WO2021032059A1 - 一种焊接机器人正弦摆焊的启停抖动削弱方法 - Google Patents

一种焊接机器人正弦摆焊的启停抖动削弱方法 Download PDF

Info

Publication number
WO2021032059A1
WO2021032059A1 PCT/CN2020/109591 CN2020109591W WO2021032059A1 WO 2021032059 A1 WO2021032059 A1 WO 2021032059A1 CN 2020109591 W CN2020109591 W CN 2020109591W WO 2021032059 A1 WO2021032059 A1 WO 2021032059A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
time
sine
acceleration
displacement
Prior art date
Application number
PCT/CN2020/109591
Other languages
English (en)
French (fr)
Inventor
臧秀娟
潘婷婷
夏正仙
冯日月
王正谦
Original Assignee
南京埃斯顿机器人工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿机器人工程有限公司 filed Critical 南京埃斯顿机器人工程有限公司
Publication of WO2021032059A1 publication Critical patent/WO2021032059A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for

Definitions

  • the invention relates to a method for suppressing the vibration of the weaving welding of a welding robot, in particular to a method for weakening the start and stop vibration of the sine weaving welding of a welding robot.
  • Weaving welding (referred to as weaving welding) of the welding robot is a welding method in which the welding torch moves in the direction of the welding seam while swinging longitudinally with a certain regularity. It improves welding strength and welding efficiency, is widely used in automated welding technology, and has practical engineering significance.
  • the sine weaving of the welding robot refers to the continuous sine motion of the welding torch along the welding direction, and continuously feeds along the welding direction, so as to realize the weaving welding. It makes the joint motion of the welding robot very smooth, and at the same time adjusts the swing amplitude and frequency according to different applications, which can significantly improve the strength and toughness of the weld, and has a wide range of applications in the welding process.
  • the robot must first move smoothly during the welding operation, otherwise the phenomenon of solder stacking may occur, resulting in poor accuracy of the processing track.
  • the main factor that affects the smoothness of motion is the vibration of the robot.
  • robot controllers are equipped with vibration suppression functions. For smooth given speed signals, the trajectory of non-bad attitude can basically achieve the vibration suppression effect.
  • sine weaving welding due to the inherent characteristics of the sine curve, if it is not processed, the speed or displacement or acceleration of the swing direction of the welding robot during the start and stop of the sine weaving welding will change suddenly, which will cause shock and jitter.
  • the present invention proposes a method for weakening the start and stop jitter of the sine weaving welding of a welding robot.
  • a reasonable start time and stop time are selected to correct the start
  • the sine trajectory of the welding torch during the stop process is simple and easy to calculate to stabilize the welding speed and acceleration, which weakens the jitter of the welding robot when the welding robot starts and stops the sine swing welding, reduces the damage to the machinery, improves the accuracy, and improves the welding process.
  • the method of the present invention processes the large impact of the speed and acceleration of the welding robot in the start-stop phase of the sine weaving direction of the welding robot, and aims to reduce mechanical damage to the robot, improve the accuracy of the processing track, and improve its beneficial effects.
  • the present invention provides a method for reducing the start-stop jitter of a welding robot for sine weaving welding, and the steps are as follows:
  • the direction in which the welding gun of the welding robot advances along the welding seam direction is defined as the traveling direction, and the traveling direction on the longitudinal swing plane is the swing direction.
  • the sine weaving trajectory of the welding robot can be obtained by superimposing the comprehensive planning of the travel direction and the swing direction.
  • Step 1 Determine the sine weaving trajectory of the welding robot
  • the sinusoidal weaving speed of the welding robot at the time of starting is a larger value, which will cause the jitter of the welding robot's speed impact.
  • the present invention designs the adjustment function k s (t) so that in a specific starting time, the welding displacement in the swing direction can be adjusted from 0 to the same value as the displacement trajectory, and the welding speed can be adjusted from 0 to the same as the speed trajectory At the same time, ensure that the value of welding acceleration is also adjusted from 0 to the same value as the acceleration track.
  • the present invention selects the starting time to be a quarter of the sine cycle of the swing direction, namely
  • the adjustment function k s (t) is designed to be a polynomial of time, and the new formulas for trajectory displacement, velocity and acceleration during the starting process are
  • the design adjustment function k s (t) goes from 0 to 1 within a specific starting time T s , and the displacement, velocity, and acceleration are all from 0 to the normal sinusoidal trajectory; where k s '(t) is k s (t ) Is the first derivative; k s "(t) is the second derivative of k s (t).
  • the adjustment function k s (t) is obtained, and from this, a new formula of displacement, velocity, and acceleration can be obtained.
  • the swing direction is planned and calculated using the function formula corrected during the start-up process, which can significantly improve the impact of jitter when welding starts.
  • the normal sine trajectory formula is used for planning and design of the swing direction, which can make the joint movement of the welding robot smoother.
  • Step 3 Stop process jitter reduction processing
  • the swing speed in the swing direction at the time of stopping may still be at a relatively large value, which will cause the shaking of the welding robot and cause the accumulation of solder.
  • the present invention designs the adjustment function k e (t) so that during a specific stop time, the welding displacement in the swing direction can be adjusted from the current value to 0, the welding speed can be adjusted from the current value to 0, while ensuring the welding acceleration The value of is also adjusted from the current value to 0.
  • a specific stopping time needs to be designed, and the speed planning in the direction of travel needs to be considered, and the selection should be combined with engineering practice. According to the engineering practice, the present invention selects the stopping time as a quarter of the sine period of the swing direction, namely
  • the adjustment function k e (t) is designed as a polynomial of time, and a new formula for trajectory displacement, velocity and acceleration during the stopping process is constructed.
  • k s' (t) is the first derivative of k s (t) a; k s "(t) is k s (t) second derivative.
  • Design adjusting function k e (t) at a predetermined stopping time T e from the 1-0, displacement, velocity and acceleration are from 0 to a normal sinusoidal trajectory.
  • T c is the total time planned for the direction of travel.
  • the adjustment function k e (t) can be obtained, and from this, new formulas for displacement, velocity, and acceleration can be obtained.
  • the swing direction is planned and calculated using the function formula corrected during the stop process, which can significantly improve the impact of jitter when welding stops.
  • the method for reducing the start-stop jitter of the sine weaving welding proposed by the present invention has simple calculation, strong engineering practice, and easy implementation, and can also be applied to other occasions where the sine curve is used for sudden changes.
  • the method of the invention can reduce the accumulation of solder and improve the track accuracy.
  • the method of the invention adjusts the displacement, speed and acceleration of the welding robot at the start and stop time of sinusoidal weaving welding by adjusting the correction function, avoids shock and jitter, reduces mechanical damage to the welding robot, and greatly improves the service life of the welding robot.
  • the fixed start-stop time set by engineering practical experience is convenient for calculation and widely used, and can significantly improve the weakening effect of the start-stop jitter of the welding robot.
  • Figure 1 Flow chart of start-stop jitter reduction of sine weaving welding.
  • Fig. 2 is a comparative curve diagram before and after the start-up process, the dashed line is the normal trajectory curve, and the solid line is the corrected trajectory curve.
  • Fig. 3 is a comparative curve diagram before and after the correction of the stop process, the dashed line is the normal trajectory curve, and the solid line is the corrected trajectory curve.
  • the starting time selects the starting time to be a quarter of the sine cycle of the swing direction, namely According to engineering practice, the stopping time is selected to be a quarter of the sine cycle of the swing direction, that is
  • k s' (t) is the first derivative of k s (t) a; k s "(t) is k s (t) second derivative.
  • the displacement, velocity, and acceleration are all from 0 to the normal sinusoidal trajectory.
  • the adjustment function k s (t) 6144t 5 -3840t 4 +640t 3 can be obtained. From this, new formulas for displacement, velocity and acceleration can be obtained, which can significantly improve the impact of jitter when welding stops.
  • the correction curve is shown in Figure 2.
  • k e '(t) is the first derivative of the k e (t) a; k e "(t) is a k e (t) second derivative.
  • the predetermined stopping time T e from the 1-0, displacement, velocity and acceleration are from 0 to a normal sinusoidal trajectory.
  • T c is the total time planned for the direction of travel.

Abstract

一种焊接机器人正弦摆焊的启停抖动削弱方法,包括以下步骤:根据焊缝轨迹和行进方向的规划求得焊接总时间;选取焊接机器人合理的启动时间和停止时间;确定焊接机器人正常过程中的正弦摆焊轨迹;焊接时间小于启动时间时,焊接机器人进行启动修正过程;焊接时间大于停止时间时,焊接机器人进行停止修正过程;通过调节修正函数,调整焊接机器人正弦摆焊启停时刻的位移、速度、加速度。

Description

一种焊接机器人正弦摆焊的启停抖动削弱方法 技术领域
本发明涉及一种焊接机器人的摆动焊接抖动抑制方法,具体说是一种焊接机器人正弦摆焊的启停抖动削弱方法。
背景技术
焊接机器人的摆动焊接(简称摆焊)是焊枪沿着焊缝方向行进同时纵向以一定规律摆动的焊接方式。它提高了焊接强度和焊接效率,在自动化焊接技术中得到广泛的应用,具有实际工程意义。焊接机器人的正弦摆焊是指焊枪末端沿着焊接方向做连续的正弦运动,并不断沿着焊接方向进给,从而实现摆焊的一种焊接方式。它使得焊接机器人关节运动非常光滑,同时根据不同应用场合调整摆幅和频率,可以明显提高焊缝的强度和韧性,在焊接工艺中具有广泛的应用。
机器人在焊接作业过程中首先要求运动平稳,否则可能会出现焊料堆叠的现象,导致加工轨迹的精度差。影响运动平稳性的因素主要是机器人抖动,一般机器人控制器均配置了振动抑制功能,对于光滑的给定速度信号,非恶劣姿态的轨迹基本能达到抑振效果。然而对于正弦摆焊,由于正弦曲线固有的一些特性,若不加以处理,焊接机器人正弦摆焊启停时摆动方向的速度或位移或加速度有突变,会造成冲击抖动。
发明内容
针对以上提出的不足问题,本发明提出一种焊接机器人正弦摆焊的启停抖动削弱方法,通过对焊接机器人摆动方向的正弦摆焊速度和加速度进行处理,选取合理的启动时间和停止 时间修正启停过程焊枪的正弦轨迹从而平稳焊接速度和加速度的方式,计算简单易于实现,削弱了焊接机器人正弦摆焊启停的抖动,减少了对机械的损伤,提高了精度,改善了焊接工艺。本发明方法对焊接机器人正弦摆焊方向启停阶段速度和加速度的较大冲击进行处理,目的是减少对机器人的机械损伤,提高加工轨迹的精度,提高其有益效果。
本发明提出一种焊接机器人正弦摆焊的启停抖动削弱方法,其步骤如下:
定义焊接机器人的焊枪沿着焊缝方向前进的方向为行进方向,其纵向方向摆动平面上的行进放向为摆动方向。焊接机器人的正弦摆焊轨迹,可通过对行进方向和摆动方向的综合规划叠加获得。
步骤1.确定焊接机器人的正弦摆焊轨迹
假定焊枪摆动方向正弦函数为s=A sin(2πft),其中,正弦摆幅A,正弦摆动频率f,焊接时间t。
根据位移、速度、加速度之间的关系,得到焊接机器人正弦摆焊的位移、速度、加速度公式:
Figure PCTCN2020109591-appb-000001
根据正弦曲线的特性,当t=0时,
Figure PCTCN2020109591-appb-000002
启动时刻焊接机器人的正弦摆焊速度为较大的值,会造成焊接机器人速度冲击的抖动。
步骤2.启动过程抖动削弱处理
为了要削弱焊接机器人正弦摆焊启动过程的抖动,需要保证启动时刻摆动方向的位移、速度、加速度均为0,并且启动过程之后需要跟正常的正弦位移、速度、加速度轨迹连续一致。基于此考虑,本发明设计调节函数k s(t),使得在特定的启动时间内,摆动方向焊接位移能够从0调节到与位移轨迹相同的值、焊接速度能够从0调节到与速度轨迹相同的值,同时,保证焊接加速度的值也是从0调节到与加速度轨迹相同的值。考虑到正弦摆焊的工艺和效果,需要对特定的启动时间进行设计,需要考虑行进方向的速度规划,并结合工程实践进行选取。本发明根据工程实践选取启动时间为摆动方向正弦周期的四分之一,即
Figure PCTCN2020109591-appb-000003
根据此特性,设计调节函数k s(t)为时间的多项式,构造启动过程新的轨迹位移、速度、加速度公式为
Figure PCTCN2020109591-appb-000004
设计调节函数k s(t)在特定的启动时间T s内从0到1,位移、速度、加速度均从0到接上正常的正弦轨迹;其中,k s'(t)是k s(t)的一阶导数;k s”(t)是k s(t)的二阶导数。
当t=0时,
Figure PCTCN2020109591-appb-000005
当t=T s时,
Figure PCTCN2020109591-appb-000006
根据上述公式,求得调节函数k s(t),由此,可求得新的位移、速度、加速度的公式。
焊接时间小于启动时间时,摆动方向应用启动过程修正过的函数公式进行规划计算,可明显改善焊接启动时抖动的冲击。
焊接时间大于启动时间,但是还没有到达停止过程时,摆动方向应用正常的正弦轨迹公式进行规划设计,可使得焊接机器人关节运动比较光滑。
步骤3.停止过程抖动削弱处理
根据正弦的特性,当停止时刻摆动方向的摆动速度仍可能处于较大的值,会造成焊接机器人的抖动并且造成焊料的堆积。
为了要削弱焊接机器人正弦摆焊停止过程的抖动,需要保证停止时刻摆动方向的位移、速度、加速度均为0,并且停止过程需要从正常的正弦位移、速度、加速度轨迹连续调节为0。基于此考虑,本发明设计调节函数k e(t),使得在特定的停止时间内,摆动方向焊接位移能够从当前值调节为0、焊接速度能够从当前值调节为0,同时,保证焊接加速度的值也是从当前值调节为0。考虑到正弦摆焊的工艺和效果,需要对特定的停止时间进行设计,需要考虑行进方向的速度规划,并结合工程实践进行选取。本发明根据工程实践选取停止时间为摆动方向正弦周期的四分之一,即
Figure PCTCN2020109591-appb-000007
根据此特性,设计调节函数k e(t)为时间的多项式,构造停止过程新的轨迹位移、速度、加速度公式
Figure PCTCN2020109591-appb-000008
其中,k s'(t)是k s(t)的一阶导数;k s”(t)是k s(t)的二阶导数。
设计调节函数k e(t)在规定的停止时间T e内从1到0,位移、速度、加速度均从正常的正 弦轨迹到0。
当t=T c时,
Figure PCTCN2020109591-appb-000009
其中,T c为行进方向规划的总时间。
当t=T c-T e时,
Figure PCTCN2020109591-appb-000010
根据上述的公式,可求得调节函数k e(t),由此,可求得新的位移、速度、加速度的公式。
焊接时间大于停止时间时,摆动方向应用停止过程修正过的函数公式进行规划计算,可明显改善焊接停止时抖动的冲击。
本发明提出的正弦摆焊的启停抖动削弱方法,计算简单,工程实践性强,易于实现,亦可应用于其他使用正弦曲线有突变问题的场合。本发明方法,可减少焊料的堆积,提高轨迹精度。本发明方法通过调节修正函数,调整焊接机器人正弦摆焊启停时刻的位移、速度、加速度,避免冲击抖动,减少对焊接机器人的机械损伤,大大提高焊接机器人的使用寿命。通过工程实践经验设定的固定的启停时间,计算方便,应用广泛,可以明显提高焊接机器人的启停抖动削弱效果。
附图说明
图1正弦摆焊的启停抖动削弱流程图。
图2启动过程修正前后的对比曲线图,虚线为正常轨迹曲线,实线为修正过的轨迹曲线。
图3停止过程修正前后的对比曲线图,虚线为正常轨迹曲线,实线为修正过的轨迹曲线。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细说明。
结合图1,正弦摆焊的启停抖动削弱流程图,具体步骤如下:
1.一个具体的焊接过程,根据焊缝的轨迹和行进方向上的规划可计算出需要的焊接总时间T c=10.5s。
2.设定焊枪摆动方向正弦函数为s=A sin(2πft),其中,正弦摆幅A=1mm,正弦摆动频率f=1Hz,正弦摆动周期T=1s,焊接时间t。
3.根据工程实践选取启动时间为摆动方向正弦周期的四分之一,即
Figure PCTCN2020109591-appb-000011
根据工程实践选取停止时间为摆动方向正弦周期的四分之一,即
Figure PCTCN2020109591-appb-000012
4.当焊接时间t≤T s时,焊接机器人处于启动修正过程。
设计调节函数k s(t)为时间的多项式,构造启动过程新的轨迹位移、速度、加速度公式为
Figure PCTCN2020109591-appb-000013
其中,k s'(t)是k s(t)的一阶导数;k s”(t)是k s(t)的二阶导数。
在特定的启动时间T s内从0到1,位移、速度、加速度均从0到接上正常的正弦轨迹。
当t=0时,
Figure PCTCN2020109591-appb-000014
当t=T s时,
Figure PCTCN2020109591-appb-000015
根据上述公式,求得调节函数k s(t)=6144t 5-3840t 4+640t 3,由此,可求得新的位移、速度、加速度的公式,可明显改善焊接停止时抖动的冲击,具体修正曲线如图2所示。
5.当焊接时间T s<t≤T c-T e时,焊接机器人处于正弦摆焊过程。
根据位移、速度、加速度之间的关系,得到焊接机器人正弦摆焊的位移、速度、加速度公式:
Figure PCTCN2020109591-appb-000016
6.当焊接时间T c-T e<t≤T c时,焊接机器人处于停止修正过程。
设计调节函数k e(t)为时间的多项式,构造停止过程新的轨迹位移、速度、加速度公式
Figure PCTCN2020109591-appb-000017
其中,k e'(t)是k e(t)的一阶导数;k e”(t)是k e(t)的二阶导数。
在规定的停止时间T e内从1到0,位移、速度、加速度均从正常的正弦轨迹到0。
当t=T c时,
Figure PCTCN2020109591-appb-000018
其中,T c为行进方向规划的总时间。
当t=T c-T e时,
Figure PCTCN2020109591-appb-000019
根据上述的公式,可求得调节函数k e(t)=-6144t 5+3840t 4-640t 3+1,由此,可求得新的位移、速度、加速度的公式,,可明显改善焊接停止时抖动的冲击,具体修正曲线如图3所示。本发明中未做特别说明的均为现有技术或者通过现有技术即可实现,而且本发明中所述具体实施案例仅为本发明的较佳实施案例而已,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应作为本发明的技术范畴。

Claims (1)

  1. 一种焊接机器人正弦摆焊的启停抖动削弱方法,其步骤如下:
    定义焊接机器人的焊枪沿着焊缝方向前进的方向为行进方向,其摆动平面上的行进放向为摆动方向;
    步骤1.确定焊接机器人的正弦摆焊轨迹
    假定焊枪摆动方向正弦函数为s=Asin(2πft),其中,正弦摆幅A,正弦摆动频率f,焊接时间t;
    根据位移、速度、加速度之间的关系,得到焊接机器人正弦摆焊的位移、速度、加速度公式:
    Figure PCTCN2020109591-appb-100001
    根据正弦曲线的特性,当t=0时,
    Figure PCTCN2020109591-appb-100002
    步骤2.启动过程抖动削弱处理
    选取启动时间为摆动方向正弦周期的四分之一,即
    Figure PCTCN2020109591-appb-100003
    根据此特性,设计调节函数k s(t)为时间的多项式,构造启动过程新的轨迹位移、速度、加速度公式为
    Figure PCTCN2020109591-appb-100004
    设计调节函数k s(t)在特定的启动时间T s内从0到1,位移、速度、加速度均从0到接上 正常的正弦轨迹;其中,k s'(t)是k s(t)的一阶导数;k s”(t)是k s(t)的二阶导数。
    当t=0时,
    Figure PCTCN2020109591-appb-100005
    当t=T s时,
    Figure PCTCN2020109591-appb-100006
    求得调节函数k s(t),由此,可求得新的位移、速度、加速度的公式;
    焊接时间小于启动时间时,摆动方向应用启动过程修正过的函数公式进行规划计算,实现焊接启动时抖动的削弱;
    焊接时间大于启动时间,但还没有到达停止过程时,摆动方向应用正常的正弦轨迹公式进行规划设计,使得焊接机器人关节运动光滑;
    步骤3.停止过程抖动削弱处理
    选取停止时间为摆动方向正弦周期的四分之一,即
    Figure PCTCN2020109591-appb-100007
    根据此特性,设计调节函数k e(t)为时间的多项式,构造停止过程新的轨迹位移、速度、加速度公式
    Figure PCTCN2020109591-appb-100008
    其中,k s'(t)是k s(t)的一阶导数;k s”(t)是k s(t)的二阶导数。
    设计调节函数k e(t)在规定的停止时间T e内从1到0,位移、速度、加速度均从正常的正 弦轨迹到0。
    当t=T c时,
    Figure PCTCN2020109591-appb-100009
    其中,T c为行进方向规划的总时间;
    当t=T c-T e时,
    Figure PCTCN2020109591-appb-100010
    求得调节函数k e(t),由此,可求得新的位移、速度、加速度的公式;
    焊接时间大于停止时间时,摆动方向应用停止过程修正过的函数公式进行规划计算,实现焊接停止时抖动的削弱。
PCT/CN2020/109591 2019-08-19 2020-08-17 一种焊接机器人正弦摆焊的启停抖动削弱方法 WO2021032059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910762939.4 2019-08-19
CN201910762939.4A CN110465765B (zh) 2019-08-19 2019-08-19 一种焊接机器人正弦摆焊的启停抖动削弱方法

Publications (1)

Publication Number Publication Date
WO2021032059A1 true WO2021032059A1 (zh) 2021-02-25

Family

ID=68511029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109591 WO2021032059A1 (zh) 2019-08-19 2020-08-17 一种焊接机器人正弦摆焊的启停抖动削弱方法

Country Status (2)

Country Link
CN (1) CN110465765B (zh)
WO (1) WO2021032059A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465765B (zh) * 2019-08-19 2021-02-12 南京埃斯顿机器人工程有限公司 一种焊接机器人正弦摆焊的启停抖动削弱方法
CN113305852B (zh) * 2021-07-12 2023-08-25 无锡信捷电气股份有限公司 一种焊接机器人的摆焊轨迹规划方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594309A (en) * 1994-06-15 1997-01-14 Iowa State University Research Foundation, Inc. Robot control scheme
DE20203747U1 (de) * 2002-03-09 2003-04-30 Bach Friedrich Wilhelm Kinematik zur Gewährleistung konstanter Bewegungsparameter für die personenbezogene Werkzeugführung
CN103970019A (zh) * 2014-05-20 2014-08-06 哈尔滨工业大学 一种基于加速度动态配置的空间机器人抖动抑制轨迹规划方法
CN107942680A (zh) * 2017-12-20 2018-04-20 南京埃斯顿自动控制技术有限公司 一种机器人抖动抑制方法
CN109623826A (zh) * 2019-01-04 2019-04-16 广西科技大学 一种无速度跳变的容错型冗余度机械臂运动规划方法
CN110465765A (zh) * 2019-08-19 2019-11-19 南京埃斯顿机器人工程有限公司 一种焊接机器人正弦摆焊的启停抖动削弱方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155647A (ja) * 1994-11-29 1996-06-18 Komatsu Ltd 溶接ロボットのウィービング制御装置
JP3710075B2 (ja) * 1997-08-08 2005-10-26 株式会社小松製作所 溶接ロボットのウィービング制御装置
CN106737857B (zh) * 2016-11-22 2020-02-04 云南电网有限责任公司电力科学研究院 一种机械臂末端的抑振方法
JP2019028909A (ja) * 2017-08-03 2019-02-21 パナソニックIpマネジメント株式会社 溶接ロボット装置
CN109834727B (zh) * 2017-11-24 2021-06-04 深圳市优必选科技有限公司 一种机器人舵机抖动抑制控制方法及装置
CN109664297B (zh) * 2018-12-14 2022-04-29 深圳市汇川技术股份有限公司 机器人的振动抑制方法、系统、装置及计算机可读存储器
CN109799701B (zh) * 2018-12-29 2022-04-29 南京埃斯顿机器人工程有限公司 一种工业机器人振动抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594309A (en) * 1994-06-15 1997-01-14 Iowa State University Research Foundation, Inc. Robot control scheme
DE20203747U1 (de) * 2002-03-09 2003-04-30 Bach Friedrich Wilhelm Kinematik zur Gewährleistung konstanter Bewegungsparameter für die personenbezogene Werkzeugführung
CN103970019A (zh) * 2014-05-20 2014-08-06 哈尔滨工业大学 一种基于加速度动态配置的空间机器人抖动抑制轨迹规划方法
CN107942680A (zh) * 2017-12-20 2018-04-20 南京埃斯顿自动控制技术有限公司 一种机器人抖动抑制方法
CN109623826A (zh) * 2019-01-04 2019-04-16 广西科技大学 一种无速度跳变的容错型冗余度机械臂运动规划方法
CN110465765A (zh) * 2019-08-19 2019-11-19 南京埃斯顿机器人工程有限公司 一种焊接机器人正弦摆焊的启停抖动削弱方法

Also Published As

Publication number Publication date
CN110465765B (zh) 2021-02-12
CN110465765A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2021032059A1 (zh) 一种焊接机器人正弦摆焊的启停抖动削弱方法
US10705502B2 (en) Numerical controller performing oscillation cutting correcting spindle tracking error
CN109794943B (zh) 一种拐角过渡路径及确定方法
CN112008305B (zh) 一种焊接机器人的摆焊轨迹规划方法
WO2017113416A1 (zh) 加工轨迹平滑转接的方法及加工装置
CN108994418B (zh) 一种管-管相贯线机器人运动轨迹规划方法
CN109773376B (zh) 一种焊接机器人的正弦摆焊方法
JP2014193706A (ja) 自動操舵装置、自動操舵方法及び自動操舵プログラム
JP2010131616A (ja) タンデム揺動溶接方法
CN108170094A (zh) 一种刀具路径平滑压缩的方法
CN103207589A (zh) 一种环形刀宽行滚切清根加工方法
CN103008852A (zh) 一种埋弧焊工艺
CN114473137A (zh) 一种各向异性拓扑优化结构件的电弧增材制造方法
CN115666848A (zh) 机床的控制装置
CN110018634B (zh) 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法
RU2529127C1 (ru) Способ электродуговой сварки неповоротных кольцевых швов трубопроводов
JP5299255B2 (ja) ロボット制御装置
CN111731449A (zh) 一种基于一致性算法的水下清洗机器人调头侧移量控制方法
US20210260761A1 (en) Method And Control System For Controlling An Industrial Actuator
US7110853B2 (en) Processes and devices for computer-aided adaptation of an application program for a machine tool
JP7381270B2 (ja) サーボモータの制御装置
JPS6182980A (ja) 多層溶接条件決定方法
JP7473654B2 (ja) 工作機械の制御装置
CN2825189Y (zh) 焊缝跟踪器
CN112883502B (zh) St2速度曲线的设计方法及基于sst2速度曲线的五轴轨迹加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854007

Country of ref document: EP

Kind code of ref document: A1