WO2021031814A1 - 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺 - Google Patents

一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺 Download PDF

Info

Publication number
WO2021031814A1
WO2021031814A1 PCT/CN2020/105363 CN2020105363W WO2021031814A1 WO 2021031814 A1 WO2021031814 A1 WO 2021031814A1 CN 2020105363 W CN2020105363 W CN 2020105363W WO 2021031814 A1 WO2021031814 A1 WO 2021031814A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
fly ash
incineration fly
waste
metallurgical
Prior art date
Application number
PCT/CN2020/105363
Other languages
English (en)
French (fr)
Inventor
范晓慧
甘敏
季志云
汪国靖
叶恒棣
王兆才
周志安
陈许玲
黄晓贤
袁礼顺
肖恒
Original Assignee
中南大学
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学, 中冶长天国际工程有限责任公司 filed Critical 中南大学
Priority to JP2021546445A priority Critical patent/JP7204156B2/ja
Publication of WO2021031814A1 publication Critical patent/WO2021031814A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes

Definitions

  • the invention relates to a solid waste treatment process, in particular to a method for pre-dechlorination and sintering of high-chlorine metallurgical waste and incineration fly ash, belonging to the harmless treatment and resource utilization of metallurgical solid waste and garbage incineration fly ash Technical field.
  • Sintering machine head ash and garbage incineration fly ash are typical high-chlorine dusts in iron and steel metallurgical solid waste and municipal solid waste respectively. They have similar chemical compositions, and both contain Ca, Si, Fe, etc.
  • the purpose of the present invention is to provide a High-chlorine metallurgical waste and incineration fly ash are treated together by pre-dechlorination and sintering to realize the process of resource utilization.
  • This process can simultaneously realize the treatment of high-chlorine metallurgical waste, incineration fly ash and chlorine-containing wastewater, and is effectively degraded through the pre-roasting process Dioxins in the mixed raw materials are removed, and part of the volatile chlorine salt is removed at the same time.
  • the present invention provides a pre-dechlorination-sintering process for high-chlorine metallurgical waste and incineration fly ash.
  • the process includes the following steps.
  • the roasted agglomerates are used as the base material for iron ore sintering to participate in sintering.
  • the chlorine mass content of the high-chlorine metallurgical dust is not less than 10%.
  • the high-chlorine metallurgical dust is sintering machine head ash, wherein the chlorine mainly exists in the form of alkali metal chloride or heavy metal chloride and is rich in Fe.
  • the waste incineration fly ash is a fly ash produced from a grate furnace incinerator or a fluidized bed incinerator, which is rich in Ca and Si, and contains chlorine.
  • General waste incineration fly ash is also a high-chlorine waste, and the chlorine content is not less than 10%.
  • the high-chlorine metallurgical dust and sludge and waste incineration fly ash of the present invention are both high-chlorine materials, and both contain valuable components such as Ca, Si, Fe, etc., and reducing the chlorine content of the system in advance during secondary utilization is beneficial to reduce equipment corrosion , Ca, Si, Fe and other valuable components can be combined to form a Ca-Si-Fe system under high temperature conditions.
  • the carbon fuel includes at least one of coke powder, anthracite, and biomass char.
  • the particle size of the carbon fuel is less than 1 mm.
  • the carbon fuel is biomass char.
  • the mass ratio of high-chlorine metallurgical dust and sludge to waste incineration fly ash is 3:1 to 6:1.
  • the quality of carbon fuel accounts for 2% to 3% of the total mass of high-chlorine metallurgical dust, waste incineration fly ash and carbon fuel.
  • the preferred solution is to mix high-chlorine metallurgical dust and sludge, waste incineration fly ash and carbon fuel, and use chlorine-containing wastewater to balance moisture to a moisture content of 8%-10%, and press it into a flat shape with a particle size of 15m-20mm Clumps.
  • the chlorine-containing wastewater is used to balance the moisture, and the chlorine is removed during the pretreatment process, so that the chlorine-containing wastewater can be used.
  • the chlorine-containing wastewater is pickling wastewater from the iron and steel metallurgical process, and chlorine-enriched wastewater after recycling.
  • the oxygen-lean atmosphere is such that the ratio of the amount of oxygen supplied to the amount of oxygen required for the combustion of the carbon fuel is 0.9 to 1.0.
  • the low-temperature and high-efficiency removal of dioxins can be achieved by using oxygen-poor atmosphere roasting.
  • the roasting pretreatment process adopts microwave heating, raises the temperature to 650°C to 900°C at a heating rate of not less than 100°C/min, and roasts for 20 to 30 minutes.
  • the microwave heating method can achieve rapid temperature rise, reduce the secondary generation of dioxins, improve the efficiency of heat energy utilization, and reduce secondary pollution.
  • it is beneficial to the low-temperature removal of chloride salts. Under the optimal conditions, it is beneficial to realize the volatilization of most of the chloride salts and the degradation of dioxins.
  • the mixing process of high-chlorine metallurgical dust and sludge, waste incineration fly ash and carbon fuel is realized by a powerful mixer.
  • the present invention combines high-chlorine metallurgical dust and waste incineration fly ash to process together, effectively utilizes Ca, Fe, Si and C in raw materials such as high-chlorine metallurgical dust and waste incineration fly ash to obtain iron ore raw material.
  • high-chlorine dust represented by sintering machine head ash and waste incineration fly ash is subjected to non-washing pretreatment, and the dioxin in the dust is degraded by low-temperature roasting, and part of the volatile volatiles is removed at the same time.
  • the natural chlorine salt avoids pollution to the water body and reduces the dechlorination load in the subsequent sintering process.
  • the present invention also uses chlorine-containing wastewater for granulation, which provides a direction for the reuse of chlorine-containing wastewater.
  • the present invention performs drying and roasting pretreatment by microwave method, with high heat energy utilization efficiency, low pollution, and high microwave heating rate, which is conducive to the rapid decomposition of dioxins, and at the same time, the chlorine salt can be removed at a relatively low temperature .
  • a fuel represented by biomass charcoal is added.
  • the fuel provides part of the heat for roasting, and at the same time, the fuel can enhance the wave absorption of the mixture and promote the volatilization of chloride salts.
  • the calcined pretreated agglomerate contains a porous structure, which can effectively improve the air permeability and increase the sintering output by replacing the conventional sintered primer.
  • the pretreated agglomerates are used for secondary use by the sintering method, which can further degrade the harmful substances remaining in the agglomerates.
  • the various reagents and raw materials used in the present invention are all commercially available products or products that can be prepared by known methods.
  • the sintering machine head ash and waste incineration fly ash (the mass ratio of the two is 3:1, and the chlorine content is higher than 10%), 2%wt of biomass carbon with a particle size of less than 1mm are strongly mixed and pressed into a flat 15mm in diameter Agglomerates, the water content of the mixture is adjusted to 8% through the pickling chlorine-containing wastewater of the iron and steel metallurgical process, and it is pretreated by conventional heating (heating rate is less than 100°C/min) to adjust the oxygen supply and the oxygen required for fuel combustion The ratio of the amount is 1.2. The temperature is raised to 650°C and roasted for 30 minutes. After the sintering process, the total degradation rate of dioxins is 82.33%, and the total removal rate of Cl is 84.81%.
  • Chlorine-containing wastewater regulates the moisture content of the mixture to 10%, presses it into a flat agglomerate with a diameter of 20mm, puts it in a tubular microwave heating furnace, regulates the ratio of the oxygen supply to the oxygen required for fuel combustion to 0.9, and raises it to 750°C , Roasting for 25 minutes, after sintering process, the total degradation rate of dioxin reached 92.32%, and the total removal rate of Cl was 90.13%.
  • the acid is passed through the iron and steel metallurgical process. Wash the chlorine-containing wastewater to adjust the moisture content of the mixture to 10%, press it into a flat mass with a diameter of 20mm, and put it into a tubular microwave heating furnace. Adjust the ratio of the oxygen supply to the oxygen required for fuel combustion to be 1.0, and increase the temperature to 900 After sintering at °C for 20 minutes, the total degradation rate of dioxin reached 96.17% and the total removal rate of Cl was 93.41%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺,该工艺过程为:将高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料混匀,并采用含氯废水平衡水分后,压制成团块;所得团块置于贫氧气氛下,进行焙烧预处理,得到焙烧团块;焙烧团块作为铁矿烧结铺底料参与烧结。该工艺通过焙烧预处理减少固体废弃物烧结过程中氯及二恶英的污染,实现了高氯冶金尘泥、垃圾焚烧飞灰等固体废弃物中的Fe、Ca、C等组元的资源化利用,同时实现含氯废水的回用。

Description

一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺 技术领域
本发明涉及一种固体废弃物处理工艺,特别涉及一种高氯冶金废料和焚烧飞灰一起通过预脱氯和烧结处理方法,属于冶金固废及垃圾焚烧飞灰无害化处理、资源化利用的技术领域。
背景技术
烧结机头灰和垃圾焚烧飞灰(危险废弃物,HW18类)分别是钢铁冶金固体废弃物和城市固体废弃物中典型的高氯粉尘,它们化学组成类似,均含有Ca、Si、Fe等可通过铁矿烧结过程进行利用的组元,但碱、重金属、二恶英等不利因素的存在限制了其规模化利用。因此,降低碱、重金属、二恶英的影响是关键。据相关文献报道,烧结机头灰和垃圾焚烧飞灰中的碱、重金属多以氯盐的形式存在,故现有的铁矿烧结法处理机头灰技术和水泥窑协同处理垃圾焚烧飞灰技术多以水洗预处理的方式来降低碱、重金属氯盐对设备的腐蚀或对产品指标的危害,尽管此类方式行之有效,但是却产生了大量需要二次处理的废水。此外,固体废弃物中的二恶英在空气气氛下的高效降解通常需要较高的处理温度,能耗高,经济性差。因此寻求一条非水洗的预处理方式来实现脱氯及二恶英,对实现烧结机头灰和垃圾焚烧飞灰的资源化利用,具有现实意义。
技术问题
针对目前高氯冶金尘泥、垃圾焚烧飞灰、含氯废水等富含碱、重金属、二恶英类污染物,存在难处理、难循环利用等技术问题,本发明的目的是在于提供一种高氯冶金废料和焚烧飞灰一起通过预脱氯和烧结处理,实现资源化利用的工艺,该工艺可以同时实现高氯冶金废料和焚烧飞灰及含氯废水的处理,通过预焙烧过程有效降解了混合原料中的二恶英,同时脱除了部分易挥发性氯盐,最终通过替代烧结铺底料的形式参与烧结,实现了高氯冶金尘泥和垃圾焚烧飞灰、含氯废水等高氯有害物料的无害化处理、资源化利用,达到了含氯废料综合利用的目的。
技术解决方案
为了实现上述技术目的,本发明提供了一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,该工艺包括以下步骤。
1)将高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料混匀,并采用含氯废水平衡水分后,压制成团块。
2)所得团块置于贫氧气氛下,进行焙烧预处理,得到焙烧团块。
3)焙烧团块作为铁矿烧结铺底料参与烧结。
优选的方案,所述高氯冶金尘泥的氯质量含量不低于10%。
优选的方案,所述高氯冶金尘泥为烧结机头灰,其中,氯主要以碱金属氯化物或重金属氯化物的形式存在,且富含Fe。
优选的方案,所述垃圾焚烧飞灰为来自炉排炉焚烧炉或流化床焚烧炉产生的飞灰,其富含Ca和Si,且含有氯。一般垃圾焚烧飞灰也属于高氯废弃物,氯质量含量不低于10%。
本发明的高氯冶金尘泥和垃圾焚烧飞灰均为高氯物料,两者均含有Ca、Si、Fe等有价组元,在进行二次利用时预先降低体系氯含量有利于减少设备腐蚀,Ca、Si、Fe等有价组元可在高温条件下结合生成Ca-Si-Fe体系。
优选的方案,所述炭质燃料包括焦粉、无烟煤、生物质炭中至少一种。所述炭质燃料的粒度小于1mm。优选炭质燃料为生物质炭。
    优选的方案,高氯冶金尘泥与垃圾焚烧飞灰的质量比为3:1~6:1。
优选的方案,炭质燃料质量占高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料总质量的2%~3%。
优选的方案,将高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料混匀,并采用含氯废水平衡水分至含水率为8%~10%,压制成粒径为15m~20mm的扁平状团块。采用含氯废水来平衡水分,氯在预处理过程中实现脱除,使得含氯废水得到利用。
优选的方案,含氯废水为来自钢铁冶金过程的酸洗废水,循环利用后富集了氯的废水等。
优选的方案,所述贫氧气氛为供氧量与炭质燃料燃烧所需氧量的比值为0.9~1.0。通过采用贫氧气氛焙烧,可以实现二恶英的低温高效脱除。
优选的方案,所述进行焙烧预处理过程:采用微波加热,以不低于100℃/min的升温速率升温至650℃~900℃,焙烧20min~30min。采用微波加热法可以实现快速升温,减少二恶英的二次生成,提高热能利用效率,二次污染小,同时有利于氯盐的低温脱除。在优选的条件下有利于实现绝大部分氯盐的挥发和二恶英的降解。
优选的方案,高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料的混匀过程是通过强力混合机实现。
有益效果
与已有技术比较,本发明技术方案的优点体现在。
1)本发明将高氯冶金尘泥和垃圾焚烧飞灰一起搭配处理,有效利用了高氯冶金尘泥及垃圾焚烧飞灰等原料中的Ca、Fe、Si及C等组元,获得铁矿原料。
2)本发明根据将以烧结机头灰和垃圾焚烧飞灰为代表的高氯粉尘进行了非水洗预处理,通过低温焙烧降解了粉尘中的二恶英(Dioxin),同时脱除了部分易挥发性氯盐,避免了对水体的污染,减轻了后续烧结过程脱氯负荷。
3)本发明除了利用含氯粉尘外,还利用含氯废水进行了制粒,为含氯废水的再利用提供了方向。
4)本发明通过微波方式进行干燥、焙烧预处理,热能利用效率高,污染小,且微波升温速率快,有利于二恶英的快速分解,同时可使氯盐在相对较低温度下脱除。
5)本发明中添加了以生物质炭为代表的燃料,燃料一方面为焙烧提供部分热量,同时燃料可以加强混合料吸波性,促进了氯盐的挥发。
6)本发明将焙烧预处理后的团块含有多孔结构,替代常规烧结铺底料可有效改善透气性,提高了烧结产量。
7)本发明通过烧结法将预处理后的团块进行二次利用,可进一步降解团块中残留的有害物质。
附图说明
在此处键入附图说明描述段落。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除有特别说明,本发明中用到的各种试剂、原料均为可以从市场上购买的商品或者可以通过公知的方法制得的产品。
对照实施例1。
将烧结机头灰与垃圾焚烧飞灰(两者质量比为3:1,氯含量均高于10%)、2%wt粒径小于1mm的生物质炭强力混匀后压制成直径15mm的扁平状团块,通过钢铁冶金过程的酸洗含氯废水调控混合料水分至水分8%,采用常规加热(升温速率低于100℃/min)方式预处理,调控供氧量与燃料燃烧所需氧量的比值为1.2,升温至650℃,焙烧30min,经烧结过程处理后,二恶英总降解率为82.33%,Cl的总脱除率为84.81%。
对照实施例2。
将烧结机头灰与垃圾焚烧飞灰(两者质量比为3:1,氯含量均高于10%)、2%wt粒径小于1mm的生物质炭强力混匀后,通过钢铁冶金过程的酸洗含氯废水调控混合料水分至8%,压制成直径15mm的扁平状团块,参与烧结处理,处理后二恶英总降解率达80.65%,Cl的总脱除率为86.27%。
实施例1。
将烧结机头灰与垃圾焚烧飞灰(两者质量比为3:1,氯含量均高于10%)、2%wt粒径小于1mm的生物质炭强力混匀后,通过钢铁冶金过程的酸洗含氯废水调控混合料水分至8%,压制成直径15mm的扁平状团块,放入管式微波加热炉中,调控供氧量与燃料燃烧所需氧量的比值为0.9,升温至650℃,焙烧30min,经烧结过程处理后,二恶英总降解率达94.82%,Cl的总脱除率为92.57%。
实施例2。
将烧结机头灰与垃圾焚烧飞灰(两者质量比为4:1,氯含量均高于10%)、2.5%wt粒径小于1mm的焦炭强力混匀后,通过钢铁冶金过程的酸洗含氯废水调控混合料水分至10%,压制成直径20mm的扁平状团块,放入管式微波加热炉中,调控供氧量与燃料燃烧所需氧量的比值为0.9,升温至750℃,焙烧25min,经烧结过程处理后,二恶英总降解率达92.32%,Cl的总脱除率为90.13%。
实施例3。
将烧结机头灰与垃圾焚烧飞灰(两者质量比为6:1,氯含量均高于10%、3%wt粒径小于1mm的生物质炭强力混匀后,通过钢铁冶金过程的酸洗含氯废水调控混合料水分至10%,压制成直径20mm的扁平状团块,放入管式微波加热炉中,调控供氧量与燃料燃烧所需氧量的比值为1.0,升温至900℃,焙烧20min,经烧结过程后,二恶英总降解率达96.17%,Cl的总脱除率为93.41%。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (9)

  1. 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺,其特征在于:包括以下步骤:
    1)将高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料混匀,并采用含氯废水平衡水分后,压制成团块;
    2)所得团块置于贫氧气氛下,进行焙烧预处理,得到焙烧团块;
    3)焙烧团块作为铁矿烧结铺底料参与烧结。
  2. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述高氯冶金尘泥的氯质量含量不低于10%。
  3. 根据权利要求2所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述高氯冶金尘泥为烧结机头灰,其中,氯主要以碱金属氯化物或重金属氯化物的形式存在,且富含Fe。
  4. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述垃圾焚烧飞灰为来自炉排炉焚烧炉或流化床焚烧炉产生的飞灰,其富含Ca和Si,且含有氯。
  5. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述炭质燃料包括焦粉、无烟煤、生物质炭中至少一种。
  6. 根据权利要求1~5任一项所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:
    高氯冶金尘泥与垃圾焚烧飞灰的质量比为3:1~6:1;
    炭质燃料质量占高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料总质量的2%~3%。
  7. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:将高氯冶金尘泥、垃圾焚烧飞灰与炭质燃料混匀,并采用含氯废水平衡水分至含水率为8%~10%,压制成粒径为15m~20mm的扁平状团块。
  8. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述贫氧气氛为供氧量与炭质燃料燃烧所需氧量的比值为0.9~1.0。
  9. 根据权利要求1所述的一种高氯冶金废料和焚烧飞灰的预脱氯-烧结工艺,其特征在于:所述进行焙烧预处理过程:采用微波加热,以不低于100℃/min的升温速率升温至650℃~900℃,焙烧20min~30min。
PCT/CN2020/105363 2019-08-19 2020-07-29 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺 WO2021031814A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546445A JP7204156B2 (ja) 2019-08-19 2020-07-29 高塩素冶金廃材及び焼却飛灰の事前脱塩素-焼結処理プロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910763858.6 2019-08-19
CN201910763858.6A CN110465538B (zh) 2019-08-19 2019-08-19 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺

Publications (1)

Publication Number Publication Date
WO2021031814A1 true WO2021031814A1 (zh) 2021-02-25

Family

ID=68511134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105363 WO2021031814A1 (zh) 2019-08-19 2020-07-29 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺

Country Status (3)

Country Link
JP (1) JP7204156B2 (zh)
CN (1) CN110465538B (zh)
WO (1) WO2021031814A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564349A (zh) * 2021-07-26 2021-10-29 宝武集团环境资源科技有限公司 一种烧结协同处置垃圾焚烧飞灰过程中二恶英控制方法
CN113975702A (zh) * 2021-10-14 2022-01-28 昆明理工大学 一种微波硫酸协同阻滞脱除铜冶炼烟灰中二噁英类POPs的方法
CN114034047A (zh) * 2021-12-22 2022-02-11 天津壹鸣环境科技股份有限公司 一种高氯焚烧残余物氯盐和重金属协同挥发减量处理方法
CN114425549A (zh) * 2021-12-16 2022-05-03 中南大学 一种垃圾焚烧飞灰微波水热解毒及同步合成托贝莫来石的方法
CN114618868A (zh) * 2022-03-10 2022-06-14 华中科技大学 一种高氯灰渣中含氯组分的固定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465538B (zh) * 2019-08-19 2020-11-24 中南大学 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺
CN113336527A (zh) * 2021-06-21 2021-09-03 湖南国发控股有限公司 一种飞灰加污水处理厂污泥生产发泡陶瓷的配方与方法
CN115069741A (zh) * 2022-05-13 2022-09-20 同济大学 一种基于高温处理深度去除生活垃圾焚烧飞灰中氯的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351941A (zh) * 2014-08-20 2016-02-24 福建正仁环保有限公司 一种生活垃圾热解气化燃气焚烧发电工艺
GB2540888A (en) * 2010-05-14 2017-02-01 Biocentre Tech Ltd Waste processing
CN106964637A (zh) * 2017-05-12 2017-07-21 中南大学 一种垃圾飞灰与冶金粉尘资源化清洁处理工艺
CN107413816A (zh) * 2017-05-12 2017-12-01 中南大学 一种垃圾飞灰与冶金粉尘协同资源化处理的方法
CN108070723A (zh) * 2016-11-15 2018-05-25 中冶长天国际工程有限责任公司 一种垃圾焚烧飞灰、城市污泥和钢铁冶金除尘灰冶金烧结资源化利用的方法
CN108950195A (zh) * 2018-08-30 2018-12-07 紫金矿业集团股份有限公司 利用含氯废水提取锌精矿氧化渣中有价金属的方法
CN110465538A (zh) * 2019-08-19 2019-11-19 中南大学 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692620B2 (ja) * 1988-02-10 1994-11-16 住友金属工業株式会社 焼結鉱の製造方法
JP3120679B2 (ja) * 1994-12-28 2000-12-25 日本鋼管株式会社 焼結機ダストからの塩化物の除去方法
JPH1053442A (ja) * 1996-06-07 1998-02-24 Chichibu Onoda Cement Corp 焼成物の製造法
JP3060408B2 (ja) * 1997-09-26 2000-07-10 川崎重工業株式会社 溶融飛灰のダイオキシン低減化・固化・安定化処理方法及び装置
JP2001040429A (ja) * 1999-07-29 2001-02-13 Nippon Steel Corp ダストの処理方法
JP3748364B2 (ja) * 2000-06-20 2006-02-22 株式会社タクマ 飛灰溶融炉
JP4350485B2 (ja) * 2003-10-31 2009-10-21 株式会社アクトリー 複数・混合汚染物質の焼成無害化処理方法及びその装置
KR100613493B1 (ko) * 2004-02-10 2006-08-18 한국지질자원연구원 생활폐기물의 소각시 발생되는 바닥재의 전(前)처리 방법 및 장치
WO2007063603A1 (ja) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. 焼結原料の造粒方法及び焼結鉱製造方法
JP2010142756A (ja) * 2008-12-19 2010-07-01 Hitachi Zosen Corp Pcbに汚染された柱上変圧器の内部部材加熱方法
JP2011016693A (ja) * 2009-07-10 2011-01-27 Univ Of Miyazaki バイオマス廃棄物由来の複合活性炭の製造方法及びこれを利用したメタンガス貯蔵材
CN202155359U (zh) * 2011-06-23 2012-03-07 同济大学 一种焚烧飞灰全稳定化和安全化处理装置
CN104324931A (zh) * 2014-11-12 2015-02-04 中国科学院武汉岩土力学研究所 垃圾焚烧飞灰固化/稳定化处理方法
CN107159678B (zh) * 2017-05-12 2019-07-19 中南大学 铁矿烧结协同处理垃圾飞灰过程的二噁英控制方法
CN107099658B (zh) * 2017-05-12 2018-11-23 中南大学 一种铁矿烧结过程资源化处置垃圾飞灰的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540888A (en) * 2010-05-14 2017-02-01 Biocentre Tech Ltd Waste processing
CN105351941A (zh) * 2014-08-20 2016-02-24 福建正仁环保有限公司 一种生活垃圾热解气化燃气焚烧发电工艺
CN108070723A (zh) * 2016-11-15 2018-05-25 中冶长天国际工程有限责任公司 一种垃圾焚烧飞灰、城市污泥和钢铁冶金除尘灰冶金烧结资源化利用的方法
CN106964637A (zh) * 2017-05-12 2017-07-21 中南大学 一种垃圾飞灰与冶金粉尘资源化清洁处理工艺
CN107413816A (zh) * 2017-05-12 2017-12-01 中南大学 一种垃圾飞灰与冶金粉尘协同资源化处理的方法
CN108950195A (zh) * 2018-08-30 2018-12-07 紫金矿业集团股份有限公司 利用含氯废水提取锌精矿氧化渣中有价金属的方法
CN110465538A (zh) * 2019-08-19 2019-11-19 中南大学 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564349A (zh) * 2021-07-26 2021-10-29 宝武集团环境资源科技有限公司 一种烧结协同处置垃圾焚烧飞灰过程中二恶英控制方法
CN113975702A (zh) * 2021-10-14 2022-01-28 昆明理工大学 一种微波硫酸协同阻滞脱除铜冶炼烟灰中二噁英类POPs的方法
CN114425549A (zh) * 2021-12-16 2022-05-03 中南大学 一种垃圾焚烧飞灰微波水热解毒及同步合成托贝莫来石的方法
CN114425549B (zh) * 2021-12-16 2023-10-13 中南大学 一种垃圾焚烧飞灰微波水热解毒及同步合成托贝莫来石的方法
CN114034047A (zh) * 2021-12-22 2022-02-11 天津壹鸣环境科技股份有限公司 一种高氯焚烧残余物氯盐和重金属协同挥发减量处理方法
CN114034047B (zh) * 2021-12-22 2024-02-23 天津壹鸣环境科技股份有限公司 一种高氯焚烧残余物氯盐和重金属协同挥发减量处理方法
CN114618868A (zh) * 2022-03-10 2022-06-14 华中科技大学 一种高氯灰渣中含氯组分的固定方法

Also Published As

Publication number Publication date
CN110465538B (zh) 2020-11-24
JP2022508878A (ja) 2022-01-19
CN110465538A (zh) 2019-11-19
JP7204156B2 (ja) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2021031814A1 (zh) 一种高氯冶金废料和焚烧飞灰的预脱氯-烧结处理工艺
WO2019051923A1 (zh) 基于含铁污泥热解残渣的污泥复合调理剂及其制备与应用
CN110369451B (zh) 一种烧结机头灰与垃圾焚烧飞灰协同综合利用的方法
CN110373546B (zh) 一种富铁冶金尘泥和高钙垃圾焚烧飞灰的协同熔融处理方法
CN112453009B (zh) 一种铝灰绿色无害化资源化利用的方法
CN109207739B (zh) 一种资源化利用含锌冶金粉尘生产炼铁炉料的方法
CN102120575A (zh) 一种化工污泥制备活性炭的工艺
CN102107872A (zh) 一种化工污泥添加果壳制备活性炭的工艺
CN1895803A (zh) 一种处理铝电解槽废槽衬的方法
CN104108844B (zh) 一种用市政污泥制备燃料的方法
CN107324288A (zh) 一种酸性废石膏综合处理与循环利用的工艺
CN105819447A (zh) 一种高热强度CaO含碳球团及其制备方法和用途
CN111943715A (zh) 一种基于改性污泥烧制陶粒的方法
CN111411238A (zh) 一种高碳铬铁冶炼协同处置不锈钢尘泥的方法及系统
CN113751476B (zh) 一种冶金固废与城市垃圾焚烧飞灰协同处理及循环利用的方法
CN114774684A (zh) 利用转底炉协同处置垃圾焚烧飞灰的方法及系统
CN1255559C (zh) 从含钒物料中焙烧提钒的方法及设备
CN113548815A (zh) 一种新型生活垃圾焚烧飞灰资源化回收利用系统及方法
CN107159688A (zh) 一种铝电解槽炭质废料再生为生产电石用原料的方法
CN107352542A (zh) 一种铝电解槽炭质废料的再生利用方法及其应用
CN107200488B (zh) 干法旋窑厂用铝电解槽炭质废料生产氟铝酸盐水泥的方法
CN217579030U (zh) 转底炉处理轧钢含油泥水的系统
CN217351485U (zh) 利用转底炉协同处置垃圾焚烧飞灰的系统
CN1371883A (zh) 受污染江河底泥烧制建材制品的方法
CN102051475A (zh) 一种酸洗含铁污泥资源化利用的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854267

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20854267

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20854267

Country of ref document: EP

Kind code of ref document: A1