WO2021032048A1 - 一种制备粉末的装置及方法 - Google Patents

一种制备粉末的装置及方法 Download PDF

Info

Publication number
WO2021032048A1
WO2021032048A1 PCT/CN2020/109523 CN2020109523W WO2021032048A1 WO 2021032048 A1 WO2021032048 A1 WO 2021032048A1 CN 2020109523 W CN2020109523 W CN 2020109523W WO 2021032048 A1 WO2021032048 A1 WO 2021032048A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diversion
channel
powder
guide
Prior art date
Application number
PCT/CN2020/109523
Other languages
English (en)
French (fr)
Inventor
于志远
邱凯
高新明
许兵
佘玥欣
刘于航
Original Assignee
于志远
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于志远 filed Critical 于志远
Priority to CN202080063580.2A priority Critical patent/CN114450110B/zh
Publication of WO2021032048A1 publication Critical patent/WO2021032048A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Definitions

  • the present invention relates to the technical field of materials, in particular to a device and method for preparing powder.
  • Powders of metals, alloys, inorganic materials, and organic materials have been widely used.
  • Powder metallurgy is an industrial technology for preparing metal powder or using metal powder (or a mixture of metal powder and non-metal powder) as raw materials, forming and sintering, to produce metal materials, composite materials and various types of products.
  • powder metallurgy technology has been widely used in the fields of transportation, machinery, electronics, aerospace, weapons, biology, new energy, information and nuclear industry, and has become one of the most dynamic branches of new materials science.
  • Powder metallurgy technology has a series of advantages such as significant energy saving, material saving, excellent performance, high product precision and good stability, which is very suitable for mass production.
  • some materials and complex parts that cannot be prepared by traditional casting methods and mechanical processing methods can also be manufactured by powder metallurgy technology, which has attracted the attention of the industry.
  • 3D printing technology will save costs and reduce fuel consumption, and it will surely become the industry with the most potential for development.
  • metal and alloy 3D printing technology as the most cutting-edge and most potential technology in the entire 3D printing system, is an important development direction of advanced manufacturing technology.
  • Metal and alloy powders are the most important part of metal and alloy 3D printing technology, and they are also valuable.
  • 3D printing metal powder refers to a group of metal particles with a size of less than 1 mm, including single metal powder, alloy powder, and some refractory compound powder with metallic properties.
  • 3D printing metal powder materials include cobalt-chromium alloys, stainless steel, industrial steel, bronze alloys, titanium alloys, and nickel-aluminum alloys.
  • metal powder preparation methods can be divided into: reduction method, electrolysis method, carbonyl decomposition method, grinding method, atomization method, etc. according to the preparation process.
  • the powder produced by reduction, electrolysis and atomization as raw materials is more commonly used in the powder metallurgy industry.
  • the electrolysis and reduction methods are limited to the production of elemental metal powders, and these methods are not applicable to alloy powders.
  • the atomization method can be used for the production of alloy powder.
  • the modern atomization process can also control the shape of the powder.
  • the continuous development of the atomization cavity structure greatly improves the atomization efficiency, which makes the atomization method gradually develop into the main powder production method.
  • the atomization method can meet the special requirements of 3D printing consumable metal powder.
  • the water atomization method is widely used.
  • the specific heat capacity of water is much larger than that of gas, during the atomization process, the broken metal droplets become irregular due to the solidification too fast, making the powder spherical Degree is affected.
  • Other metals or alloys with high activity will react when contacted with water.
  • the contact with water during the atomization process will increase the oxygen content of the powder.
  • the formation of metal powder depends on the disturbance and impact of the air flow on the molten metal flow to break it into powder. Due to the statistical characteristics of the air flow disturbance, the particle size distribution of the powder is wide, and at the same time In all atomization technologies, regardless of the structure of the nozzle, the airflow continuously expands during the flight before acting on the liquid flow, and the speed decreases, which results in a large energy loss of the atomized gas and affects the atomization efficiency.
  • ultra-fine silicon powder has the characteristics of small particle size, large specific surface area, high chemical purity, and good filling ability. With its superior stability, reinforcement, thickening and thixotropy, it has been widely used in many fields such as copper clad laminates, adhesives, rubber, coatings, engineering plastics, medicine, papermaking, daily chemicals and other related fields.
  • the development of the industrial field provides the foundation and technical guarantee for new materials, and enjoys the reputation of "industrial MSG” and "origin of material science”.
  • Ultrafine silicon powder material is a new material that has gradually developed in recent years.
  • High-purity silicon powder generally refers to silicon powder with a SiO2 content higher than 99.9%.
  • High-purity silicon powder will become the basic material of the electronics industry in the 21st century, and the demand will grow rapidly, with a good market prospect.
  • the Ultra-large-scale integrated circuit packaging materials require not only ultra-fine, but also high-purity, low-radioactive element content, especially the spherical shape requirements for the particle shape.
  • the preparation methods of spherical silicon powder mainly include high temperature plasma melting method, high temperature melting spray method and gas combustion flame method.
  • This method uses the high temperature gas generated by AC or DC arc plasma as the heat source, and sprays the quartz powder into the plasma flame.
  • the powder is melted by heating and vaporized instantaneously, and then quenched, collected by a cyclone and a cloth bag to obtain a spherical shape. Silicon powder.
  • This method is to put the material in a high temperature field and melt it into a melt. At the moment the melt flows out, it is sprayed with high-pressure air through the ejector, and the melt is dispersed and broken into a misty liquid by the high-speed airflow. When the droplets are cooled quickly, the small droplets will naturally shrink into spherical particles with a smooth surface when they are cold.
  • the high-temperature melt spray method is the easiest method to ensure spheroidization and amorphous rate.
  • it is difficult to break through a series of key technologies such as furnace high temperature materials, viscous quartz melt atomization and prevention of secondary pollution, and it is quite difficult to manufacture high-purity spherical quartz powder.
  • the method uses fuel gas such as acetylene gas, hydrogen gas, and natural gas as raw materials, and uses oxygen or air as auxiliary fuel gas to produce a clean flame through combustion in a closed furnace.
  • fuel gas such as acetylene gas, hydrogen gas, and natural gas
  • oxygen or air as auxiliary fuel gas to produce a clean flame through combustion in a closed furnace.
  • the angular quartz powder is transported into the flame along with the airflow.
  • the angular powder passes through the high-temperature flame field, it is first melted into amorphous particles.
  • it leaves the high-temperature field and is rapidly cooled it immediately shrinks into spherical particles, and is collected by the cyclone to obtain the finished product.
  • Centrifugal force granulation technology and spray granulation technology are the main process technologies of modern ultrafine powder manufacturing technology. They are used in the preparation of metal powder, non-metal powder, organic powder, pharmaceutical powder, and new energy battery material powder. The advantages of low cost and large output have been widely used. However, when the technical requirements for ultrafine, near spherical, and sub-micron powders are put forward in modern industry, the current centrifugal force and spray technology can hardly meet the technical requirements for high uniformity, spherical and sub-micron.
  • the present invention provides a device and method for preparing powder, the main purpose of which is to improve the morphological characteristics of powder particles and improve the consistency of powder particles.
  • the present invention mainly provides the following technical solutions:
  • an embodiment of the present invention provides a device for preparing powder, including: at least one flow guiding component and a driving mechanism;
  • the flow guide assembly includes: a first substrate and a second substrate;
  • the first substrate and the second substrate are superimposed on each other and fixed;
  • the first substrate and the second substrate are distributed up and down;
  • the middle part of the first substrate and the second substrate has a cavity for containing liquid
  • a diversion groove is provided on the side of the first substrate close to the second substrate and/or on the side of the second substrate close to the first substrate;
  • the diversion groove is closed to form a diversion channel
  • One end of the diversion channel is in communication with the cavity, and the other end is in communication with the outer edges of the first substrate and the second substrate;
  • the guide channels There are a plurality of the guide channels; the plurality of guide channels are distributed at intervals along the rotation direction of the first substrate and the second substrate;
  • the diversion channel is a microchannel
  • the cross-sections of the guide channels within a predetermined length along the extension direction are the same;
  • the driving mechanism is in transmission connection with the first substrate and the second substrate, and is used for driving the first substrate and the second substrate to rotate.
  • the side of the first substrate close to the second substrate and/or the side of the second substrate close to the first substrate are provided with airflow grooves; the first substrate and the first substrate When the two substrates are superimposed and attached to each other, the air flow groove is closed to form an air flow channel;
  • the air flow channel is located on one side of the guide channel; one end of the air flow channel communicates with the guide channel, and the other end communicates with the outer edges of the first substrate and the second substrate, so that the gas It can enter the diversion channel through the other end of the diversion channel.
  • the guide components there are a plurality of the guide components; the plurality of guide components are superimposed on each other and fixed.
  • the first substrate is provided with an airflow groove one on the side close to the second substrate;
  • the second substrate is provided with an airflow groove two on the side close to the first substrate; the first substrate When superposed and attached to the second substrate, the first air flow groove and the second air flow groove form an air flow channel with a circular cross-section.
  • the thickness of the first substrate is 0.2-20 mm;
  • the first substrate has a circular structure; the diameter of the first substrate is 10-500 mm;
  • the thickness of the second substrate is 0.2-20 mm;
  • the second substrate has a circular structure; the diameter of the second substrate is 10-500 mm;
  • the microchannel is a channel with a diameter and width of 0.1 ⁇ m to 1000 ⁇ m;
  • the diversion channel has a linear shape or an arc shape.
  • cross-sectional sizes of the plurality of guide channels are the same or distributed in a certain proportion.
  • blades are fixedly provided on the first substrate and/or the second substrate; the blades are located in the cavity.
  • the diversion component is one of a sapphire crystal substrate, a silicon carbide crystal substrate, a ceramic substrate, a high-temperature alloy substrate, a high-purity graphite substrate, a single crystal silicon wafer substrate, and a quartz wafer substrate .
  • the embodiment of the present invention provides a method for preparing powder, which includes the following steps:
  • the solution is subjected to centrifugal force
  • the solution enters the microchannel and flows along the microchannel to form droplets
  • the droplets leave the microchannels, under the action of centrifugal force and gravity, and at the same time under the change of temperature conditions, form particles of a predetermined shape.
  • the above-mentioned method uses the above-mentioned powder preparation device for operation;
  • the guide assembly rotates, and the solution flows away from the rotation axis through the guide channel on the guide assembly under the action of centrifugal force;
  • the liquid droplets flowing out from the end of the guide channel condense into particles under the action of centrifugal force and gravity, and at the same time under the change of temperature conditions.
  • the device and method for preparing powder of the present invention have at least the following advantages:
  • FIG. 1 is a schematic diagram of an implementation manner of a first substrate in a guide assembly of a device for preparing powder according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an implementation manner of a second substrate in a guide assembly of a device for preparing powder according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an implementation manner of a first substrate in a guide assembly of a device for preparing powder according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of an implementation manner of a second substrate in a flow guide assembly of a device for preparing powder according to another embodiment of the present invention
  • FIG. 5 is a schematic diagram of an implementation manner of a first substrate in a flow guide assembly of a device for preparing powder according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of an embodiment of the first substrate in the guide assembly of a device for preparing powder according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another embodiment of the first substrate in the guide assembly of the device for preparing powder according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of the first substrate in the guide assembly of the device for preparing powder according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a flow guiding component of a device for preparing powder according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a flow guiding component of a device for preparing powder according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of still another embodiment of the first substrate in the guide assembly of the device for preparing powder according to the embodiment of the present invention.
  • Fig. 12 is a schematic diagram of a combination of multiple guide components of a device for preparing powder according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a combination of a plurality of guide components of a device for preparing powder according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a device for preparing powder according to an embodiment of the present invention.
  • 15 is a flow chart of a method for preparing powder according to an embodiment of the present invention.
  • Fig. 16 is a schematic diagram of an embodiment of the diversion channel in the diversion assembly
  • Figure 17 is a schematic diagram of another embodiment of the diversion channel in the diversion assembly.
  • Fig. 18 is a schematic diagram of still another embodiment of the diversion channel in the diversion assembly.
  • 1 is the first substrate
  • 1-1 is the diversion groove one
  • 1-11 is the release part
  • 1-12 is the forming part
  • 1-13 is the transition part
  • 1-14 is the entrance part
  • 1-2 is the air flow groove one
  • 1-3 are fixing holes
  • 1-4 are blade one
  • 1-5 are through holes
  • 2 is second substrate
  • 2-1 is diversion groove two
  • 2-2 is blade two
  • 3 is bottom plate
  • 4 is For the lower sealing plate
  • 5 is the upper sealing plate
  • 6 is the driving mechanism
  • 7 is the heating mechanism
  • 8 is the sealed chamber.
  • an embodiment of the present invention provides a device for preparing powder, including: at least one flow guiding component and a driving mechanism 6;
  • the flow guide assembly includes: a first substrate 1 and a second substrate 2; the first substrate 1 and the second substrate 2 are superimposed on each other and fixed; the first substrate 1 and the second substrate 2 can be fixed by the first substrate 1 Fixing holes 1-3 are provided with the second substrate 2 and then fixed by fasteners; of course, the first substrate 1 and the second substrate 2 can also be fixed by clamps, which are clamped on the first substrate 1 and the second substrate 2. on.
  • the first substrate 1 and the second substrate 2 are distributed up and down; the middle of the first substrate 1 and the second substrate 2 has a cavity for accommodating liquid; in this embodiment, the center of the first substrate 1 and the second substrate 2 is preferably provided with a Holes 1-5, the first substrate 1 is set above the second substrate 2; a bottom plate 3 is provided below the second substrate 2, and the bottom plate 3 is attached and fixed to the lower part of the second substrate 2, and the middle part of the second substrate 2
  • the through holes 1-5 are closed; the middle part of the first substrate 1 and the second substrate 2 form an upper opening cavity for holding the solution to be processed; of course, the middle hole of the second substrate 2 can also be set as Blind hole, so that the bottom of the hole can be closed.
  • the side of the first substrate 1 close to the second substrate 2 and or the side of the second substrate 2 close to the first substrate 1 are provided with flow guide grooves; when the first substrate 1 and the second substrate 2 are superimposed and attached to each other , The diversion groove is closed to form a diversion channel; this embodiment can be formed by arranging the diversion groove on the first substrate 4, but not on the second substrate 2, and bonding the second substrate 2 to the first substrate 1 Diversion channel.
  • diversion grooves on both the first substrate 1 and the second substrate 2 are correspondingly attached to form a diversion channel;
  • the second substrate 2 is provided with a flow guide groove, and the first substrate 1 is not provided with a flow guide groove.
  • the first substrate 1 and the second substrate 2 are attached to each other to form a flow guide channel.
  • a diversion channel is formed.
  • the diversion channel has a circular cross section; of course, it is not excluded that the cross section of the diversion channel is polygonal, rectangular, "O"-shaped and other shapes.
  • One end of the diversion channel communicates with the cavity, and the other end communicates with the outer edges of the first substrate 1 and the second substrate 2, so that the solution is thrown out from the outer edges of the first substrate 1 and the second substrate 2 when rotating at a high speed. Condense to form particles.
  • the first substrate 1 is preferably a circular plate; the second substrate 2 is preferably a circular plate.
  • first substrate 1 and/or the second substrate 2 are polygonal plates; the polygonal plates are at least pentagonal, preferably the number of sides is an even number; it can be hexagonal or octagonal; of course, The number of sides of the polygonal plate can be more, so that its edge is close to a circle.
  • the guide channel is a microchannel; the microchannel is a channel with a diameter of 0.1 to 1000 micrometers; when the cross section of the microchannel is circular, the diameter is the diameter of the microchannel; when the cross section of the microchannel is rectangular, the diameter is wide That is the cross-sectional width of the microchannel. When the cross section of the microchannel is polygonal, the diameter width is the projection width of the microchannel.
  • the cross section of the guide channel in the predetermined length range along the extension direction is the same, so that the solution can maintain its shape within the predetermined length range.
  • the guide channel preferably extends in a horizontal direction, so that the centrifugal force can better control the formation of the droplets.
  • the opening at the entrance of the diversion channel is wider than the diameter of the diversion channel to allow liquid to enter.
  • the flow form of the mixed solution is mainly turbulent; but for microchannels with a characteristic size in the range of micrometers to millimeters, due to the micro-scale effect, the flow form of the mixed solution is mainly laminar flow, and the interface between the two phases is subject to flow Condition and interfacial tension influence, produce a variety of interface phenomena, showing different flow patterns.
  • the fluid enters the channel through the micropores, and its shape is affected by the combined action of shear force, viscous force and surface tension.
  • the formation mechanism of droplets is closely related to fluid viscosity and surface tension.
  • the driving mechanism 6 is in transmission connection with the first substrate 1 and the second substrate 2 for driving the first substrate 1 and the second substrate 2 to rotate.
  • the driving mechanism 6 may be a transmission mechanism such as a motor or a gearbox driven by a motor; so that the first substrate 1 and the second substrate 2 can rotate at a high speed.
  • the first substrate 1 and the second substrate 2 are arranged coaxially; the first substrate 1 and the second substrate 2 are extruded and bonded; the coaxial arrangement can be adopted Fix the first substrate 1 and the second substrate 2 by the clamp or fix the first substrate 1 and the second substrate 2 through the cooperation of the screw shaft and the clip; of course, it can also be fixed by other methods in the prior art; as long as the first substrate 1 and the second substrate 2 are ensured Laminate and set coaxially.
  • the fixing structure for fixing the first substrate 1 and the second substrate 2 has a transmission shaft, and the transmission shaft is in transmission connection with the driving mechanism 6; of course, the fixing structure can also be provided as a transmission hole, for example, a hole with a keyway, Drive connection with the shaft on the drive mechanism 6. Of course, it can also be a gear sleeve structure; a gear shaft is provided on the driving mechanism 6 to match it to realize transmission.
  • the diversion component When the diversion component is in operation, it needs to be kept in a protective environment of inert gas. At the same time, the temperature of the diversion component needs to be kept 10°C ⁇ 50°C higher than the melting point of the metal or alloy to be treated to prevent it from condensing in the diversion channel . Preferably it is 20 degreeC.
  • the guide component is set in the thermal field, and the temperature of the thermal field needs to be adjusted according to the melting point temperature of the metal.
  • the embodiment of the present invention provides a device for preparing powder, which improves the morphological characteristics of powder particles and improves the consistency of powder particles.
  • the embodiment of the present invention provides a device for preparing powder, which further includes a heating mechanism 7 for heating the flow guide assembly; the heating mechanism 7 is a heating plate set above and below the flow guide assembly; The required temperature of the solution in the diversion component.
  • the embodiment of the present invention provides a powder preparation device further comprising a sealed chamber 8; the flow guiding component is placed in the sealed chamber 8, and the sealed chamber 8 is filled with inert gas.
  • the diversion channel includes: an inlet portion 1-14, a transition portion 1-13, a forming portion 1-12, and a release portion 1-11;
  • the entrance part 1-14, the transition part 1-13, the forming part 1-12 and the release part 1-11 are connected in sequence; the diameter of the release part 1-11 is larger than the diameter of the forming part 1-12; the diameter of the entrance part 1-14 It is larger than the diameter of the forming part 1-12; there is an annular protrusion between the release part 1-11 and the forming part 1-12; the annular protrusion is arranged coaxially with the forming part 1-12; the inner diameter of the annular protrusion is The inner diameter of the forming part 1-12 is the same; the outer diameter of the annular protrusion is smaller than the inner diameter of the releasing part 1-11, so that when the solution flows into the releasing part 1-11 through the forming part 1-12, it can reduce the droplet and conduction.
  • the adhesive force of the flow channel reduces the deformation at the moment of release; the diameter of one end of the transition part 1-13 is the same as the diameter of the forming part 1-12; the diameter of the other end of the transition part 1-13 is the same as the diameter of the entrance part 1-14 The same; the diameter of the transition part 1-13 from the end close to the entrance part 1-14 to the end close to the forming part 1-12 gradually decreases, so that the fluid in the entrance part 1-14 can be in the transition part 1-13 Under the action of, fully enter the droplets formed in the forming part 1-12.
  • the first substrate 1 is provided with an air flow groove on the side close to the second substrate 2 and/or on the second substrate 2 close to the first substrate 1; the first substrate 1 and the second substrate 2 When the first substrate 1 and the second substrate 2 are superimposed and attached to each other, the air flow groove is closed to form an air flow channel; during operation, the first substrate 1 and the second substrate 2 are in an inert gas environment, To protect metal and alloy powder from oxidation.
  • the first substrate 1 is provided with air flow grooves one 1-2 on the side close to the second substrate 2; the second substrate 2 is provided with air flow grooves two on the side close to the first substrate 1; the first substrate 1 When superimposed and attached to the second substrate 2, the air flow grooves 1-2 and the air flow groove 2 form an air flow channel with a circular cross-section.
  • An air flow channel is formed between the air flow grooves 1 1-2 and the air flow groove 2 for the entry of inert gas; further preferably, the diameter of the air flow channel is the same as the diameter of the guide channel.
  • the diameter of the airflow channel can also be larger or smaller than the diameter of the guide channel.
  • the air flow channel is located on one side of the guide channel; one end of the air flow channel communicates with the guide channel, and the other end communicates with the outer edges of the first substrate 1 and the second substrate 2, so that the gas can enter the guide channel through the other end of the guide channel.
  • Flow channel can also choose to open an air flow groove on the first substrate 1 or the second substrate 2; when the first substrate 1 and the second substrate 2 are attached, the air flow groove is closed to form an air flow channel.
  • the end of the airflow channel connected to the diversion channel, the extending direction of the airflow channel and the flow direction of the solution in the diversion channel are an acute angle, so that the gas in the airflow channel is in the diversion channel When the medium solution flows, it can fill the diversion channel.
  • the radius of rotation increases, and the rotation speed increases, so that the centrifugal force increases.
  • the solution farther from the rotation center has a pressure difference with the solution closer to the center of rotation, thereby forming a negative pressure;
  • the protective gas enters the diversion channel through the gas flow channel, and separates the solution in the diversion channel; the separated solution flows out from the end of the diversion channel and condenses into metal or alloy particles .
  • the solution drops flowing out of the diversion channel during the falling process are quickly condensed into solid particles through the cooling of the low-temperature inert gas, forming metal or alloy particles.
  • the guide components are preferably 5-20 groups.
  • a diversion groove 1-1 is provided on the upper side of the first substrate 1, and a diversion groove two 2-1 is provided on the lower side of the first substrate 1; and a diversion groove 2-1 is provided on the upper side of the second substrate 2.
  • Flow groove one 1-1, flow groove two 2-1 are provided on the lower side of the second substrate 2.
  • a lower sealing plate 4 is provided under the second substrate 2; a flow guide groove 4 is provided on the upper side of the lower sealing plate 4, and the lower sealing plate 4 is attached and fixed to the lower side of the second substrate 2.
  • the flow guide groove four is arranged corresponding to the flow guide groove two 2-1 on the lower side of the second substrate 2 to form a circular flow guide channel.
  • a plurality of diversion components form a multi-layer diversion channel, which can process the solution at the same time. More preferably, the first substrate 1 and the second substrate 2 have the same structure.
  • a diversion groove 1-1 is provided on the side of the first substrate 1 close to the second substrate 2; the side of the second substrate 2 close to the first substrate 1 There is a diversion groove two 2-1; when the first substrate 1 and the second substrate 2 are superimposed and attached to each other, the diversion groove 1-1 and the diversion groove two 2-1 form a diversion channel with a circular cross-section.
  • the diversion groove 1-1 is a groove with a semicircular cross section; it is preferable that the diversion groove 2-1 is a groove with a semicircular cross section, so that the diversion groove 1-1 and the diversion groove two 2-1 can form a diversion channel with a circular cross section during bonding.
  • this embodiment does not exclude that the cross-sections of the diversion groove 1 1-1 and the diversion groove 2 2-1 are arcs with the same diameter and different arc lengths, so that the diversion groove 1 1-1 and the diversion groove 2 2-1 can be attached to each other to form a circular diversion channel, so that the solution can flow in the tiny circular diversion channel, and when it flows out, it can condense into metal or alloy particles with good shape.
  • the diversion channel keeps the solution away from the center of rotation.
  • the plane where the extension direction of the diversion channel is located is perpendicular to the rotation axis; to facilitate control of the speed of the solution passing through the diversion channel.
  • the thickness of the first substrate 1 is 0.2-20 mm; the first substrate 1 has a circular structure; the diameter of the first substrate 1 is 10-500 mm; the thickness of the second substrate 2 is 0.2-20 Mm; the second substrate 2 has a circular structure; the diameter of the second substrate 2 is 10-500 mm; the inner diameter of the diversion channel is 0.1 ⁇ m-1000 ⁇ m;
  • the thickness of the first substrate 1 is 0.5-2 mm; the first substrate 11 has a circular structure; the diameter of the first substrate 11 is 50-200 mm; the thickness of the second substrate 2 is 0.5-2 mm;
  • the substrate 2 has a circular structure; the diameter of the second substrate 2 is 50-200 mm; the inner diameter of the diversion channel is 1 micron to 200 micrometers; the inner diameter of the diversion channel can be determined according to the required particle size.
  • the length of the diversion channel is 5 mm ⁇ 20 mm;
  • the diversion channel can be straight for easy processing.
  • the diversion channel can also be arc-shaped. According to the movement characteristics of the solution in the diversion channel under the action of centrifugal force, a diversion channel with an arc can be set to make the solution have a predetermined movement at different positions in the diversion channel. The state and speed are convenient to control the solution form.
  • the cross-sectional sizes of the plurality of guide channels are the same or distributed in a certain proportion.
  • the cross-sectional size of the guide channels is the same to produce powder particles with the same diameter; the plurality of guide channels are distributed in a certain proportion to produce powder particles with a variety of diameters.
  • blades are fixedly provided on the first substrate 1 and/or the second substrate 2; the blades are located in the cavity, and are used to separate the solution in the cavity, and compare the first substrate and the second substrate.
  • the substrate forms the support.
  • the blades can be fixed on the first substrate 1 or the second substrate 2; of course, a certain number of blades can also be fixed on the first substrate 1, and other blades can be fixed on the second substrate 2; in short, priority
  • the blades are evenly distributed in the circumferential direction; firstly, the blades include: blade one and blade two; blades one to four are fixedly arranged on the first substrate 1; blade two 2-2 is fixedly arranged on the second substrate 2; blade one 1-4 and blade two 2-2 are arranged correspondingly; priority is given to the contact surface of blade one 1-4 and blade two 2-2; alternatively, a groove can be provided on the blade one 1-4, and the blade two A protrusion is provided on 2-2; the protrusion can be inserted into the groove to facilitate the alignment of blade one 1-4 and blade two 2-2.
  • the fan-shaped part may penetrate the entire substrate, or the fan-shaped part of a predetermined thickness may be removed to increase the strength of the structure.
  • the first substrate 1 is one of a sapphire crystal substrate, a silicon carbide crystal substrate, a ceramic substrate, a high-temperature alloy substrate, a high-purity graphite substrate, a single crystal silicon wafer substrate, and a quartz wafer substrate.
  • the second substrate 2 is a sapphire crystal substrate, a silicon carbide crystal substrate, a ceramic substrate, a high-temperature alloy substrate, a high-purity graphite substrate, a single crystal silicon wafer substrate, a quartz wafer substrate Species; due to the high melting point of metals, alloys, inorganic materials, and organic materials, some molten liquids such as metals, alloys, and inorganic materials are corrosive.
  • the sapphire material is preferred, high temperature resistance, corrosion resistance, good heat conduction, transparency, and moderate price. It has the basis for large-scale processing and is convenient for observation and monitoring. For example, the movement state of the solution in the diversion channel can be recorded by a high-speed camera to facilitate analysis Research and parameter setting, such as the speed setting of the motor, and the arc setting of the diversion channel.
  • the embodiment of the present invention provides a device for preparing powder.
  • the molten fluid is thrown out in the form of droplets through the action of high-speed centrifugal force in the diversion channel of the diversion component, and the inert protective gas affects the metal or alloy during continuous cooling.
  • the melt particles undergo rapid cooling.
  • the process is simple, the process is continuous, the prepared metal or alloy has good particle size and morphology consistency, no agglomeration, high particle yield, low cost, good batch product consistency, and repeated and stable results. By changing the parameters such as the inner diameter and length of the microchannel channel, micron and nanometer particles of different particle sizes can be produced.
  • the embodiment of the present invention provides a method for preparing powder, which includes the following steps:
  • the solution is subjected to centrifugal force
  • the solution enters the microchannel and flows along the microchannel to form droplets
  • the droplets leave the microchannels, under the action of centrifugal force and gravity, and at the same time under the change of temperature conditions, form particles of a predetermined shape.
  • the embodiment of the present invention provides a method for preparing powder, which uses the above-mentioned device for preparing powder for operation.
  • the guide assembly rotates, and the solution flows away from the rotation axis through the guide channel on the guide assembly under the action of centrifugal force;
  • the liquid droplets flowing out from the end of the guide channel condense into particles under the action of centrifugal force and gravity, and at the same time under the change of temperature conditions.
  • the solution is injected into the cavity in the middle of the guide assembly; the metal or alloy can be heated and melted in the crucible, and the metal solution or alloy solution is protected by inert gas.
  • the melt flows into the cavity from the heat-preserving heating pipe under pressure or its own weight, the guide assembly rotates, and the solution flows away from the rotation axis through the guide channel on the guide assembly under the action of centrifugal force; the rotation speed of the guide assembly It can be adjusted according to needs, by adjusting the speed of the drive motor.
  • the guide component is preheated to 5°C ⁇ 50°C above the melting temperature of the metal or alloy, and the heat field power is designed to keep the temperature of the heat field constant.
  • the molten metal or alloy fluid enters the diversion channel under the action of centrifugal force. Because the surface tension of the molten metal or alloy fluid in the microchannel of 100 nanometers to 1000 microns is greater than other forces, the molten metal or alloy fluid will form a uniform size The droplets, which are thrown out of the diversion channel under the action of centrifugal force, quickly condense under the low-temperature protective gas.
  • the embodiment of the present invention provides a method for preparing powder, which can continuously granulate the solution, which can not only improve the morphological characteristics of metal or alloy powder particles, improve the consistency of metal or alloy powder particles, but also improve the efficiency of granulation.
  • the inner diameter of the diversion channel is 1 micrometer to 1000 micrometers; the inner diameter of the diversion channel can be determined according to the required particle size.
  • the diversion channel is straight or arc-shaped; the diversion component is made of sapphire, which is resistant to high temperature and corrosion, and is convenient for observation and monitoring.
  • the movement state of the solution in the diversion channel can be recorded by a high-speed camera to facilitate analysis, research and Parameter setting, such as the speed setting of the diversion component, and the radian setting of the diversion channel.
  • the invention provides a device and method for preparing powder, based on the molten liquid of metals, alloys, inorganic materials, organic materials, etc. in a special structure of microchannels, under the action of centrifugal force, provides a continuous preparation of metals, alloy materials, inorganic materials,
  • the highly uniform, nearly spherical micro-nano powders of organic materials can be produced at low cost and on a large scale.
  • the invention has the advantages of continuous production of high-consistency, 100 nanometer-1000 micron spherical metal, alloy, inorganic material, and organic material powder; the process is simple, compared with the traditional process, energy saving and consumption reduction, high product yield, low cost,
  • the product is free from production equipment and environmental pollution, and the product has high purity.
  • the process is continuous and suitable for mass production.
  • Metals, alloys, inorganic materials, organic materials, etc. are heated and melted in the crucible, and the molten liquid is protected by inert gas.
  • the molten liquid flows into the cavity in the middle of the diversion assembly from the heat preservation and heating pipe after filtering, pressurization or its own weight.
  • the diversion assembly is preheated to above the melting temperature of the metal or alloy (5°C—300°C).
  • the thermal field power of the diversion component Designed to maintain a constant temperature of the thermal field.
  • Molten liquids such as metals, alloys, inorganic materials, and organic materials enter the diversion channel under the action of centrifugal force in the cavity.
  • the binding force of the diversion channel is released, surface tension, shear force, centrifugal force
  • the molten liquid will form droplets of uniform size under the action of high-speed centrifugal force, and the droplets will be thrown out of the diversion channel under the action of high-speed centrifugal force. They will condense quickly in a low-temperature protective atmosphere. They will undergo gas-solid separation and inert gas recycling. Metal and alloy , Inorganic materials, organic materials and other particles are sieved, vacuum packaged or packaged under the protection of protective agents.
  • the diversion component includes two upper and lower clamps and 1-100 groups of diversion components. Each group of diversion components is provided with 2-88888 microchannels. The inner diameter of the diversion channel is 100 nanometers to 1000 microns. The diversion channel The predetermined length is 2 mm to 100 mm.
  • the first substrate 1 and the second substrate 2 are polygonal or circular substrates, the thickness of the substrate is 0.5 mm-20 mm, the diameter of the circular substrate is 10 mm-300 mm; the inner diameter of the diversion channel is 0.5 ⁇ m to 1000 ⁇ m.
  • the rotation speed of the diversion channel driven by the driving mechanism 6 is 1,000 to 600,000 rpm, and different metals or alloys are related to factors such as the density of the material, the radius of the centrifuge, and the diameter of the microchannel.
  • the density is inversely proportional to the speed
  • the radius of the centrifuge is inversely proportional to the speed
  • the diameter of the microchannel is inversely proportional to the speed.
  • the embodiment of the present invention provides a device and method for preparing powder.
  • the prepared metal, alloy, inorganic material, organic material, etc. have a nearly spherical shape and a particle size ranging from 100 nanometers to 1,000 microns.
  • Molten liquids such as metals, alloys, inorganic materials, and organic materials form droplets of uniform size in the guide assembly through centrifugal force, the binding force of the guide channel, surface tension, and shear force.
  • the droplets of the molten liquid cool down quickly to form nearly spherical powder particles and fall into the powder collector.
  • the powder in the collector is inspected and packaged after atmosphere protection, gas-solid separation, screening.
  • the device and method for preparing powders provided by the embodiments of the present invention have simple and continuous processes for preparing powders of metals, alloys, inorganic materials, and organic materials.
  • the particle size of the prepared powders of metals, alloys, inorganic materials, and organic materials is Good appearance and consistency, no agglomeration, high particle yield, low cost, good batch product consistency, and repeated and stable results. By changing the inner diameter, length and other parameters of the diversion channel, micron and nano particles of different particle sizes can be produced.
  • the device for preparing powder provided by the embodiment of the present invention is combined with a rapid cooling system to prepare amorphous alloy powder.
  • the process is simple and the process is continuous.
  • the prepared amorphous alloy powder has good particle size and morphology consistency, The consistency of batch products is good, and the results are repeated and stable.
  • the embodiment of the present invention provides a method for preparing powder.
  • the metal, alloy, inorganic material, organic material, etc. are melted in an inert gas protective atmosphere, and the temperature is maintained at the metal, alloy, inorganic material, organic material, etc. 5°C to 100°C above the melting point, preferably 50°C.
  • the molten liquid is filtered and injected into the cavity of the diversion assembly through the heat preservation heating pipe.
  • the diversion assembly is preheated to above the melting point of the molten liquid and maintained at a constant temperature.
  • the diversion assembly is driven by the driving mechanism 6 to rotate at a high speed. Under the action of centrifugal force, the molten melt enters the diversion channel.
  • the melt in the diversion channel is released by the restriction force of the diversion channel, and under the action of the surface tension of the melt, centrifugal force, shearing force, etc., a uniform size is formed
  • the molten droplets are thrown out of the diversion channel under the action of high-speed centrifugal force.
  • the melt droplets solidify to form spherical particles of metals, alloys, inorganic materials, organic materials and other particles.
  • the inert gas is purified and recycled. use.
  • the inert gas is nitrogen, helium, neon, argon, krypton, xenon, and radon, preferably nitrogen, helium, and argon.
  • the substrate selects semiconductor crystal materials such as silicon carbide crystal substrates or ceramic substrates, high-temperature alloy substrates, high-purity graphite substrates, single crystal silicon wafer substrates, quartz wafer substrates, single crystal silicon, sapphire crystal substrates, and quartz , Glass substrate, etc.
  • semiconductor crystal materials such as silicon carbide crystal substrates or ceramic substrates, high-temperature alloy substrates, high-purity graphite substrates, single crystal silicon wafer substrates, quartz wafer substrates, single crystal silicon, sapphire crystal substrates, and quartz , Glass substrate, etc.
  • the first substrate 1 and the second substrate 2 of the flow guide assembly adopt circular substrates with a diameter of 30 mm to 1500 mm, a diameter of the diversion channel of 0.5 micron to 200 micrometers, and a length of the diversion channel of 1 mm to 100 mm.
  • the number is 14,400, single-layer channel.
  • the heating method of the guide assembly is medium frequency induction heating, and the thickness of the first substrate 1 and the second substrate 2 is 0.5 mm-20 mm.
  • the diameter of the cavity is 30 mm to 300 mm, and the rotation speed of the guide assembly is 2000 to 15000 revolutions per minute.
  • the TC4 alloy After cleaning the TC4 titanium alloy with acid, alkali and ultrapure water, the TC4 alloy is heated to melting by high-frequency induction in a crucible-free inert gas protective atmosphere.
  • the molten liquid is poured into the sapphire buffer crucible and the temperature is maintained at 1700°C to melt the titanium alloy.
  • the melt is injected into the cavity of the diversion assembly through the heat preservation and heating pipe.
  • the diversion assembly is pre-heated to 1700°C and kept at a constant temperature.
  • the diversion assembly is driven by the motor to rotate at high speed.
  • the TC4 titanium alloy melt enters the diversion channel under the action of centrifugal force, and the melt forms the molten droplets of uniform size in the diversion channel.
  • the diversion channel is thrown out.
  • the melt droplets solidify to form spherical TC4 alloy particles.
  • gas-solid separation spherical particles with a particle size of about 15 microns are obtained.
  • the inert gas is recycled through purification.
  • the guide component substrate adopts a sapphire substrate with a thickness of 1.5 mm, a radius of 70 mm, an inner diameter of a diversion channel of 10 microns, a channel length of 5 mm, and 7,200 diversion channels.
  • the channel package adopts sapphire high-temperature bonding.
  • the rotation speed of the guide assembly is 3000 to 10000 revolutions per minute.
  • the inert gas protected by the atmosphere is argon.
  • the tin alloy is melted in a stainless steel crucible heated to 350°C, and the stainless steel crucible is protected by nitrogen.
  • the molten tin compound financial liquid is pressurized into the tin alloy filter, which is a multi-stage filter composed of 200 mesh, 400 mesh, and 800 mesh stainless steel filters.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank. There is a cooling system on the side wall and top of the powder making tank. After the powder making tank is evacuated, high-purity nitrogen is injected, and the oxygen content is controlled below 100ppm.
  • the molten liquid flows into the guide assembly through the injection crucible.
  • the inner diameter of the guide channel of the guide assembly is 8 microns, the guide channel length is 5 mm, 3,600 channels, and the diameter of the first substrate 1 and the second substrate 2 is 138 mm;
  • the first substrate 1 and the second substrate 2 are selected from substrates such as high-temperature alloys, silicon carbide crystal wafers, sapphire wafers, monocrystalline silicon wafers, ceramics, etc., preferably sapphire or monocrystalline silicon wafers.
  • the heating of the guide component adopts electromagnetic heating, which is divided into two parts, the power is 1KW ⁇ 2, and it is preheated to 350°C and kept at a constant temperature of 350°C.
  • the rotation speed of the diversion assembly is 2000-5000 rpm, and the molten liquid is injected into the cavity of the diversion assembly through the injection crucible, and enters the diversion channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the resistance and gravity of nitrogen Under the action of, it cools and solidifies in the process of free fall, forming nearly spherical tin alloy powder and falling into the powder collector.
  • the powder in the collector is sieved under the protection of nitrogen, and qualified products are vacuum packed and put into storage.
  • the aluminum alloy is melted in a crucible heated to 680°C to 700°C, and the crucible is protected by inert gas.
  • the molten aluminum alloy melt is pressurized into the aluminum alloy filter.
  • the filter is a multi-stage filter composed of 10ppi, 20pp, and i30ppi honeycomb ceramics.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank. There is a cooling system on the side wall and top of the powder making tank. After the powder making tank is evacuated, high-purity inert gas is injected, and the oxygen content is controlled below 100ppm.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 6 microns, the diversion channel length is 5 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 138 mm;
  • the first substrate of the diversion assembly Substrates 1 and 2 are selected from substrates such as high-temperature alloys, silicon carbide crystal wafers, sapphire wafers, monocrystalline silicon wafers, ceramics, etc., preferably sapphire wafers.
  • the heating of the guide component adopts electromagnetic heating, which is divided into two parts, the power is 1KW ⁇ 2, and it is preheated to 700°C and kept at a constant temperature of 700°C.
  • the rotation speed of the diversion assembly is 2000 revolutions/minute to 6000 rpm.
  • the molten liquid is injected into the cavity of the diversion assembly through the injection crucible, and enters the diversion channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the resistance of the inert gas Under the action of gravity, the body cools and solidifies in the process of free fall, forming nearly spherical aluminum alloy powder and falling into the powder collector.
  • the powder in the collector is screened under the protection of inert gas, and qualified finished products are vacuum packed and put into storage.
  • the gear steel is heated to 1400°C to 1500°C in a crucible to melt, and the crucible is protected by inert gas.
  • the molten gear steel melt is pressurized into the honeycomb ceramic filter, which is a multi-stage filter composed of 10ppi, 20ppi, and 30ppi honeycomb ceramics.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 10 microns, the diversion channel length is 5 mm, 14400 channels, the diversion channel centrifugal disc diameter is 138 mm to 152 mm; the first substrate 1 and the second substrate 2 select substrates such as silicon carbide crystal sheets, sapphire sheets, ceramics, etc., preferably sapphire sheets.
  • the guide component heating adopts medium and high frequency heating, which is divided into two parts, the power is 1KW ⁇ 2, and it is preheated to 1500°C and kept at a constant temperature of 1500°C.
  • the rotation speed of the guide assembly is 2000 revolutions per minute to 4000 revolutions per minute.
  • the molten liquid is injected into the cavity of the guide assembly through the injection crucible, and enters the guide channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the resistance of inert gas Under the action of gravity, the body cools and solidifies in the process of free fall, forming nearly spherical gear steel powder and falling into the powder collector.
  • the powder in the collector is screened under the protection of inert gas, and qualified finished products are vacuum packed and put into storage.
  • Iron-based magnetic amorphous alloy Fe80%SiB20% powder material
  • the iron-based magnetic master alloy is heated to 1450°C to 1550°C in the crucible to melt, and the crucible is protected by nitrogen.
  • the molten parent financial liquid is injected into the honeycomb ceramic filter under pressure.
  • the filter is a multi-stage filter composed of 10ppi, 20ppi, 30ppi, and 50ppi honeycomb ceramics.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank. There is a cooling system on the side wall and top of the powder making tank. After the powder making tank is evacuated, high-purity nitrogen is injected, and the oxygen content is controlled below 100ppm.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 12 microns, the diversion channel length is 5 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 138 mm to 152 mm; the first substrate 1 and the second substrate 2 select substrates such as silicon carbide crystal sheets, sapphire sheets, ceramics, etc., preferably sapphire sheets.
  • the guide component is heated by electromagnetic heating, which is divided into two parts, the power is 1KW ⁇ 2, and it is preheated to 1500°C and kept at a constant temperature of 1500°C.
  • the rotation speed of the guide assembly is from 2500 rpm to 5500 rpm.
  • the molten liquid is injected into the cavity of the guide assembly through the injection crucible and enters the guide channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel. After the droplets fly out of the diversion channel, they are on the top of the powder making tank.
  • the low-temperature liquid nitrogen sprayed from the coil is cooled at a high speed under the action of the vaporization of the low-temperature liquid nitrogen, rapidly cooled and solidified, forming a nearly spherical iron-based magnetic amorphous alloy powder.
  • the amorphous alloy powder and the high-speed airflow are separated by a solid-gas separation device, and the powder is sieved and packed , Nitrogen purification and recycling.
  • the magnesium-nickel master alloy is heated to 700°C in a crucible to melt, and the crucible is protected by inert gas.
  • the molten magnesium-nickel mother compound financial liquid is injected into the filter under pressure, and the filter is a multi-stage filter composed of honeycomb ceramics of 10ppi, 20pp, and i30ppi.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 2 microns, the diversion channel length is 4 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 150 mm;
  • the first of the diversion assembly Substrate 1 and second substrate 2 are selected from substrates such as high-temperature alloys, silicon carbide crystal wafers, sapphire wafers, monocrystalline silicon wafers, ceramics, etc., preferably sapphire wafers.
  • the heating of the guide component adopts electromagnetic heating, which is divided into two parts, the power is 1KW ⁇ 2, and it is preheated to 700°C and kept at a constant temperature of 700°C.
  • the rotation speed of the diversion assembly is 2000 rpm to 8000 rpm.
  • the molten liquid is injected into the cavity of the diversion assembly through the injection crucible, and enters the diversion channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the high-speed and low-temperature inert gas quickly cools down; under the rapid cooling action of the inert gas, the droplets are quickly cooled and solidified to form nearly spherical magnesium-nickel alloy powder.
  • the mixed gas flow of powder and inert gas is separated by solid and gas, the powder is qualified and packed into storage after screening inspection, and the inert gas is recycled after purification.
  • the high-purity quartz sand is heated to 1800°C-2000°C in the crucible to melt, and the crucible is protected by inert gas.
  • the molten high-purity quartz melt is pressurized into the filter.
  • the filter is a multi-stage filter composed of 10ppi, 20pp, and 30ppi honeycomb ceramics.
  • the molten liquid is filtered and poured into the injection crucible in the powder making tank. There is a cooling system on the sidewall and top of the powder making tank. After the powder making tank is evacuated, high-purity inert gas is injected, and the oxygen content is controlled below 10ppm.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 10 microns, the diversion channel length is 4 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 150 mm; the first of the diversion assembly
  • the substrate 1 and the second substrate 2 are selected from substrates such as high-temperature alloys, silicon carbide crystal sheets, sapphire sheets, high-purity graphite substrates, and ceramics.
  • the guide component is heated by high-frequency heating, divided into upper and lower heating parts, power 1KW ⁇ 2, preheated to 1900°C, and kept at 1900°C.
  • the rotation speed of the diversion assembly is 2000 revolutions/minute to 6000 rpm.
  • the molten liquid is injected into the cavity of the diversion assembly through the injection crucible, and enters the diversion channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the mixed gas flow of powder and inert gas is separated by solid and gas, the powder is qualified and packed into storage after screening inspection, and the inert gas is recycled after purification.
  • the glass is heated to 1300°C in the crucible to melt, and the crucible is protected by inert gas.
  • the molten glass melt is poured into the injection crucible in the powder making tank.
  • the temperature of the injection crucible is reduced to 1100°C to 1150°C to maintain the performance of the glass melt.
  • the sidewall and top of the powder making tank are equipped with cooling systems. After the powder making tank is evacuated, high purity inert gas is injected, and the oxygen content is controlled below 100ppm.
  • the molten liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 10 microns, the diversion channel length is 4 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 150 mm;
  • the first of the diversion assembly Substrate 1 and second substrate 2 are selected from substrates such as high-temperature alloys, silicon carbide crystal sheets, sapphire sheets, ceramics, etc., preferably sapphire sheets.
  • the guide component heating adopts intermediate frequency heating, which is divided into upper and lower heating parts.
  • the power is 1KW ⁇ 2, and it is preheated to 1100°C and kept at a constant temperature of 1100°C.
  • the rotation speed of the diversion assembly is 2000 revolutions/minute to 6000 rpm.
  • the molten liquid is injected into the cavity of the diversion assembly through the injection crucible, and enters the diversion channel under the action of centrifugal force.
  • the molten liquid forms droplets of uniform size under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., which are thrown out of the diversion channel.
  • the high-speed and low-temperature inert gas quickly cools down; under the rapid cooling effect of the inert gas, the droplets are quickly cooled and solidified to form nearly spherical glass microbead powder.
  • the mixed gas flow of powder and inert gas is separated by solid and gas, the powder is qualified and packed into storage after screening inspection, and the inert gas is recycled after purification.
  • the 100 nanometer high-purity silicon nano powder material is added to the carbon source solution and stirred to form a nano silicon suspension, and the suspension is injected into the injection crucible in the carbonization tank.
  • the carbonization tank has a heating system.
  • the suspended liquid flows into the diversion assembly through the injection crucible.
  • the diversion channel diameter of the diversion assembly is 5 microns, the diversion channel length is 4 mm, 7200 channels, and the diversion channel centrifugal disc diameter is 150 mm; the first of the diversion assembly
  • the substrate 1 and the second substrate 2 are selected from substrates such as silicon carbide crystal wafers, sapphire wafers, monocrystalline silicon wafers, ceramics, etc., preferably monocrystalline silicon wafers.
  • the rotation speed of the guide assembly is 2000 revolutions per minute to 8000 revolutions per minute, and the suspended liquid is injected into the cavity of the guide assembly through the injection crucible, and enters the guide channel under the action of centrifugal force. Under the action of the restraint force of the diversion channel, the surface tension of the liquid, the centrifugal force, etc., the suspended liquid forms droplets of uniform size, which are thrown out of the diversion channel. After the droplets fly out of the diversion channel, they are carbonized in the high temperature carbonization tank; A uniform and highly dispersed silicon-carbon composite powder is formed. The powder is separated from solid and gas, and the powder is qualified and packed into storage after screening.
  • first, second, etc. may be used herein to describe various elements, these terms should not limit these elements. These terms are only used to distinguish one element from another element. For example, a first element may be referred to as a second element, and, similarly, a second element may be referred to as a first element, and these terms are only used to distinguish one element from another element. This does not depart from the scope of the exemplary embodiment. Similarly, element one and element two do not represent the order of elements, and these terms are only used to distinguish one element from another element. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备粉末的装置,包括:至少一个导流组件和驱动机构(6);导流组件包括:第一基板(1)和第二基板(2);第一基板与第二基板相互叠加贴合并固定;第一基板和第二基板上下分布;第一基板和第二基板的中部具有容腔;第一基板上设置有导流槽一(1-1);第二基板上设置有导流槽二(2-1);导流槽一与导流槽二形成导流通道;导流通道的一端与容腔连通,另一端与第一基板和第二基板的外缘连通;导流通道为微通道;导流通道在沿延伸方向的预定长度范围内的截面相同;驱动机构与第一基板和第二基板传动连接,用于驱动第一基板和第二基板转动,该装置能够改善粉末粒子的形态特征,提高粒子的一致性。

Description

一种制备粉末的装置及方法 技术领域
本发明涉及材料技术领域,尤其涉及一种制备粉末的装置及方法。
背景技术
金属、合金、无机材料、有机材料的粉末已被广泛应用。粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,非常适合于大批量生产。另外,部分用传统铸造方法和机械加工方法无法制备的材料和复杂零件也可用粉末冶金技术制造,因而备受工业界的重视。
3D打印技术作为“增材制造”的主要实现形式,节约成本、减少燃料消耗,必将成为最具潜力发展的产业。其中,金属、合金3D打印技术作为整个3D打印体系中最前沿和最有潜力的技术,是先进制造技术的重要发展方向。而金属、合金粉末则是金属、合金3D打印技术中最重要一环的,也是价值所在。
3D打印金属粉末即指尺寸小于1毫米的金属颗粒群,包括单一金属粉末、合金粉末以及具有金属性质的某些难熔化合物粉末。目前,3D打印金属粉末材料包括钴铬合金、不锈钢、工业钢、青铜合金、钛合金和镍铝合金等。
目前,金属粉末制备方法按照制备工艺主要可分为:还原法、电解法、羰基分解法、研磨法、雾化法等。其中,以还原法、电解法和雾化法生产的粉末作为原料应用到粉末冶金工业的较为普遍。但电解法和还原法仅限于单质金属粉末的生产,而对于合金粉末这些方法均不适用。雾化法可以进行合金粉末的生产,同时现代雾化工艺对粉末的形状也能够做出控制,不断发展的雾化腔结构大幅提高了雾化效率,这使得雾化法逐渐发展成为主要的粉末生产方法。雾化法可以满足3D打印耗材金属粉末的特殊要求。雾化法中水雾化法应用较广,然而由于水的比 热容远大于气体,所以在雾化过程中,被破碎的金属熔滴,由于凝固过快而变成不规则状,使粉末的球形度受到影响。另外一些具有高活性的金属或者合金,与水接触会发生反应,同时由于雾化过程中与水的接触,会提高粉末的氧含量。这些问题限制了水雾化法在制备球形度高、氧含量低的金属粉末的应用。并且,在常规的金属粉末雾化喷嘴中,金属粉末的形成是靠气流对金属液流的扰动和冲击使其破碎成粉末,由于气流的扰动具有统计特征,粉末的粒度分布较宽,同时在所有的雾化技术中,不管喷嘴的结构如何,气流在作用于液流前的飞行中不断膨胀,速度减小,导致雾化气体能量损失较大,影响了雾化效率。
无机非金属球形微粉具有巨大的市场。如超细硅微粉具有粒度小、比表面积大、化学纯度高、填充性好等特点。以其优越的稳定性、补强性、增稠性和触变性而在覆铜板、胶黏剂、橡胶、涂料、工程塑料、医药、造纸、日化等诸多领域得到广泛应用,并为其相关工业领域的发展提供了新材料的基础和技术保证,享有“工业味精”、“材料科学的原点”之美誉。超细硅微粉体材料是近年来逐渐发展起来的新材料。高纯硅微粉一般是指SiO2含量高于99.9%的硅微粉,主要应用在IC的集成电路和石英玻璃等行业,其高档产品更被广泛应用在大规模及超大规模集成电路、光纤、激光、航天、军事中,是高新技术产业不可缺少的重要材料。一些发达国家更是将其作为一项战略目标来实现。高纯硅微粉将成为21世纪电子行业的基础材料,需求量将快速增长,有很好的市场前景。
近年来,计算机市场、网络信息技术市场发展迅猛,CPU集成度愈来愈大,运算速度越来越快,家庭电脑和上网用户越来越多,作为技术依托的微电子工业,对大规模、超大规模集成电路封装材料,不仅要求超细,而且要求高纯、低放射性元素含量,特别是对于颗粒形状提出了球形化要求。
球形硅微粉的制备方法主要有高温等离子体熔融法、高温熔融喷射法和气体燃烧火焰法等。
(1)高温等离子体熔融法
该方法是利用交流或直流电弧等离子体产生的高温气体作热源,将石英粉体喷射到等离子焰中,粉体受热融化并瞬间气化,再经骤冷,经旋风和布袋收集, 便得到球状硅微粉。缺点:等离子体技术难度很大,首先,等离子体温度场受等离子体的磁性、电性能影响,温度场小而集中,加热装置稳定的高温场不易控制,温度范围不易调整;其次,等离子体的能量和射流的产生是由电流通过电离的气体介质实现的,过多地稀释等离子体就会中断电流,失去作用。这些因素使得产品球化率不易控制、很难形成规模生产。
(2)高温熔融喷射法
该方法是把物料置于高温场中将其熔化使之成为熔融体,在熔融体流出的瞬间,以通过喷射器的高压空气进行喷吹,熔融物被高速气流分散打碎成雾状小液滴,再被迅速冷却,小液滴遇冷便快速自然收缩成表面光滑的球状颗粒。高温熔融喷射法是最易保证球形化和无定形率的方法。但是,炉体高温材料、黏稠的石英熔融体雾化以及防止二次污染等一系列关键技术很难突破,用于制造高纯球形石英粉难度相当大。
(3)气体燃烧火焰法
该方法是以乙炔气、氢气、天然气等燃料气为原料,以氧气或空气为助燃气,通过密闭炉窑燃烧产生洁净火焰。与此同时,角形石英粉随气流被输送到火焰中。当角形粉末经过高温火焰场时,首先被熔化为无定形颗粒,当它离开高温场被迅速冷却时即刻收缩变为球形颗粒,再经过旋风收集便得到成品。
离心力制粒技术和喷雾制粒技术是现代超细粉体制造技术的主要工艺技术,在金属粉体、非金属粉体、有机粉体、医药粉体、新能源电池材料粉体等制备方面具有成本低、产量大等优点,已被广泛应用。但是,在现代工业中对粉体提出超细、近球形、亚微米的技术要求时,目前的离心力和喷雾技术很难达到高一致性、球形、亚微米的技术要求。
发明内容
有鉴于此,本发明提供一种制备粉末的装置及方法,主要目的在于改善粉末 粒子的形态特征,提高粉末粒子的一致性。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明的实施例提供一种制备粉末的装置,包括:至少一个导流组件和驱动机构;
所述导流组件包括:第一基板和第二基板;
所述第一基板与所述第二基板相互叠加贴合,并固定;
所述第一基板和所述第二基板上下分布;
所述第一基板和所述第二基板的中部具有容腔,用于容纳液体;
所述第一基板上靠近所述第二基板的一侧和\或所述第二基板上靠近所述第一基板的一侧设置有导流槽;
所述第一基板与所述第二基板相互叠加贴合时,所述导流槽被封闭形成导流通道;
所述导流通道的一端与所述容腔连通,另一端与所述第一基板和所述第二基板的外缘连通;
所述导流通道为多个;多个所述导流通道沿所述第一基板和所述第二基板的旋转方向间隔分布;
所述导流通道为微通道;
所述导流通道在沿延伸方向的预定长度范围内的截面相同;
所述驱动机构与所述第一基板和所述第二基板传动连接,用于驱动所述第一基板和所述第二基板转动。
进一步地,所述第一基板上靠近所述第二基板的一侧和\或所述第二基板上靠近所述第一基板的一侧设置有气流槽;所述第一基板与所述第二基板相互叠加贴合时,所述气流槽被封闭,形成气流通道;
所述气流通道位于所述导流通道的一侧;所述气流通道的一端与所述导流通道连通,另一端与所述第一基板和所述第二基板的外缘连通,以使气体能够通过所述导流通道的另一端进入所述导流通道。
进一步地,所述导流组件为多个;多个所述导流组件相互叠加贴合,并固定。
进一步地,所述第一基板上靠近所述第二基板的一侧设置有气流槽一;所述 第二基板上靠近所述第一基板的一侧设置有气流槽二;所述第一基板与所述第二基板相互叠加贴合时,所述气流槽一与所述气流槽二形成圆形截面的气流通道。
进一步地,所述第一基板的厚度为0.2~20毫米;
所述第一基板为圆形结构;所述第一基板的直径为10~500毫米;
所述第二基板的厚度为0.2~20毫米;
所述第二基板为圆形结构;所述第二基板的直径为10~500毫米;
所述微通道为径宽0.1微米至1000微米的通道;
所述导流通道为直线状或弧形状。
进一步地,多个所述导流通道的截面大小相同或按一定比例分布。
进一步地,所述第一基板和\或所述第二基板上固定地设置有叶片;所述叶片位于所述容腔内。
进一步地,所述导流组件为蓝宝石晶体基材、碳化硅晶体基材、陶瓷基材、高温合金基材、高纯石墨基材、单晶硅片基材、石英片基材中的一种。
另一方面,本发明实施例提供一种制备粉末的方法,包括以下步骤,
将溶液进行离心力作用;
溶液进入微通道,沿微通道流动,形成液滴;
液滴离开微通道,在离心力和重力的作用下,同时在温度条件的变化下,形成预定形状的颗粒。
上述方法采用上述的制备粉末的装置进行作业;
将溶液注入导流组件的中部的容腔内;
导流组件旋转,溶液在离心力的作用下,通过导流组件上的导流通道朝远离旋转轴的方向流动;
从导流通道的端部流出的液滴,在离心力和重力的作用下,同时在温度条件的变化下,凝结成颗粒。
借由上述技术方案,本发明一种制备粉末的装置及方法至少具有下列优点:
改善粉末粒子的形态特征,提高粉末粒子的一致性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手 段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明的实施例提供一种制备粉末的装置的导流组件中第一基板的一种实施方式示意图;
图2为本发明的实施例提供一种制备粉末的装置的导流组件中第二基板的一种实施方式示意图;
图3为本发明的另一实施例提供一种制备粉末的装置的导流组件中第一基板的一种实施方式示意图;
图4为本发明的另一实施例提供一种制备粉末的装置的导流组件中第二基板的一种实施方式示意图;
图5为本发明的再一实施例提供一种制备粉末的装置的导流组件中第一基板的一种实施方式示意图;
图6为本发明的实施例提供一种制备粉末的装置的导流组件中第一基板的一种实施方式示意图;
图7为本发明的实施例提供一种制备粉末的装置的导流组件中第一基板的另一种实施方式示意图;
图8为本发明的实施例提供一种制备粉末的装置的导流组件中第一基板的另一种实施方式示意图;
图9为本发明的一实施例提供一种制备粉末的装置的导流组件的示意图;
图10为本发明的另一实施例提供一种制备粉末的装置的导流组件的示意图;
图11为本发明的实施例提供一种制备粉末的装置的导流组件中第一基板的再一种实施方式示意图;
图12为本发明的实施例提供一种制备粉末的装置的多个导流组件的组合示 意图;
图13为本发明的另一实施例提供一种制备粉末的装置的多个导流组件的组合示意图;
图14为本发明的实施例提供一种制备粉末的装置的示意图;
图15为本发明的一实施例提供一种制备粉末的方法的流程结构图;
图16为导流组件中导流通道的一种实施方式示意图;
图17为导流组件中导流通道的另一种实施方式示意图;
图18为导流组件中导流通道的再一种实施方式示意图。
图中所示:
1为第一基板,1-1为导流槽一,1-11为释放部,1-12为成型部,1-13为过渡部,1-14为进入部,1-2为气流槽一,1-3为固定孔,1-4为叶片一,1-5为通孔,2为第二基板,2-1为导流槽二,2-2为叶片二,3为底板,4为下封板,5为上封板,6为驱动机构,7为加热机构,8为密封腔室。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
如图1至17所示,一方面,本发明的实施例提供一种制备粉末的装置,包括:至少一个导流组件和驱动机构6;
导流组件包括:第一基板1和第二基板2;第一基板1与第二基板2相互叠加贴合,并固定;第一基板1和第二基板2的固定可以通过在第一基板1和第二基板2设置固定孔1-3,然后通过紧固件进行固定;当然,第一基板1和第二基板2 也可以通过夹具固定,夹具夹持在第一基板1和第二基板2上。
第一基板1和第二基板2上下分布;第一基板1和第二基板2的中部具有容腔,用于容纳液体;本实施例优选第一基板1和第二基板2的中心设置有通孔1-5,第一基板1设置在第二基板2的上方;在第二基板2的下方设置有底板3,底板3贴合并固定在第二基板2的下部,将第二基板2中部的通孔1-5封闭;使第一基板1和第二基板2的中部形成上部开口的容腔,用于盛放待处理的溶液;当然,也可以将第二基板2的中部的孔设置为盲孔,以使孔的底部能够封闭。
第一基板1上靠近第二基板2的一侧和或第二基板2上靠近所述第一基板1的一侧设置有导流槽;第一基板1与第二基板2相互叠加贴合时,导流槽被封闭,形成导流通道;本实施例可以通过在第一基板4上设置导流槽,第二基板2上不设置,将第二基板2与第一基板1贴合,形成导流通道。也可以在第一基板1和第二基板2上都设置导流槽;第一基板1上的导流槽和第二基板2上的导流槽对应贴合,形成导流通道;也可以在第二基板2上设置导流槽,在第一基板1上不设置导流槽,第一基板1和第二基板2相互贴合,形成导流通道。总之,在第一基板1和第二基板2贴合时,形成导流通道。优选导流通道为圆形截面;当然,也不排除导流通道截面为多边形,矩形、“O”形等其它形状。
导流通道的一端与容腔连通,另一端与第一基板1和第二基板2的外缘连通,使溶液在高速转动时,从第一基板1和第二基板2的外缘甩出,凝结形成粒子。导流通道为多个;多个导流通道沿第一基板1和第二基板2的旋转方向间隔分布;导流通道的数量可以根据需要同时结合第一基板1和第二基板2的大小设置,本实例优选导流通道2~10000条,可以根据第一基板1和第二基板2的大小和实际需要设定。本实施例优选第一基板1为圆形板;优选第二基板2为圆形板。当然,本实施例也不排除第一基板1和\或第二基板2为多边形板;多边形板至少为五边形,优选边的数量为偶数;可以为六边形、八边形;当然,多边形板的边数可以更多,以使其边缘接近圆形。
导流通道为微通道;微通道为径宽0.1微米至1000微米的通道;当微通道的截面为圆形时,径宽即为微通道的直径;当微通道的截面为矩形时,径宽即为微通道的截面宽度。当微通道的截面为多边形时,径宽为微通道的投影宽度。
导流通道在沿延伸方向的预定长度范围内的截面相同,以使溶液在该预定长度范围内能够保持其形态。导流通道优选呈水平方向延伸,以使离心力能够较好地控制液滴的成型。优选导流通道的入口处的开口较导流通道的径宽大,以便液体进入。
对于常规尺寸的管道,混合溶液的流动形式主要为湍流;但是对于特征尺寸处于微米到毫米范围内的微通道,由于微尺度效应,混合溶液的流动形式主要为层流,且两相间界面受流动状况和界面张力影响,产生了多种界面现象,呈现不同的流型。
混合溶液流动中液滴的形成过程与气泡类似,但液滴与连续相之间的表面张力作用更加明显,粘性力的作用更加突出,同时由于液滴的不可压缩性使得其流型更具规律性。
流体通过微孔进入通道内,其形态受剪切力、粘性力及表面张力的共同作用的影响。液滴的形成机制与流体粘度和表面张力关系较大。
驱动机构6与第一基板1和第二基板2传动连接,用于驱动第一基板1和第二基板2转动。驱动机构6可以为电机或马达驱动的变速箱等变速机构;以使第一基板1和第二基板2能够高速旋转。在对第一基板1和第二基板2进行固定时,第一基板1和第二基板2同轴设置;对第一基板1和第二基板2进行挤压贴合;可以通过同轴设置的夹具进行固定或者通过螺纹轴与夹片配合对第一基板1和第二基板2进行固定;当然,也可以通过现有技术中的其它方式进行固定;只要保证第一基板1和第二基板2进行贴合,并同轴设置。优选对第一基板1和第二基板2进行固定的固定结构上具有传动轴,传动轴与驱动机构6传动连接;当然,固定结构上也可以设置为传动孔,例如,具有键槽的孔,可以与驱动机构6上的轴进行传动连接。当然也可以为齿轮轴套结构;在驱动机构6上设置齿轮轴与其匹配,实现传动。
导流组件在作业时,需要保持在惰性气体的保护环境中,同时需要保持导流组件的温度环境较待处理金属或合金的熔点温度高10℃~50℃,防止其在导流通道中凝结。优选为20℃。导流组件设置在热场中,需要根据金属的熔点温度,调 节热场的温度。
本发明的实施例提供一种制备粉末的装置,改善粉末粒子的形态特征,提高粉末粒子的一致性。
本发明的实施例提供一种制备粉末的装置,还包括加热机构7,加热机构7用于给导流组件加热;加热机构7为设置在导流组件的上方和下方的加热板件;以保持导流组件内溶液所需温度。
本发明的实施例提供一种制备粉末的装置还包括密封腔室8;导流组件置于密封腔室8内,密封腔室8中填充有惰性气体。
作为上述实施例的优选,参考图18,导流通道包括:进入部1-14、过渡部1-13、成型部1-12和释放部1-11;
进入部1-14、过渡部1-13、成型部1-12和释放部1-11依次连通;释放部1-11的直径较成型部1-12的直径大;进入部1-14的直径较成型部1-12的直径大;释放部1-11与成型部1-12之间具有环状凸起;环状凸起与成型部1-12同轴设置;环状凸起的内径与成型部1-12的内径相同;环状凸起的外径较释放部1-11的内径小,以在溶液通过成型部1-12流入释放部1-11时,能够减小液滴与导流通道的粘接力,减小释放瞬间的变形;过渡部1-13的一端的直径与成型部1-12的直径相同;过渡部1-13另一端的直径与进入部1-14的直径相同;过渡部1-13从靠进进入部1-14的端部到靠近成型部1-12的端部直径逐渐变小,以使在进入部1-14的流体能够在过渡部1-13的作用下充分进入成型部1-12形成的液滴。
作为上述实施例的优选,第一基板1上靠近第二基板2的一侧和\或第二基板2上靠近第一基板1的一侧设置有气流槽;第一基板1与第二基板2相互叠加贴合时,第一基板1与第二基板2相互叠加贴合时,气流槽被封闭,形成气流通道;在作业时,第一基板1和第二基板2处于惰性气体的环境中,以保护金属和合金粉末,不被氧化。本实施例优选,第一基板1上靠近第二基板2的一侧设置有气流槽一1-2;第二基板2上靠近第一基板1的一侧设置有气流槽二;第一基板1与第二基板2相互叠加贴合时,气流槽一1-2与气流槽二形成圆形截面的气流通道。气流槽一1-2与气流槽二之间形成气流通道,用于惰性气体的进入;进一步优选,气流通道的直径与导流通道的直径相同。当然,气流通道的直径也可以大于或小 于导流通道的直径。气流通道位于导流通道的一侧;气流通道的一端与导流通道连通,另一端与第一基板1和第二基板2的外缘连通,以使气体能够通过导流通道的另一端进入导流通道;当然,本实施例也可以选择在第一基板1或第二基板2上开设气流槽;在第一基板1和第二基板2贴合时,气流槽被封闭,形成气流通道。作为上述实施例的优选,气流通道上与导流通道连接的端部,气流通道的延伸方向与导流通道中的溶液的流向的夹角为锐角,以使气流通道中的气体在导流通道中溶液流动时,能够充入导流通道。溶液向远离旋转轴的方向流动时,旋转半径增加,进而转速增加,使离心力增加,在导流通道中,离旋转中心较远的溶液与较近的溶液具有压力差,进而形成负压;同时,在导流通道负压的作用下,保护气体通过气流通道进入导流通道,对导流通道内的溶液形成分隔;分隔后的溶液从导流通道的端部流出,凝结成金属或合金颗粒。从导流通道流出溶液滴在降落过程中,经由低温惰性气体降温快速凝结成固体颗粒,形成金属或合金颗粒。
作为上述实施例的优选,导流组件为多个;多个导流组件相互叠加贴合,并固定。多个导流组件上下叠加,并相互固定设置。导流组件为1~20组。导流组件优选为5~20组。
可替代地,在第一基板1的上侧设置有导流槽一1-1,第一基板1的下侧均设置导流槽二2-1;在第二基板2的上侧设置有导流槽一1-1,在第二基板2的下侧均设置导流槽二2-1,在第一基板1和第二基板2相互贴合固定时,导流槽一1-1和导流槽二2-1相互对应,形成导流通道;在第一基板1的上方设置上封板5,上封板5的下侧设置有导流槽三;上封板5贴合固定在第一基板1的上侧;导流槽三与第一基板1的上侧的导流槽一1-1对应设置,形成圆形的导流通道;
在第二基板2的下方设置有下封板4;在下封板4的上侧设置有导流槽四,下封板4贴合固定在第二基板2的下侧。导流槽四与第二基板2的下侧的导流槽二2-1对应设置,形成圆形的导流通道。多个导流组件形成多层导流通道,可以同时对溶液进行处理。进一步优选第一基板1与第二基板2的结构相同。
作为上述实施例的优选,作为上述实施例的优选,第一基板1上靠近第二基板2的一侧设置有导流槽一1-1;第二基板2上靠近第一基板1的一侧设置有导流槽二2-1;第一基板1与第二基板2相互叠加贴合时,导流槽一1-1与导流槽二2-1形成圆形截面的导流通道。
本实施例优选导流槽一1-1为截面为半圆形的槽;优选导流槽二2-1为截面为半圆形的槽,使导流槽一1-1与导流槽二2-1贴合时能够形成截面为圆形的导流通道。当然,本实施例也不排除导流槽一1-1和导流槽二2-1的截面为直径相同、圆弧长度不同的弧形,使导流槽一1-1和导流槽二2-1能够相互贴合成圆形的导流通道,以使溶液在微小的圆形的导流通道中流动,流出时能够凝结成形态较好的金属或合金粒子。
通过在第一基板1上加工导流槽一1-1,在第二基板2上加工导流槽二2-1,然后将导流槽一1-1和导流槽二2-1进行贴合成导流通道;可以克服目前的加工技术无法加工达到所需要的微小直径的长孔的问题;当然,通过加工导流槽一1-1和导流槽二2-1也可以形成曲线状的导流通道,导流通道使溶液远离旋转中心。本实施例优选导流通道的延伸方向所在的平面与旋转轴垂直;以方便控制溶液通过导流通道的速度。根据所需求产品的粒径选择合适的微通道结构设计,直通道、抛物线通道、曲线通道、负压结构通道等各种利于液滴成型的结构及在以上结构内部特殊滴嘴设计的相互组合。
作为上述实施例的优选,第一基板1的厚度为0.2~20毫米;第一基板1为圆形结构;第一基板1的直径为10~500毫米;第二基板2的厚度为0.2~20毫米;第二基板2为圆形结构;第二基板2的直径为10~500毫米;导流通道的内径为0.1微米~1000微米;
进一步优选,第一基板1的厚度为0.5~2毫米;第一基板11为圆形结构;第一基板11的直径为50~200毫米;第二基板2的厚度为0.5~2毫米;第二基板2为圆形结构;第二基板2的直径为50~200毫米;导流通道的内径为1微米~200微米;导流通道的内径可以根据需求的颗粒大小进行确定。导流通道的长度为5毫米~20毫米;
导流通道可以为直线状,便于加工。导流通道也可以为弧形状,可以根据溶液在离心力的作用下,在导流通道内的运动特性,设置具有弧度的导流通道,以使溶液在导流通道中的不同位置具有预定的运动状态和速度,方便对溶液形态进行控制。
作为上述实施例的优选,多个导流通道的截面大小相同或按一定比例分布。导流通道的截面大小相同能够制造相同直径的粉末颗粒;多个导流通道按一定比例分布可以制造多种直径成比例的粉末颗粒。
作为上述实施例的优选,第一基板1和\或第二基板2上固定地设置有叶片;叶片位于所述容腔内,用于分隔容腔中的溶液,并对第一基板和第二基板形成支撑。叶片可以固定在第一基板1上,也可以固定在第二基板2上;当然,也可以将一定数量的叶片固定在第一基板1上,其它叶片固定在第二基板2上;总之,优先叶片沿圆周方向均匀分布;优先,叶片包括:叶片一和叶片二;叶片一1-4固定地设置在第一基板1上;叶片二2-2固定地设置有第二基板2上;叶片一1-4和叶片二2-2对应设置;优先叶片一1-4和叶片二2-2相互接触的面贴合;可替代地,可以在叶片一1-4上设置凹槽,在叶片二2-2上设置凸起;凸起能够插装在凹槽中,方便对叶片一1-4和叶片二2-2进行对齐。
本实施例优选在第一基板1和第二基板2的中部的开孔位置具有隔挡,以形成叶片一1-4;在加工时,可以在圆形基板上去除多个扇形部分,形成具有叶片一1-4的容腔,有利用溶液的分配均匀和造粒效果。当然,在圆形基板上去除扇形部分时,可以将扇形部分贯穿整个基板,也可以去除预定厚度的扇形部分,以增加结构的强度。
本实施例优选第一基板1为蓝宝石晶体基材、碳化硅晶体基材、陶瓷基材、高温合金基材、高纯石墨基材、单晶硅片基材、石英片基材中的一种;优选蓝宝石材质;第二基板2为蓝宝石晶体基材、碳化硅晶体基材、陶瓷基材、高温合金基材、高纯石墨基材、单晶硅片基材、石英片基材中的一种;由于金属、合金、无机材料、有机材料等的熔点温度高,一些金属、合金、无机材料等熔融液体具有腐蚀性。优选蓝宝石材质,耐高温、耐腐蚀、热传导好、透明、价格适中,具有大规模加工的基础,且方便观察和监测,例如,可以通过高速摄像机记录导流通道内溶液的运动状态,以方便分析研究和参数设定,比如电机的转速设定,以及导流通道的弧度设定等方面。
本发明的实施例提供一种制备粉末的装置,熔融流体在导流组件的导流通道 中通过高速离心力的作用,以液滴的形式甩出,在连续的降温和惰性保护气体对金属或合金熔体颗粒进行快速降温。工艺简单、过程连续,制备得到的金属或合金粒径、形貌一致性好、无团聚,粒子产率高、成本低、批次产品一致性好,结果重复稳定。通过改变微通道通道的内径、长度等参数,可生产不同粒径的微米、纳米粒子。
另一方面,本发明实施例提供一种制备粉末的方法,包括以下步骤,
将溶液进行离心力作用;
溶液进入微通道,沿微通道流动,形成液滴;
液滴离开微通道,在离心力和重力的作用下,同时在温度条件的变化下,形成预定形状的颗粒。
本发明实施例提供一种制备粉末的方法,采用上述的一种制备粉末的装置进行作业。
将溶液注入导流组件的中部的容腔内;
导流组件旋转,溶液在离心力的作用下,通过导流组件上的导流通道朝远离旋转轴的方向流动;
从导流通道的端部流出的液滴,在离心力和重力的作用下,同时在温度条件的变化下,凝结成颗粒。
将溶液注入导流组件的中部的容腔内;可以将金属或合金在坩埚中加热熔融,金属溶液或合金溶液处于惰性气体保护中。熔液经加压或自重由保温加热管道流入容腔,导流组件旋转,溶液在离心力的作用下,通过导流组件上的导流通道朝远离旋转轴的方向流动;导流组件的旋转速度可以根据需要进行调节,通过调节驱动电机的速度来实现。导流组件预先预热至金属或合金熔融温度点以上5℃~50℃,热场功率为保持热场温度恒温的设计。熔融金属或合金流体在离心力的作用下进入导流通道,由于金属或合金熔融流体在100纳米至1000微米的微通道中,表面张力的作用大于其他作用力,熔融金属或合金流体会形成大小均一的液滴,液滴在离心力的作用下甩出导流通道,在低温保护气体下快速凝结。
本发明实施例提供一种制备粉末的方法,可以对溶液连续造粒,不仅可以改善金属或合金粉末粒子的形态特征,提高金属或合金粉末粒子的一致性,而且可以提升造粒的效率。
作为上述实施例的优选,导流通道的内径为1微米~1000微米;导流通道的内径可以根据需求的颗粒大小进行确定。导流通道为直线状或弧形状;导流组件为蓝宝石材质,耐高温,耐腐蚀,且方便观察和监测,例如,可以通过高速摄像机记录导流通道内溶液的运动状态,以方便分析研究和参数设定,比如导流组件的转速设定,以及导流通道的弧度设定等方面。
本发明一种制备粉末的装置及方法,基于金属、合金、无机材料、有机材料等熔融液体在微通道特殊结构中,在离心力的作用下,提供一种连续制备金属、合金材料、无机材料、有机材料高一致性、近球形的微纳米粉末,可以实现低成本、大规模制备。本发明的优点是连续生产高一致性、尺寸100纳米~1000微米球形金属、合金、无机材料、有机材料粉末;工艺简单,与传统工艺相比,节能降耗、产品产率高、成本低、产品不受生产设备和环境污染、产品纯度高。过程连续,适宜大规模生产。
金属、合金、无机材料、有机材料等在坩埚中加热熔融,熔融液体处于惰性气体保护中。熔融液体经过滤、加压或自重由保温加热管道流入导流组件中部的容腔,导流组件预先预热至金属或合金熔融温度点以上(5℃—300℃),导流组件热场功率为保持热场温度恒温的设计。金属、合金、无机材料、有机材料等熔融液体在容腔中,在离心力的作用下进入导流通道,在导流通道中,导流通道的约束力的释放、表面张力、剪切力、离心力等的作用下,熔融液体会形成大小均一的液滴,液滴在高速离心力的作用下甩出导流通道,在低温保护气氛下快速凝结,经由气固分离,惰性气体回收利用,金属、合金、无机材料、有机材料等颗粒经筛分、真空包装或经由保护剂的保护下包装。
上述技术方案中,导流组件包括上下两块夹具和1~100组导流组件,每组导流组件上设置2-88888条微通道,导流通道内径为100纳米至1000微米,导流通 道的预定长度2毫米至100毫米。
第一基板1和第二基板2为多边形或圆形基片,基片厚度0.5毫米~20毫米,圆形基片直径10毫米~300毫米;导流通道内径0.5微米~1000微米。
导流通道被驱动机构6驱动的转速为每分钟1000转至600000转,不同金属或合金因物料的密度、离心器半径、微通道管径等因素有关。密度与转速成反比,离心器半径与转速成反比,微通道管径与转速成反比。
本发明实施例提供的一种制备粉末的装置及方法,制备的金属、合金、无机材料、有机材料等的粉末形貌为近球形,颗粒粒径范围100纳米至1000微米。
金属、合金、无机材料、有机材料等熔融液体在导流组件中通过离心力、导流通道的约束力、表面张力、剪切力等力的作用,形成大小均一的液滴,液滴在离心力的作用下抛出导流通道做抛物线飞行最终自由落体的过程中,在惰性保护气体的保护下,熔融液体的液滴进行快速降温,形成近球形粉末颗粒,落入粉末收集器。收集器中的粉末经气氛保护、气固分离、筛分后检验、包装。
本发明实施例提供的一种制备粉末的装置及方法,制备金属、合金、无机材料、有机材料等粉末工艺简单、过程连续,制备得到的金属、合金、无机材料、有机材料等粉末粒径、形貌、一致性好,无团聚,粒子产率高、成本低、批次产品一致性好,结果重复稳定。通过改变导流通道的内径、长度等参数,可生产不同粒径的微米、纳米粒子。
本发明实施例提供的一种制备粉末的装置与快速降温系统结合,就可以进行非晶合金粉体制备,工艺简单、过程连续,制备得到的非晶合金粉末粒径、形貌一致性好、批次产品一致性好,结果重复稳定。
本发明实施例提供的一种制备粉末的方法,在制备粉末时,将金属、合金、无机材料、有机材料等在惰性气体保护气氛中熔融,温度保持在金属、合金、无机材料、有机材料等熔点以上5℃~100℃,优选的50℃。将熔融液体过滤,通过保温加热管道注入导流组件的容腔内,导流组件预先加热至熔融液体熔点温度以 上并保持恒温,导流组件在驱动机构6的带动下,高速旋转。熔融熔体在离心力的作用下,进入导流通道,熔体在导流通道中,经由导流通道约束力释放、熔体的表面张力、离心力、剪切力等的作用下,形成大小均一的熔融液滴,在高速离心力的作用下,抛出导流通道。通过惰性气体快速降温,熔体液滴凝固,形成球形形貌的金属、合金、无机材料、有机材料等颗粒,通过气固分离,得到粒径均一、形貌球形的颗粒,惰性气体经由净化循环利用。
惰性气体为氮气、氦气、氖气、氩气、氪气、氙气和氡气,优选为氮气、氦气和氩气。
基材选择碳化硅晶体基材等半导体晶体材料或陶瓷基材、高温合金基材、高纯石墨基材、单晶硅片基材、石英片基材、单晶硅、蓝宝石晶体基材、石英、玻璃基材等。
导流组件的第一基板1、第二基板2采用圆形基片,直径30毫米~1500毫米,导流通道径宽0.5微米~200微米,导流通道长度1毫米~100毫米,导流通道数量14400条,单层通道。导流组件加热方式为中频感应加热,第一基板1和第二基板2厚度0.5毫米~20毫米。容腔直径为30毫米~300毫米,导流组件每分钟转速2000转~15000转。
15微米TC4(钛6铝4钒)医用钛合金粉末制备
将TC4钛合金经过酸、碱和超纯水清洗干净后,TC4合金至于无坩埚惰性气体保护气氛中高频感应加热到熔融,熔融液体注入蓝宝石缓冲坩埚中,温度保持在1700℃,将熔融钛合金熔体通过保温加热管道注入导流组件的容腔,导流组件预先加至1700℃并保持恒温,导流组件在电机传动的带动下,高速旋转。TC4钛合金熔体在离心力的作用下,进入导流通道,熔体在导流通道中,形成大小均一的熔融液滴,在离心力的作用下,抛出导流通道。通过惰性气体快速降温,熔体液滴凝固,形成球形形貌的TC4合金颗粒,通过气固分离,得到粒径约15微米、形貌球形的颗粒,惰性气体经由净化循环利用。
导流组件基板采用蓝宝石基板,厚度1.5毫米、半径70毫米、导流通道内径10微米,通道长度5毫米,导流通道7200条,通道封装采用蓝宝石高温键合。导流组件转速每分钟3000转至10000转。气氛保护的惰性气体为氩气。
无铅6号锡粉制备(Sn96.5Ag3Cu0.5)
锡合金在不锈钢坩埚加热到350℃熔融,不锈钢坩埚处于氮气保护中。熔融的锡合金融液加压注入锡合金过滤器,过滤器是由200目、400目、800目不锈钢滤网组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯氮气,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道的内径为8微米,导流通道长度5毫米,3600条通道,第一基板1和第二基板2的直径138毫米;第一基板1和第二基板2选择高温合金、碳化硅晶体片、蓝宝石片、单晶硅片、陶瓷等基材,优选的蓝宝石或单晶硅片。导流组件加热采用电磁加热,分上下两部分加热,功率1KW×2,预热至350℃,并保持350℃恒温。导流组件转速2000~5000转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在氮气的阻力和重力的作用下,自由落体的过程中冷却凝固,形成近球形的锡合金粉末落入粉末收集器。收集器中的粉末在氮气保护下进行筛分,合格成品真空包装入库。
铝合金粉末制备
铝合金在坩埚加热到680℃到700℃熔融,坩埚处于惰性气体保护中。熔融的铝合金融液加压注入铝合金过滤器,过滤器是由10ppi、20pp、i30ppi的蜂窝陶瓷组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯惰性气体,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为6微米,导流通道长度5毫米,7200条通道,导流通道离心盘直径138毫米;导流组件第 一基板1和第二基板2选择高温合金、碳化硅晶体片、蓝宝石片、单晶硅片、陶瓷等基材,优选的蓝宝石片。导流组件加热采用电磁加热,分上下两部分加热,功率1KW×2,预热至700℃,并保持700℃恒温。导流组件转速2000转/分钟至6000转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在惰性气体的阻力和重力的作用下,自由落体的过程中冷却凝固,形成近球形的铝合金粉末落入粉末收集器。收集器中的粉末在惰性气体保护下进行筛分,合格成品真空包装入库。
齿轮钢(28MnCr5)冶金粉末制备
齿轮钢在坩埚加热到1400℃到1500℃熔融,坩埚处于惰性气体保护中。熔融的齿轮钢融液加压注入蜂窝陶瓷过滤器,过滤器是由10ppi、20ppi、30ppi的蜂窝陶瓷组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯惰性气体,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为10微米,导流通道长度5毫米,14400条通道,导流通道离心盘直径138毫米至152毫米;第一基板1和第二基板2选择碳化硅晶体片、蓝宝石片、陶瓷等基材,优选的蓝宝石片。导流组件加热采用中、高频加热,分上下两部分加热,功率1KW×2,预热至1500℃,并保持1500℃恒温。导流组件转速2000转/分钟至4000转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在惰性气体的阻力和重力的作用下,自由落体的过程中冷却凝固,形成近球形的齿轮钢粉末落入粉末收集器。收集器中的粉末在惰性气体保护下进行筛分,合格成品真空包装入库。
铁基磁性非晶合金(Fe80%SiB20%)粉末材料
铁基磁性母合金在坩埚加热到1450℃到1550℃熔融,坩埚处于氮气保护中。熔融的母合金融液加压注入蜂窝陶瓷过滤器,过滤器是由10ppi、20ppi、30ppi、50ppi的蜂窝陶瓷组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯氮气,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为12微米,导流通道长度5毫米,7200条通道,导流通道离心盘直径138毫米至152毫米;第一基板1和第二基板2选择碳化硅晶体片、蓝宝石片、陶瓷等基材,优选的蓝宝石片。导流组件加热采用电磁加热,分上下两部分加热,功率1KW×2,预热至1500℃,并保持1500℃恒温。导流组件转速2500转/分钟至5500转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在制粉罐顶部的盘管喷出的低温液氮汽化的作用下高速降温,快速冷却凝固,形成近球形的铁基磁性非晶合金粉末,非晶合金粉末与高速气流经固气分离装置分离,粉末经筛分包装,氮气净化回收利用。
镁基镁镍储氢非晶合金粉末制备
镁镍母合金在坩埚加热到700℃熔融,坩埚处于惰性气体保护中。熔融的镁镍母合金融液加压注入过滤器,过滤器是由10ppi、20pp、i30ppi的蜂窝陶瓷组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯惰性气体,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为2微米,导流通道长度4毫米,7200条通道,导流通道离心盘直径150毫米;导流组件的第一基板1和第二基板2选择高温合金、碳化硅晶体片、蓝宝石片、单晶硅片、陶瓷等基材,优选的蓝宝石片。导流组件加热采用电磁加热,分上下两部分加热,功率1KW×2,预热至700℃,并保持700℃恒温。导流组件转速2000转/分钟至8000 转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在制粉罐顶部有高速低温惰性气体快速降温;在惰性气体的快速降温作用下,液滴快速冷却凝固,形成近球形的镁镍合金粉末。粉末和惰性气体混合气流经固气分离,粉末经筛分检验合格包装入库,惰性气体经净化后进行循环利用。
15微米球形硅微粉制备
高纯石英砂在坩埚加热到1800℃-2000℃熔融,坩埚处于惰性气体保护中。熔融的高纯石英融液加压注入过滤器,过滤器是由10ppi、20pp、30ppi的蜂窝陶瓷组成的多级过滤器。熔融液体经过滤后注入制粉罐中的注料坩埚中。制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯惰性气体,氧气含量控制在10ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为10微米,导流通道长度4毫米,7200条通道,导流通道离心盘直径150毫米;导流组件的第一基板1和第二基板2选择高温合金、碳化硅晶体片、蓝宝石片、高纯石墨基材、陶瓷等基材。导流组件加热采用高频加热,分上下两部分加热,功率1KW×2,预热至1900℃,并保持1900℃恒温。导流组件转速2000转/分钟至6000转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在制粉罐顶部有高速低温惰性气体快速降温;在惰性气体的快速降温作用下,液滴快速冷却凝固,形成近球形的石英粉末。粉末和惰性气体混合气流经固气分离,粉末经筛分检验合格包装入库,惰性气体经净化后进行循环利用。
15微米球形玻璃微珠制备
玻璃在坩埚加热到1300℃熔融,坩埚处于惰性气体保护中。熔融的玻璃融液注入制粉罐中的注料坩埚中。注料坩埚温度降温至1100℃至1150℃保持玻璃融液 性能,制粉罐侧壁和顶部有降温系统,制粉罐抽真空后注入高纯惰性气体,氧气含量控制在100ppm以下。熔融液体经注料坩埚流入导流组件,导流组件的导流通道管径为10微米,导流通道长度4毫米,7200条通道,导流通道离心盘直径150毫米;导流组件的第一基板1和第二基板2选择高温合金、碳化硅晶体片、蓝宝石片、陶瓷等基材,优选的蓝宝石片。导流组件加热采用中频加热,分上下两部分加热,功率1KW×2,预热至1100℃,并保持1100℃恒温。导流组件转速2000转/分钟至6000转/分钟,熔融液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。熔融液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在制粉罐顶部有高速低温惰性气体快速降温;在惰性气体的快速降温作用下,液滴快速冷却凝固,形成近球形的玻璃微珠粉末。粉末和惰性气体混合气流经固气分离,粉末经筛分检验合格包装入库,惰性气体经净化后进行循环利用。
5微米锂电池硅碳负极材料制备
将100纳米的高纯硅纳米粉体材料加入碳源溶液中搅拌成纳米硅悬浮液,悬浮液注入碳化罐中的注料坩埚中。碳化罐有加温系统。悬浮液体经注料坩埚流入导流组件,导流组件的导流通道管径为5微米,导流通道长度4毫米,7200条通道,导流通道离心盘直径150毫米;导流组件的第一基板1和第二基板2选择碳化硅晶体片、蓝宝石片、单晶硅片、陶瓷等基材,优选的单晶硅片。导流组件转速2000转/分钟至8000转/分钟,悬浮液体经注料坩埚注入导流组件的容腔,在离心力的作用下进入导流通道。悬浮液体在导流通道约束力的释放、液体的表面张力、离心力等的作用下,形成大小均一的液滴,甩出导流通道,液滴飞出导流通道后,在高温碳化罐碳化;形成大小均一的、高分散的硅碳复合材料粉末。粉末经固气分离,粉末经筛分检验合格包装入库。
进一步说明,虽然术语第一、第二等在本文中可以用于描述各种元件,但是 这些术语不应该限制这些元件。这些术语仅用于区别一个元件与另一元件。例如,第一元件可以被称为第二元件,并且,类似地,第二元件可以被称为第一元件,这些术语仅用于区别一个元件与另一元件。这没有脱离示例性实施例的范围。类似地,元件一、元件二也不代表元件的顺序,这些术语仅用于区别一个元件与另一元件。如本文所用,术语“和/或”包括一个或多个相关联的列出项目的任意结合和所有结合。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种制备粉末的装置,其特征在于,包括:至少一个导流组件和驱动机构;
    所述导流组件包括:第一基板和第二基板;
    所述第一基板与所述第二基板相互叠加贴合,并固定;
    所述第一基板和所述第二基板上下分布;
    所述第一基板和所述第二基板的中部具有容腔,用于容纳液体;
    所述第一基板上靠近所述第二基板的一侧和\或所述第二基板上靠近所述第一基板的一侧设置有导流槽;
    所述第一基板与所述第二基板相互叠加贴合时,所述导流槽被封闭形成导流通道;
    所述导流通道的一端与所述容腔连通,另一端与所述第一基板和所述第二基板的外缘连通;
    所述导流通道为多个;多个所述导流通道沿所述第一基板和所述第二基板的旋转方向间隔分布;
    所述导流通道为微通道;所述导流通道在沿延伸方向的预定长度范围内的截面相同;
    所述驱动机构与所述第一基板和所述第二基板传动连接,用于驱动所述第一基板和所述第二基板转动。
  2. 根据权利要求1所述的制备粉末的装置,其特征在于,
    所述第一基板上靠近所述第二基板的一侧和\或所述第二基板上靠近所述第一基板的一侧设置有气流槽;所述第一基板与所述第二基板相互叠加贴合时,所述气流槽被封闭,形成气流通道;
    所述气流通道位于所述导流通道的一侧;所述气流通道的一端与所述导流通道连通,另一端与所述第一基板和所述第二基板的外缘连通,以使气体能够通过所述导流通道的另一端进入所述导流通道。
  3. 根据权利要求1所述的制备粉末的装置,其特征在于,
    所述导流组件为多个;多个所述导流组件相互叠加贴合,并固定。
  4. 根据权利要求1所述的制备粉末的装置,其特征在于,
    所述第一基板上靠近所述第二基板的一侧设置有气流槽一;所述第二基板上 靠近所述第一基板的一侧设置有气流槽二;所述第一基板与所述第二基板相互叠加贴合时,所述气流槽一与所述气流槽二形成圆形截面的气流通道。
  5. 根据权利要求1所述的制备粉末的装置,其特征在于,
    所述第一基板的厚度为0.2~20毫米;
    所述第一基板为圆形结构;所述第一基板的直径为10~500毫米;
    所述第二基板的厚度为0.2~20毫米;
    所述第二基板为圆形结构;所述第二基板的直径为10~500毫米;
    所述微通道为径宽0.1微米至1000微米的通道;
    所述导流通道为直线状或弧形状。
  6. 根据权利要求1所述的制备粉末的装置,其特征在于,
    多个所述导流通道的截面大小相同或按一定比例分布。
  7. 根据权利要求1所述的制备粉末的装置,其特征在于,
    所述第一基板和\或所述第二基板上固定地设置有叶片;所述叶片位于所述容腔内。
  8. 根据权利要求1-7任一项所述的制备粉末的装置,其特征在于,
    所述导流组件为蓝宝石晶体基材、碳化硅晶体基材、陶瓷基材、高温合金基材、高纯石墨基材、单晶硅片基材、石英片基材、中的一种。
  9. 一种制备粉末的方法,其特征在于,包括以下步骤,
    将溶液进行离心力作用;
    溶液进入微通道,沿微通道流动,形成液滴;
    液滴离开微通道,在离心力和重力的作用下,同时在温度条件的变化下,形成预定形状的颗粒。
  10. 根据权利要求9所述的制备粉末的方法,其特征在于,采用权利要求1-8任一项所述的制备粉末的装置进行作业;
    将溶液注入导流组件的中部的容腔内;
    导流组件旋转,溶液在离心力的作用下,通过导流组件上的导流通道朝远离旋转轴的方向流动;
    从导流通道的端部流出的液滴,在离心力和重力的作用下,同时在温度条件 的变化下,凝结成颗粒。
PCT/CN2020/109523 2019-08-22 2020-08-17 一种制备粉末的装置及方法 WO2021032048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080063580.2A CN114450110B (zh) 2019-08-22 2020-08-17 一种制备粉末的装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/102043 2019-08-22
PCT/CN2019/102043 WO2021031199A1 (zh) 2019-08-22 2019-08-22 一种制备金属或合金粉末的装置及方法

Publications (1)

Publication Number Publication Date
WO2021032048A1 true WO2021032048A1 (zh) 2021-02-25

Family

ID=74659584

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/102043 WO2021031199A1 (zh) 2019-08-22 2019-08-22 一种制备金属或合金粉末的装置及方法
PCT/CN2020/109523 WO2021032048A1 (zh) 2019-08-22 2020-08-17 一种制备粉末的装置及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102043 WO2021031199A1 (zh) 2019-08-22 2019-08-22 一种制备金属或合金粉末的装置及方法

Country Status (2)

Country Link
CN (1) CN114450110B (zh)
WO (2) WO2021031199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192790B (zh) * 2021-11-29 2024-01-23 成都先进金属材料产业技术研究院股份有限公司 球形钛及钛合金粉末制备装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477154A (zh) * 2011-03-21 2013-12-25 Hivap私人有限公司 高速雾蒸发
TWI476671B (zh) * 2011-06-24 2015-03-11 Fujitsu Component Ltd 觸控面板
CN106216119A (zh) * 2016-10-11 2016-12-14 韩振铎 一种电动高速旋转的液体离心雾化盘及雾化方法
CN206405433U (zh) * 2016-12-07 2017-08-15 深圳微纳增材技术有限公司 一种制备金属粉末的旋转离心装置
CN108568358A (zh) * 2018-05-16 2018-09-25 苏州极目机器人科技有限公司 一种离心雾化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329746A (en) * 1964-11-12 1967-07-04 Reynolds Metals Co Process for producing elongated, freeflowing metal particles
SU727238A1 (ru) * 1976-02-04 1980-04-25 Казанский Научно-Исследовательский Технологический И Проектный Институт Химикофотографической Промышленности Распылитель жидкости
GB9017155D0 (en) * 1990-08-03 1990-09-19 Ici Plc Spray drying
US5302182A (en) * 1991-09-05 1994-04-12 Technalum Research, Inc. Method of preparing particles with a controlled narrow distribution
CN1025660C (zh) * 1991-11-30 1994-08-17 中南工业大学 制造微细金属粉末的方法和装置
TW476671B (en) * 1999-04-02 2002-02-21 Masakatsu Takayasu Device and method for micronizing powder and granular material
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US20160375420A1 (en) * 2015-06-26 2016-12-29 Southwest Research Institute Multi-Disk Spinning Disk Assembly For Atomization and Encapsulation
CN206509521U (zh) * 2016-12-07 2017-09-22 深圳微纳增材技术有限公司 一种制备可控粒度范围金属粉末的旋转离心装置
CN107234013B (zh) * 2017-07-11 2023-02-14 广州极飞科技股份有限公司 雾化盘和具有其的雾化装置、无人机
CN107262730B (zh) * 2017-08-01 2019-04-23 北京有色金属研究总院 一种微细球形金属粉末的气体雾化制备方法及其设备
WO2019119244A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 离心甩盘、喷洒装置及无人飞行器
CN208512829U (zh) * 2018-05-16 2019-02-19 苏州极目机器人科技有限公司 离心雾化结构及具有该离心雾化结构的喷洒装置
CN110125426A (zh) * 2019-05-09 2019-08-16 辽宁科技大学 一种铁合金粒化装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477154A (zh) * 2011-03-21 2013-12-25 Hivap私人有限公司 高速雾蒸发
TWI476671B (zh) * 2011-06-24 2015-03-11 Fujitsu Component Ltd 觸控面板
CN106216119A (zh) * 2016-10-11 2016-12-14 韩振铎 一种电动高速旋转的液体离心雾化盘及雾化方法
CN206405433U (zh) * 2016-12-07 2017-08-15 深圳微纳增材技术有限公司 一种制备金属粉末的旋转离心装置
CN108568358A (zh) * 2018-05-16 2018-09-25 苏州极目机器人科技有限公司 一种离心雾化装置

Also Published As

Publication number Publication date
WO2021031199A1 (zh) 2021-02-25
CN114450110B (zh) 2023-10-20
CN114450110A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN105397100B (zh) 一种微细金属粉末的制备方法及实现该方法的设备
CN104259469B (zh) 微米和纳米金属球形粉末的制造方法
CN111954581A (zh) 由粗的且有棱角的粉末进料生产细的球状粉末的方法和装置
CN101376172B (zh) 旋成膜二次喷射金属雾化装置
CN105689730A (zh) 一种制备Inconel 625合金球形粉末的方法
CN108213449A (zh) 一种制备钛基粉末材料的装置
CN106956008A (zh) 一种3D打印用Hastelloy X合金粉末的制备方法
CN110480024A (zh) 一种基于VIGA工艺制备CuCrZr球形粉的方法
Li et al. Spheroidization of titanium carbide powders by induction thermal plasma processing
CN110919014A (zh) 一种3d打印用钛合金粉末的制备方法
WO2021032048A1 (zh) 一种制备粉末的装置及方法
JP4264873B2 (ja) ガスアトマイズ法による微細金属粉末の製造方法
CN106964782A (zh) 一种制备球形铌合金粉末的方法
CN104475746A (zh) 制备铍及铍合金小球的旋转离心雾化工艺及装置
CN102674353A (zh) 一种制备球形碳化钨粉末的方法
CN106112000A (zh) 一种3d打印金属粉末的制备方法
CN108436095A (zh) 一种使用高温汽化、球形化处理制备金属粉末的方法
CN206662279U (zh) 一种超细金属粉末的制备装置
Zeng et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma
CN105817632A (zh) 片状粉末的制备装置及方法
CN1207122C (zh) 平面流铸制取金属粉末的方法及装置
CN103769596A (zh) 一种制备高堆积密度扁圆形状粉末材料的方法
Labrecque et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy
CN1172762C (zh) 电磁振荡雾化制粉工艺及装置
TWI798989B (zh) 電漿弧霧化法製備超細粉末的裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855099

Country of ref document: EP

Kind code of ref document: A1