reference image registration unit 6, an image processing unit 7, a comparative inspection unit 8, and control. It is equipped with a department CN, etc.
  • the wafer holding unit 2 holds the wafer W.
  • the wafer holding portion 2 supports the wafer W from the lower surface side while maintaining a horizontal state.
  • the wafer holding portion 2 includes a mounting table 20 having a horizontal upper surface.
  • the mounting table 20 is provided with a groove or a hole in a portion in contact with the wafer W, and the groove or the hole is connected to a negative pressure generating means such as a vacuum pump via a switching valve or the like. Then, the wafer holding portion 2 can hold and release the wafer W by switching these grooves and holes to a negative pressure state or an atmospheric release state.
  • the imaging unit 3 images the inspection target portion and captures an image including the inspection target portion.
  • the image including the inspection target portion is an image captured including a part or all of the repeated appearance pattern of the device chip C to be inspected formed on the inspection target wafer W.
  • An image obtained by dividing the inspection target portion for each device chip C that is, a large number of imaging regions F are set inside and outside the inspection target portion for each device chip C), or one or more device chips C.
  • An image of a wide range including the inspection target portion of the above that is, one or more inspection target sites are set for each device chip C in the imaging region F). Since the arrangement (number, pitch, etc.) of the device chips C and the required inspection accuracy differ depending on the inspection type, the size, position, interval, etc. of the range (that is, the imaging area) to be imaged by the imaging unit 3 are different. It is registered according to each inspection type.
  • the image pickup unit 3 includes a lens barrel 30, an illumination unit 31, a half mirror 32, a plurality of objective lenses 33a and 33b, a revolver mechanism 34, an image pickup camera 35, and the like.
  • the lens barrel 30 fixes the illumination unit 31, the half mirror 32, the objective lenses 33a and 33b, the revolver mechanism 34, the image pickup camera 35, etc. in a predetermined posture, and guides the illumination light and the observation light.
  • the lens barrel 30 is attached to the device frame 1f via a connecting metal fitting or the like (not shown).
  • the illumination unit 31 emits the illumination light L1 required for imaging.
  • the illumination unit 31 can be exemplified by a laser diode, a metal halide lamp, a xenon lamp, LED illumination, or the like.
  • the half mirror 32 reflects the illumination light L1 emitted from the illumination unit 31 and irradiates the wafer W side, and allows the light (reflected light, scattered light) L2 incident from the wafer W side to pass through the image pickup camera 35 side. Is.
  • the objective lenses 33a and 33b form an image of the image pickup area on the work W on the image sensor 36 of the image pickup camera 35 at different predetermined observation magnifications.
  • the revolver mechanism 34 switches which of the objective lenses 33a and 33b is used. Specifically, the revolver mechanism 34 rotates and stands still by a predetermined angle based on manual or external signal control.
  • the image pickup camera 35 takes an image of the image pickup region F on the work W and acquires an image formed on the image pickup element 36.
  • the acquired image is output to the outside as a video signal or video data, and is processed by the image processing unit 7 to generate an inspection image Px or a reference image Pd.
  • these inspection images Px and reference image Pd are not a wide batch image of the entire work W, but are images of the work W divided into predetermined section areas. Therefore, the divided imaged inspection image Px , It is called a reference image Pd taken separately.
  • the relative moving unit 4 relatively moves the wafer holding unit 2 and the imaging unit 3.
  • the relative moving unit 4 includes an X-axis slider 41, a Y-axis slider 42, and a rotation mechanism 43.
  • the X-axis slider 41 is mounted on the device frame 1f, and the Y-axis slider 42 is moved in the X direction at an arbitrary speed and stopped at an arbitrary position.
  • the X-axis slider is composed of a pair of rails extending in the X direction, a slider unit that moves on the rails, and a slider drive unit that moves and stops the slider unit.
  • the slider drive unit can be configured by a servomotor that rotates and stands still by signal control from the control unit CN, a combination of a pulse motor and a ball screw mechanism, a linear motor mechanism, or the like.
  • the X-axis slider 41 is provided with an encoder for detecting the current position and the amount of movement of the slider portion. Examples of this encoder include a linear member called a linear scale in which fine irregularities are engraved at a predetermined pitch, a rotary encoder that detects the rotation angle of a motor that rotates a ball screw, and the like.
  • the Y-axis slider 42 moves the rotation mechanism 43 in the Y direction at an arbitrary speed and rests at an arbitrary position based on the control signal output from the control unit CN.
  • the Y-axis slider is composed of a pair of rails extending in the Y direction, a slider unit that moves on the rails, and a slider drive unit that moves and stops the slider unit.
  • the slider drive unit can be configured by a servomotor that rotates and stands still by signal control from the control unit CN, a combination of a pulse motor and a ball screw mechanism, a linear motor mechanism, or the like.
  • the Y-axis slider 42 is provided with an encoder for detecting the current position and the amount of movement of the slider portion. Examples of this encoder include a linear member called a linear scale in which fine irregularities are engraved at a predetermined pitch, a rotary encoder that detects the rotation angle of a motor that rotates a ball screw, and the like.
  • the rotation mechanism 43 rotates the mounting table 20 in the ⁇ direction at an arbitrary speed and makes it stand still at an arbitrary angle.
  • the rotation mechanism 43 can be exemplified as a mechanism that rotates / stops at an arbitrary angle by signal control from an external device such as a direct drive motor.
  • the mounting base 20 of the wafer holding portion 2 is mounted on the member on the rotating side of the rotating mechanism 43.
  • the relative moving unit 4 Since the relative moving unit 4 has such a configuration, the wafer W is independently or combined with respect to the imaging unit 3 in the XY ⁇ direction while holding the wafer W to be inspected. It can be moved relative to the speed and angle, and can be stopped at any position and angle.
  • FIG. 2 is a conceptual diagram showing a state of imaging in an example of a form embodying the present invention.
  • a plurality of device chips C (2, 1) to C that are spaced apart from each other on the wafer W while moving the imaging camera 35 of the imaging unit 3 relative to the wafer W in the direction indicated by the arrow Vs.
  • the imaging location of (5, 1) is sequentially changed to image the inspection target portion (that is, the wafer W is divided and imaged).
  • the image pickup region F including the inspection target portion of the device chip C (4, 1) is imaged on the image pickup element of the image pickup camera 35 to take an image.
  • FIG. 3 is a plan view showing an arrangement example of a reference wafer Wf, a wafer W to be inspected, and a device chip C in an example of a mode embodying the present invention.
  • FIG. 3A shows an arrangement image of a reference wafer Wf as an inspection reference and a repeating appearance pattern of a device chip C formed on the reference wafer Wf. Further, FIG. 3A shows the positional relationship between the reference image Pd and the device chip C, which are separately captured with respect to the reference wafer Wf.
  • FIG. 3B shows an arrangement image of a repeating appearance pattern of the device chip C formed on the wafer W to be inspected, and an example of the stain X lurking in the wafer W. Further, FIG.
  • FIG. 3B shows the positional relationship between the inspection image Px separately captured with respect to the wafer W and the device chip C.
  • the dirt X lurking in the wafer W is a type of defect to be detected in the macro inspection, and is widely distributed so as to straddle a plurality of inspection images Px captured separately.
  • the chip layout registration unit 5 registers a chip layout that defines the arrangement information of the device chip C of the wafer with respect to the reference posture and the reference position of the wafer W.
  • the state in which the notch Wk of the wafer W is directed directly downward is set as the reference posture, and the center of the wafer W in this posture is set as the reference position (also referred to as the origin) in the XY direction, and the repeated appearance of the device chip C is set.
  • the vertical and horizontal arrangement of patterns, pitch, offset information, etc. (that is, arrangement information) are specified.
  • the chip layout registration unit 5 registers data that defines the chip layout for each inspection type. Therefore, if imaging is performed based on the chip layout, the reference image Pd and the inspection image Px as shown in FIG. 3 can be separately imaged and acquired.
  • the reference image registration unit 6 registers a reference image as a reference for inspection. Specifically, the reference image registration unit 6 registers a divided image Pd (so-called divided image) and a small-sized reference image Pf for macro inspection (so-called whole image).
  • the dividedly captured reference image Pd shows a reference of a state in which the repeated appearance pattern of the device chip C formed on the wafer W is normal.
  • the divided imaged reference image Pd is a comparison target with the divided imaged inspection image Px in the micro inspection, and the difference in brightness value, the dispersion value, and the like are set in advance for each pixel and pixel group. If it is within the range, it is judged as normal, and if it is outside the range, it is judged as abnormal.
  • the reference image Pd is exemplified by one image representing a pre-selected non-defective image, an image obtained by pre-selecting and averaging a plurality of non-defective images, an image generated based on a non-defective learning method, and the like. it can.
  • the small size macro inspection reference image Pf shows the standard of the normal state of the wafer W as a whole.
  • the reference image registration unit 6 registers small size reference image Pf data for each inspection type.
  • the image processing unit 7 processes the image captured by the image capturing unit 3. Specifically, the image processing unit 7 acquires an image captured by the image pickup camera 35 of the image pickup unit 3 and performs a process of extracting (also referred to as trimming) a portion necessary for inspection from the image pickup area F.
  • the inspection image Px and the reference image Pd are generated, a process of connecting a plurality of divided images to generate one image, a compression process (the number of pixels constituting the image is thinned to reduce the resolution, and the brightness is reduced. It has a function to reduce the resolution of values, etc.).
  • the image processing unit 7 has a function of performing processing such as tilt correction, brightness correction, shading correction, and image curvature correction, and is configured to perform processing as appropriate.
  • the image processing unit 7 joins the dividedly captured reference images Pd to generate one entire image (that is, a large-sized reference image PF for macro inspection) or is divided and captured.
  • the inspection images Px are joined together to generate one whole image (that is, a large-sized macro inspection inspection image PM).
  • the image processing unit 7 compresses the large size macro inspection reference image PF to generate a small size macro inspection reference image Pf, and compresses the large size macro inspection inspection image PM.
  • FIG. 4 is an image diagram showing an image of a large-sized macro inspection image in an example of a form embodying the present invention.
  • FIG. 4A exemplifies an image of a large size macro inspection reference image PF
  • FIG. 4B exemplifies an image of a large size macro inspection inspection image PM.
  • the large-sized inspection image PM for macro inspection contains dirt X lurking in the wafer W.
  • FIG. 5 is an image diagram showing a small-sized macro inspection image and an image of a difference in an example of a form embodying the present invention.
  • FIG. 5A exemplifies an image of a small-sized macro inspection reference image Pf
  • FIG. 5B exemplifies an image of a small-sized macro inspection inspection image Pm.
  • the small-sized inspection image Pm for macro inspection contains dirt X lurking in the wafer W.
  • FIG. 5C exemplifies an image after comparing the small-sized macro inspection inspection image Pm with the small-sized macro inspection reference image Pf (that is, different brightness values).
  • the comparative inspection unit 8 compares the macro inspection inspection image Pm generated by the image processing unit 7 with the macro inspection reference image Pf, and inspects the inspection target portion. Specifically, the image processing unit 7 compares the corresponding pixels of the inspection image Pk including the inspection target portion of the repetitive appearance pattern of the device chip C and the reference image Pf, and the brightness value for each pixel or pixel group. If the difference or variance value of is within a preset range, it is determined to be normal, and if it is outside the range, it is determined to be abnormal.
  • the image processing unit 7 compares and processes the inspection image Pk and the reference image Pf, and extracts the portion where the difference in the luminance values is outside the reference range to detect the stain X (that is, macro inspection). Can be done.
  • the chip layout registration unit 5, the reference image registration unit 6, the image processing unit 7, and the comparative inspection unit 8 include a computer CP (that is, hardware) having an image processing function, an execution program thereof, and the like (that is, that). It consists of software). More specifically, the chip layout registration unit 5 and the reference image registration unit 6 are composed of a part of a computer CP storage unit (register, memory, etc.) and a recording medium (HDD, SSD, etc.).
  • the image processing unit 7 is composed of an image processing unit (so-called GPU) of the computer CP.
  • the comparative inspection unit 8 is composed of an arithmetic processing unit and an execution program of the computer CP.
  • the computer CP has the following functions and roles, for example. -Registration of information (so-called inspection procedure) such as imaging magnification and imaging position, imaging route T, imaging interval (pitch, interval), feed speed for each inspection type-Inspection conditions for each inspection type (brightness value of the part to be inspected) Registration of (normal range such as distribution value, etc.), connection with user interface (keyboard, SW, monitor, etc.), input / output of various information, connection with control unit CN, external host computer, etc., signals and data Input / output
  • the inspection procedure and inspection condition for each inspection type are also called recipe information and inspection recipe.
  • the control unit CN has, for example, the following functions and roles. -Outputs a signal for holding / releasing the waha W to the waiha holding unit 2.-Controls the revolver mechanism 34 to switch the objective lens (imaging magnification) to be used.-Outputs a light emitting trigger to the illuminating unit 31. -Outputs an imaging trigger to the imaging camera 35-Drive control of the relative moving unit 4: Outputs a driving signal while monitoring the current positions of the X-axis slider 41, the Y-axis slider 42, and the rotation mechanism 43. -Output the current position information of the relative moving unit 4 (X-axis slider 41, Y-axis slider 42, rotation mechanism 43) to the computer CP.-Control each unit based on the inspection recipe.
  • the output of the imaging trigger from the control unit 9 to the imaging unit 3 can be exemplified by the following method.
  • strobe emission a very short time
  • step & repeat a method of moving and stationary at a predetermined position and irradiating the illumination light L1 to take an image.
  • the image pickup trigger means an image capture instruction to the image pickup camera 35 and the image processing unit 7, a light emission instruction of the illumination light L1 and the like.
  • the illumination light L1 is strobe-emitting or (case 2) the illumination light L1 is irradiated during the time (so-called exposure time) that can be captured by the imaging camera 35. During the time you are in the picture, you can take an image.
  • the image pickup trigger is not limited to the instruction to the image pickup camera 35, but may be an image capture instruction to the image processing device that acquires the image (Case 3). By doing so, it is possible to cope with a form in which a video signal or video data is sequentially output from the image pickup camera 35.
  • control unit CN is composed of a computer, a programmable logic controller, etc. (that is, hardware) and an execution program thereof (that is, software).
  • FIG. 6 is a flow chart in an example of a form embodying the present invention.
  • FIG. 6A shows a procedure for registering a macro inspection reference image Pf for performing a macro inspection of the wafer W using the wafer visual inspection apparatus 1 step by step as a series of flows.
  • the execution programs of the computer CP and the control unit CN are registered so that these series of flows can be executed.
  • FIG. 6B shows a step-by-step procedure for imaging and inspecting the device chip C arranged on the wafer W using the wafer visual inspection device 1 as a series of flows.
  • the recipe to be registered is selected, and the reference wafer Wf is placed on the mounting table 20 (step s1). Then, the reference wafer Wf is aligned (step s2).
  • the reference image Pd is imaged while the reference wafer Wf is relatively moved (step s3), and the reference image Ps is registered in the reference image registration unit 6 (step s4).
  • step s5 it is determined whether or not the imaging is performed over the entire reference wafer Wf (step s5), and if the imaging is not completed, the above steps s2 to s5 are repeated. On the other hand, if the imaging is completed, the reference image Pd is joined to generate a large size macro inspection reference image PF, and the reference image PF is compressed to generate a small size macro inspection reference image Pf. (Step s6). Then, the reference image Pf is registered in the reference image registration unit 6 (step s7).
  • step s8 the reference wafer Wf is paid out (step s8), and it is determined whether or not the same processing is performed for the next reference wafer Wf (step s9).
  • step s9 the above steps s2 to s9 are repeated, and when the same process is not performed, a series of flows is terminated.
  • the inspection recipe is selected, the inspection mode and order of the wafer W are determined, and the wafer W to be inspected is placed on the mounting table 20 (step s11). Then, the wafer W to be inspected is aligned (step s12).
  • the inspection image Px is imaged while the wafer W to be inspected is relatively moved (step s13). It is determined whether or not to perform the micro inspection (step s14), and when the micro inspection is performed, the micro inspection is performed on each inspection image Px based on the inspection criteria registered in advance (step s15).
  • step s16 it is determined whether or not the imaging is performed over the entire wafer W (step s16), and if the imaging is not completed, the above steps s12 to s16 are repeated. On the other hand, if the imaging is completed, it is determined whether or not to perform the macro inspection (step s20).
  • the macro inspection is performed by comparing the small size macro inspection reference image Pm with the small size macro inspection reference image Pf based on the inspection standard registered in advance (step s21).
  • step s30 the wafer W to be inspected is paid out (step s30), and it is determined whether or not the same processing is performed for the next wafer W to be inspected (step s31).
  • step s31 it is determined whether or not the same processing is performed for the next wafer W to be inspected.
  • the wafer visual inspection apparatus 1 and the wafer visual inspection method according to the present invention relatively large-sized scratches, stains, and foreign substances, which are in the category of macro inspection, are based on the enlarged image of a small section acquired for micro inspection. It is possible to automatically inspect the adhesion of the wafer. Therefore, both micro inspection and macro inspection can be automatically performed with one inspection device.
  • the waiha visual inspection device 1 does not have a "standard image generation mode for macro inspection", and the reference image Pd divided and captured via an external recording medium (HDD, SSD, memory card, etc.), a telecommunications line, or the like. Is output to an external computer, processing system, etc., a large-sized reference image PF for macro inspection is generated using the external computer, processing system, etc., and a small-sized reference image Pf for macro inspection is generated. There may be.
  • the generated small-sized macro inspection reference image Pf is delivered to the wafer visual inspection device 1 via an external recording medium (HDD, SSD, memory card, etc.), a telecommunication line, or the like, and is passed to the wafer visual inspection device 1, and the reference image registration unit. It is configured to be registered in 6. With such a configuration, both micro inspection and macro inspection can be automatically performed with one inspection device.
  • the inspection target is not limited to the repeated appearance pattern of the device chip C formed on the wafer W, and may be a non-patterned section set on the wafer W.
  • the reference image Pd an image showing the reference of the state in which the non-patterned section set in the wafer W is normal is registered in advance. Then, the imaging unit 3 takes an image of the non-patterned section set in the wafer W to be inspected, and the comparative inspection unit 8 inspects it in the same procedure as described above.

Abstract

Provided are an inspection device and method with which it is possible to automatically inspect comparatively large scratches or fouling, adhesion of foreign matter, etc., which is a category of macro inspection, on the basis of an enlarged image of a small segment, the image being acquired for the purpose of micro inspection. Specifically, provided are a wafer appearance inspection device and method for capturing an image of the appearance of a wafer on which a repeating pattern is formed and performing an inspection by comparing the captured image and a preregistered reference image, wherein: split imaging is performed on the repeating pattern formed on a wafer to be inspected while an imaging location is successively changed; after images acquired through the split imaging are combined to generate a large-sized inspection image for macro inspection, the large-sized inspection image for macro inspection is compressed to generate a small-sized inspection image for macro inspection; and the small-sized inspection image for macro inspection is compared with a small-sized reference image for macro inspection that was generated and registered in advance to perform macro inspection of the wafer to be inspected.

Description

ウエーハ外観検査装置および方法Wafer visual inspection equipment and method
 本発明は、ウエーハ上に形成されたデバイスチップ等の繰返し外観パターン又は検査対象ウエーハに設定された無パターン区画の外観画像を撮像し、当該撮像された検査画像と予め登録された基準画像とを比較して、当該デバイスチップ等の検査を行うウエーハ外観検査装置および方法に関する。 The present invention captures a repetitive appearance pattern of a device chip or the like formed on a wafer or an appearance image of a non-patterned section set on a wafer to be inspected, and captures the captured inspection image and a pre-registered reference image. In comparison, the present invention relates to a wafer visual inspection apparatus and method for inspecting the device chip and the like.
 半導体デバイスは、1枚の半導体ウエーハ上に多数の半導体デバイス回路(つまり、デバイスチップの繰り返し外観パターン)が形成された後、個々のチップ部品に個片化され、当該チップ部品がパッケージングされて、電子部品として単体で出荷されたり電気製品に組み込まれたりする。 A semiconductor device is formed into a large number of semiconductor device circuits (that is, a repeating appearance pattern of a device chip) on one semiconductor wafer, then individualized into individual chip components, and the chip components are packaged. , It is shipped as an electronic component alone or incorporated into an electric product.
 そして、個々のチップ部品が個片化される前に、ウエーハ上に形成されたデバイスチップの繰り返し外観パターンを撮像された検査画像と基準画像とを比較して、配線パターン等の欠落やショート、線幅異常、異物の付着等がないかどうか検査(いわゆる、外観検査。パターン検査、ミクロ検査とも言う)が行われている(例えば、特許文献1)。 Then, before the individual chip parts are separated into individual pieces, the inspection image obtained by capturing the repeated appearance pattern of the device chip formed on the wafer is compared with the reference image, and the wiring pattern or the like is missing or short-circuited. Inspections (so-called visual inspections, also referred to as pattern inspections and microinspections) for abnormal line widths, adhesion of foreign substances, etc. are performed (for example, Patent Document 1).
 一方、比較的大きなサイズの傷や汚れ、異物の付着がないかどうかを目視による検査(いわゆる、マクロ検査)が行われている(例えば、特許文献2)。 On the other hand, a visual inspection (so-called macro inspection) is performed to check for relatively large size scratches, dirt, and foreign matter (for example, Patent Document 2).
特開2007-155610号公報JP-A-2007-155610 特開平9-186209号公報Japanese Unexamined Patent Publication No. 9-186209
 ミクロ検査と同様にマクロ検査も検査装置での自動化が求められていた。しかし、従来の自動検査装置は、ミクロ検査に特化したものであり複数のチップを跨いでの検査に対応していなかったため、マクロ検査の範疇である比較的大きなサイズの傷や汚れ、異物の付着等を検査することができなかった。 Similar to micro inspection, macro inspection was required to be automated by inspection equipment. However, conventional automatic inspection equipment is specialized for micro inspection and does not support inspection across multiple chips, so relatively large size scratches, dirt, and foreign matter, which are in the category of macro inspection, are included. It was not possible to inspect for adhesion.
 そこで本発明は、上記問題点に鑑みてなされたものであり、
ミクロ検査のために取得した小さな区画の拡大画像に基づいて、マクロ検査の範疇である比較的大きなサイズの傷や汚れ、異物の付着等を自動的に検査することができる検査装置および方法を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems.
Providing inspection equipment and methods that can automatically inspect relatively large-sized scratches, stains, foreign matter, etc., which are in the category of macro inspection, based on the enlarged image of a small section acquired for micro inspection. The purpose is to do.
 以上の課題を解決するために、本発明に係る一態様は、
 検査対象ウエーハに形成された繰り返しパターン又は検査対象ウエーハに設定された無パターン区画の外観画像を撮像し、当該撮像された画像を予め登録された基準画像と比較して検査する、ウエーハ外観検査装置において、
 繰り返しパターン又は無パターン区画毎に設定された検査対象部位を撮像する撮像部と、
 撮像部で撮像された画像を処理する画像処理部と、
 検査対象部位の画像に対する、良否判定の基準となる基準画像を予め登録しておく基準画像登録部と、
 検査対象部位を撮像された検査画像を基準画像と比較して、当該検査対象部位に潜む欠陥を検査する比較検査部とを備え、
  比較検査部は、
 検査対象部位内に潜む欠陥を検査するミクロ検査モードと、
 複数の検査対象部位を跨がって検査対象ウエーハに潜在する欠陥を検査するマクロ検査モードを備えている。
In order to solve the above problems, one aspect of the present invention is
A wafer visual inspection device that captures an external image of a repeating pattern formed on an inspection target wafer or a non-patterned section set on an inspection target wafer and compares the captured image with a pre-registered reference image for inspection. In
An imaging unit that images the inspection target site set for each repeating pattern or non-patterned section,
An image processing unit that processes the image captured by the imaging unit,
A reference image registration unit that pre-registers a reference image that serves as a reference for quality judgment for the image of the inspection target part,
It is equipped with a comparative inspection unit that inspects defects hidden in the inspection target site by comparing the inspection image of the inspection target site with the reference image.
The comparative inspection department
A micro inspection mode that inspects defects hidden in the part to be inspected,
It is equipped with a macro inspection mode that inspects potential defects in the inspection target wafer across multiple inspection target wafers.
 また、本発明に係る別の一態様は、
 検査対象ウエーハに形成された繰り返しパターン又は無パターン区画の外観画像を撮像し、当該撮像された画像と予め登録された基準画像とを比較して検査する、ウエーハ外観検査方法において、
 ウエーハを保持するウエーハ保持手段と、
 繰り返しパターン又は無パターン区画毎に設定された所定範囲を撮像する撮像手段と、
 ウエーハ保持部と撮像部を相対移動させる相対移動手段と、
 撮像部で撮像された画像を処理する画像処理手段とを用い、
 検査基準となる基準ウエーハを保持するステップと、
 基準ウエーハに形成された繰り返しパターンを、逐次撮像場所を変更しながら分割撮像し、当該分割撮像された基準画像同士を繋ぎ合わせてラージサイズのマクロ検査用基準画像を生成した後、当該ラージサイズのマクロ検査用基準画像を圧縮してスモールサイズのマクロ検査用基準画像を生成するステップと、
 検査対象ウエーハを保持するステップと、
 検査対象ウエーハに形成された繰り返しパターンを、逐次撮像場所を変更しながら分割撮像し、当該分割撮像された検査画像同士を繋ぎ合わせてラージサイズのマクロ検査用検査画像を生成した後、当該ラージサイズのマクロ検査用検査画像を圧縮してスモールサイズのマクロ検査用検査画像を生成するステップと、
 スモールサイズのマクロ検査用検査画像をスモールサイズのマクロ検査用基準画像と比較して、検査対象ウエーハをマクロ検査するステップとを有している。
In addition, another aspect according to the present invention is
In a wafer appearance inspection method in which an appearance image of a repeating pattern or a non-patterned section formed on a wafer to be inspected is imaged, and the captured image is compared with a pre-registered reference image for inspection.
Wafer holding means for holding the wafer and
An imaging means that captures a predetermined range set for each repeating pattern or non-patterned section, and
Relative moving means for moving the wafer holding unit and the imaging unit relative to each other,
Using an image processing means that processes the image captured by the image pickup unit,
Steps to hold the standard wafer that serves as the inspection standard,
The repeating pattern formed on the reference wafer is divided and imaged while sequentially changing the imaging location, and the dividedly imaged reference images are joined to generate a large size macro inspection reference image, and then the large size is obtained. Steps to compress the macro inspection reference image to generate a small size macro inspection reference image,
Steps to hold the wafer to be inspected and
The repeating pattern formed on the wafer to be inspected is divided and imaged while sequentially changing the imaging location, and the dividedly imaged inspection images are joined to generate a large size macro inspection inspection image, and then the large size is obtained. To generate a small-sized macro inspection inspection image by compressing the macro inspection inspection image of
It has a step of comparing a small-sized macro inspection inspection image with a small-sized macro inspection reference image and performing a macro inspection of the wafer to be inspected.
 この様なウエーハ外観検査装置および方法によれば、ミクロ検査のために取得した小さな区画の拡大画像に基づいて、マクロ検査の範疇である比較的大きなサイズの傷や汚れ、異物の付着等を自動的に検査することができる。 According to such a wafer visual inspection device and method, relatively large size scratches, stains, foreign matter adhesion, etc., which are in the category of macro inspection, are automatically performed based on the enlarged image of a small section acquired for micro inspection. Can be inspected.
 1つの検査装置でミクロ検査もマクロ検査も自動で行うことができる。 Micro inspection and macro inspection can be performed automatically with one inspection device.
本発明を具現化する形態の一例の全体構成を示す概略図である。It is the schematic which shows the whole structure of the example of the form which embodies the present invention. 本発明を具現化する形態の一例における撮像の様子を示す概念図である。It is a conceptual diagram which shows the state of imaging in an example of the form which embodies the present invention. 本発明を具現化する形態の一例における基準ウエーハおよび検査対象となるウエーハとデバイスチップの配置例を示す平面図である。It is a top view which shows the arrangement example of the reference wafer and the wafer and a device chip to be inspected in an example of the form embodying this invention. 本発明を具現化する形態の一例におけるラージサイズのマクロ検査用画像のイメージを示す画像図である。It is an image diagram which shows the image of the image for macro inspection of a large size in an example of the form which embodies the present invention. 本発明を具現化する形態の一例におけるスモールサイズのマクロ検査用画像および差分のイメージを示す画像図である。It is an image diagram which shows the image for macro inspection of small size and the image of the difference in an example of the embodiment which embodies the present invention. 本発明を具現化する形態の一例におけるフロー図である。It is a flow figure in an example of the form which embodies the present invention.
 以下に、本発明を実施するための形態について、図を用いながら説明する。なお、以下の説明では、直交座標系の3軸をX、Y、Zとし、水平方向をX方向、Y方向と表現し、XY平面に垂直な方向(つまり、重力方向)をZ方向と表現する。また、Z方向は、重力に逆らう方向を上、重力がはたらく方向を下と表現する。また、Z方向を中心軸として回転する方向をθ方向とする。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. In the following description, the three axes of the Cartesian coordinate system are expressed as X, Y, and Z, the horizontal direction is expressed as the X direction and the Y direction, and the direction perpendicular to the XY plane (that is, the gravity direction) is expressed as the Z direction. To do. Further, in the Z direction, the direction against gravity is expressed as up, and the direction in which gravity acts is expressed as down. Further, the direction of rotation about the Z direction as the central axis is defined as the θ direction.
 図1は、本発明を具現化する形態の一例の全体構成を示す概略図である。図1には、本発明に係るウエーハ外観検査装置1を構成する各部が概略的に示されている。 FIG. 1 is a schematic view showing an overall configuration of an example of a form embodying the present invention. FIG. 1 schematically shows each part constituting the wafer visual inspection apparatus 1 according to the present invention.
 ウエーハ外観検査装置1は、検査対象ウエーハWに形成されたデバイスチップCの繰り返し外観パターンを撮像し、基準画像Pfと比較して、当該検査対象ウエーハWおよび当該デバイスチップCの検査を行うものである。 The wafer visual inspection device 1 captures a repeated appearance pattern of the device chip C formed on the wafer W to be inspected, compares it with the reference image Pf, and inspects the wafer W to be inspected and the device chip C. is there.
 具体的には、ウエーハ外観検査装置1は、検査対象ウエーハW上に設定した撮像領域Fの撮像場所を逐次変えながら、ウエーハW全面に亘って検査対象部位を撮像し、撮像された画像を処理して検査画像Pxを生成する。そして、検査画像Pxを基準画像Pdと比較することで、デバイスチップCの回路パターンにショートや断線等が無いか、異物やキズ等が付いていないか等、ウエーハW全面に亘って所望の検査(つまり、ミクロ検査)を自動的に行うものである。さらに、ウエーハ外観検査装置1は、検査画像Px(いわゆる、分割画像)を処理してマクロ検査用検査画像Pm(いわゆる、全体画像)を生成し、当該マクロ検査用検査画像Pmを予め登録されたマクロ検査用基準画像Pfと比較して、ウエーハW全体のマクロ検査を自動的に行うものである。 Specifically, the wafer appearance inspection device 1 images the inspection target portion over the entire surface of the wafer W while sequentially changing the imaging location of the imaging region F set on the inspection target wafer W, and processes the captured image. To generate an inspection image Px. Then, by comparing the inspection image Px with the reference image Pd, a desired inspection is performed over the entire surface of the wafer W, such as whether the circuit pattern of the device chip C is short-circuited or broken, or whether foreign matter or scratches are attached. (That is, micro inspection) is performed automatically. Further, the waiha visual inspection apparatus 1 processes the inspection image Px (so-called divided image) to generate the macro inspection inspection image Pm (so-called whole image), and the macro inspection inspection image Pm is registered in advance. Compared with the reference image Pf for macro inspection, the macro inspection of the entire waha W is automatically performed.
 より具体的には、ウエーハ外観検査装置1は、ウエーハ保持部2、撮像部3、相対移動部4、チップレイアウト登録部5、基準画像登録部6、画像処理部7、比較検査部8、制御部CN等を備えている。 More specifically, the wafer visual inspection device 1 includes a wafer holding unit 2, an imaging unit 3, a relative moving unit 4, a chip layout registration unit 5, a reference image registration unit 6, an image processing unit 7, a comparative inspection unit 8, and control. It is equipped with a department CN, etc.
 ウエーハ保持部2は、ウエーハWを保持するものである。
具体的には、ウエーハ保持部2は、ウエーハWを下面側から水平状態を保ちつつ支えるものである。より具体的には、ウエーハ保持部2は、上面が水平な載置台20を備えている。
載置台20は、ウエーハWと接触する部分に溝部や孔部が設けられており、これら溝部や孔部は、切替バルブなどを介して真空ポンプなどの負圧発生手段と接続されている。そして、ウエーハ保持部2は、これら溝部や孔部を負圧状態若しくは大気解放状態に切り替えることで、ウエーハWを保持したり保持解除したりすることができる。
The wafer holding unit 2 holds the wafer W.
Specifically, the wafer holding portion 2 supports the wafer W from the lower surface side while maintaining a horizontal state. More specifically, the wafer holding portion 2 includes a mounting table 20 having a horizontal upper surface.
The mounting table 20 is provided with a groove or a hole in a portion in contact with the wafer W, and the groove or the hole is connected to a negative pressure generating means such as a vacuum pump via a switching valve or the like. Then, the wafer holding portion 2 can hold and release the wafer W by switching these grooves and holes to a negative pressure state or an atmospheric release state.
 撮像部3は、検査対象部位を撮像し、当該検査対象部位が含まれた画像を撮像するものである。 The imaging unit 3 images the inspection target portion and captures an image including the inspection target portion.
 ここで、検査対象部位が含まれた画像とは、検査対象ウエーハWに形成された検査対象となるデバイスチップCの繰返し外観パターンの一部または全部の部位を含んで撮像された画像であり、デバイスチップC毎の検査対象部位を分割して撮像したもの(つまり、デバイスチップC毎の検査対象部位の内外に、撮像領域Fが多数設定されている)や、1つまたは複数のデバイスチップCの検査対象部位を含む広い範囲を撮像したもの(つまり、撮像領域F内にデバイスチップC毎の検査対象部位が1つまたは複数設定されている)を言う。なお、デバイスチップCの配列(個数やピッチなど)や要求される検査精度等が検査品種毎に異なるため、撮像部3で撮像する範囲(つまり、撮像エリア)のサイズや位置、間隔等は、それぞれの検査品種に適応させて登録されている。 Here, the image including the inspection target portion is an image captured including a part or all of the repeated appearance pattern of the device chip C to be inspected formed on the inspection target wafer W. An image obtained by dividing the inspection target portion for each device chip C (that is, a large number of imaging regions F are set inside and outside the inspection target portion for each device chip C), or one or more device chips C. An image of a wide range including the inspection target portion of the above (that is, one or more inspection target sites are set for each device chip C in the imaging region F). Since the arrangement (number, pitch, etc.) of the device chips C and the required inspection accuracy differ depending on the inspection type, the size, position, interval, etc. of the range (that is, the imaging area) to be imaged by the imaging unit 3 are different. It is registered according to each inspection type.
 具体的には、撮像部3は、鏡筒30、照明部31、ハーフミラー32、複数の対物レンズ33a,33b、レボルバー機構34、撮像カメラ35等を備えている。 Specifically, the image pickup unit 3 includes a lens barrel 30, an illumination unit 31, a half mirror 32, a plurality of objective lenses 33a and 33b, a revolver mechanism 34, an image pickup camera 35, and the like.
 鏡筒30は、照明部31、ハーフミラー32、対物レンズ33a,33b、レボルバー機構34、撮像カメラ35等を所定の姿勢で固定し、照明光や観察光を導光するものである。鏡筒30は、連結金具など(不図示)を介して装置フレーム1fに取り付けられている。 The lens barrel 30 fixes the illumination unit 31, the half mirror 32, the objective lenses 33a and 33b, the revolver mechanism 34, the image pickup camera 35, etc. in a predetermined posture, and guides the illumination light and the observation light. The lens barrel 30 is attached to the device frame 1f via a connecting metal fitting or the like (not shown).
 照明部31は、撮像に必要な照明光L1を放出するものである。具体的には、照明部31は、レーザダイオードやメタルハライドランプ、キセノンランプ、LED照明などが例示できる。 The illumination unit 31 emits the illumination light L1 required for imaging. Specifically, the illumination unit 31 can be exemplified by a laser diode, a metal halide lamp, a xenon lamp, LED illumination, or the like.
 ハーフミラー32は、照明部31から放出された照明光L1を反射させてウエーハW側に照射し、ウエーハW側から入射した光(反射光、散乱光)L2を撮像カメラ35側に通過させるものである。 The half mirror 32 reflects the illumination light L1 emitted from the illumination unit 31 and irradiates the wafer W side, and allows the light (reflected light, scattered light) L2 incident from the wafer W side to pass through the image pickup camera 35 side. Is.
 対物レンズ33a,33bは、ワークW上の撮像エリアの像を、それぞれ異なる所定の観察倍率で撮像カメラ35の撮像素子36に結像させるものである。 The objective lenses 33a and 33b form an image of the image pickup area on the work W on the image sensor 36 of the image pickup camera 35 at different predetermined observation magnifications.
 レボルバー機構34は、対物レンズ33a,33bのいずれを使用するか切り替えるものである。具体的には、レボルバー機構34は、手動または外部からの信号制御に基づいて、所定の角度ずつ回転および静止するものである。 The revolver mechanism 34 switches which of the objective lenses 33a and 33b is used. Specifically, the revolver mechanism 34 rotates and stands still by a predetermined angle based on manual or external signal control.
 撮像カメラ35は、ワークW上の撮像領域Fを撮像し、撮像素子36に結像させた画像を取得するものである。取得した画像は、映像信号や映像データとして外部に出力され、画像処理部7で処理されて検査画像Pxや基準画像Pdが生成される。なお、これら検査画像Pxや基準画像Pdは、ワークW全体を広く一括撮像したものではなく、ワークWを所定の区画領域毎に分割して撮像したものであるため、分割撮像された検査画像Px、分割撮像された基準画像Pdと言う。 The image pickup camera 35 takes an image of the image pickup region F on the work W and acquires an image formed on the image pickup element 36. The acquired image is output to the outside as a video signal or video data, and is processed by the image processing unit 7 to generate an inspection image Px or a reference image Pd. It should be noted that these inspection images Px and reference image Pd are not a wide batch image of the entire work W, but are images of the work W divided into predetermined section areas. Therefore, the divided imaged inspection image Px , It is called a reference image Pd taken separately.
 相対移動部4は、ウエーハ保持部2と撮像部3とを相対移動させるものである。
具体的には、相対移動部4は、X軸スライダー41と、Y軸スライダー42と、回転機構43とを備えて構成されている。
The relative moving unit 4 relatively moves the wafer holding unit 2 and the imaging unit 3.
Specifically, the relative moving unit 4 includes an X-axis slider 41, a Y-axis slider 42, and a rotation mechanism 43.
 X軸スライダー41は、装置フレーム1f上に取り付けられており、Y軸スライダー42をX方向に任意の速度で移動させ、任意の位置で静止させるものである。具体的には、X軸スライダーは、X方向に延びる1対のレールと、そのレール上を移動するスライダー部と、スライダー部を移動および静止させるスライダー駆動部とで構成されている。スライダー駆動部は、制御部CNからの信号制御により回転し静止するサーボモータやパルスモータとボールネジ機構を組み合わせたものや、リニアモータ機構などで構成することができる。また、X軸スライダー41には、スライダー部の現在位置や移動量を検出するためのエンコーダが備えられている。なお、このエンコーダは、リニアスケールと呼ばれる直線状の部材に細かな凹凸が所定ピッチで刻まれたものや、ボールネジを回転させるモータの回転角度を検出するロータリエンコーダ等が例示できる。 The X-axis slider 41 is mounted on the device frame 1f, and the Y-axis slider 42 is moved in the X direction at an arbitrary speed and stopped at an arbitrary position. Specifically, the X-axis slider is composed of a pair of rails extending in the X direction, a slider unit that moves on the rails, and a slider drive unit that moves and stops the slider unit. The slider drive unit can be configured by a servomotor that rotates and stands still by signal control from the control unit CN, a combination of a pulse motor and a ball screw mechanism, a linear motor mechanism, or the like. Further, the X-axis slider 41 is provided with an encoder for detecting the current position and the amount of movement of the slider portion. Examples of this encoder include a linear member called a linear scale in which fine irregularities are engraved at a predetermined pitch, a rotary encoder that detects the rotation angle of a motor that rotates a ball screw, and the like.
 Y軸スライダー42は、制御部CNから出力される制御信号に基づいて、回転機構43をY方向に任意の速度で移動させ、任意の位置で静止させるものである。具体的には、Y軸スライダーは、Y方向に延びる1対のレールと、そのレール上を移動するスライダー部と、スライダー部を移動および静止させるスライダー駆動部とで構成されている。スライダー駆動部は、制御部CNからの信号制御により回転し静止するサーボモータやパルスモータとボールネジ機構を組み合わせたものや、リニアモータ機構などで構成することができる。また、Y軸スライダー42には、スライダー部の現在位置や移動量を検出するためのエンコーダが備えられている。なお、このエンコーダは、リニアスケールと呼ばれる直線状の部材に細かな凹凸が所定ピッチで刻まれたものや、ボールネジを回転させるモータの回転角度を検出するロータリエンコーダ等が例示できる。 The Y-axis slider 42 moves the rotation mechanism 43 in the Y direction at an arbitrary speed and rests at an arbitrary position based on the control signal output from the control unit CN. Specifically, the Y-axis slider is composed of a pair of rails extending in the Y direction, a slider unit that moves on the rails, and a slider drive unit that moves and stops the slider unit. The slider drive unit can be configured by a servomotor that rotates and stands still by signal control from the control unit CN, a combination of a pulse motor and a ball screw mechanism, a linear motor mechanism, or the like. Further, the Y-axis slider 42 is provided with an encoder for detecting the current position and the amount of movement of the slider portion. Examples of this encoder include a linear member called a linear scale in which fine irregularities are engraved at a predetermined pitch, a rotary encoder that detects the rotation angle of a motor that rotates a ball screw, and the like.
 回転機構43は、載置台20をθ方向に任意の速度で回転させ、任意の角度で静止させるものである。具体的には、回転機構43は、ダイレクトドライブモータなどの、外部機器からの信号制御により任意の角度に回転/静止させるものが例示できる。回転機構43の回転する側の部材の上には、ウエーハ保持部2の載置台20が取り付けられている。 The rotation mechanism 43 rotates the mounting table 20 in the θ direction at an arbitrary speed and makes it stand still at an arbitrary angle. Specifically, the rotation mechanism 43 can be exemplified as a mechanism that rotates / stops at an arbitrary angle by signal control from an external device such as a direct drive motor. The mounting base 20 of the wafer holding portion 2 is mounted on the member on the rotating side of the rotating mechanism 43.
 相対移動部4は、この様な構成をしているため、検査対象となるウエーハWを保持したまま、ウエーハWを撮像部3に対してXYθ方向にそれぞれ独立させて又は複合的に、所定の速度や角度で相対移動させたり、任意の位置・角度で静止させたりすることができる。 Since the relative moving unit 4 has such a configuration, the wafer W is independently or combined with respect to the imaging unit 3 in the XYθ direction while holding the wafer W to be inspected. It can be moved relative to the speed and angle, and can be stopped at any position and angle.
 図2は、本発明を具現化する形態の一例における撮像の様子を示す概念図である。
図2には、ウエーハWに対して撮像部3の撮像カメラ35を矢印Vsで示す方向に相対移動させながら、ウエーハW上に離間配置されている複数のデバイスチップC(2,1)~C(5,1)の撮像場所を逐次変えて、検査対象部位を撮像(つまり、ウエーハWを分割撮像)する様子が示されている。なお現時刻では、デバイスチップC(4,1)の検査対象部位を含む撮像領域Fを撮像カメラ35の撮像素子に結像させて撮像している様子が図示されている。
FIG. 2 is a conceptual diagram showing a state of imaging in an example of a form embodying the present invention.
In FIG. 2, a plurality of device chips C (2, 1) to C that are spaced apart from each other on the wafer W while moving the imaging camera 35 of the imaging unit 3 relative to the wafer W in the direction indicated by the arrow Vs. It is shown that the imaging location of (5, 1) is sequentially changed to image the inspection target portion (that is, the wafer W is divided and imaged). At the current time, it is shown that the image pickup region F including the inspection target portion of the device chip C (4, 1) is imaged on the image pickup element of the image pickup camera 35 to take an image.
 図3は、本発明を具現化する形態の一例における基準ウエーハWfおよび検査対象となるウエーハWとデバイスチップCの配置例を示す平面図である。
図3(a)には、検査基準となる基準ウエーハWfと、当該基準ウエーハWf上に形成されたデバイスチップCの繰返し外観パターンの配置イメージが示されている。また、図3(a)には、当該基準ウエーハWfに対して分割撮像された基準画像PdとデバイスチップCとの位置関係が示されている。
図3(b)には、検査対象となるウエーハW上に形成されたデバイスチップCの繰返し外観パターンの配置イメージと、当該ウエーハWに潜む汚れXの一例が示されている。また、図3(b)には、当該ウエーハWに対して分割撮像された検査画像PxとデバイスチップCとの位置関係が示されている。なお、ウエーハWに潜む汚れXは、マクロ検査における検出対象の欠陥の一類型であり、分割撮像された検査画像Pxの複数に亘って跨ぐように広く分布している。
FIG. 3 is a plan view showing an arrangement example of a reference wafer Wf, a wafer W to be inspected, and a device chip C in an example of a mode embodying the present invention.
FIG. 3A shows an arrangement image of a reference wafer Wf as an inspection reference and a repeating appearance pattern of a device chip C formed on the reference wafer Wf. Further, FIG. 3A shows the positional relationship between the reference image Pd and the device chip C, which are separately captured with respect to the reference wafer Wf.
FIG. 3B shows an arrangement image of a repeating appearance pattern of the device chip C formed on the wafer W to be inspected, and an example of the stain X lurking in the wafer W. Further, FIG. 3B shows the positional relationship between the inspection image Px separately captured with respect to the wafer W and the device chip C. The dirt X lurking in the wafer W is a type of defect to be detected in the macro inspection, and is widely distributed so as to straddle a plurality of inspection images Px captured separately.
 チップレイアウト登録部5は、ウエーハWの基準姿勢および基準位置に対する当該ウエーハのデバイスチップCの配置情報を規定するチップレイアウトを登録するものである。 The chip layout registration unit 5 registers a chip layout that defines the arrangement information of the device chip C of the wafer with respect to the reference posture and the reference position of the wafer W.
 なお、チップレイアウトには、ウエーハWのノッチWkを真下に向けた状態を基準姿勢とし、この姿勢でのウエーハWの中心をXY方向の基準位置(原点とも言う)として、デバイスチップCの繰り返し外観パターンの縦横配列やピッチ、オフセット情報など(つまり、配置情報)が規定されている。 In the chip layout, the state in which the notch Wk of the wafer W is directed directly downward is set as the reference posture, and the center of the wafer W in this posture is set as the reference position (also referred to as the origin) in the XY direction, and the repeated appearance of the device chip C is set. The vertical and horizontal arrangement of patterns, pitch, offset information, etc. (that is, arrangement information) are specified.
 具体的には、チップレイアウト登録部5には、検査品種毎にチップレイアウトを規定するデータが登録されている。そのため、当該チップレイアウトに基づいて撮像を行えば、図3に示すような基準画像Pdや検査画像Pxを分割撮像して取得することができる。 Specifically, the chip layout registration unit 5 registers data that defines the chip layout for each inspection type. Therefore, if imaging is performed based on the chip layout, the reference image Pd and the inspection image Px as shown in FIG. 3 can be separately imaged and acquired.
 基準画像登録部6は、検査の基準となる基準画像を登録するものである。
具体的には、基準画像登録部6には、分割撮像された基準画像Pd(いわゆる、分割画像)と、スモールサイズのマクロ検査用基準画像Pf(いわゆる、全体画像)が登録されている。
The reference image registration unit 6 registers a reference image as a reference for inspection.
Specifically, the reference image registration unit 6 registers a divided image Pd (so-called divided image) and a small-sized reference image Pf for macro inspection (so-called whole image).
 分割撮像された基準画像Pdは、ウエーハW上に形成されたデバイスチップCの繰り返し外観パターンが正常である状態の基準を示すものである。
具体的には、分割撮像された基準画像Pdは、ミクロ検査において、分割撮像された検査画像Pxとの比較対象となり、各画素や画素群について輝度値の差分や分散値等が予め設定された範囲内であれば正常と判定し、当該範囲外であれば異常と判定するための基準となるものである。
より具体的には、基準画像Pdは、予め選定された良品画像を代表する1つの画像や、複数の良品画像を予め選定し平均化したもの、良品学習法に基づいて生成したもの等が例示できる。
The dividedly captured reference image Pd shows a reference of a state in which the repeated appearance pattern of the device chip C formed on the wafer W is normal.
Specifically, the divided imaged reference image Pd is a comparison target with the divided imaged inspection image Px in the micro inspection, and the difference in brightness value, the dispersion value, and the like are set in advance for each pixel and pixel group. If it is within the range, it is judged as normal, and if it is outside the range, it is judged as abnormal.
More specifically, the reference image Pd is exemplified by one image representing a pre-selected non-defective image, an image obtained by pre-selecting and averaging a plurality of non-defective images, an image generated based on a non-defective learning method, and the like. it can.
 一方、スモールサイズのマクロ検査用基準画像Pfは、ウエーハW全体として正常である状態の基準を示すものである。具体的には、基準画像登録部6には、検査品種毎にスモールサイズの基準画像Pfのデータが登録されている。 On the other hand, the small size macro inspection reference image Pf shows the standard of the normal state of the wafer W as a whole. Specifically, the reference image registration unit 6 registers small size reference image Pf data for each inspection type.
 画像処理部7は、撮像部3で撮像された画像を処理するものである。
具体的には、画像処理部7は、撮像部3の撮像カメラ35で撮像された画像を取得し、撮像領域Fの中から検査に必要な部位を抽出(トリミングとも言う)する処理を行って検査画像Pxや基準画像Pdを生成したり、複数の分割画像同士を繋ぎ合わせて1つの画像を生成する処理をしたり、圧縮処理(画像を構成する画素数を間引いて低解像度化したり、輝度値等の分解能を下げたりする処理)をしたりする機能を備えている。また、画像処理部7は、傾き補正や明るさ補正、シェーディング補正、画像の湾曲補正等の処理を行う機能を備えており、適宜処理を行うように構成されている。
The image processing unit 7 processes the image captured by the image capturing unit 3.
Specifically, the image processing unit 7 acquires an image captured by the image pickup camera 35 of the image pickup unit 3 and performs a process of extracting (also referred to as trimming) a portion necessary for inspection from the image pickup area F. The inspection image Px and the reference image Pd are generated, a process of connecting a plurality of divided images to generate one image, a compression process (the number of pixels constituting the image is thinned to reduce the resolution, and the brightness is reduced. It has a function to reduce the resolution of values, etc.). Further, the image processing unit 7 has a function of performing processing such as tilt correction, brightness correction, shading correction, and image curvature correction, and is configured to perform processing as appropriate.
 より具体的には、画像処理部7は、分割撮像された基準画像Pdを繋ぎ合わせして1つの全体画像(つまり、ラージサイズのマクロ検査用基準画像PF)を生成したり、分割撮像された検査画像Pxを繋ぎ合わせして1つの全体画像(つまり、ラージサイズのマクロ検査用検査画像PM)を生成したりする。さらに、画像処理部7は、ラージサイズのマクロ検査用基準画像PFを圧縮処理して、スモールサイズのマクロ検査用基準画像Pfを生成し、ラージサイズのマクロ検査用検査画像PMを圧縮処理して、スモールサイズのマクロ検査用検査画像Pmを生成する。 More specifically, the image processing unit 7 joins the dividedly captured reference images Pd to generate one entire image (that is, a large-sized reference image PF for macro inspection) or is divided and captured. The inspection images Px are joined together to generate one whole image (that is, a large-sized macro inspection inspection image PM). Further, the image processing unit 7 compresses the large size macro inspection reference image PF to generate a small size macro inspection reference image Pf, and compresses the large size macro inspection inspection image PM. , Generates a small-sized inspection image Pm for macro inspection.
 図4は、本発明を具現化する形態の一例におけるラージサイズのマクロ検査用画像のイメージを示す画像図である。
図4(a)には、ラージサイズのマクロ検査用基準画像PFのイメージが例示されており、図4(b)には、ラージサイズのマクロ検査用検査画像PMのイメージが例示されている。なお、ラージサイズのマクロ検査用検査画像PMには、ウエーハWに潜む汚れXが含まれている。
FIG. 4 is an image diagram showing an image of a large-sized macro inspection image in an example of a form embodying the present invention.
FIG. 4A exemplifies an image of a large size macro inspection reference image PF, and FIG. 4B exemplifies an image of a large size macro inspection inspection image PM. The large-sized inspection image PM for macro inspection contains dirt X lurking in the wafer W.
 図5は、本発明を具現化する形態の一例におけるスモールサイズのマクロ検査用画像および差分のイメージを示す画像図である。
図5(a)には、スモールサイズのマクロ検査用基準画像Pfのイメージが例示されており、図5(b)には、スモールサイズのマクロ検査用検査画像Pmのイメージが例示されている。なお、スモールサイズのマクロ検査用検査画像Pmには、ウエーハWに潜む汚れXが含まれている。
図5(c)は、スモールサイズのマクロ検査用検査画像Pmをスモールサイズのマクロ検査用基準画像Pfと比較(つまり、輝度値を差分)した後のイメージが例示されている。
FIG. 5 is an image diagram showing a small-sized macro inspection image and an image of a difference in an example of a form embodying the present invention.
FIG. 5A exemplifies an image of a small-sized macro inspection reference image Pf, and FIG. 5B exemplifies an image of a small-sized macro inspection inspection image Pm. The small-sized inspection image Pm for macro inspection contains dirt X lurking in the wafer W.
FIG. 5C exemplifies an image after comparing the small-sized macro inspection inspection image Pm with the small-sized macro inspection reference image Pf (that is, different brightness values).
 比較検査部8は、画像処理部7で生成されたマクロ検査用検査画像Pmをマクロ検査用基準画像Pfと比較して、検査対象部位に対して検査するものである。
具体的には、画像処理部7は、デバイスチップCの繰返し外観パターンの検査対象部位が含まれた検査画像Pkと基準画像Pfの対応する画素同士を比較し、各画素や画素群について輝度値の差分や分散値等が予め設定された範囲内であれば正常と判定し、当該範囲外であれば異常と判定する。
The comparative inspection unit 8 compares the macro inspection inspection image Pm generated by the image processing unit 7 with the macro inspection reference image Pf, and inspects the inspection target portion.
Specifically, the image processing unit 7 compares the corresponding pixels of the inspection image Pk including the inspection target portion of the repetitive appearance pattern of the device chip C and the reference image Pf, and the brightness value for each pixel or pixel group. If the difference or variance value of is within a preset range, it is determined to be normal, and if it is outside the range, it is determined to be abnormal.
 そのため、画像処理部7にて検査画像Pkと基準画像Pfとを比較処理し、輝度値の差分が基準範囲外にあるところを抽出することで、汚れXを検出(つまり、マクロ検査)することができる。 Therefore, the image processing unit 7 compares and processes the inspection image Pk and the reference image Pf, and extracts the portion where the difference in the luminance values is outside the reference range to detect the stain X (that is, macro inspection). Can be done.
 本発明に係るチップレイアウト登録部5、基準画像登録部6、画像処理部7、比較検査部8は、画像処理機能を備えたコンピュータCP(つまり、ハードウェア)と、その実行プログラム等(つまり、ソフトウェア)で構成されている。
より具体的には、チップレイアウト登録部5や基準画像登録部6は、コンピュータCPの記憶部(レジスタ、メモリー等)や記録媒体(HDD、SSD等)などの一部にて構成されている。画像処理部7は、コンピュータCPの画像処理部(いわゆる、GPU)にて構成されている。比較検査部8は、コンピュータCPの演算処理部および実行プログラムで構成されている。
The chip layout registration unit 5, the reference image registration unit 6, the image processing unit 7, and the comparative inspection unit 8 according to the present invention include a computer CP (that is, hardware) having an image processing function, an execution program thereof, and the like (that is, that). It consists of software).
More specifically, the chip layout registration unit 5 and the reference image registration unit 6 are composed of a part of a computer CP storage unit (register, memory, etc.) and a recording medium (HDD, SSD, etc.). The image processing unit 7 is composed of an image processing unit (so-called GPU) of the computer CP. The comparative inspection unit 8 is composed of an arithmetic processing unit and an execution program of the computer CP.
 コンピュータCPは、例えば、以下の様な機能や役割を担っている。
・検査品種毎の撮像倍率および撮像位置、撮像ルートT、撮像間隔(ピッチ、インターバル)、送り速度等の情報(いわゆる、検査手順)の登録
・検査品種毎の検査条件(検査対象部位の輝度値や分散値等の正常範囲など)の登録
・ユーザインターフェース(キーボード、SW、モニタ等)と接続されて、各種情報の入出力
・制御部CNや外部のホストコンピュータ等と接続されて、信号やデータの入出力
なお、検査品種毎の検査手順や検査条件は、レシピ情報、検査レシピとも呼ばれる。
The computer CP has the following functions and roles, for example.
-Registration of information (so-called inspection procedure) such as imaging magnification and imaging position, imaging route T, imaging interval (pitch, interval), feed speed for each inspection type-Inspection conditions for each inspection type (brightness value of the part to be inspected) Registration of (normal range such as distribution value, etc.), connection with user interface (keyboard, SW, monitor, etc.), input / output of various information, connection with control unit CN, external host computer, etc., signals and data Input / output The inspection procedure and inspection condition for each inspection type are also called recipe information and inspection recipe.
 制御部CNは、例えば、以下の様な機能や役割を担っている。
・ウエーハ保持部2に対して、ウエーハWの保持/解除の信号を出力
・レボルバー機構34を制御して、使用する対物レンズ(撮像倍率)を切り替える
・照明部31に対して、発光トリガを出力する
・撮像カメラ35に対して、撮像トリガを出力する
・相対移動部4の駆動制御:X軸スライダー41、Y軸スライダー42、回転機構43の現在位置をモニタリングしつつ、駆動用信号を出力する
・相対移動部4(X軸スライダー41、Y軸スライダー42、回転機構43)の現在位置情報をコンピュータCPに出力する
・検査レシピに基づいて各部を制御
The control unit CN has, for example, the following functions and roles.
-Outputs a signal for holding / releasing the waha W to the waiha holding unit 2.-Controls the revolver mechanism 34 to switch the objective lens (imaging magnification) to be used.-Outputs a light emitting trigger to the illuminating unit 31. -Outputs an imaging trigger to the imaging camera 35-Drive control of the relative moving unit 4: Outputs a driving signal while monitoring the current positions of the X-axis slider 41, the Y-axis slider 42, and the rotation mechanism 43. -Output the current position information of the relative moving unit 4 (X-axis slider 41, Y-axis slider 42, rotation mechanism 43) to the computer CP.-Control each unit based on the inspection recipe.
 なお、制御部9から撮像部3への撮像トリガの出力は、下記の様な方式が例示できる。
・X方向にスキャン移動させながら、所定距離移動する毎に照明光L1を極短時間発光(いわゆる、ストロボ発光)させる方式。
・或いは、所定位置に移動および静止させて照明光L1を照射して撮像する(いわゆる、ステップ&リピート)方式。
The output of the imaging trigger from the control unit 9 to the imaging unit 3 can be exemplified by the following method.
-A method in which the illumination light L1 is emitted for a very short time (so-called strobe emission) every time the illumination light L1 is moved by a predetermined distance while scanning and moving in the X direction.
-Alternatively, a method of moving and stationary at a predetermined position and irradiating the illumination light L1 to take an image (so-called step & repeat).
 また、撮像トリガとは、撮像カメラ35や画像処理部7に対する画像取り込み指示、照明光L1の発光指示などを意味する。具体的には、撮像トリガとして、(ケース1)撮像カメラ35で撮像可能な時間(いわゆる、露光時間)の間に、照明光L1をストロボ発光させたり、(ケース2)照明光L1が照射されている時間内に、撮像させたり、する。或いは、撮像トリガは、撮像カメラ35に対する指示に限らず、(ケース3)画像を取得する画像処理装置に対する画像取込指示でも良い。そうすることで、撮像カメラ35から映像信号や映像データが逐次出力される形態にも対応できる。 Further, the image pickup trigger means an image capture instruction to the image pickup camera 35 and the image processing unit 7, a light emission instruction of the illumination light L1 and the like. Specifically, as an imaging trigger, the illumination light L1 is strobe-emitting or (case 2) the illumination light L1 is irradiated during the time (so-called exposure time) that can be captured by the imaging camera 35. During the time you are in the picture, you can take an image. Alternatively, the image pickup trigger is not limited to the instruction to the image pickup camera 35, but may be an image capture instruction to the image processing device that acquires the image (Case 3). By doing so, it is possible to cope with a form in which a video signal or video data is sequentially output from the image pickup camera 35.
 より具体的には、制御部CNは、コンピュータやプログラマブルロジックコントローラ等(つまり、ハードウェア)と、その実行プログラム等(つまり、ソフトウェア)で構成されている。 More specifically, the control unit CN is composed of a computer, a programmable logic controller, etc. (that is, hardware) and an execution program thereof (that is, software).
 [基準画像登録および検査フロー]
 図6は、本発明を具現化する形態の一例におけるフロー図である。
図6(a)には、ウエーハ外観検査装置1を用いてウエーハWのマクロ検査を行うためのマクロ検査用基準画像Pfを登録する手順が、一連のフローとしてステップ毎に示されている。なお、これら一連のフローが実行できるように、コンピュータCPや制御部CNの実行プログラムが登録されている。
図6(b)には、ウエーハ外観検査装置1を用いてウエーハWに配置されているデバイスチップCを撮像・検査する手順が、一連のフローとしてステップ毎に示されている。
[Reference image registration and inspection flow]
FIG. 6 is a flow chart in an example of a form embodying the present invention.
FIG. 6A shows a procedure for registering a macro inspection reference image Pf for performing a macro inspection of the wafer W using the wafer visual inspection apparatus 1 step by step as a series of flows. The execution programs of the computer CP and the control unit CN are registered so that these series of flows can be executed.
FIG. 6B shows a step-by-step procedure for imaging and inspecting the device chip C arranged on the wafer W using the wafer visual inspection device 1 as a series of flows.
 検査に先立ち、マクロ検査用基準画像を以下の手順にて生成し、登録しておく。この一連のフローを行うモードを「マクロ検査用基準画像生成モード」と呼ぶ。 Prior to the inspection, generate a reference image for macro inspection according to the following procedure and register it. The mode in which this series of flows is performed is called a "macro inspection reference image generation mode".
 先ず、登録するレシピを選択し、基準ウエーハWfを載置台20に載置する(ステップs1)。そして、基準ウエーハWfをアライメントする(ステップs2)。 First, the recipe to be registered is selected, and the reference wafer Wf is placed on the mounting table 20 (step s1). Then, the reference wafer Wf is aligned (step s2).
 基準ウエーハWfを相対移動させながら基準画像Pdを撮像し(ステップs3)、当該基準画像Psを基準画像登録部6に登録する(ステップs4)。 The reference image Pd is imaged while the reference wafer Wf is relatively moved (step s3), and the reference image Ps is registered in the reference image registration unit 6 (step s4).
 そして、基準ウエーハWf全体に亘って撮像を行ったかどうかを判定し(ステップs5)、撮像が終了していなければ上述のステップs2~s5を繰り返す。一方、撮像が終了していれば、基準画像Pdを繋ぎ合わせてラージサイズのマクロ検査用基準画像PFを生成し、当該基準画像PFを圧縮処理してスモールサイズのマクロ検査用基準画像Pfを生成する(ステップs6)。そして、当該基準画像Pfを基準画像登録部6に登録する(ステップs7)。 Then, it is determined whether or not the imaging is performed over the entire reference wafer Wf (step s5), and if the imaging is not completed, the above steps s2 to s5 are repeated. On the other hand, if the imaging is completed, the reference image Pd is joined to generate a large size macro inspection reference image PF, and the reference image PF is compressed to generate a small size macro inspection reference image Pf. (Step s6). Then, the reference image Pf is registered in the reference image registration unit 6 (step s7).
 そして、基準ウエーハWfを払い出し(ステップs8)、次の基準ウエーハWfについて同様の処理を行うかどうかを判定する(ステップs9)。同様の処理を行う場合は、上述のステップs2~s9を繰り返し、同様の処理を行わない場合は、一連のフローを終了する。 Then, the reference wafer Wf is paid out (step s8), and it is determined whether or not the same processing is performed for the next reference wafer Wf (step s9). When the same process is performed, the above steps s2 to s9 are repeated, and when the same process is not performed, a series of flows is terminated.
 以下、通常の検査を行う手順「ミクロ検査/マクロ検査モード」について説明する。 The procedure for performing normal inspection "micro inspection / macro inspection mode" will be described below.
 先ず、検査レシピを選択してウエーハWの検査モードや順序を決定し、検査対象となるウエーハWを載置台20に載置する(ステップs11)。そして、検査対象となるウエーハWをアライメントする(ステップs12)。 First, the inspection recipe is selected, the inspection mode and order of the wafer W are determined, and the wafer W to be inspected is placed on the mounting table 20 (step s11). Then, the wafer W to be inspected is aligned (step s12).
 検査対象となるウエーハWを相対移動させながら検査画像Pxを撮像する(ステップs13)。ミクロ検査を行うかどうかを判断し(ステップs14)、ミクロ検査を行う場合、予め登録しておいた検査基準に基づいて各検査画像Pxに対してミクロ検査を行う(ステップs15)。 The inspection image Px is imaged while the wafer W to be inspected is relatively moved (step s13). It is determined whether or not to perform the micro inspection (step s14), and when the micro inspection is performed, the micro inspection is performed on each inspection image Px based on the inspection criteria registered in advance (step s15).
 そして、ウエーハW全体に亘って撮像を行ったかどうかを判定し(ステップs16)、撮像が終了していなければ上述のステップs12~s16を繰り返す。一方、撮像が終了していれば、マクロ検査を行うかどうかを判断する(ステップs20)。マクロ検査を行う場合、予め登録しておいた検査基準に基づいてスモールサイズのマクロ検査用検査画像Pmをスモールサイズのマクロ検査用基準画像Pfと比較して、マクロ検査を行う(ステップs21)。 Then, it is determined whether or not the imaging is performed over the entire wafer W (step s16), and if the imaging is not completed, the above steps s12 to s16 are repeated. On the other hand, if the imaging is completed, it is determined whether or not to perform the macro inspection (step s20). When performing the macro inspection, the macro inspection is performed by comparing the small size macro inspection reference image Pm with the small size macro inspection reference image Pf based on the inspection standard registered in advance (step s21).
 そして、検査対象となるウエーハWを払い出し(ステップs30)、次の検査対象となるウエーハWについて同様の処理を行うかどうかを判定する(ステップs31)。同様の処理を行う場合は、上述のステップs12~s31を繰り返し、同様の処理を行わない場合は、一連のフローを終了する。 Then, the wafer W to be inspected is paid out (step s30), and it is determined whether or not the same processing is performed for the next wafer W to be inspected (step s31). When the same process is performed, the above steps s12 to s31 are repeated, and when the same process is not performed, a series of flows is terminated.
 本発明に係るウエーハ外観検査装置1およびウエーハ外観検査方法によれば、ミクロ検査のために取得した小さな区画の拡大画像に基づいて、マクロ検査の範疇である比較的大きなサイズの傷や汚れ、異物の付着等を自動的に検査することができる。そのため、1つの検査装置でミクロ検査もマクロ検査も自動で行うことができる。 According to the wafer visual inspection apparatus 1 and the wafer visual inspection method according to the present invention, relatively large-sized scratches, stains, and foreign substances, which are in the category of macro inspection, are based on the enlarged image of a small section acquired for micro inspection. It is possible to automatically inspect the adhesion of the wafer. Therefore, both micro inspection and macro inspection can be automatically performed with one inspection device.
 [変形例] 
 なお上述では、ウエーハ外観検査装置1に「マクロ検査用基準画像生成モード」を備えた構成を例示した。このような構成であれば、1つの検査装置で、スモールサイズのマクロ検査用基準画像Pfの生成と登録を行い、マクロ検査を行うためのことができるので好ましい。
[Modification example]
In the above description, the configuration in which the wafer visual inspection device 1 is provided with the "standard image generation mode for macro inspection" is illustrated. Such a configuration is preferable because one inspection device can generate and register a small-sized reference image Pf for macro inspection and perform macro inspection.
 しかし、ウエーハ外観検査装置1には「マクロ検査用基準画像生成モード」を備えず、外部記録媒体(HDD,SSD,メモリーカード等)や電気通信回線等を介して、分割撮像された基準画像Pdを外部のコンピュータや処理システム等へ出力し、当該外部のコンピュータや処理システム等を用いてラージサイズのマクロ検査用基準画像PFを生成し、スモールサイズのマクロ検査用基準画像Pfを生成する構成であってもよい。この場合、生成されたスモールサイズのマクロ検査用基準画像Pfは、外部記録媒体(HDD,SSD,メモリーカード等)や電気通信回線等を介して、ウエーハ外観検査装置1に受け渡し、基準画像登録部6に登録する構成とする。このような構成であれば、1つの検査装置でミクロ検査もマクロ検査も自動で行うことができる。 However, the waiha visual inspection device 1 does not have a "standard image generation mode for macro inspection", and the reference image Pd divided and captured via an external recording medium (HDD, SSD, memory card, etc.), a telecommunications line, or the like. Is output to an external computer, processing system, etc., a large-sized reference image PF for macro inspection is generated using the external computer, processing system, etc., and a small-sized reference image Pf for macro inspection is generated. There may be. In this case, the generated small-sized macro inspection reference image Pf is delivered to the wafer visual inspection device 1 via an external recording medium (HDD, SSD, memory card, etc.), a telecommunication line, or the like, and is passed to the wafer visual inspection device 1, and the reference image registration unit. It is configured to be registered in 6. With such a configuration, both micro inspection and macro inspection can be automatically performed with one inspection device.
 なお上述では、ウエーハ外観検査装置1として、検査対象ウエーハWに形成されたデバイスチップCの繰り返し外観パターンの外観画像を撮像し、基準画像Pfと比較して、当該検査対象ウエーハWおよび当該デバイスチップCの検査を行う構成および手順を例示した。しかし、本発明を適用する上で、検査対象は、ウエーハWに形成されたデバイスチップCの繰り返し外観パターンに限らず、ウエーハWに設定された無パターン区画であっても良い。この場合、基準画像Pdとして、ウエーハWに設定された無パターン区画が正常である状態の基準を示すものを予め登録しておく。そして、撮像部3では、検査対象となるウエーハWに設定された無パターン区画を撮像し、上述と同様の手順にて比較検査部8で検査を行う。











In the above description, as the wafer appearance inspection device 1, the appearance image of the repeated appearance pattern of the device chip C formed on the inspection target wafer W is imaged, and the appearance image is compared with the reference image Pf, and the inspection target wafer W and the device chip are compared. The configuration and procedure for inspecting C are illustrated. However, in applying the present invention, the inspection target is not limited to the repeated appearance pattern of the device chip C formed on the wafer W, and may be a non-patterned section set on the wafer W. In this case, as the reference image Pd, an image showing the reference of the state in which the non-patterned section set in the wafer W is normal is registered in advance. Then, the imaging unit 3 takes an image of the non-patterned section set in the wafer W to be inspected, and the comparative inspection unit 8 inspects it in the same procedure as described above.











  1  ウエーハ外観検査装置
  2  ウエーハ保持部
  3  撮像部
  4  相対移動部
  5  検査レシピ登録部
  6  基準画像登録部
  7  画像処理部
  8  比較検査部
  1f 装置フレーム
  20 載置台
  30 鏡筒
  31 照明部
  32 ハーフミラー
  33a,33b 対物レンズ
  34 レボルバー機構
  35 撮像カメラ
  41 X軸スライダー
  42 Y軸スライダー
  43 回転機構
  CN 制御部
  CP コンピュータ
  W  ウエーハ(検査対象)
  Wf 基準ウエーハ
  C  デバイスチップ
  F  撮像領域
  X  検出対象(汚れ等)
  Pd 分割撮像された基準画像
  PF マクロ検査用基準画像(ラージサイズ)
  Pf マクロ検査用基準画像(スモールサイズ)
  Px 撮像された検査画像
  PM マクロ検査用検査画像(ラージサイズ)
  Pm マクロ検査用検査画像(スモールサイズ)
  L1 照明光
  L2 ウエーハ側から入射した光(反射光、散乱光)
1 Wayha appearance inspection device 2 Wayha holding part 3 Imaging part 4 Relative movement part 5 Inspection recipe registration part 6 Reference image registration part 7 Image processing part 8 Comparison inspection part 1f Equipment frame 20 Mounting stand 30 Lens barrel 31 Lighting part 32 Half mirror 33a , 33b Objective lens 34 Revolver mechanism 35 Imaging camera 41 X-axis slider 42 Y-axis slider 43 Rotation mechanism CN control unit CP computer W WEHA (inspection target)
Wf Reference wafer C Device chip F Imaging area X Detection target (dirt, etc.)
Reference image taken by Pd division Image reference image for PF macro inspection (large size)
Reference image for Pf macro inspection (small size)
Inspection image taken by Px PM Inspection image for macro inspection (large size)
Inspection image for Pm macro inspection (small size)
L1 Illumination light L2 Light incident from the wafer side (reflected light, scattered light)

Claims (3)

  1.  検査対象ウエーハに形成された繰り返しパターン又は検査対象ウエーハに設定された無パターン区画の外観画像を撮像し、当該撮像された画像を予め登録された基準画像と比較して検査する、ウエーハ外観検査装置において、
     前記繰り返しパターン又は前記無パターン区画毎に設定された検査対象部位を撮像する撮像部と、
     前記撮像部で撮像された画像を処理する画像処理部と、
     前記検査対象部位の画像に対する、良否判定の基準となる前記基準画像を予め登録しておく基準画像登録部と、
     前記検査対象部位を撮像された検査画像を前記基準画像と比較して、当該検査対象部位に潜む欠陥を検査する比較検査部とを備え、
      前記比較検査部は、
     前記検査対象部位内に潜む欠陥を検査するミクロ検査モードと、
     複数の前記検査対象部位を跨がって前記検査対象ウエーハに潜在する欠陥を検査するマクロ検査モードを備え、
    ことを特徴とする、ウエーハ外観検査装置。
    A wafer visual inspection device that captures an external image of a repeating pattern formed on an inspection target wafer or a non-patterned section set on an inspection target wafer and compares the captured image with a pre-registered reference image for inspection. In
    An imaging unit that images an inspection target portion set for each of the repeating pattern or the non-patterned section, and
    An image processing unit that processes the image captured by the imaging unit, and
    A reference image registration unit for pre-registering the reference image, which is a criterion for determining the quality of the image of the inspection target site,
    It is provided with a comparative inspection unit for inspecting defects lurking in the inspection target site by comparing the inspection image obtained by imaging the inspection target site with the reference image.
    The comparative inspection unit
    A micro inspection mode that inspects defects hidden in the inspection target site,
    It is equipped with a macro inspection mode that inspects potential defects in the inspection target wafer across a plurality of the inspection target wafers.
    A wafer visual inspection device characterized by this.
  2.  前記マクロ検査モードの実行に先立ち、前記検査対象ウエーハに潜在する欠陥を検査するための良否判定の基準となるマクロ検査用基準画像を生成するマクロ検査用基準画像生成モードを備え、
      前記マクロ検査用基準画像生成モードでは、
     前記撮像部にて、検査基準となる基準ウエーハに形成された繰り返しパターン又は基準ウエーハに設定された無パターン区画を分割撮像し、
     前記画像処理部にて、当該分割撮像された基準画像同士を繋ぎ合わせてラージサイズのマクロ検査用基準画像を生成した後、当該ラージサイズのマクロ検査用基準画像を圧縮処理してスモールサイズのマクロ検査用基準画像を生成し、
     前記スモールサイズのマクロ検査用基準画像を前記基準画像登録部に予め登録し、
      前記マクロ検査モードでは、
     前記撮像部にて、前記繰り返しパターン又は前記無パターン区画を分割撮像し、
     前記画像処理部にて、当該分割撮像された検査画像同士を繋ぎ合わせてラージサイズのマクロ検査用検査画像を生成した後、当該ラージサイズのマクロ検査用検査画像を圧縮処理してスモールサイズのマクロ検査用検査画像を生成し、
     前記比較検査部にて、前記スモールサイズのマクロ検査用検査画像を前記スモールサイズのマクロ検査用基準画像と比較して、前記検査対象ウエーハに潜在する欠陥を検査する
    ことを特徴とする、請求項1に記載のウエーハ外観検査装置。
    Prior to the execution of the macro inspection mode, a macro inspection reference image generation mode for generating a macro inspection reference image that serves as a reference for quality determination for inspecting a defect latent in the inspection target wafer is provided.
    In the macro inspection reference image generation mode,
    The imaging unit divides and images a repetitive pattern formed on a reference wafer as an inspection reference or a non-patterned section set on the reference wafer.
    The image processing unit joins the dividedly captured reference images to generate a large size macro inspection reference image, and then compresses the large size macro inspection reference image to perform a small size macro. Generate a reference image for inspection and
    The small size macro inspection reference image is registered in advance in the reference image registration unit, and then
    In the macro inspection mode,
    The repetitive pattern or the non-patterned section is divided and imaged by the imaging unit.
    The image processing unit connects the divided and captured inspection images to generate a large-sized macro inspection inspection image, and then compresses the large-sized macro inspection inspection image to perform a small-sized macro. Generate an inspection image for inspection
    The claim is characterized in that the comparative inspection unit compares the inspection image for macro inspection of the small size with the reference image for macro inspection of the small size and inspects a defect latent in the wafer to be inspected. The wafer visual inspection apparatus according to 1.
  3.  検査対象ウエーハに形成された繰り返しパターン又は検査対象ウエーハに設定された無パターン区画の外観画像を撮像し、当該撮像された画像と予め登録された基準画像とを比較して検査する、ウエーハ外観検査方法において、
     前記検査対象ウエーハを保持するウエーハ保持手段と、
     前記繰り返しパターン又は前記無パターン区画毎に設定された所定範囲を撮像する撮像手段と、
     前記ウエーハ保持部と前記撮像部を相対移動させる相対移動手段と、
     前記撮像部で撮像された画像を処理する画像処理手段とを用い、
     検査基準となる基準ウエーハを保持するステップと、
     前記繰り返しパターン又は前記無パターン区画を、逐次撮像場所を変更しながら分割撮像し、当該分割撮像された基準画像同士を繋ぎ合わせてラージサイズのマクロ検査用基準画像を生成した後、当該ラージサイズのマクロ検査用基準画像を圧縮してスモールサイズのマクロ検査用基準画像を生成するステップと、
     前記検査対象ウエーハを保持するステップと、
     前記繰り返しパターン又は前記無パターン区画を、逐次撮像場所を変更しながら分割撮像し、当該分割撮像された検査画像同士を繋ぎ合わせてラージサイズのマクロ検査用検査画像を生成した後、当該ラージサイズのマクロ検査用検査画像を圧縮してスモールサイズのマクロ検査用検査画像を生成するステップと、
     前記スモールサイズのマクロ検査用検査画像を前記スモールサイズのマクロ検査用基準画像と比較して、前ウエーハをマクロ検査するステップとを有する
    ことを特徴とする、ウエーハ外観検査方法。
    A wafer visual inspection in which an external image of a repeating pattern formed on an inspection target wafer or a non-patterned section set on an inspection target wafer is imaged, and the captured image is compared with a pre-registered reference image for inspection. In the method
    A wafer holding means for holding the wafer to be inspected and
    An imaging means for imaging a predetermined range set for each of the repeating pattern or the non-patterned section, and
    A relative moving means for relatively moving the wafer holding unit and the imaging unit, and
    Using an image processing means that processes the image captured by the imaging unit,
    Steps to hold the standard wafer that serves as the inspection standard,
    The repeating pattern or the non-patterned section is divided and imaged while sequentially changing the imaging location, and the dividedly imaged reference images are joined to generate a large size macro inspection reference image, and then the large size is obtained. Steps to compress the macro inspection reference image to generate a small size macro inspection reference image,
    The step of holding the wafer to be inspected and
    The repeating pattern or the non-patterned section is divided and imaged while sequentially changing the imaging location, and the dividedly imaged inspection images are joined to generate a large size macro inspection inspection image, and then the large size inspection image is generated. Steps to compress the macro inspection inspection image to generate a small size macro inspection inspection image,
    A wafer appearance inspection method comprising a step of comparing a small-sized macro inspection inspection image with a small-sized macro inspection reference image and performing a macro inspection of a front wafer.
PCT/JP2020/022707 2019-08-20 2020-06-09 Wafer appearance inspection device and method WO2021033396A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227004416A KR20220044741A (en) 2019-08-20 2020-06-09 Wafer appearance inspection apparatus and method
CN202080057347.3A CN114222909A (en) 2019-08-20 2020-06-09 Wafer appearance inspection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019150100A JP7368141B2 (en) 2019-08-20 2019-08-20 Wafer appearance inspection device and method
JP2019-150100 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033396A1 true WO2021033396A1 (en) 2021-02-25

Family

ID=74661135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022707 WO2021033396A1 (en) 2019-08-20 2020-06-09 Wafer appearance inspection device and method

Country Status (5)

Country Link
JP (1) JP7368141B2 (en)
KR (1) KR20220044741A (en)
CN (1) CN114222909A (en)
TW (1) TWI827863B (en)
WO (1) WO2021033396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352415A (en) * 2023-12-05 2024-01-05 南京阿吉必信息科技有限公司 Preparation method of red light LED flip chip structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023122677A (en) * 2022-02-24 2023-09-05 東レエンジニアリング株式会社 Wafer inspection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274254A (en) * 1998-03-19 1999-10-08 Sharp Corp Device and method for checking appearance
JP2001099788A (en) * 1999-09-28 2001-04-13 Sharp Corp Automatic macro-appearance inspecting device
JP2002267615A (en) * 2001-03-12 2002-09-18 Olympus Optical Co Ltd Defect inspection method and device therefor
JP2002277412A (en) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd Inspection screen displaying method and substrate inspection system
JP2007155610A (en) * 2005-12-07 2007-06-21 Seiko Epson Corp Visual examination device and visual examination method
JP2007333491A (en) * 2006-06-13 2007-12-27 Sumitomo Electric Ind Ltd Visual insepction device of sheet member
JP2008520984A (en) * 2004-11-24 2008-06-19 シュトラトゥス ビジョン ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection device
US20120276664A1 (en) * 2011-04-28 2012-11-01 Lars Markwort Methods of inspecting and manufacturing semiconductor wafers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565672B2 (en) * 1996-11-12 2004-09-15 宮崎沖電気株式会社 Wafer macro inspection method and automatic wafer macro inspection apparatus
JP2915864B2 (en) 1997-01-10 1999-07-05 オリンパス光学工業株式会社 Wafer inspection equipment
JP2002014057A (en) * 2000-06-30 2002-01-18 Nidek Co Ltd Defect checking device
JP2005214980A (en) * 2005-01-31 2005-08-11 Miyazaki Oki Electric Co Ltd Macro inspection method for wafer and automatic wafer macro inspection device
JP2007107945A (en) * 2005-10-12 2007-04-26 Olympus Corp Inspection device of substrate
JP2007331491A (en) * 2006-06-13 2007-12-27 Toyoda Gosei Co Ltd Gas generator and manufacturing method thereof
US9196031B2 (en) * 2012-01-17 2015-11-24 SCREEN Holdings Co., Ltd. Appearance inspection apparatus and method
JP2015148447A (en) * 2014-02-04 2015-08-20 東レエンジニアリング株式会社 Automatic visual inspection apparatus
CN106770362B (en) * 2016-12-27 2019-12-31 武汉精测电子集团股份有限公司 Macroscopic defect detection device and method based on AOI

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274254A (en) * 1998-03-19 1999-10-08 Sharp Corp Device and method for checking appearance
JP2001099788A (en) * 1999-09-28 2001-04-13 Sharp Corp Automatic macro-appearance inspecting device
JP2002267615A (en) * 2001-03-12 2002-09-18 Olympus Optical Co Ltd Defect inspection method and device therefor
JP2002277412A (en) * 2001-03-21 2002-09-25 Olympus Optical Co Ltd Inspection screen displaying method and substrate inspection system
JP2008520984A (en) * 2004-11-24 2008-06-19 シュトラトゥス ビジョン ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection device
JP2007155610A (en) * 2005-12-07 2007-06-21 Seiko Epson Corp Visual examination device and visual examination method
JP2007333491A (en) * 2006-06-13 2007-12-27 Sumitomo Electric Ind Ltd Visual insepction device of sheet member
US20120276664A1 (en) * 2011-04-28 2012-11-01 Lars Markwort Methods of inspecting and manufacturing semiconductor wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352415A (en) * 2023-12-05 2024-01-05 南京阿吉必信息科技有限公司 Preparation method of red light LED flip chip structure
CN117352415B (en) * 2023-12-05 2024-02-23 南京阿吉必信息科技有限公司 Preparation method of red light LED flip chip structure

Also Published As

Publication number Publication date
JP7368141B2 (en) 2023-10-24
JP2021032598A (en) 2021-03-01
CN114222909A (en) 2022-03-22
TW202109027A (en) 2021-03-01
KR20220044741A (en) 2022-04-11
TWI827863B (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US6928185B2 (en) Defect inspection method and defect inspection apparatus
KR101074394B1 (en) Apparatus for Testing LCD Panel
KR20180103701A (en) Die bonding device and method of manufacturing semiconductor device
JP2006268050A (en) Image inspection apparatus, panel inspection method and display panel manufacturing method
WO2021033396A1 (en) Wafer appearance inspection device and method
KR101802843B1 (en) Automated Vision Inspection System
JP4804295B2 (en) Component recognition method, component recognition device, surface mounter and component inspection device
JP2011158363A (en) Soldering inspection device for pga mounting substrate
JP2006275609A (en) Irregularity inspection device and irregularity inspection method for cyclic pattern
WO2022075041A1 (en) Appearance inspection device and method
JP7007993B2 (en) Dicing tip inspection device
JP2000283929A (en) Wiring pattern inspection method, and its device
JP2001194322A (en) External appearance inspection device and inspection method
WO2021039019A1 (en) Wafer appearance inspection device and method
KR100710703B1 (en) Inspection system for a measuring plating line width of semiconductor reed frame and thereof method
WO2023162523A1 (en) Wafer inspection device
JP2005300884A (en) Mask inspection apparatus and mask inspection method
WO2022153772A1 (en) Visual inspection device
WO2023119882A1 (en) Wafer external appearance inspecting device
JP7372173B2 (en) Board edge inspection equipment
TWI755460B (en) Appearance inspection method
JPH10300682A (en) Image-comparing device
JP2021110551A (en) Substrate edge inspection apparatus
JP2021143840A (en) Inspection device and method for generating reference image
JP2002296016A (en) Method for recognizing shape of protective layer of printed circuit board and method of inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855544

Country of ref document: EP

Kind code of ref document: A1