WO2021032140A1 - 预紧力修复、预紧力和夹具组合修复方法及修复的管道 - Google Patents

预紧力修复、预紧力和夹具组合修复方法及修复的管道 Download PDF

Info

Publication number
WO2021032140A1
WO2021032140A1 PCT/CN2020/110121 CN2020110121W WO2021032140A1 WO 2021032140 A1 WO2021032140 A1 WO 2021032140A1 CN 2020110121 W CN2020110121 W CN 2020110121W WO 2021032140 A1 WO2021032140 A1 WO 2021032140A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
pipeline
pipe
fiber material
tightening force
Prior art date
Application number
PCT/CN2020/110121
Other languages
English (en)
French (fr)
Inventor
路民旭
杨阳
侯世颖
田骁
高荣钊
Original Assignee
北京安科管道工程科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京安科管道工程科技有限公司 filed Critical 北京安科管道工程科技有限公司
Priority to US17/753,080 priority Critical patent/US20220268389A1/en
Publication of WO2021032140A1 publication Critical patent/WO2021032140A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/168Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe
    • F16L55/175Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe by using materials which fill a space around the pipe before hardening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/168Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe
    • F16L55/1686Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe by winding a tape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/168Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe
    • F16L55/17Devices for covering leaks in pipes or hoses, e.g. hose-menders from outside the pipe by means of rings, bands or sleeves pressed against the outside surface of the pipe or hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes

Definitions

  • the invention relates to a method for repairing a pipeline with a pre-tightening force, a method for repairing a pipeline with a combination of a pre-tightening force and a clamp, and a repaired pipeline.
  • Pipeline transportation is one of the five major transportation industries in the national economy. At present, my country's oil and gas long-distance pipelines are more than 50,000 kilometers long. During the long-term service of these pipelines, due to formation pressure, soil corrosion, galvanic corrosion, external force damage, etc., accidents such as pipeline bursts and leaks occur frequently, affecting the normal transportation operation of the pipeline. Therefore, there is a need for repairing and reinforcing technology without stopping transportation.
  • the inner epoxy resin shell is formed by connecting the upper and lower shells around the damaged area, forming an annular space with the pipe, sealing the two ends of the annular space and injecting high-strength epoxy resin slurry.
  • the above-mentioned casing epoxy-injected reinforcement technology has a poor effect on the axial force of the pipeline. For example, when there are cracks in the circumferential weld of the pipeline and corrosion defects with large circumferential dimensions, the axial bearing capacity of the pipeline is often large. If it is weakened, then axial reinforcement is needed, so this method cannot be satisfied.
  • the repair of the pipe generally focuses on limiting the hoop deformation of the pipe, supplemented by the axial repair, and the repair is only to resist Internal pressure failure design, the axial repair strength is only half of the circumferential repair strength.
  • the axial stress of the pipeline is very large, the circumferential weld defects and other circumferential defects pose a high threat to the safety of the pipeline, and the current repair design is only designed to resist internal pressure failure.
  • the design of axial repair is insufficient, the axial stress of the pipeline cannot be well shared, and the girth weld defect and the circumferential defect can not be fully protected.
  • the pipeline is often under pressure, that is, repaired under the operating pressure.
  • the composite reinforcement layer is wound and solidified under the operating pressure in the pipe, when the operating pressure is greatly reduced or fluctuated, Or the pipeline undergoes large axial tensile deformation.
  • the pipeline will undergo large radial shrinkage or fluctuations, which will easily cause the shear strength of the interface between the reinforcement layer and the pipeline to decrease, which will cause the reinforcement layer to affect the axial direction of the pipeline.
  • the repair effect is reduced, and the debonding of the reinforcement layer to the pipeline is likely to occur, which in turn makes the reinforcement layer lose the axial reinforcement effect.
  • the invention provides a method for repairing pipeline defects with fiber composite materials.
  • the axial load of the pipeline can be effectively shared, and the axial bearing capacity of the pipeline can be restored to the intact pipeline level;
  • the pipeline can still maintain effective bonding with the pipeline and provide effective protection;
  • the pipeline operating pressure changes it can adapt to the radial contraction or expansion of the pipeline caused by the pressure change of the pipeline to ensure the bonding with the pipeline force.
  • the present invention provides a pre-tightening force repair method, which includes the following steps: (a) fixing a part of the fiber material to the pipe; (b) applying a pre-tightening force to the fiber material and acting on the pre-tightening force Wrap multiple layers of fiber material on the pipe to cover the parts of the pipe that need to be repaired.
  • step (a) includes painting or impregnating the part of the fibrous material with a viscose dipping glue, fixing the part to the pipe.
  • the biasing force F is F preselected pre-1, F pre-2, F 3 one pre, pre F 1, F pre-2, F 3 pre sum of any two, or all three of, and,
  • F pre ⁇ F pre 1 , F pre 2 , F pre 3 , F pre 1 + F pre 2 , F pre 2 + F pre 3 , F pre 1 + F pre 3 , F pre 1 + F pre 2 + F pre 3 ⁇
  • P is the pressure at the repair pipe repair;
  • pipe is a pipe diameter D;
  • T pipe is a pipe wall thickness;
  • safe F 1, f safe 2, f 3 safe safety factor which is greater than 0 and less than or equal to 100;
  • t Single Layer fiber is the theoretical thickness of a single layer of fiber material;
  • b fiber width is the fiber width;
  • E fiber is the elastic modulus of the fiber;
  • E pipe is the elastic modulus of the pipe material;
  • ⁇ pipe is the Poisson's ratio of the pipe;
  • ⁇ yield is Yield strength of the pipe;
  • ⁇ tensile refers to the circumferential plastic strain of the pipe caused when the axial load of the pipe is the tensile strength;
  • F pre-1 is to overcome the radial shrinkage of the pipe caused by the internal pressure drop after the pressure pipe is repaired and cause the fiber composite material layer preload tacky off the duct;
  • F. pre-3 Overcome the pre-tightening force of the fiber composite material layer and the pipe debonding caused by the axial tensile plastic strain of the pipe after the repair of the pressurized pipe, which causes the debonding of the fiber composite layer and the pipe;
  • F pre is the pre-tightening force applied to the single-layer fiber material.
  • the length of the portion of the fibrous material fixed in step (a) is selected so that the fibrous material does not slide relative to the pipe in step (b).
  • said length of said part is first calculated based on the following disclosure:
  • ⁇ interface shear is the combined shear strength of the interface between the pipe and the fiber material
  • ⁇ interlayer shear is the combined shear strength between two adjacent fiber material layers
  • L is initially fixed as the preload before the fiber The material is fixed to the initial length of the pipe.
  • the fiber material is a unidirectional fiber material, and in step (b): (b1) one or more layers of hoop fiber material are wound under the action of pretension, and the surface of the hoop fiber material is coated Adhesive dipping, and then laying one or more layers of axial fiber material, and coating the surface of the axial fiber material with adhesive dipping, and repeating it many times until the repair operation is completed; or (b2) laying one or more layers of axial fiber material Fiber material, at the same time, the surface of the axial fiber material is coated with viscose dipping glue, and then one or more layers of the hoop fiber material are wound under the action of pretension, and the viscous dipping glue is coated on the surface of the hoop fiber material, repeat Repeat until the repair job is completed.
  • fiber materials with high elastic modulus are selected for axial fiber materials to ensure the axial repair effect; fiber materials with low elastic modulus and/or low single layer thickness are selected for hoop fiber materials to reduce to pretension The hoop construction pulling force required for the repair effect.
  • the hoop fiber material is glass fiber.
  • the fiber material is a two-way fiber material.
  • step (b) multiple layers of the two-way fiber material are continuously wound under a pretension force, and the surface of the two-way fiber material is coated with adhesive when winding each layer of the two-way fiber material. Dip glue to form a multilayer bidirectional fiber composite material.
  • the bidirectional fiber material is designed to be woven from two hoop fibers and axial fibers with different elastic modulus.
  • the axial fibers choose high elastic modulus fibers to ensure the axial repair effect, and the hoop fibers choose low Fibers with low modulus of elasticity and/or single layer thickness to reduce the hoop construction tension required to achieve the pre-tensioned repair effect.
  • the hoop fibers are glass fibers.
  • the curing speed of the dipping glue used in step (a) is faster than the curing speed of the dipping glue used in step (b).
  • the parts of the pipeline that need to be repaired include pipeline defects.
  • the defects can be located in the pipeline body, straight welds, spiral welds, or girth welds.
  • the pipeline defects include volume defects, planar defects, and dispersion damage types. Defects or geometric defects.
  • the fiber material is selected from aramid fiber, polyethylene fiber, carbon fiber, glass fiber, basalt fiber, boron fiber, Kevlar fiber, silicon carbide fiber, alumina fiber and ceramic fiber and other fibers that can be used for pipeline repair .
  • the present invention provides a pre-tightening force and clamp combination repair method, which includes the following steps: (a) fixing a part of the fiber material to the pipe; (b) applying a pre-tightening force to the fiber material and pre-stressing Under the action of tight force, wind multiple layers of fiber material on the pipe to cover the parts of the pipe that need to be repaired.
  • the fiber material When winding each layer of fiber material, the fiber material is painted or impregnated with glue to form a multilayer fiber composite material; c) Install a clamp outside the fiber composite material with pre-tightening force, and pour a curable polymer into the gap formed between the clamp and the pipe, wherein the magnitude of the pre-tightening force is designed to overcome the pressure after the pipe is repaired
  • the internal pressure drop or/and the axial stretching of the pipeline cause the pipeline to shrink in the radial direction, causing the fiber composite material layer to debond from the pipeline.
  • step (a) includes painting or impregnating the part of the fibrous material with a viscose dipping glue, fixing the part to the pipe.
  • the pre-tightening force F pre- satisfying the following formula is selected as one of F pre 1 , F pre 2 , F pre 3 , F pre 1 , F pre 2 , F pre 3 , or any two of the sum, or one of the three with,
  • F pre ⁇ F pre 1 , F pre 2 , F pre 3 , F pre 1 + F pre 2 , F pre 2 + F pre 3 , F pre 1 + F pre 3 , F pre 1 + F pre 2 + F pre 3 ⁇
  • P is the pressure at the repair pipe repair;
  • pipe is a pipe diameter D;
  • T pipe is a pipe wall thickness;
  • safe F 1, f safe 2, f 3 safe safety factor which is greater than 0 and less than or equal to 100;
  • t Single Layer fiber is the theoretical thickness of a single layer of fiber material;
  • b fiber width is the fiber width;
  • E fiber is the elastic modulus of the fiber;
  • E pipe is the elastic modulus of the pipe material;
  • ⁇ pipe is the Poisson's ratio of the pipe;
  • ⁇ yield is Yield strength of the pipe;
  • ⁇ tensile refers to the circumferential plastic strain of the pipe caused when the axial load of the pipe is the tensile strength;
  • F pre-1 is to overcome the radial shrinkage of the pipe caused by the internal pressure drop after the pressure pipe is repaired and cause the fiber composite material layer preload tacky off the duct;
  • F. pre-3 Overcome the pre-tightening force of the fiber composite material layer and the pipe debonding caused by the axial tensile plastic strain of the pipe after the repair of the pressurized pipe, which causes the debonding of the fiber composite layer and the pipe;
  • F pre is the pre-tightening force applied to the single-layer fiber material.
  • the length of the portion of the fibrous material fixed in step (a) is selected so that the fibrous material does not slide relative to the pipe in step (b).
  • said length of said part is first calculated based on the following disclosure:
  • ⁇ interface shear is the combined shear strength of the interface between the pipe and the fiber material
  • ⁇ interlayer shear is the combined shear strength between two adjacent fiber material layers
  • L is initially fixed as the preload before the fiber The material is fixed to the initial length of the pipe.
  • the fiber material is a unidirectional fiber material
  • step (b) includes: (b1) winding one or more layers of hoop fiber material under the action of a pretension force, and coating the surface of the hoop fiber material with adhesive. Dipping, and then laying the axial fiber material, and coating the surface of the axial fiber material with viscose dipping glue, repeating it many times until the repair operation is completed; or (b2) laying the axial fiber material, and at the same time on the surface of the axial fiber material Coating viscose dipping glue, and then winding one or more layers of hoop fiber material under the action of pretensioning force, and coating viscose dipping glue on the surface of the hoop fiber material at the same time, repeating several times until the repair operation is completed.
  • the fiber material is a two-way fiber material
  • winding the multi-layer fiber material includes continuously winding multiple layers of the two-way fiber material under a pre-tension force, and coating the surface of the two-way fiber material with sticky impregnation when winding each layer of the two-way fiber material. Glue to form a multilayer bidirectional fiber composite material.
  • the present invention provides a repaired pipeline
  • the pipeline includes a pipeline section that needs to be thickened or a pipeline section with defects, and a multi-layer wound around the pipeline section that needs to be thickened or a pipeline section with defects
  • the fiber material is painted or impregnated with viscose dipping glue to form a fiber composite material, and the fiber composite material is applied to the pipe section in a state of pretension, wherein the pretension is
  • the size is designed to overcome the internal pressure drop after repair of the pressurized pipeline or/and the axial stretching of the pipeline causes the pipeline to contract radially, which causes the fiber composite material layer to debond from the pipeline.
  • the pre-tightening force F pre- satisfying the following formula is selected as one of F pre 1 , F pre 2 , F pre 3 , F pre 1 , F pre 2 , F pre 3 , or any two of the sum, or one of the three with,
  • F pre ⁇ F pre 1 , F pre 2 , F pre 3 , F pre 1 + F pre 2 , F pre 2 + F pre 3 , F pre 1 + F pre 3 , F pre 1 + F pre 2 + F pre 3 ⁇
  • P is the pressure at the repair pipe repair;
  • pipe is a pipe diameter D;
  • T pipe is a pipe wall thickness;
  • safe F 1, f safe 2, f 3 safe safety factor which is greater than 0 and less than or equal to 100;
  • t Single Layer fiber is the theoretical thickness of a single layer of fiber material;
  • b fiber width is the fiber width;
  • E fiber is the elastic modulus of the fiber;
  • E pipe is the elastic modulus of the pipe material;
  • ⁇ pipe is the Poisson's ratio of the pipe;
  • ⁇ yield is Yield strength of the pipe;
  • ⁇ tensile refers to the circumferential plastic strain of the pipe caused when the axial load of the pipe is the tensile strength;
  • F pre-1 is to overcome the radial shrinkage of the pipe caused by the internal pressure drop after the pressure pipe is repaired and cause the fiber composite material layer preload tacky off the duct;
  • F. pre-3 Overcome the pre-tightening force of the fiber composite material layer and the pipe debonding caused by the axial tensile plastic strain of the pipe after the repair of the pressurized pipe, which causes the debonding of the fiber composite layer and the pipe;
  • F pre is the pre-tightening force applied to the single-layer fiber material.
  • the fiber material is a unidirectional fiber material, and one or more layers of hoop fibers and axial fibers are alternately wound on the defective pipe section.
  • the fiber material is a bidirectional fiber material, and a plurality of layers of bidirectional fiber material are continuously wound on the pipe section with defects.
  • the repaired pipeline further includes a clamp, the clamp is installed around the fiber composite material, a gap is formed between the clamp and the fiber composite material-coated pipe section; and the can be poured into the gap Curing polymer.
  • the clamp is composed of multiple parts, and one or more pouring holes and one or more vent holes are provided on the clamp.
  • Fig. 1 shows a flow chart of a method for repairing defects of a pipeline with a fiber composite material according to the present invention.
  • Fig. 2 shows a flow chart of a method for repairing a pipeline with a combination of a pretension force and a clamp according to the present invention.
  • Figure 3 shows a schematic diagram of the pipeline and its defects according to the present invention.
  • Figure 4 shows an exploded view of the repaired pipeline according to the present invention.
  • Figure 5 shows a schematic diagram of a repaired pipeline according to the present invention.
  • the method for repairing the part of the pipeline requiring repair with fiber composite material of the present invention includes the following steps: (a) fixing a part of the fiber material to the pipeline; (b) applying pretension to the fiber material , And under the action of pre-tightening force, multi-layer fiber materials are wound on the pipeline to cover the parts of the pipeline that need to be repaired. When each layer of fiber material is wound, the fiber materials are painted or impregnated with glue to form a multi-layer fiber composite Material; (c) In the state of applying pretension, the curing of the multilayer fiber composite material is completed.
  • the parts of the pipeline that need to be repaired include pipeline defects, which are located in the pipeline body, straight welds, spiral welds, or girth welds.
  • the pipeline defects include volume defects, planar defects, dispersion damage defects or geometrical defects. defect.
  • the fiber material is selected from aramid fiber, polyethylene fiber, carbon fiber, glass fiber, basalt fiber, boron fiber, Kevlar fiber, silicon carbide fiber, alumina fiber and ceramic fiber.
  • the elastic modulus of different fibers is different, which leads to different pre-tightening forces applied in the field. The smaller the elastic modulus of the fiber, the smaller the pre-tightening force applied to the single-layer fiber, the easier it is to apply the pre-tightening force on site. Taking carbon fiber, glass fiber, Kevlar fiber and basalt fiber as examples, the elastic modulus of the four is shown in the following table:
  • the elastic modulus of the glass fiber is the smallest, so the pretension force applied to the single-layer glass fiber is the smallest, which is easier to implement on site. Therefore, it is preferable to use glass fiber as the fiber composite material.
  • the magnitude of the above-mentioned pre-tightening force is designed to overcome the internal pressure drop after the pressure-carrying pipeline is repaired or/and the axial stretching of the pipeline causes the pipeline to contract radially, which causes the fiber composite material layer and the pipeline to debond.
  • the biasing force F is F preselected pre-1, F pre-2, F 3 one pre, pre F 1, F pre-2, F 3 pre sum of any two, or all three of, and,
  • F pre ⁇ F pre 1 , F pre 2 , F pre 3 , F pre 1 + F pre 2 , F pre 2 + F pre 3 , F pre 1 + F pre 3 , F pre 1 + F pre 2 + F pre 3 ⁇
  • P maintenance is the pressure during pipeline maintenance
  • D pipeline is the outer diameter of the pipeline
  • t pipeline is the wall thickness of the pipeline
  • f safety 1 , f safety 2 , f safety 3 are safety factors, which are greater than 0 and less than or equal to 100, preferably Greater than 0 and less than or equal to 50, more preferably greater than 0 and less than or equal to 2.5.
  • the safety factor is 0.5, it means that the pressure in the pipe drops to half of the pressure during maintenance.
  • the safety factor is 1, it means that the pressure in the pipe drops from the pressure during maintenance.
  • t single-layer fiber is the theoretical thickness of single-layer fiber material;
  • b fiber width is the fiber width;
  • E fiber is the elastic modulus of the fiber;
  • E pipe is the elastic modulus of the pipe material;
  • ⁇ pipe is the Poisson of the pipe Ratio;
  • ⁇ yield is the yield strength of the pipe;
  • ⁇ tensile is the circumferential plastic strain of the pipe caused when the axial load of the pipe is the tensile strength;
  • F pre-1 is to overcome the radial shrinkage of the pipe caused by the internal pressure drop after the pressure pipe is repaired causing fiber composite layer with a debonding preload pipe;
  • F pre 2 is a pre-pressurized pipe against the pipeline and the axial tensile strain caused by contraction of the pipe caused by radial preload fiber composite layer of the pipe debonded ;
  • F pre 3 is the pretension force that overcomes the axial tensile plastic strain of the pipeline after the repair of the pressurized pipe, which causes the pipe radial contraction and causes the fiber composite material layer to debond from the pipe;
  • F pre is the pretension applied to the single layer of fiber material force.
  • step (a) the part of the fiber material is preferably painted or impregnated with a viscose dipping glue, and then the part is fixed to the pipe. It should be understood that other fixing methods are also possible, as long as a part of the fiber material can be fixed to the pipe in order to apply a pre-tightening force.
  • the length of the portion of the fiber material pasted in step (a) is determined based on the pre-tightening force to ensure that the fiber material does not slip relative to the pipe during the winding in step (b).
  • the length can be determined empirically. In addition, preferably, the length can be calculated by the following disclosure:
  • t interface shear is the combined shear strength of the interface between the pipe and the fiber material
  • ⁇ interlayer shear is the combined shear strength between two adjacent layers of fiber material
  • L is initially fixed as the fiber material before the preload is loaded. Fixed to the initial length of the pipe.
  • the adhesive dipping in step (a) may be a quick-adhesive dipping to realize the fast sticking of the fiber material and the pipe.
  • Viscose dipping glue is used to impregnate fiber materials, fiber materials and metal materials such as pipes, and fiber materials.
  • the dipping glue used in step (a) is different from the dipping glue used in step (b).
  • the curing speed of the dipping glue used in step (a) is faster than that used in step (b)
  • Adhesive dipping has a fast curing speed.
  • Adhesive dipping can be divided into two types for winter and summer. The formulations for winter and summer are slightly different, which can usually be achieved by adjusting the amount of curing accelerator. When the use environment temperature decreases, the amount of curing accelerator can be appropriately increased.
  • a person of ordinary skill in the art can know how to adjust the amount of curing accelerator at a certain use temperature based on common knowledge in the field or through simple experiments.
  • the viscose dipping glue used for brushing or impregnating fiber materials can be epoxy or unsaturated polyester glue.
  • Epoxy adhesives can be divided into single-component epoxy adhesives, two-component epoxy adhesives and multi-component epoxy adhesives according to their categories; mainly including pure epoxy resin adhesives and modified epoxy resin adhesives.
  • Modified epoxy resin adhesives include, for example, phenol-epoxy resin adhesives, nylon-epoxy resin adhesives, nitrile-epoxy resin adhesives, acrylic-epoxy resin adhesives, polysulfide-epoxy resin adhesives and polyurethane-epoxy resins. Adhesives, etc.
  • the viscose dipping glue is composed of two components, A and B, and the ratio of the two components is (3-4):1,
  • the first component includes:
  • the second component includes:
  • the epoxy resin of the first component (A) is a bisphenol A epoxy resin or a vinyl modified epoxy resin; the curing agent of the second component (E) is a modified aliphatic amine.
  • Adhesive dipping can be prepared as follows: mix and store the A and B components of the supporting resin separately, accurately weigh the components in the specified ratio before use, and put them into the container, and mix them evenly with a mixer. The amount of glue should be used up within the use time.
  • the method of the present invention also includes, before step (a), performing surface cleaning on the weld and around the weld, and coating a repair adhesive layer and/or primer layer on the cleaned surface, the repair adhesive layer and the The primer layer is coated with epoxy glue.
  • repair glue used in the present invention is used for filling and repairing damage and defects outside the pipeline, and the use of the primer layer helps the bonding between the fiber composite material and the pipe body. Similar to dipping glue, repair glue can be divided into two types: winter and summer. The formulas of the repair glue and the primer layer are well-known to those skilled in the art, and therefore will not be repeated.
  • step (b) When the fiber material is a unidirectional fiber material including hoop fibers and axial fibers, in step (b), the hoop fibers and the axial fibers are alternately wound. That is to say, the hoop fiber material is wound under the action of the pretension, while the viscose dipping glue is coated on the surface of the hoop fiber material, and then the axial fiber material is laid, and the viscous dipping glue is coated on the surface of the axial fiber material.
  • fiber materials with high elastic modulus are selected for axial fiber materials to ensure the axial repair effect; fiber materials with low elastic modulus and/or low single layer thickness are selected for hoop fiber materials to reduce to pretension The hoop construction pulling force required for the repair effect.
  • the hoop fiber composite material When repairing, the hoop fiber composite material is wound while applying a pretension force. Under the action of the pretension force, the hoop fiber composite material will produce tensile deformation. By controlling the magnitude of the pretension force, the deformation of the composite material can be controlled.
  • the control of the amount of deformation of the hoop fiber composite material should meet: 1) When the internal pressure of the pipeline decreases from the service pressure, the pipeline undergoes radial deformation, the pipe diameter becomes smaller, and the deformation amount of the composite material caused by the pre-tightening force should be It is greater than the pipe diameter deformation caused by the pressure change of the pipeline; 2) When the pipeline is subjected to axial stress, the axial direction may yield, and the deformation of the composite material caused by the pre-tightening force should be able to ensure that the composite material and the outer wall of the pipeline are still at the yield point. Of bonding.
  • the control of the thickness and axial length of the axial fiber composite material should meet the following requirements: the axial length should ensure that the bonding force between the pipeline and the composite material can sufficiently bear the axial load of the pipeline, and the thickness should ensure that the deformation of the pipeline defect is limited.
  • winding the multi-layer fiber material includes continuously winding multiple layers of the two-way fiber material under pretension, and coating the surface of the two-way fiber material with viscose dipping glue when winding each layer of the two-way fiber material, thereby Form a multilayer bidirectional fiber composite material.
  • the present invention designs the axial repair of the pipeline by restoring the axial bearing capacity of the pipeline to the level of the intact pipeline, instead of designing the axial repair by half of the conventional repair layer in the circumferential direction.
  • This allows the axial repair of pipeline defects, especially girth weld defects and other circumferential defects, not only to restore the normal internal pressure bearing level, but also to restore the axial bearing capacity to the intact pipeline level, which is more suitable for complex Geological conditions or other axial external stresses exist, because geological changes can easily cause extra large axial stresses on the pipeline.
  • the pre-tightening fiber composite material is used to repair the pipeline.
  • the composite material is always maintained with a certain pre-tightening force.
  • the pre-tightening force is equivalent to when the pressure in the pipe increases from zero to the operating pressure. Force calculation of the tensile deformation of the external composite repair layer caused by the expansion of the pipe body, so that the operating pressure repair can achieve the effect of repairing at zero internal pressure, thereby avoiding the shear strength of the repair layer and the pipeline interface from being greatly reduced due to the internal pressure The impact of fluctuations.
  • Figure 2 shows a method of repairing a pipe with a combination of pre-tightening force and clamps, including the following steps: (a) fixing a part of the fiber material to the pipe; (b) applying a pre-tightening force to the fiber material, and under the action of the pre-tightening force Wrap multiple layers of fiber materials on the pipe to cover the parts of the pipe that need to be repaired. When winding each layer of fiber material, apply or impregnate the fiber material to form a multilayer fiber composite material; (c) in the tape The clamp is installed outside the pre-tightened fiber composite material, and a curable polymer is poured into the gap formed between the clamp and the pipe.
  • the pre-tightening force is designed to overcome the internal pressure drop or/and the pipe after the pressure pipe is repaired. Axial stretching causes radial contraction of the pipe and causes the fiber composite material layer to debond from the pipe.
  • Step (a) includes painting or impregnating the part of the fiber material with a viscose dipping glue and fixing the part to the pipe.
  • Pouring a curable polymer into the gap formed between the clamp and the pipe includes: (1) Making a clamp according to the shape and size of the pipe, the clamp is composed of multiple parts, and one or more pouring holes and One or more vents; (2) Put the parts of the clamp outside the pipeline to be repaired; (3) Connect the parts of the clamp by welding or bolting; (4) ) Closely connect the end of the clamp and the pipeline to be repaired by welding or sealing with a sealing material, or any combination of the two; (5) Through the perfusion hole reserved on the clamp, Pouring a curable polymer into the gap formed between the clamp and the pipe to be repaired; and (6) curing the poured polymer.
  • the sealing material includes rubber, silica gel, curable resin, mortar, reinforcing steel bar or asbestos rope with good sealing performance, or any combination of at least two of them.
  • the sealing material is epoxy resin.
  • the filling hole and the exhaust hole are in relative or close to relative positions.
  • the curable polymer is selected from liquid rubber, cellulose derivatives, ethylene polymers or their copolymers, saturated or unsaturated polyesters, polyacrylates, polyethers, polysulfones, amino plastics, epoxy resins, phenolic resins, poly Imide resin, amino resin, unsaturated polyester resin, or modified products of any of the above.
  • the curable polymer has an elastic modulus greater than 0.1 Gpa, preferably greater than 1 GPa, more preferably greater than 2 GPa, and a compressive strength greater than 10 MPa, preferably greater than 20 MPa, more preferably greater than 50 MPa.
  • the repaired pipe includes a pipe section 1 with a defect 2 and a fiber composite material 3 wound around the pipe section with a defect.
  • the fiber composite material is painted or impregnated with viscose dipping glue, and the fiber
  • the composite material is subjected to a pre-tightening force, where the pre-tightening force is designed to overcome the internal pressure drop after the repair of the pressurized pipe or/and the pipe's radial contraction caused by the axial stretching of the pipe, causing the fiber composite material layer to separate from the pipe. stick.
  • the fiber material can be a unidirectional fiber material, one or more layers of hoop fiber material are wound under the action of pretension, and the surface of the hoop fiber material is coated with viscose dipping glue, and then one or more layers of axial fiber are laid At the same time, apply viscose dipping glue on the surface of the axial fiber material, and repeat it many times until the repair operation is completed; or lay one or more layers of axial fiber material, and coat the surface of the axial fiber material with viscose dipping glue, Then, one or more layers of the hoop fiber material are wound under the action of the pretension force, and the surface of the hoop fiber material is coated with viscose dipping glue, and repeated many times until the repair operation is completed.
  • the fiber material can also be a two-way fiber material, and the two-way fiber material is continuously wound on a pipe section with defects to form a two-way fiber composite material.
  • the repaired pipeline also includes a clamp, which is composed of two parts, namely the first half clamp 4 and the second half clamp 5. It should be understood that the clamp can also be composed of more than two parts, as long as the purpose of the present invention can be achieved.
  • the clamp is made according to the shape and size of the pipe. The shape of the clamp is similar to that of the pipe, but its size is larger than the pipe to form a space between the clamp and the pipe to infuse the curable polymer.
  • One or more pouring holes 6 and one or more vent holes 7 are provided on the clamp. After the clamp is installed outside the fiber composite material, a sealing material 8 is applied between the clamp and the pipe.
  • the axial bearing capacity of the repaired pipeline of the present invention can be restored to the level of an intact pipeline, which is more suitable for complex geological conditions or other situations where axial external stress exists, because geological changes and other conditions are likely to cause extra large axial stress on the pipeline .
  • the repaired pipeline can be repaired with a pre-tightened fiber composite material, which can repair the operating pressure to achieve the effect of repairing at zero internal pressure, thereby avoiding the impact of the shear strength of the repair layer and the pipeline interface from being reduced by the fluctuation of the internal pressure. .

Abstract

一种预紧力修复、预紧力和夹具组合修复方法及修复的管道。该方法包括以下步骤:(a)将纤维材料的一部分固定到管道;(b)对纤维材料施加预紧力,并在预紧力作用下在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料(3);(c)在预紧力施加的状态下,完成多层纤维复合材料(3)的固化;(d)在该带预紧力的纤维复合材料(3)修复部位之外安装夹具,并在夹具和管道之间形成的空隙内灌注可固化聚合物。其中,预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。

Description

预紧力修复、预紧力和夹具组合修复方法及修复的管道
相关申请的交叉引用
本申请要求于2019年8月20日向中国国家知识产权局提交的中国申请CN201910767920.9的优先权。
技术领域
本发明涉及一种用预紧力修复管道的方法、预紧力和夹具组合修复管道的方法及修复的管道。
背景技术
管道运输是国民经济五大运输产业之一,仅目前我国油气长输管道就达5万余公里。这些管道在长期服役过程中,由于受到地层压力、土壤腐蚀、电偶腐蚀、外力损伤等作用,造成管道爆裂、泄漏等事故发生频繁,影响管道的正常输送作业。因此,需要在不停止输送的情况下进行修复补强增强的技术。
另外,还有可能出现因生产需要提高安全运行压力和因地区类别变化需要提高安全系数等情况。在此类情况下,整个管道系统中对因生产需要提高安全运行压力和因地区类别变化需要提高安全系数的部分管道及辅助设施,必须对其进行增强以适应提高运行压力和安全系数等的需要。
国外有关于套管内注环氧修补管道技术的报道,对于管体具有腐蚀缺陷的管道,英国天然气公司曾报导采用内注环氧树脂的修补方法进行修补。内注环氧树脂管壳,是由上下两片壳体环抱损坏区域连接而成,与管 道形成环形空间,将环形空间两端密封后注入高强的环氧树脂浆而成。
但是上述套管注环氧的补强技术对管道轴向受力的增强效果不好,例如当管道环焊缝存在裂纹和存在环向尺寸较大的腐蚀缺陷时,管道轴向承载能力往往大大减弱,这时需要轴向补强,则该种方法就不能满足。
近年来有一些关地使用碳纤维复合材料进行金属管道外损伤缺陷补强的报道。北京安科管道工程科技有限公司的专利CN1853847报道了用碳纤维复合材料对焊缝缺陷修复补强的方法,另外中国专利CN1616546《含缺陷管道修复补强的碳纤维复合材料和方法》公开了一种用于管道修复补强的材料和管道修复补强的方法,该材料包括多层用一定组成的粘浸胶浸渍或涂布的碳纤维复合材料,可以达到良好的修复补强效果。使用该技术既可以进行金属管道的修复补强,同时也可以达到提高运行压力和允许能力的目的。但当腐蚀面积和深度都较大时,这种方法对于提高管道抗弯曲能力的提高具有一定局限性,而套管注环氧的技术对于提高管道抗弯曲能力则有一定优势。另外,对于某些特征管件,例如管道的固定墩,由于结构几何特性限制,单用磁纤维补强则难以达到增强效果。
在一般情况也即内压情况下,管道的环向应力是轴向应力的2倍,因此,一般对于管道的修复以限制管道环向变形为主,轴向修复为辅,并且修复仅以抵抗内压失效设计,轴向修复强度仅为环向修复强度的一半。但在复杂地质条件或其他外部应力存在的情况下,管道轴向应力很大,环焊缝缺陷及其他周向缺陷对管道的安全威胁很高,而目前的修复设计仅以抵抗内压失效设计,对轴向修复设计不足,不能很好的分担管道轴向应力,不能对环焊缝缺陷和周向缺陷起到充分的保护作用。
另外,现行管道复合材料补强,管道往往处于带压运行,即在运行压力下实施修复,复合材料补强层在管内运行压力状态下缠绕固化后,当运行压力发生较大幅度降低或者波动,亦或者管道发生较大轴向拉伸变形,此时管道将发生较大的径向收缩或波动,易造成补强层与管道的界面剪切强度降低,这将造成补强层对管道轴向修复效果降低,易发生补强层对管道的脱粘,进而使得补强层失去轴向补强效果。
因此,本专利主张对环焊缝缺陷及其他周向缺陷的轴向修复按恢复管道轴向承载力至完好管道水平进行设计,并避免修复层与管道界面的剪切强度因为内压大幅降低波动而降低的影响,提出了一种利用对纤维复合材料施加预紧力来修复管道的方法。
发明内容
本发明提供了一种用纤维复合材料对管道缺陷进行修复的方法,通过对纤维复合材料施加预紧力,能够有效的分担管道轴向载荷,恢复管道轴向承载力至完好管道水平;即使在管道发生变形时,仍能和管道保持有效的粘接,提供有效的保护;在管道运行压力发生变化时,能够适应管道的压力变化造成的管道的径向收缩或膨胀,保证和管道的粘接力。
一方面,本发明提供了一种预紧力修复方法,该方法包括以下步骤:(a)将纤维材料的一部分固定到管道;(b)对纤维材料施加预紧力,并在预紧力作用下在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;(c)在预紧力施加的状态下,完成多层纤维复合材料的固化,其中, 所述预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
有利地,步骤(a)包括用粘浸胶涂刷或浸渍纤维材料的该部分,将该部分固定到管道。
有利地,所述预紧力F 选择为F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,
即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
Figure PCTCN2020110121-appb-000001
Figure PCTCN2020110121-appb-000002
F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
其中,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变;F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力。
有利地,在步骤(a)中固定的纤维材料的该部分的长度选择为使得在步骤(b)中纤维材料相对管道不滑动。
有利地,所述部分的所述长度首先基于以下公开来计算:
Figure PCTCN2020110121-appb-000003
当通过以上公式计算得出的结果小于等于π·D管道时,即L 初始固定≤π·D 管道时,那么将计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度。
当通过以上公式计算得出的结果大于π·D管道时,即L 初始固定>π·D 管道时,那么将通过以下公式计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度:
Figure PCTCN2020110121-appb-000004
其中,τ 界面剪切为管道与纤维材料界面的结合剪切强度;τ 层间剪切为相邻两层纤维材料层之间的结合剪切强度;L 初始固定为预紧力加载前,纤维材料固定到管道的初始长度。
有利地,所述纤维材料是单向纤维材料,在步骤(b)中:(b1)在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者(b2)铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠 绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
有利地,轴向纤维材料选择高弹性模量的纤维材料,以保证轴向修复效果;环向纤维材料选择低弹性模量和/或单层厚度低的纤维材料,以减小为达预紧修复效果所需的环向施工拉力值。
有利地,环向纤维材料是玻璃纤维。
有利地,所述纤维材料是双向纤维材料,在步骤(b)中,在预紧力下连续地缠绕多层双向纤维材料,在缠绕每一层双向纤维材料时在双向纤维材料表面涂覆粘浸胶,从而形成多层双向纤维复合材料。
有利地,双向纤维材料设计为由两种弹性模量不同的环向纤维和轴向纤维编织而成,轴向纤维选择高弹性模量的纤维,以保证轴向修复效果,环向纤维选择低弹性模量和/或单层厚度低的纤维,以减小为达预紧修复效果所需的环向施工拉力值。
有利地,环向纤维是玻璃纤维。
有利地,在步骤(a)中使用的粘浸胶的固化速度比在步骤(b)中使用的粘浸胶的固化速度快。
有利地,管道的需要修复的部位包括管道的缺陷,其缺陷可以位于管道本体、直焊缝、螺旋焊缝或环焊缝等部位,管道的缺陷包括体积型缺陷、平面型缺陷、弥散损伤型缺陷或几何型缺陷。
有利地,纤维材料选自芳纶纤维、聚乙烯纤维、碳纤维、玻璃纤维、玄武岩纤维、硼纤维、凯夫拉纤维、碳化硅纤维、氧化铝纤维和陶瓷纤维及其它可以用于管道修复的纤维。
另一方面,本发明提供了一种预紧力和夹具组合修复方法,该方法包括以下步骤:(a)将纤维材料的一部分固定到管道;(b)对纤维材料施加预紧力,并预紧力作用下在在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;(c)在该带预紧力的纤维复合材料外安装夹具,并在夹具和管道之间形成的空隙内灌注可固化聚合物,其中,所述预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
有利地,步骤(a)包括用粘浸胶涂刷或浸渍纤维材料的该部分,将该部分固定到管道。
有利地,所述预紧力F 满足以下公式选择为F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,
即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
Figure PCTCN2020110121-appb-000005
Figure PCTCN2020110121-appb-000006
F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
其中,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为 管材轴向载荷为抗拉强度时引起的管道环向塑性应变;F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力。
有利地,在步骤(a)中固定的纤维材料的该部分的长度选择为使得在步骤(b)中纤维材料相对管道不滑动。
有利地,所述部分的所述长度首先基于以下公开来计算:
Figure PCTCN2020110121-appb-000007
当通过以上公式计算得出的结果小于等于π·D管道时,即L 初始固定≤π·D 管道时,那么将计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度。
当通过以上公式计算得出的结果大于π·D管道时,即L 初始固定>π·D 管道时,那么将通过以下公式计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度:
Figure PCTCN2020110121-appb-000008
其中,τ 界面剪切为管道与纤维材料界面的结合剪切强度;τ 层间剪切为相邻 两层纤维材料层之间的结合剪切强度;L 初始固定为预紧力加载前,纤维材料固定到管道的初始长度。
有利地,所述纤维材料是单向纤维材料,步骤(b)包括:(b1)在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者(b2)铺设轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
有利地,所述纤维材料是双向纤维材料,缠绕多层纤维材料包括在预紧力下连续地缠绕多层双向纤维材料,在缠绕每一层双向纤维材料时在双向纤维材料表面涂覆粘浸胶,从而形成多层双向纤维复合材料。
又一方面,本发明提供了一种修复的管道,所述管道包括需要增厚的管道段或带有缺陷的管道段以及围绕该需要增厚的管道段或带有缺陷的管道段缠绕多层的纤维材料,所述纤维材料被涂刷或浸渍有粘浸胶,以形成纤维复合材料,并且所述纤维复合材料在预紧力的状态下被施加到管道段,其中,该预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
有利地,所述预紧力F 满足以下公式选择为F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,
即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
Figure PCTCN2020110121-appb-000009
Figure PCTCN2020110121-appb-000010
F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
其中,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变;F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力。
有利地,所述纤维材料是单向纤维材料,在带有缺陷的管道段上交替缠绕有一层或多层环向纤维和轴向纤维。
有利地,所述纤维材料是双向纤维材料,在带有缺陷的管道段上连续地缠绕有多层双向纤维材料。
有利地,所述修复的管道还包括夹具,所述夹具围绕该纤维复合材料安装,在夹具与该涂覆有纤维复合材料的管道段之间形成有空隙;以及灌注在所述空隙内的可固化聚合物。
有利地,该夹具由多个部分组成,在该夹具上设有一个或多个灌注 孔及一个或多个排气孔。
附图说明
在下面结合附图详细描述的本发明的优选实施方式中,本发明的优点和目的可以得到更好地理解。为了在附图中更好地显示各部件的关系,附图并非按比例绘制。
图1示出根据本发明的用纤维复合材料对管道的缺陷进行修复的方法的流程图。
图2示出根据本发明的用预紧力和夹具组合修复管道的方法的流程图。
图3示出根据本发明的管道及其缺陷示意图。
图4示出根据本发明的修复的管道的分解图。
图5示出根据本发明的修复的管道的示意图。
具体实施方式
将参照附图详细描述根据本发明的各个实施例。这里,需要注意的是,在附图中,将相同的附图标记赋予基本上具有相同或类似结构和功能的组成部分,并且将省略关于它们的重复描述。术语“依次包括A、B、C等”仅指示所包括的部件A、B、C等的排列顺序,并不排除在A和B之间和/或B和C之间包括其它部件的可能性。
本说明书的附图为示意图,辅助说明本发明的构思,示意性地表示各部分的形状及其相互关系。
下面,参照图1,详细描述根据本发明的方法的优选实施方式。
如图1所示,本发明的用纤维复合材料对管道的需要修复的部位进行修复的方法包括以下步骤:(a)将纤维材料的一部分固定到管道;(b)对纤维材料施加预紧力,并在预紧力作用下在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;(c)在预紧力施加的状态下,完成多层纤维复合材料的固化。管道的需要修复的部位包括管道的缺陷,该缺陷位于管道本体、直焊缝、螺旋焊缝或环焊缝等部位,管道的缺陷包括体积型缺陷、平面型缺陷、弥散损伤型缺陷或几何型缺陷。纤维材料选自芳纶纤维、聚乙烯纤维、碳纤维、玻璃纤维、玄武岩纤维、硼纤维、凯夫拉纤维、碳化硅纤维、氧化铝纤维和陶瓷纤维。不同的纤维的弹性模量不同,这导致在现场施加预紧力不同。纤维的弹性模量越小,对单层纤维施加预紧力越小,那么在现场更易施加预紧力。以碳纤维、玻璃纤维、凯夫拉纤维和玄武岩纤维为例,四者的弹性模量如下表所示:
Figure PCTCN2020110121-appb-000011
由此可见,玻璃纤维的弹性模量最小,那么对单层玻璃纤维施加预紧力最小,在现场更便于实施。因此,优选地采用玻璃纤维作为纤维复合材料。
上述预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。具 体地,预紧力F 选择为F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,
即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
Figure PCTCN2020110121-appb-000012
Figure PCTCN2020110121-appb-000013
F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
其中,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100,优选地大于0小于等于50,更优选地大于0小于等于2.5,当安全系数为0.5时,表示管内压力变化下降到维修时压力的一半,当安全系数为1时,表示管内压力从维修时的压力下降到0;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变;F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力。
在步骤(a)中,优选地用粘浸胶涂刷或浸渍纤维材料的该部分,然后 将该部分固定到管道。应明白,其它固定方式也是可能的,只要能够将纤维材料的一部分固定到管道,以便施加预紧力即可。
在步骤(a)中粘贴的纤维材料的该部分的长度基于预紧力确定,以确保在步骤(b)的缠绕期间保证纤维材料相对于管道不打滑。
该长度可以评经验来确定,另外,优选地是,该长度可以通过以下公开来计算:
Figure PCTCN2020110121-appb-000014
当通过以上公式计算得出的结果小于等于π·D管道时,即L 初始固定≤π·D 管道时,那么将计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度。
当通过以上公式计算得出的结果大于π·D管道时,即L 初始固定>π·D 管道时,那么将通过以下公式计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度:
Figure PCTCN2020110121-appb-000015
其中,t 界面剪切为管道与纤维材料界面的结合剪切强度;τ 层间剪切为相邻两层纤维材料之间的结合剪切强度;L 初始固定为预紧力加载前,纤维材料固定到管道的初始长度。
在步骤(a)中的粘浸胶可以是快速粘浸胶,以实现纤维材料与管道的快速粘贴。粘浸胶用于渗浸纤维材料、纤维材料与金属材料如管体之间、 纤维材料之间的粘结。在步骤(a)中使用的粘浸胶和在步骤(b)中使用的粘浸胶不同,有利地,在步骤(a)中使用的粘浸胶固化速度比在步骤(b)中使用的粘浸胶固化速度快。粘浸胶可分为冬用和夏用两种。冬用和夏用配方略有不同,通常可通过调整固化促进剂的用量来实现。当使用环境温度降低时,可适当加大固化促进剂的用量。本领域普通技术人员根据本领域的常识,或通过简单试验即可知道在某一使用温度下应该如何调节固化促进剂的用量。
用于涂刷或浸渍纤维材料的粘浸胶可以是环氧类或不饱和聚酯类胶。环氧类胶按类别可分为单组分环氧胶粘剂、双组分环氧胶粘剂和多组分环氧胶粘剂;主要包括纯环氧树脂胶粘剂和改性环氧树脂胶粘剂。改性环氧树脂胶例如有酚醛-环氧树脂胶粘剂、尼龙-环氧树脂胶粘剂、丁腈-环氧树脂胶粘剂、丙烯酸-环氧树脂胶粘剂、聚硫-环氧树脂胶粘剂和聚氨酯-环氧树脂胶粘剂等。
优选地,粘浸胶由甲乙两组分组成,甲乙两组分的配比为(3-4):1,
其中甲组分包括:
(A):68%-84%(重量)的液态环氧树脂;
(B):10%-15%(重量)的丙烯酸酯液体橡胶;
(C):5%-15%(重量)的气相二氧化硅;和
(D):1%-2%(重量)的颜料;
乙组分包括:
(E):70%-90%(重量)的改性胺类环氧固化剂;和
(F):10%-30%(重量)的环氧固化促进剂2,4,6-三(二甲氨基)-甲基苯酚。
甲组分(A)的环氧树脂是双酚A型环氧树脂或乙烯基改性环氧树脂;乙组分(E)的固化剂是改性脂肪族胺。
粘浸胶可按下述方法制备:将配套树脂的甲乙组分分别混合和储存,使用前按规定比例准确称量后放入容器内,用搅拌器拌合均匀。一次配胶量应以可在使用时间内用完为宜。
本发明的方法还包括在步骤(a)之前,对焊缝和焊缝周围进行表面清理,并在清理后的表面涂布修补胶层和/或底胶层,所述修补胶层和所述底胶层是由环氧类胶涂布而成的。
本发明所用的修补胶用于管道外损伤缺陷的填平修补,底胶层的使用有助于纤维复合材料与管体间的粘结。类似于粘浸胶,修补胶可分为冬用和夏用两种。对于修补胶和底胶层的配方,本领域技术人员是熟知的,因此不再赘述。
当纤维材料是包括环向纤维和轴向纤维的单向纤维材料,在步骤(b)中,交替缠绕环向纤维和轴向纤维。也就是说,在预紧力作用下缠绕环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者铺设轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠绕环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
有利地,轴向纤维材料选择高弹性模量的纤维材料,以保证轴向修复效果;环向纤维材料选择低弹性模量和/或单层厚度低的纤维材料,以减小为达预紧修复效果所需的环向施工拉力值。
修复时对环向纤维复合材料施加预紧力的同时缠绕,在预紧力作用下,环向纤维复合材料将产生拉伸变形,通过控制预紧力的大小,可以控制复合材料的变形量。具体地,对环向纤维复合材料的变形量的控制应满足:1)当管道内压从服役压力降低时,管道发生径向变形,管径变小,预紧力造成复合材料的变形量应大于管道压力变化造成的管径变形;2)当管道受到轴向应力时,轴向可能发生屈服,预紧力造成复合材料的变形量应能在管道在屈服点时仍保证复合材料和管道外壁的粘接。
对轴向纤维复合材料的厚度和轴向长度的控制应满足:轴向长度应保证管道和复合材料的粘接力能够足够承担管道的轴向载荷,厚度应保证限制管道缺陷处的变形。
当纤维材料是双向纤维材料时,缠绕多层纤维材料包括在预紧力下连续地缠绕多层双向纤维材料,在缠绕每一层双向纤维材料时在双向纤维材料表面涂覆粘浸胶,从而形成多层双向纤维复合材料。
需要明白的是,本发明通过对管道的轴向修复按照恢复管道轴向承载力至完好管道水平进行设计,而不是常规的按环向修复层数的一半来设计轴向修复。这使得管道缺陷处的轴向修复,尤其是环焊缝缺陷及其他周向缺陷,不单单恢复至正常内压承载水平,还使其轴向承载力恢复至完好管道水平,这样更适用于复杂地质条件或其他轴向外部应力存在的情况,因为地质变化等易对管道造成额外的很大的轴向应力。
同时,带预紧力的纤维复合材料对管道的修复技术,通过修复期间及固化后始终保持复合材料带有一定预紧力,预紧力按等效于管内压力由零升高至运行压力时由于管体膨胀造成的外部复合材料修复层拉伸变形的 力计算,这样便可以使运行压力修复达到在零内压修复的效果,从而避免修复层与管道界面的剪切强度因为内压大幅降低波动而降低的影响。
图2示出用预紧力和夹具组合修复管道的方法,包括以下步骤:(a)将纤维材料的一部分固定到管道;(b)对纤维材料施加预紧力,并预紧力作用下在在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;(c)在该带预紧力的纤维复合材料外安装夹具,并在夹具和管道之间形成的空隙内灌注可固化聚合物,其中,预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
步骤(a)包括用粘浸胶涂刷或浸渍纤维材料的该部分,将该部分固定到管道。
在夹具和管道之间形成的空隙内灌注可固化聚合物包括:(1)根据管道的形状和大小制作夹具,该夹具由多个部分组成,在该夹具上设有一个或多个灌注孔及一个或多个排气孔;(2)将所述夹具的各部分套在需要修复的管道之外;(3)将所述夹具的各部分之间以焊接或螺栓连接的形式连接;(4)将所述夹具的端部与需要修复的管道之间以焊接或用密封材料密封的方式,或二者任意结合的方式紧密连接;(5)通过在所述夹具上预留的灌注孔,向夹具与需要修复的管道之间形成的空隙中灌注可固化聚合物;以及(6)使所灌注的聚合物固化。
密封材料包括具有良好密封性能的橡胶、硅胶、可固化树脂、胶泥、加强钢筋或石棉绳,或其中至少两种材料的任意组合。优选地,密封材料 是环氧树脂。
灌注孔和排气孔处于相对或接近于相对的位置。
可固化聚合物选自液体橡胶、纤维素衍生物、乙烯聚合物或其共聚物、饱和或不饱和聚酯、聚丙烯酸酯、聚醚、聚砜、氨基塑料、环氧树脂、酚醛树脂、聚酰亚胺树脂、氨基树脂、不饱和聚酯树脂或上述任一物质的改性物。
可固化聚合物的弹性模量大于0.1Gpa、优选地大于1GPa、更优选地大于2GPa,抗压强度大于10MPa、优选地大于20MPa、更优选地大于50MPa。
接着,参考图3至图5来描述根据本发明的修复的管道的示意图。
该修复的管道包括带有缺陷2的管道段1以及围绕该带有缺陷的管道段缠绕多层的纤维复合材料3,所述纤维复合材料被涂刷或浸渍有粘浸胶,并且所述纤维复合材料被施加预紧力,其中,该预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
纤维材料可以是单向纤维材料,在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
纤维材料也可以是双向纤维材料,在带有缺陷的管道段上连续地缠 绕有双向纤维材料,以形成双向纤维复合材料。
所述修复的管道还包括夹具,该夹具由两部分组成,即第一半夹具4和第二半夹具5。应明白,夹具也可以由多于两个的部分组成,只要能够实现本发明的目的即可。夹具根据管道的形状和大小制作,所述夹具的形状与管道相似,但其尺寸大于所述管道,以在夹具和管道之间形成空间,从而灌注可固化聚合物。该夹具上设有一个或多个灌注孔6及一个或多个排气孔7。在夹具安装到纤维复合材料外之后,在夹具与管道之间涂覆密封材料8。
本发明的修复的管道的轴向承载力可以恢复至完好管道水平,更适用于复杂地质条件或其他轴向外部应力存在的情况,因为地质变化等易对管道造成额外的很大的轴向应力。同时,修复的管道通过带预紧力的纤维复合材料,可以使运行压力修复达到在零内压修复的效果,从而避免修复层与管道界面的剪切强度因为内压大幅降低波动而降低的影响。
以上说明仅仅是对本发明的解释,使得本领域普通技术人员能完整地实施本方案,但并不是对本发明的限制。上述披露的各技术特征并不限于已披露的与其它特征的组合,本领域技术人员还可根据发明目的进行各技术特征之间的其它组合,以实现本发明之目的为准。

Claims (34)

  1. 一种预紧力修复方法,该方法包括以下步骤:
    (a)将纤维材料的一部分固定到管道;
    (b)对纤维材料施加预紧力,并在预紧力作用下在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;
    (c)在预紧力施加的状态下,完成多层纤维复合材料的固化,
    其中,所述预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
  2. 如权利要求1所述的方法,其中,步骤(a)包括用粘浸胶涂刷或浸渍纤维材料的该部分,将该部分固定到管道。
  3. 如权利要求2所述的方法,其中,所述预紧力F 选择为满足以下公式的F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
    Figure PCTCN2020110121-appb-100001
    Figure PCTCN2020110121-appb-100002
    F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
    其中,F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变。
  4. 如权利要求3所述的方法,其中,f 安全1、f 安全2、f 安全3为0.5。
  5. 如权利要求3所述的方法,其中,f 安全1、f 安全3、f 安全3为1。
  6. 如权利要求1所述的方法,其中,在步骤(a)中固定的纤维材料的该部分的长度选择为使得在步骤(b)中纤维材料相对管道不滑动。
  7. 如权利要求6所述的方法,其中,所述部分的所述长度首先基于以下公开来计算:
    Figure PCTCN2020110121-appb-100003
    当通过以上公式计算得出的结果小于等于π·D 管道时,即L 初始固定≤π·D 管道时,那么将计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度;
    当通过以上公式计算得出的结果大于π·D 管道时,即L 初始固定>π·D 管道时,那么将通过以下公式计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度:
    Figure PCTCN2020110121-appb-100004
    其中,τ 界面剪切为管道与纤维材料界面的结合剪切强度;τ 层间剪切为相邻两层纤维材料层之间的结合剪切强度;L 初始固定为预紧力加载前,纤维材料固定到管道的初始长度。
  8. 如权利要求1所述的方法,其中,所述纤维材料是单向纤维材料,在步骤(b)中:
    (b1)在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者
    (b2)铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
  9. 如权利要求8所述的方法,其中,轴向纤维材料选择高弹性模量的纤维材料,以保证轴向修复效果;环向纤维材料选择低弹性模量和/或单层厚度低的纤维材料,以降低为达修复效果所需的环向预紧力。
  10. 如权利要求9所述的方法,其中,环向纤维材料是玻璃纤维。
  11. 如权利要求1所述的方法,其中,所述纤维材料是双向纤维材料,在步骤(b)中,在预紧力下连续地缠绕多层双向纤维材料,在缠绕每一层双向纤维材料时在双向纤维材料表面涂覆粘浸胶,从而形成多层双向纤维复合材料。
  12. 如权利要求11所述的方法,其中,双向纤维材料设计为由两种弹性模量不同的环向纤维和轴向纤维编织而成,轴向纤维选择高弹性模量的纤维,以保证轴向修复效果,环向纤维选择低弹性模量和/或单层厚度低的纤维,以减小为达预紧修复效果所需的环向施工拉力值。
  13. 如权利要求12所述的方法,其中,环向纤维是玻璃纤维。
  14. 如权利要求2所述的方法,其中,在步骤(a)中使用的粘浸胶的固化速度比在步骤(b)中使用的粘浸胶的固化速度快。
  15. 如权利要求1所述的方法,其中,管道的需要修复的部位包括管道的缺陷,该缺陷位于管道本体、直焊缝、螺旋焊缝或环焊缝部位,管道的缺陷包括体积型缺陷、平面型缺陷、弥散损伤型缺陷或几何型缺陷。
  16. 如权利要求1所述的方法,其中,纤维材料选自芳纶纤维、聚乙烯纤维、碳纤维、玻璃纤维、玄武岩纤维、硼纤维、凯夫拉纤维、碳化硅纤维、氧化铝纤维和陶瓷纤维及其它可以用于管道修复的纤维。
  17. 一种预紧力和夹具组合修复方法,该方法包括以下步骤:
    (a)将纤维材料的一部分固定到管道;
    (b)对纤维材料施加预紧力,并预紧力作用下在在管道上缠绕多层纤维材料以覆盖管道的需要修复的部位,在缠绕每一层纤维材料时对纤维材料涂刷或浸渍粘浸胶,以形成多层纤维复合材料;(c)在该带预紧力的纤维复合材料修复部位之外安装夹具,并在夹具和管道之间形成的空隙内灌注可固化聚合物,
    其中,所述预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
  18. 如权利要求17所述的方法,其中,步骤(a)包括用粘浸胶涂刷或浸渍纤维材料的该部分,将该部分固定到管道。
  19. 如权利要求17所述的方法,其中,所述预紧力F 选择为满足以下 公式F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和,即F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
    Figure PCTCN2020110121-appb-100005
    Figure PCTCN2020110121-appb-100006
    F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
    F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
    其中,F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力,P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅度为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变;F 为施加在单层纤维材料的预紧力。
  20. 如权利要求19所述的方法,其中,f 安全1、f 安全2、f 安全3为0.5。
  21. 如权利要求19所述的方法,其中,f 安全1、f 安全2、f 安全3为1。
  22. 如权利要求17所述的方法,其中,在步骤(a)中固定的纤维材料的该部分的长度选择为使得在步骤(b)中纤维材料相对管道不滑动。
  23. 如权利要求22所述的方法,其中,所述部分的所述长度首先基于以下公开来计算:
    Figure PCTCN2020110121-appb-100007
    当通过以上公式计算得出的结果小于等于π·D 管道时,即L 初始固定≤π·D 管道时,那么将计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度;
    当通过以上公式计算得出的结果大于π·D 管道时,即L 初始固定>π·D 管道时, 那么将通过以下公式计算得出的结果作为在步骤(a)中粘贴的纤维材料的该部分的长度:
    Figure PCTCN2020110121-appb-100008
    其中,τ 界面剪切为管道与纤维材料界面的结合剪切强度;τ 层间剪切为相邻两层纤维材料层之间的结合剪切强度;L 初始固定为预紧力加载前,纤维材料固定到管道的初始长度。
  24. 如权利要求17所述的方法,其中,所述纤维材料是单向纤维材料,步骤(b)包括:
    (b1)在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,接着铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业;或者
    (b2)铺设一层或多层轴向纤维材料,同时在该轴向纤维材料表面涂覆粘浸胶,接着在预紧力作用下缠绕一层或多层环向纤维材料,同时在该环向纤维材料表面涂覆粘浸胶,重复多次直到完成修复作业。
  25. 如权利要求17所述的方法,其中,所述纤维材料是双向纤维材料,缠绕多层纤维材料包括在预紧力下连续地缠绕多层双向纤维材料,在缠绕每一层双向纤维材料时在双向纤维材料表面涂覆粘浸胶,从而形成多层双向纤维复合材料。
  26. 如权利要求17所述的方法,其中,所述可固化聚合物是环氧树脂。
  27. 一种修复的管道,所述管道包括需要修复的管道段以及围绕该需要修复的管道段缠绕多层的纤维材料,所述纤维材料被涂刷或浸渍有粘浸胶,以形成纤维复合材料,并且所述纤维复合材料在预紧力的状态下被施加到管道段,其中,该预紧力的大小设计成克服带压管道修复后内部压力下降或/和管道轴向拉伸造成管道径向收缩而引起纤维复合材料层与管道的脱粘。
  28. 如权利要求27所述的修复的管道,其中,所述预紧力选择为满足以下公式F 预1、F 预2、F 预3之一、F 预1、F 预2、F 预3任意两者之和、或者三者之和即:F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
    Figure PCTCN2020110121-appb-100009
    Figure PCTCN2020110121-appb-100010
    F 预3≥ε 抗拉·t 单层纤维·b 纤维幅宽·E 纤维·f 安全3
    F ={F 预1,F 预2,F 预3,F 预1+F 预2,F 预2+F 预3,F 预1+F 预3,F 预1+F 预2+F 预3}
    其中,F 预1为克服带压管道修复后内部压力下降造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预2为克服带压管道修复后管道轴向拉伸弹性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 预3为克服带压管道修复后管道轴向拉伸塑性应变造成管道径向收缩而引起纤维复合材料层与管道脱粘的预紧力;F 为施加在单层纤维材料的预紧力;P 维修为管道维修时的压力;D 管道为管道外径;t 管道为管道壁厚;f 安全1、f 安全2、f 安全3为安全系数,其大于0且小于等于100;t 单层纤维为单层纤维材料的理论厚度;b 纤维幅宽为纤维宽度;E 纤维为纤维的弹性模量;E 管道为管道材料的弹性模量;μ 管道为管材的泊松比;σ 屈服为管材的屈服强度;ε 抗拉为管材轴向载荷为抗拉强度时引起的管道环向塑性应变。
  29. 如权利要求28所述的修复的管道,其中,f 安全1、f 安全2、f 安全3为0.5。
  30. 如权利要求28所述的修复的管道,其中,f 安全1、f 安全2、f 安全3为1。
  31. 如权利要求27所述的修复的管道,其中,所述纤维材料是单向纤维材料,在需要修复的管道段上交替缠绕有一层或多层环向纤维和轴向纤维。
  32. 如权利要求27所述的修复的管道,其中,所述纤维材料是双向纤维材料,在需要修复的管道段上连续地缠绕有多层双向纤维材料。
  33. 如权利要求27所述的修复的管道,其中,所述修复的管道还包括夹具,所述夹具围绕该纤维复合材料安装,在夹具与该涂覆有纤维复合材料的管道段之间形成有空隙;以及灌注在所述空隙内的可固化聚合物。
  34. 如权利要求33所述的修复的管道,其中,该夹具由多个部分组成,在该夹具上设有一个或多个灌注孔及一个或多个排气孔。
PCT/CN2020/110121 2019-08-20 2020-08-20 预紧力修复、预紧力和夹具组合修复方法及修复的管道 WO2021032140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/753,080 US20220268389A1 (en) 2019-08-20 2020-08-20 Pre-tightening force repairing method, repairing method involving combination of pre-tightening force and clamp, and repaired pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910767920.9A CN110486568B (zh) 2019-08-20 2019-08-20 预紧力修复、预紧力和夹具组合修复方法及修复的管道
CN201910767920.9 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021032140A1 true WO2021032140A1 (zh) 2021-02-25

Family

ID=68551537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110121 WO2021032140A1 (zh) 2019-08-20 2020-08-20 预紧力修复、预紧力和夹具组合修复方法及修复的管道

Country Status (3)

Country Link
US (1) US20220268389A1 (zh)
CN (1) CN110486568B (zh)
WO (1) WO2021032140A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116067299A (zh) * 2023-04-06 2023-05-05 宁德时代新能源科技股份有限公司 电池包的水冷板水道检测方法、水道检测设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486568B (zh) * 2019-08-20 2021-10-22 北京安科管道工程科技有限公司 预紧力修复、预紧力和夹具组合修复方法及修复的管道
CN114623311A (zh) * 2020-12-10 2022-06-14 北京安科管道工程科技有限公司 修复管道的方法
CN114001208B (zh) * 2021-11-01 2023-11-07 北京安科科技集团有限公司 一种抗交流和直流干扰的管道系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120143A (zh) * 1992-09-09 1996-04-10 钟表弹簧公司 修补管子的方法
JP2000055288A (ja) * 1998-08-06 2000-02-22 Orange Production Limited:Kk 金属パイプの補修用セットと該補修用セットによる補修方法
CN1616546A (zh) * 2004-09-30 2005-05-18 北京科技大学 含缺陷管道修复补强的碳纤维复合材料和方法
CN1853847A (zh) * 2005-04-15 2006-11-01 北京安科管道工程科技有限公司 用于焊缝缺陷修复补强的碳纤维复合材料和方法
CN101204770A (zh) * 2007-01-15 2008-06-25 北京安科管道工程科技有限公司 压力结构夹具与纤维复合材料组合增强技术
CN101680591A (zh) * 2007-04-13 2010-03-24 伊利诺斯工具制品有限公司 用于管道维修的系统和方法
JP2014114818A (ja) * 2012-03-30 2014-06-26 Niikura Giken:Kk 金属管補修工法および該工法に使用する包囲カバー
CN105090676A (zh) * 2015-07-12 2015-11-25 西南科技大学 承压管道损伤修复工艺
US20180266613A1 (en) * 2017-03-14 2018-09-20 Cowboy Acquisition, Llc Fiber Composite System and Method for Pipe Reinforcement
CN110486568A (zh) * 2019-08-20 2019-11-22 北京安科管道工程科技有限公司 预紧力修复、预紧力和夹具组合修复方法及修复的管道

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924546A (en) * 1952-05-28 1960-02-09 Cordo Chemical Corp Method of repairing a rigid hollow article
US3358898A (en) * 1965-01-27 1967-12-19 Russell J Medkeff Repair tape
US4756337A (en) * 1986-02-24 1988-07-12 Royston Laboratories, Inc. Gasline repair kit
DE102004061743A1 (de) * 2004-12-22 2006-07-06 Fibre Optics Ct Gmbh Dichtungsmaterialien und Verschlußverfahren
US20140041793A1 (en) * 2011-09-15 2014-02-13 Fiber Fix International, Llc. Casting material and methods of use
CN104421567A (zh) * 2013-08-23 2015-03-18 上海金艺检测技术有限公司 煤气管道腐蚀缺陷的带压修复方法
GB2552378A (en) * 2016-07-22 2018-01-24 Enduratec Ltd Fluid leak repair

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120143A (zh) * 1992-09-09 1996-04-10 钟表弹簧公司 修补管子的方法
JP2000055288A (ja) * 1998-08-06 2000-02-22 Orange Production Limited:Kk 金属パイプの補修用セットと該補修用セットによる補修方法
CN1616546A (zh) * 2004-09-30 2005-05-18 北京科技大学 含缺陷管道修复补强的碳纤维复合材料和方法
CN1853847A (zh) * 2005-04-15 2006-11-01 北京安科管道工程科技有限公司 用于焊缝缺陷修复补强的碳纤维复合材料和方法
CN101204770A (zh) * 2007-01-15 2008-06-25 北京安科管道工程科技有限公司 压力结构夹具与纤维复合材料组合增强技术
CN101680591A (zh) * 2007-04-13 2010-03-24 伊利诺斯工具制品有限公司 用于管道维修的系统和方法
JP2014114818A (ja) * 2012-03-30 2014-06-26 Niikura Giken:Kk 金属管補修工法および該工法に使用する包囲カバー
CN105090676A (zh) * 2015-07-12 2015-11-25 西南科技大学 承压管道损伤修复工艺
US20180266613A1 (en) * 2017-03-14 2018-09-20 Cowboy Acquisition, Llc Fiber Composite System and Method for Pipe Reinforcement
CN110486568A (zh) * 2019-08-20 2019-11-22 北京安科管道工程科技有限公司 预紧力修复、预紧力和夹具组合修复方法及修复的管道

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴佳琦 (WU, JIAQI): "压力管道缺陷的碳纤维复合材料修复补强技术研究 (Technology Research of Using Carbon Fiber Reinforced Plastics to Repair Pressure Pipe Containing Defects)", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑 (CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I), no. 05, 15 May 2015 (2015-05-15), ISSN: 1674-0246, DOI: 20201109081631Y *
吴佳琦 (WU, JIAQI): "压力管道缺陷的碳纤维复合材料修复补强技术研究 (Technology Research of Using Carbon Fiber Reinforced Plastics to Repair Pressure Pipe Containing Defects)", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑 (CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I), no. 05, 15 May 2015 (2015-05-15), ISSN: 1674-0246, DOI: 20201109143229X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116067299A (zh) * 2023-04-06 2023-05-05 宁德时代新能源科技股份有限公司 电池包的水冷板水道检测方法、水道检测设备及存储介质
CN116067299B (zh) * 2023-04-06 2023-08-11 宁德时代新能源科技股份有限公司 电池包的水冷板水道检测方法、水道检测设备及存储介质

Also Published As

Publication number Publication date
CN110486568A (zh) 2019-11-22
CN110486568B (zh) 2021-10-22
US20220268389A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021032140A1 (zh) 预紧力修复、预紧力和夹具组合修复方法及修复的管道
CN101204770B (zh) 压力结构夹具与纤维复合材料组合增强技术
CN101205999B (zh) 管道的修复补强、增强和/或止裂技术
JP5203369B2 (ja) 乾燥繊維被覆管
US4385644A (en) Composite laminate joint structure and method and apparatus for making same
US6276401B1 (en) High temperature composite pipe wrapping system
WO2006034653A1 (fr) Composite de fibre de carbone permettant de reparer et de renforcer les conduites presentant des defectuosites et procede d'application
US20090038702A1 (en) Cost effective repair of piping to increase load carrying capability
US7824751B2 (en) Structural reinforcement system
CN102464861A (zh) 一种修复管道碳纤维复合材料体系及应用
CN107687558B (zh) 一种海底纤维增强复合柔性管用组合式止屈器
CN105485469A (zh) 一种碳纤维复合材料止裂器及其制作及安装方法
US11009172B2 (en) Internal lining for pipe surfaces and method of lining pipes
Ehsani Repair of corroded/damaged metallic pipelines using fiber-reinforced polymer composites
JPH09207235A (ja) 流体格納用の高ウィーピング強度ポリマー−ガラス繊維複合積層体
CN110228186B (zh) 一种耐高压内衬管及其施工工艺
Ehsani Introducing a new honeycomb-FRP pipe
CN207094070U (zh) 一种用于超临界co2输送管道的止裂器
US11982397B2 (en) Resin rich polyurea-based integrated external layer for reinforced thermosetting resin piping protection
US20230130880A1 (en) Resin rich polyurea-based integrated external layer for reinforced thermosetting resin piping protection
CN109373102A (zh) 一种夹具与纤维复合材料组合的补强方法
Ehsani FRP 101: Taking the Mystery out of Trenchless Repair of Pressure Pipes with Carbon FRP
Al-Mahfooz Internal Pressure Capacity and Bending Behavior of Glass Fiber Reinforced Composite Overwrapping PVC Plastic Pipes.
CN115234750A (zh) 具有复杂管型和减振耐压功能的缠绕纤维/金属/粘弹性材料混杂的管路及其制造方法
Larsen et al. Emergency Repair of a P-381 River Water Supply Line at a Refinery in Belle Chasse, LA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853842

Country of ref document: EP

Kind code of ref document: A1