WO2021031652A1 - 一种光模块波长配置方法、装置及光模块 - Google Patents
一种光模块波长配置方法、装置及光模块 Download PDFInfo
- Publication number
- WO2021031652A1 WO2021031652A1 PCT/CN2020/093199 CN2020093199W WO2021031652A1 WO 2021031652 A1 WO2021031652 A1 WO 2021031652A1 CN 2020093199 W CN2020093199 W CN 2020093199W WO 2021031652 A1 WO2021031652 A1 WO 2021031652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical module
- wavelength
- optical
- wavelength configuration
- setting information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
Definitions
- This application relates to the field of optical communication technology, and in particular to an optical module.
- a mutual optical connection is established between the optical line terminal and the optical network unit to realize data communication.
- the optical line terminal has a first optical module
- the optical network unit has a second optical module.
- An optical connection is established between the first optical module and the second optical module; the optical line terminal transmits to the second optical module through the first optical module.
- the module sends optical signals to enable the optical line terminal to send data to the optical network unit; the optical line terminal receives the optical signal from the second optical module through the first optical module, so that the optical line terminal receives data from the optical network unit.
- the optical line terminal and the optical network unit are the upper computer of the optical module.
- the upper computer inputs the data electrical signal into the optical module, and the optical module converts the data electrical signal into an optical signal to send out data, so that the upper computer sends data; the optical module converts the external optical signal into a data electrical signal.
- the data electrical signal is input to the upper computer to realize the upper computer to receive data.
- optical module Since the optical module is only the data transmitter in the host computer, the optical module can only be controlled by the host computer, so it is necessary to manually control the optical module through the host computer.
- optical line terminals and/or optical network units are often located in environments that are not convenient for manual operation, such as mountains, forests, and even water bodies. In these environments, operating the upper computer or using the upper computer to control the optical module is both It becomes very difficult.
- a wavelength configuration method which includes: loading a wavelength configuration command into the emitted light in a low-frequency modulation signal; receiving the returned setting information, and the setting information is used to verify the wavelength configuration Whether the instruction is implemented accurately; when the returned setting information is inaccurate, the wavelength configuration instruction is issued again.
- a second aspect of the embodiments of the present application provides a wavelength configuration device, including a processor and a memory, wherein:
- Memory used to store program code
- the processor is configured to read the program code stored in the memory and execute the method of the first aspect of the embodiment of the present application.
- an optical module including an optical transmitting component, an optical receiving component, a printed circuit board, and an MCU provided on the printed circuit board, wherein:
- the wavelength configuration device of the second aspect of the embodiments of the present application is provided in the MCU;
- the optical transmitting component is connected to the MCU through a printed circuit board.
- the MCU can control the optical transmitting component to send outgoing light loaded with a low-frequency modulation signal, and the optical receiving component is used to receive the returned setting information.
- FIG. 1 is a schematic diagram of the basic structure of an upper computer of an optical module provided by some embodiments of the application;
- FIG. 2 is a schematic diagram of a partial structure of an upper computer provided by some embodiments of the application.
- FIG. 3 is a cross-sectional view of an optical module and an optical module interface connection structure provided by some embodiments of the application;
- FIG. 4 is a schematic structural diagram of an electrical connector in an optical module interface provided by some embodiments of the application.
- FIG. 5 is a schematic diagram of a golden finger structure of an optical module provided by some embodiments of the application.
- Figure 6 is a schematic diagram of an optical communication network structure based on an arrayed waveguide grating
- FIG. 7 is a schematic structural diagram of an optical module provided by some embodiments of the application.
- FIG. 8 is a schematic diagram of an exploded structure of an optical module provided by some embodiments of the application.
- FIG. 9 is a schematic diagram of the basic flow of a wavelength configuration method provided by some embodiments of the application.
- FIG. 10 is a schematic diagram of a basic flow of another wavelength configuration method provided by some embodiments of this application.
- the optical module can only be controlled by its host computer, that is, it is necessary to manually control the optical module through the host computer, which brings inconvenience.
- a new communication method can be adopted to make the optical module not only controlled.
- the upper computer connected to it can also realize remote control, and the remote control of the upper computer can also be realized through the remote control of the optical module.
- FIG. 1 is a schematic diagram of the basic structure of an upper computer of an optical module provided by some embodiments of the application.
- Figure 2 is a schematic diagram of a partial structure of an upper computer provided in some embodiments of the application.
- the host computer includes an upper cover body 10, a lower cover body 20, a circuit board 40 and an optical module 30.
- the upper cover body 10 and the lower cover body 20 form a cavity that wraps the circuit board 40 and the optical module 30.
- the circuit board 40 has an optical module interface 401 and a network cable interface 402.
- the optical module interface 401 is used to connect to the optical module 30, and an electrical connector 4011 is provided in the optical module interface 401 for connecting to the optical module electrical port such as golden finger, so as to establish a bidirectional electrical signal connection with the optical module 30;
- the network cable interface 402 is used to connect to the network cable and establish a two-way electrical signal connection with the network cable; the optical module 30 and the network cable establish a connection through the upper computer.
- the upper computer transmits the signal from the optical module 30 to the network cable, which will The signal is transmitted to the optical module 30, and the upper computer monitors the operation of the optical module 30.
- the optical port of the optical module 30 is connected to the optical fiber to establish a two-way optical signal connection with the optical fiber; the electrical port of the optical module 30 is connected to the upper computer to establish a two-way electrical signal connection with the optical network unit; the optical module 30 realizes the optical signal and the electrical signal
- the mutual conversion between the optical fiber and the host computer is realized; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module 30 and then input to the host computer, and the electrical signal from the host computer is converted by the optical module 30 The optical signal is input to the optical fiber.
- FIG. 3 is a cross-sectional view of an optical module and an optical module interface connection structure provided by some embodiments of this application
- FIG. 4 is a schematic diagram of an electrical connector in an optical module interface provided by some embodiments of this application
- FIG. 5 is an application A schematic diagram of the golden finger structure of an optical module provided by some embodiments.
- the end of the circuit board 301 of the optical module is inserted into the optical module interface 401 of the upper computer to realize the electrical connection between the optical module and the upper computer.
- the optical module interface 401 has an electrical connector 4011.
- the electrical connector 4011 has a gap for accommodating the optical module circuit board 40 and an elastic sheet 4012 pressed on the surface of the optical module circuit board 40.
- the surface of the end of the optical module circuit board 301 has The golden finger 3011 in the shape of a metal pin, the elastic piece in the electrical connector 4011 contacts the golden finger to realize electrical conduction.
- an embodiment of the present application provides a solution for wavelength configuration of an optical module.
- Arrayed waveguide gratings are based on the basic optical principle of linear interference between light of different wavelengths, which can combine light of many wavelengths into a single optical fiber, and re-separate these lights at the receiving end.
- the left and right sides of the arrayed waveguide grating optical communication network have multiple optical path interfaces respectively, which are used to connect to different optical modules.
- the optical module of an interface on the left and the optical module of the corresponding interface on the right need to use a specific wavelength to establish mutual communication Therefore, when multiple optical modules with tunable emission wavelengths are used to construct an arrayed waveguide grating optical fiber communication network, the optical modules need to be configured with specified wavelengths.
- Figure 6 is a schematic diagram of an optical communication network structure based on an arrayed waveguide grating.
- A1 to AN N optical modules are attached to one side of AWG1 .
- the corresponding optical modules from B1 to BNN are hung on one side of AWG2.
- the optical signal sent by the optical module A1 is received by the optical module B1 via the AWG optical fiber communication network, and correspondingly, the optical signal sent by the optical module B1 is received by the optical module A1 via the AWG optical fiber communication network.
- the optical path between the optical module A1 and the optical module B1 needs to be established after the wavelength configuration.
- optical module A1 first emits light, and the light emitted by optical module A1 is received by optical module B1 after passing through the AWG optical fiber communication network, but optical module B1 does not know What wavelength of light emitted will be received by the optical module A1.
- the optical module A1 needs to give a clear indication, that is, the light sent by the optical module A1 to the optical module B1 carries the information indicating the emission wavelength of the optical module B1
- the wavelength of the light emitted by the optical module B1 is specified by the optical module A1.
- FIG. 7 is a schematic structural diagram of an optical module provided by some embodiments of the application.
- FIG. 8 is a schematic diagram of an exploded structure of an optical module provided by some embodiments of the application.
- the optical module provided by the embodiment of the present application includes a circuit board 301, an upper housing 302, a lower housing 303, an optical transceiver 304 (including an optical transmitting component and an optical receiving component), and an unlocking handle 307 .
- the upper shell 302 and the lower shell 303 form a wrapping cavity with two openings.
- the two openings can be two openings (204, 205) at the same end of the optical module, or two openings at different ends of the optical module.
- the opening can also be two openings in different directions; one of the openings is the electrical port 305, which is used to insert the optical network unit and other upper computers, and the other is the optical port 306, which is used for external optical fiber access to connect the internal Optical fiber, circuit board 301, optical transceiver 304 and other optoelectronic devices are located in the package cavity.
- the upper housing 302 and the lower housing 303 are made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
- the unlocking handle 303 is located on the outer wall of the package cavity and the lower casing 303. Pulling the end of the unlocking handle 307 can make the unlocking handle 307 move relative to the outer wall surface; when the optical module is inserted into the upper computer, the optical module is fixed on the upper computer by the unlocking handle 307 In the optical module interface 401 of the upper computer, the locking relationship between the optical module and the upper computer can be released by pulling the unlocking handle 307, so that the optical module can be withdrawn from the optical module interface 401 of the upper computer.
- the golden finger 3011 on the surface of the optical module circuit board 301 has I2C pins, and the I2C protocol can be used between the host computer and the optical module to transmit information through the I2C pins.
- the upper computer can write information to the optical module. Specifically, the upper computer can write information into the register of the optical module; the optical module cannot write information to the upper computer. When the optical module needs to provide information to the upper computer, the optical module The information is written into the preset register in the optical module.
- the preset register may include a transmission status register and a data transmission failure register, and the upper computer reads the register.
- the register of the optical module is generally integrated in the microprocessor (MCU) 3012 of the optical module, and can also be independently arranged on the circuit board 301 of the optical module.
- MCU microprocessor
- the optical module can send a relatively high-frequency data optical signal to the data electrical signal from the optical line terminal during the working process, so as to maintain the original external data transmission service of the optical line terminal.
- the optical module also sends out relatively low-frequency control optical signals for non-data electrical signals, where non-data electrical signals refer to signals used for normal transmission of services to send control information to the optical module at the receiving end, so that normal services are not interrupted.
- it transmits control data to the remote system, for example, using the low-frequency message channel to transmit the system upgrade package to realize the online upgrade of the remote system and report DDM (Digital Diagnostic Monitoring) information.
- DDM Digital Diagnostic Monitoring
- the data optical signal and the control optical signal are mixed in the same light beam and transmitted by the same optical fiber.
- the signal and the control light signal have different frequencies.
- the microprocessor 3012 and the optical transceiver 304 in the optical module at the transmitting end can be designed so that the microprocessor 3012 controls the optical transceiver 304, and the high-frequency signal (data optical signal) sent by it A low-frequency modulation signal (control optical signal) is superimposed on it.
- the low-frequency modulation signal is referred to as a low-frequency message channel. For example, superimposing a low-frequency modulation signal of 50Kbps on a 10Gbps or 25Gbps signal, where the 10Gbps or 25Gbps signal is a normal business signal, and another 50Kbps low-frequency signal is added to perform other control functions.
- the wavelength configuration information is sent to the optical module at the receiving end through a low-frequency modulation signal, and the optical module at the receiving end performs wavelength configuration according to the wavelength configuration information.
- the wavelength configuration method provided in this embodiment will be detailed below with reference to the accompanying drawings. Introduction.
- FIG. 9 is a schematic diagram of the basic flow of a wavelength configuration method provided by this embodiment
- FIG. 10 is a schematic diagram of the basic flow of a wavelength configuration method provided by this embodiment.
- the transmitting end optical module configures the wavelength of the receiving end optical module
- the receiving end optical module can configure its own emission wavelength. Specifically include the following steps:
- S200 Load the wavelength configuration command into the emitted light in the form of a low-frequency modulation signal.
- the optical module at the transmitting end sends the wavelength configuration command to the optical module at the receiving end using a low-frequency optical signal as a carrier.
- the wavelength configuration command can come from the host computer at the sending end.
- the host computer at the sending end writes the wavelength configuration information into the register of the sending end optical module through the I2C channel, and the sending end optical module reads it from the register; the wavelength configuration command can also come from the sending end.
- the end optical module is generated or inquired by the microprocessor MCU of the transmitting end optical module; the wavelength configuration command is output by the microprocessor of the transmitting end optical module in the form of a low-frequency modulation signal.
- the content of the wavelength configuration command can be a preset wavelength channel number or a specific wavelength value; the preset wavelength channel number is the code of the wavelength value, which can indicate the emission wavelength of the optical module at the transmitting end and/or the optical module at the receiving end The emission wavelength.
- the normal service data of the optical module is loaded into the emitted light through the drive chip of the laser chip in the form of high-frequency modulation signals; the wavelength configuration information is loaded into the emitted light in the form of low-frequency modulation signals through the microprocessor of the optical module;
- the output light of the end optical module is received by the optical module at the receiving end.
- the optical signal sent from the optical module at the transmitting end is generated by modulating the two signals, a high-frequency modulation signal and a low-frequency modulation signal, and has two components: high-frequency and low-frequency.
- the low-frequency modulation signal is loaded to the emitted light, such as mixing the low-frequency modulation signal (presented in the form of electric current) with the original high-frequency modulation signal (presented in the form of electric current) and then input the laser together In the chip; or in the hardware environment of the electro-absorption modulator, the reference voltage of the electro-absorption modulator is controlled by the MCU to load the low-frequency modulation signal into the light; generally, the low-frequency modulation signal is generated by the microprocessor of the optical module , The laser chip of the optical module is converted into an optical signal and sent out.
- the optical module at the transmitting end waits for a response from the optical module at the receiving end. It takes a certain time for the optical transmission to the receiving optical module, the receiving optical module to configure the wavelength of the emitted light according to the wavelength configuration instruction, and to generate a response message after the wavelength configuration is completed, so the transmitting optical module needs to wait for the response of the receiving optical module.
- the received optical power of the optical module at the transmitting end can also be verified.
- the received optical power does not exceed the threshold, it is determined that the receiving end has not configured the transmit wavelength of the receiving optical module.
- the road alarm flag is modified to the third preset value, and then jumps to step S200 to send the wavelength configuration instruction again.
- the process of waiting for response will be timed.
- the timing can start after the wavelength configuration instruction is sent, or it can start at the same time as step S200.
- One purpose of timing is to resend the wavelength configuration information after the preset waiting time is exceeded; another purpose of timing is to re-send the accumulated wavelength configuration multiple times when the preset waiting time is severely exceeded.
- the time reaches the preset period the cyclic operation of the wavelength configuration method is stopped.
- the setting information returned by the receiving end is generally received within the preset waiting time; when the optical fiber communication network or the optical module is not working normally, the receiving end cannot be returned.
- the setting information transmitted will cause serious timeout at this time.
- the setting information returned by the receiving end to the transmitting end optical module is specific verification information, which is the response of the receiving end optical module to the wavelength configuration instruction of the transmitting end optical module, and is used by the transmitting end optical module to determine whether the receiving end optical module has performed accurately.
- Wavelength configuration the returned setting information is generally sent after the optical module at the receiving end completes the wavelength configuration, or after receiving the wavelength configuration instruction from the sending end, before completing the wavelength configuration; the setting of the verification information can be determined according to specific needs
- the setting information returned can be preset information, or wavelength data information set by the optical module at the receiving end.
- the transmitting end optical module verifies the setting information returned by the receiving end optical module.
- the returned setting information is accurate, there is no need to send the wavelength configuration command to the receiving end optical module again to end the operation of the wavelength configuration method.
- the link alarm flag is modified to the fourth preset value, and the wavelength connectivity flag is modified to the second preset value.
- the link alarm flag bit is used to trigger the optical module to send the wavelength configuration command again, which is the internal control of the optical module; while the wavelength connection flag bit is used to inform the upper computer whether the link is unblocked and is the external notification of the optical module; the optical module needs to be After the internal processing is completed, a notification is sent to the outside of the optical module.
- the optical signal received by the optical module at the transmitting end may not come from the corresponding optical module at the receiving end. Therefore, it is not very accurate based on whether the optical signal is received as a basis for judgment. In this application, specific verification information is used as the basis for judgment.
- the wavelength configuration method is a method that can be cyclically run, and it starts at step S200.
- the wavelength configuration method stops running; when the wavelength configuration is incorrect or exceeds the preset waiting time range, the wavelength configuration method needs to be run again.
- the wavelength configuration method can be presented in the form of a piece of software code.
- the microprocessor of the optical module at the transmitting end runs this piece of code cyclically.
- the operation of this piece of code will be skipped; when the wavelength configuration is incorrect or in advance After the waiting time range is set, run this code repeatedly.
- the transmitting end optical module receives the setting information returned by the receiving end optical module within the preset waiting time range, and the transmitting end optical module verifies the setting information returned by the receiving end optical module.
- the transmitted setting information is not accurate
- the optical module will modify the link alarm flag to the third preset value to trigger the step Implementation of S200.
- the transmitting end optical module will not endlessly wait for the response of the receiving end optical module, but will preset a certain waiting time. When the preset waiting time range is exceeded, it will repeat the operation of the wavelength configuration method and send the light to the receiving end again.
- the module sends a wavelength configuration instruction to start the operation of the next wavelength configuration method, that is, step S200 and subsequent steps are executed again.
- the wavelength configuration method will be executed from the s200 step in a loop, and when the accumulated time of multiple executions reaches the preset time period range, the wavelength configuration method will end and an error flag will be generated.
- the error flag is stored in the register of the optical module and read by the upper computer of the optical module at the receiving end.
- the above embodiments realize the communication with the low-frequency optical signal and the receiving end optical module, indicating the configuration of the light emitting wavelength of the receiving end optical module, and when the receiving end optical module is not properly configured with the wavelength, it again instructs the receiving end optical module to emit the wavelength Configuration.
- the establishment of this communication mechanism realizes the use of the transmitting end optical module to control the wavelength configuration of the receiving end optical module without affecting the normal transmission of data.
- One trigger factor is that the transmitting end optical module adopts a new emission wavelength.
- the specific scenario may be that the transmitting end optical module has just been connected to the arrayed waveguide grating network, or the transmitting end host computer instructs the transmitting end optical module to change the emission wavelength. At this time, the transmitting end optical module will perform its own emission wavelength configuration and the corresponding receiving end wavelength configuration.
- the transmitting end optical module configures the emission wavelength according to the configuration information
- the upper computer modifies the wavelength connection flag of the optical module to the first preset value. After the transmitting end optical module completes the emission wavelength configuration, it will enter the wavelength configuration method for the receiving end optical module, and perform a series of steps such as S200 and S300. .
- Another trigger is that the power of the optical signal received by the optical module at the transmitting end is abnormal.
- the specific scenario may be that the optical fiber communication link fails, or the receiving end optical module is replaced, which will cause the transmitting end optical module to fail to receive optical signals or the received optical signal power is low.
- the transmitter optical module will execute the wavelength configuration method.
- S102 when the received optical power of the optical module at the transmitting end is lower than the set threshold; enter the wavelength configuration method flow, and execute a series of steps such as S200 and S300.
- the received optical power of the optical module at the transmitting end Due to fluctuations in the received optical power, occasionally the received optical power of the optical module at the transmitting end will be lower than the preset threshold. To avoid misjudgment, the received optical power can be counted when the received optical power is below the set threshold. When the number of times exceeds the number of abnormalities When the threshold is set, it is considered that the received optical power of the optical module at the transmitting end is lower than the preset threshold not accidentally, but a failure. At this time, enter the wavelength configuration method and perform a series of steps such as S200 and S300.
- this embodiment also provides an optical module wavelength configuration device, which mainly includes a processor and a memory, where: the memory is used to store program codes; the processor is used to read Stored program code and execute: complete the configuration of the emission wavelength according to the configuration information; load the wavelength configuration command into the emitted light in the form of a low-frequency modulation signal; receive the returned setting information, which is used to verify the wavelength configuration command Whether the implementation is accurate; when the returned setting information is inaccurate, the wavelength configuration command will be issued again; after the preset waiting time range, if the returned setting information is not received, the wavelength configuration command will be issued again; Within the time period, if the accurate return setting information is not received, the operation of the wavelength configuration method is ended, and an error flag is generated, and the error flag is read by the upper computer.
- the memory is used to store program codes
- the processor is used to read Stored program code and execute: complete the configuration of the emission wavelength according to the configuration information; load the wavelength configuration command into the emitted light in the form of a low-frequency modulation
- the processor may execute: determine whether the received optical power is lower than the set threshold, and when the received optical power is lower than the set threshold, load the wavelength configuration command into the outgoing light in the form of a low-frequency modulation signal; receive the returned setting Information, the setting information is used to verify whether the wavelength configuration command is implemented accurately; when the returned setting information is inaccurate, the wavelength configuration command is issued again; after the preset waiting time range, the returned setting information is not received, Then the wavelength configuration instruction is issued again; within the preset time period, if the accurate return setting information is not received, the operation of the wavelength configuration method is ended, and an error flag is generated, and the error flag is read by the host computer.
- This embodiment also provides an optical module, the specific structure of which can be referred to the structure in FIG. 7 and FIG. 8 and the corresponding text description.
- the MCU is provided with the wavelength configuration device provided in the foregoing embodiment.
- optical module at the transmitting end the optical module at the receiving end, and their corresponding upper computer improved in this embodiment are only proposed from the perspective of enabling data transmission.
- an optical module can be used as the transmitting end.
- the optical module can also be used as the receiving end optical module.
- specific representation modes of the first preset value and the second preset value of different flag bits may be the same or different.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Communication System (AREA)
Abstract
一种波长配置方法、装置及光模块。方法包括:将波长配置指令以低频调制信号的方式加载到出射光中(S200);接收回传的设置信息,设置信息用于校验波长配置指令是否准确实施;当回传的设置信息不准确时,再次发出波长配置指令(S402)。这实现了通过低频调制光信号与接收端光模块进行通信,向接收端光模块指示发光波长的配置,而且在接收端光模块未正确配置波长时,再次向接收端光模块指示发光波长的配置;这种通信机制的建立实现了不影响数据正常传输的前提下,使用发送端光模块控制接收端光模块的波长配置。
Description
本申请要求在2019年08月16日提交中国专利局、申请号为201910758691.4、发明名称为“一种光模块波长配置方法、装置及光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光通信技术领域,尤其涉及一种光模块。
在接入网通信系统中,由光线路终端与光网络单元之间建立相互的光连接,以实现数据通信。具体地,光线路终端中具有第一光模块,光网络单元中具有第二光模块,第一光模块与第二光模块之间建立光连接;光线路终端通过第一光模块向第二光模块发送光信号,实现光线路终端向光网络单元发送数据;光线路终端通过第一光模块接收来自第二光模块的光信号,实现光线路终端接收来自光网络单元的数据。
在上述通信系统中,光线路终端及光网络单元是光模块的上位机。其中,上位机将数据电信号输入光模块中,由光模块将该数据电信号转换为光信号发出,以实现上位机发送数据;光模块将来自外部的光信号转换为数据电信号,将该数据电信号输入上位机,以实现上位机接收数据。
由于光模块在上位机中仅是数据传递者,光模块只能由其上位机进行操控,所以需要人工通过上位机来间接操控光模块。而在接入网物理网络中,光线路终端和/或光网络单元往往位于不便于人工操作的环境,比如高山、森林甚至水 体中,在这些环境下操作上位机或使用上位机操控光模块都变得十分困难。
发明内容
本申请实施例的第一方面,提供了一种波长配置方法,包括:将波长配置指令以低频调制信号的方式加载到出射光中;接收回传的设置信息,设置信息用于校验波长配置指令是否准确实施;当回传的设置信息不准确时,则再次发出波长配置指令。
本申请实施例的第二方面,提供了一种波长配置装置,包括处理器和存储器,其中:
存储器,用于存储程序代码;
处理器,用于读取存储器中存储的程序代码,并执行本申请实施例第一方面的方法。
根据本申请实施例的第三方面,提供了一种光模块,包括光发送组件、光接收组件、印制电路板、以及设置在印制电路板上的MCU,其中:
MCU中设置有本申请实施例第二方面的波长配置装置;
光发送组件通过印制电路板与MCU连接,MCU可以控制光发送组件发送加载有低频调制信号的出射光,光接收组件用于接收回传的设置信息。
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一些实施例提供的光模块的上位机基本结构示意图;
图2为本申请一些实施例提供的上位机的局部结构示意图;
图3为本申请一些实施例提供的光模块与光模块接口连接结构剖面图;
图4为本申请一些实施例提供的光模块接口中电连接器结构示意图;
图5为本申请一些实施例提供的光模块金手指结构示意图;
图6为基于阵列波导光栅建立的光通信网络结构示意图;
图7为本申请一些实施例提供的光模块结构示意图;
图8为本申请一些实施例提供的光模块分解结构示意图;
图9为本申请一些实施例提供的波长配置方法的基本流程示意图;
图10为本申请一些实施例提供的另一种波长配置方法的基本流程示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对目前光模块只能由其上位机进行操控,即需要人工通过上位机来间接操控光模块,所带来的操作不方便的问题,可以采用一种新的通信方式,使得光模块不仅受控于其接入的上位机,也可以实现远程操控,进而也可以通过对光模块的远程操控实现对上位机的远程操控。
光模块被用在光纤通信技术领域中实现光电转换功能,其中,光信号与电信号的相互转换是光模块的核心功能。图1为本申请一些实施例提供的光模块的上位机基本结构示意图。图2为本申请一些实施例提供的上位机中的局部结 构示意图。如图1、图2所示,上位机包括上盖体10、下盖体20、电路板40及光模块30,上盖体10及下盖体20形成包裹电路板40及光模块30的腔体,电路板40上具有光模块接口401及网线接口402。
其中,光模块接口401用于接入光模块30,光模块接口401中设置有电连接器4011,用于接入金手指等光模块电口,从而与光模块30建立双向的电信号连接;网线接口402用于接入网线,与网线建立双向的电信号连接;光模块30与网线之间通过上位机建立连接,具体地,上位机将来自光模块30的信号传递给网线,将来自网线的信号传递给光模块30,上位机监控光模块30的工作。
光模块30的光口与光纤连接,与光纤建立双向的光信号连接;光模块30的电口接入上位机,与光网络单元建立双向的电信号连接;光模块30实现光信号与电信号的相互转换,从而实现在光纤与上位机之间建立连接;具体地,来自光纤的光信号由光模块30转换为电信号后输入至上位机,来自上位机的电信号由光模块30转换为光信号输入至光纤。
图3为本申请一些实施例提供的一种光模块与光模块接口连接结构剖面图,图4为本申请一些实施例提供的一种光模块接口中电连接器结构示意图,图5为本申请一些实施例提供的光模块金手指结构示意图。如图3、图4、图5所示,光模块的电路板301末端插入上位机的光模块接口401中,实现光模块与上位机之间的电连接。具体地,光模块接口401中具有电连接器4011,电连接器4011具有容纳光模块电路板40的间隙以及压合在光模块电路板40表面的弹片4012,光模块电路板301末端的表面具有呈金属引脚状的金手指3011,电连接器4011中的弹片与金手指接触从而实现电导通。
在一种使用阵列波导光栅AWG建立的光纤通信网络中,本申请实施例提供 了一种光模块波长配置的方案。
阵列波导光栅基于不同波长的光相互间线性干涉的基本光学原理,能够将许多波长的光复合到单一的光纤中,并在接收端将这些光重新分离出来。阵列波导光栅光通信网络左右两侧分别具有多个光路接口,用于分别接入不同的光模块,左侧某一接口的光模块与右侧对应接口的光模块需采用特定的波长建立相互通信,因此采用发射波长可调谐的多个光模块组建阵列波导光栅光纤通信网络时,需要为光模块配置指定的波长。
图6为基于阵列波导光栅建立的光通信网络结构示意图,如图6所示,在由AWG1与AWG2之间建立的光纤通信网络中,在AWG1的一侧挂接了A1至AN N个光模块,对应的在AWG2的一侧挂接了B1至BNN个光模块。光模块A1发出的光信号经由AWG光纤通信网络由光模块B1接收,对应地,由光模块B1发出的光信号经AWG光纤通信网络由光模块A1接收。光模块A1与光模块B1之间的光通路需要在波长配置之后建立。具体地,在光模块A1与光模块B1建立光通路的过程中,光模块A1首先发光,光模块A1发出的光经AWG光纤通信网络后被光模块B1接收到,但是光模块B1并不知道发出何种波长的光才会被光模块A1接收到,这时需要由光模块A1给出明确的指示,即光模块A1发送给光模块B1的光中携带有指示光模块B1发光波长的信息,光模块B1发出的光使用何种波长是由光模块A1指定。
图7为本申请一些实施例提供的光模块结构示意图。图8为本申请一些实施例提供的光模块分解结构示意图。如图7、图8所示,本申请实施例提供的光模块括电路板301、上壳体302、下壳体303、光收发器件304(包括光发送组件及光接收组件)以及解锁手柄307。
上壳体302与下壳体303形成具有两个开口的包裹腔体,两个开口具体可以是位于光模块同一端的两处开口(204、205),也可以是在光模块不同端的的两处开口,也可以是在不同方向上的两处开口;其中一个开口为电口305,用于插入光网络单元等上位机中,另一个开口为光口306,用于外部光纤接入以连接内部光纤,电路板301、光收发器件304等光电器件位于包裹腔体中。
在一些实施方式中,上壳体302及下壳体303采用金属材料,利于实现电磁屏蔽以及散热。解锁手柄303位于包裹腔体以及下壳体303的外壁,拉动解锁手柄307的末端可以在使解锁手柄307在外壁表面相对移动;光模块插入上位机时通过解锁手柄307将光模块固定在上位机的光模块接口401里,通过拉动解锁手柄307可以解除光模块与上位机的卡合关系,从而将光模块从上位机的光模块接口401里抽出。
光模块电路板301表面的金手指3011具有I2C引脚,上位机与光模块之间可以采用I2C协议、通过I2C引脚进行信息传递。上位机可以向光模块写入信息,具体地,上位机可以将信息写入光模块的寄存器中;光模块无法向上位机写入信息,当光模块需要将信息提供给上位机时,光模块会将信息写入光模块中的预设寄存器中,在一些实施例中,预设寄存器可以包括发送状态寄存器、数据发送失败寄存器,由上位机对该寄存器进行读取。光模块的寄存器一般集成在光模块的微处理器(MCU)3012中,也可以独立设置在光模块的电路板301上。
本申请的某些实施例中,该光模块在工作过程中,可以针对自光线路终端的数据电信号发出相对高频的数据光信号,以保持光线路终端原有的对外数据传输业务,同时,该光模块还针对非数据电信号发出相对低频的操控光信号,其中非数据电信号是指用于正常传输业务的信号,以向接收端的光模块发出操 控信息,实现在不打断正常业务的同时向远端系统传递操控数据,例如,利用低频消息通道传送系统升级包实现远端系统的在线升级、上报DDM(数字诊断监控,Digital Diagnostic Monitoring)信息等。
由于发送端光模块及接收端的光模块均采用一根光纤对外连接,所以数据光信号及操控光信号混合在同一束光中,采用同一根光纤传输,为了对不同信号进行区分,可设置数据光信号与操控光信号具有不同的频率。在其实现方式上,可以通过对发送端光模块中的微处理器3012和光收发器件304的进行设计,使微处理器3012控制光收发器件304,在其发出的高频信号(数据光信号)上叠加低频调制信号(操控光信号),本实施例称低频调制信号为低频消息通道。例如,在10Gbps或25Gbps信号上叠加低频调制信号50Kbps,其中,10Gbps或25Gbps信号为正常的业务信号,增加的另一路50Kbps的低频信号执行其它操控功能。
通过低频调制信号将波长配置信息发送给接收端的光模块,接收端光模块根据波长配置信息进行波长配置,基于此通信方法的设计,下面将结合附图,对本实施例提供的波长配置方法进行详细介绍。
图9为本实施例提供的一种波长配置方法的基本流程示意图,图10为本实施例提供的一种波长配置方法的基本流程示意图。如图9、图10所示,该方法是由发送端光模块针对接收端光模块的进行波长配置,是的接收端光模块能够配置其自身的发射波长。具体包括如下步骤:
S200:将波长配置指令以低频调制信号的方式加载到出射光中。
发送端的光模块将波长配置指令以低频光信号为载体发送给接收端的光模块。
波长配置指令可以来自发送端的上位机,发送端的上位机将波长配置信息通过I2C通道写入发送端光模块的寄存器中,由发送端光模块从该寄存器中读取;波长配置指令也可以来自发送端光模块,由发送端光模块的微处理器MCU生成或查询得到;波长配置指令由发送端光模块的微处理器以低频调制信号的形态输出。
波长配置指令的内容可以是预设的波长通道号,也可以是具体的波长数值;预设的波长通道号是波长数值的代号,可以指示发送端光模块的发射波长和/或接收端光模块的发射波长。
光模块正常的业务数据通过激光芯片的驱动芯片,以高频调制信号的方式加载到出射光中;波长配置信息通过光模块的微处理器,以低频调制信号的方式加载到出射光中;发送端光模块的出射光由接收端的光模块接收。从发送端光模块发出的光信号是根据高频调制信号及低频调制信号这两种信号调制生成的,具有高频及低频两种成分。
将低频调制信号加载到出射光的方式,具有多种具体的硬件实现方式,比如将低频调制信号(以电流形态呈现)与原有的高频调制信号(以电流形态呈现)混合后一同输入激光芯片中;或者在使用电吸收调制器的硬件环境中,通过MCU控制电吸收调制器的基准电压以实现将低频调制信号加载到光中;一般地,低频调制信号由光模块的微处理器产生,由光模块的激光芯片转换为光信号发出。
S300:等待接收回传的设置信息。
发送端光模块将波长配置指令发送出去之后,等待接收端光模块的响应。光传输至接收端光模块、接收端光模块根据波长配置指令配置发射光的波长以 及待波长配置完成后生成响应消息都需要一定的时间,所以发送端光模块需要等待接收端光模块的响应。
在等待过程中,还可以对发送端光模块的接收光功率进行校验,当接收光功率未超过门限值时,认定接收端并未配置好接收端光模块的发射波长,此时将链路告警标志位修改为第三预设值,进而跳转至步骤S200再次发送波长配置指令。
等待响应的过程会进行计时。计时可以自波长配置指令发送完毕之后开始,也可以与步骤S200同时开始。计时的一个目的是,在超过预设的等待时间后进行波长配置信息的重新发送;计时的另一个目的是,在严重超过预设的等待时间的情况下,即多次重新发送波长配置的累计时间达到预设周期时停止波长配置方法的循环运行。
在等待过程中,可能会收到来自接收端回传的设置信息,也可能不会收到来自接收端回传的设置信息。当光纤通信网络及光模块均正常工作时,一般会在预设的等待时间范围内收到接收端回传的设置信息;当光纤通信网络或光模块不正常工作时,无法收到接收端回传的设置信息,此时会产生严重超时的情况。
S400:判断回传的设置信息是否准确。
接收端向发送端光模块回传的设置信息是特定的校验信息,是接收端光模块对发送端光模块波长配置指令的响应,用于发送端光模块判断接收端光模块是否准确进行了波长配置;该回传的设置信息一般在接收端光模块完成波长配置之后发出,也可以在接收到发送端的波长配置指令之后、完成波长配置之前发出;校验信息的设置可以根据具体需求而定,该回传的设置信息可以是预设 的信息,也可以是接收端光模块所设的波长数据信息等。
S401:当回传的设置信息准确时,则将链路告警标志位修改为第四预设值、将波长连通标志位修改为第二预设值。
发送端光模块对接收端光模块回传的设置信息进行校验,当回传的设置信息准确时,则不需要再次向接收端光模块发送波长配置指令,结束波长配置方法的运行,光模块会将链路告警标志位修改为第四预设值,将波长连通标志位修改为第二预设值。
可以先修改链路告警标志位,然后再将接收端回传的信息清除,之后再修改波长连通标志位。链路告警标志位为用于触发光模块再次发送波长配置指令,是光模块内部的控制;而波长连通标志位用于告知上位机链路是否畅通,是光模块对外的通知;需要将光模块内部处理完毕后,然后向光模块外部发送通知。
发送端光模块接收的光信号可能并不来自与之对应的接收端光模块,所以根据是否接收到光信号作为判断依据并不十分准确,本申请中以特定的校验信息为判断依据。
具体地,波长配置方法是一个可供循环运行的方法,开始于步骤S200。当波长配置准确完成后,波长配置方法停止运行;当波长配置不正确时或超过预设的等待时间范围,需要再次运行波长配置方法。波长配置方法可以以一段软件代码的方式呈现,由发送端光模块的微处理器循环运行此段代码,当波长配置准确完成后,跳出此段代码的运行;当波长配置不正确时或在预设的等待时间范围之后,重复运行此段代码。
S402:当回传的设置信息不准确时,则再次发出波长配置指令。
发送端光模块在预设的等待时间范围内接收到了接收端光模块回传的设置 信息,发送端光模块对接收端光模块回传的设置信息进行校验,当回传的设置信息不准确时,则需要再次向接收端光模块发送波长配置指令,开启下一轮波长配置方法的运行,执行步骤S200,此时光模块会将链路告警标志位修改为第三预设值,以触发步骤S200的执行。
S500:若在预设的等待时间范围内未接收到回传的设置信息,则再次发出波长配置指令。
发送端光模块不会无休止的等待接收端光模块的响应,而是会预设一定的等待时间,当超过预设的等待时间范围后,会重复波长配置方法的运行,再次向接收端光模块发送波长配置指令,开启下一轮波长配置方法的运行,即重新执行步骤S200及后续的步骤。
在预设的时间周期范围之内,未接收到准确的回传设置信息,则结束波长配置方法的运行,生成错误标识。
未接收到准确的回传设置信息,分为两种情况,第一种是一直未接收到回传的设置信息;第二种是接收到的都是错误的回传设置信息。第一种情况及第二种情况均会循环自s200步骤开始执行波长配置方法,多次执行的累计时间达到预设的时间周期范围时,则结束波长配置方法,生成错误标识。
再次发出波长配置指令时会进行循环次数的记录,超过预设的循环次数是多次执行的累计时间达到预设的时间周期范围的具体体现。
错误标识存储在光模块的寄存器中,由接收端光模块的上位机进行读取。
由以上实施例实现了通过与低频光信号与接收端光模块进行通信,指示接收端光模块发光波长的配置,而且在接收端光模块未正确配置波长时,再次指示接收端光模块发光波长的配置,这种通信机制的建立实现了不影响数据正常 传输的前提下,使用发送端光模块控制接收端光模块的波长配置。
开启波长配置方法的触发因素有多种,在步骤S200之前会有多种触发步骤。
一种触发因素为,发送端光模块采用新的发射波长。具体场景可以是发送端光模块刚刚接入阵列波导光栅网络中,也可以是发送端上位机指示发送端光模块变更发射波长。此时,发送端光模块会执行自身发射波长配置以及对应接收端波长配置。
具体地,S101:当波长连通标志位被修改为第一预设值时,发送端光模块根据配置信息进行发射波长的配置;
上位机将光模块的波长连通标志位修改为第一预设值,发送端光模块完成发射波长配置后,会进入针对接收端光模块的波长配置方法中,执行S200、S300等一系列的步骤。
另一种触发因素为,发射端光模块接收的光信号功率出现异常。具体场景可以是光纤通信链路出现故障,或接收端光模块进行了更换,这些都会导致发射端光模块无法收到光信号或接收到的光信号功率较低。此时,发送端光模块会执行波长配置方法。
具体地,S102:当发送端光模块接收光功率低于设定阈值;进入波长配置方法流程,执行S200、S300等一系列的步骤。
由于接收光功率存在波动,会偶然发生发送端光模块接收光功率低于预设阈值的情况,为了避免发生误判,可以对接收光功率低于设定阈值进行计次,当次数超出异常次数阈值时,则认为发送端光模块接收光功率低于预设阈值并不是偶发的,而是出现故障,此时进入波长配置方法,执行S200、S300等一系列的步骤。
基于与上述方法同样的发明构思,本实施例还提供了一种光模块波长配置装置,该装置主要包括处理器和存储器,其中:存储器用于存储程序代码;处理器,用于读取存储器中存储的程序代码,并执行:根据配置信息完成进行发射波长的配置;将波长配置指令以低频调制信号的方式加载到出射光中;接收回传的设置信息,设置信息用于校验波长配置指令是否准确实施;当回传的设置信息不准确时,则再次发出波长配置指令;在预设的等待时间范围之后,未接收到回传的设置信息,则再次发出波长配置指令;在预设的时间周期范围之内,未接收到准确的回传设置信息,则结束波长配置方法的运行,生成错误标识,错误标识由上位机进行读取。
或者,处理器可以执行:判断接收光功率是否低于设定阈值,当接收光功率低于设定阈值时,将波长配置指令以低频调制信号的方式加载到出射光中;接收回传的设置信息,设置信息用于校验波长配置指令是否准确实施;当回传的设置信息不准确时,则再次发出波长配置指令;在预设的等待时间范围之后,未接收到回传的设置信息,则再次发出波长配置指令;在预设的时间周期范围之内,未接收到准确的回传设置信息,则结束波长配置方法的运行,生成错误标识,错误标识由上位机进行读取。
本实施例还提供了一种光模块,其具体结构可以参考图7、图8中的结构以及对应的文字描述,同时,该其MCU中设有上述实施例提供的波长配置装置。
需要说明的是,本实施例提高的发送端光模块、接收端光模块以及其对应的上位机,只是从使能数据发送的角度提出的,在实际使用中,一个光模块既可以作为发送端光模块、也可以作为接收端光模块使用。另外,不同的标志位 的第一预设值和第二预设值其具体表示方式可以相同也可以不同。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (7)
- 一种波长配置方法,其特征在于,所述方法包括:将波长配置指令以低频调制信号的方式加载到出射光中;接收回传的设置信息,所述设置信息用于校验所述波长配置指令是否准确实施;当回传的所述设置信息不准确时,则再次发出所述波长配置指令。
- 如权利要求1所述的光模块波长配置方法,其特征在于,还包括:在预设的等待时间范围之后,未接收到回传的设置信息,则再次发出所述波长配置指令。
- 如权利要求1所述的光模块波长配置方法,其特征在于,还包括:在预设的时间周期范围之内,未接收到准确的回传设置信息,则结束波长配置方法的运行,生成错误标识,所述错误标识由上位机进行读取。
- 如权利要求1至3任一所述的光模块波长配置方法,其特征在于,在将波长配置指令以低频调制信号的方式加载到出射光中之前,还包括:当波长连通标志位被修改为第一预设值,则根据配置信息完成进行发射波长的配置;在判断回传的所述设置信息准确之后,则将波长连通标志位修改为第二预设值。
- 如权利要求1至3任一所述的光模块波长配置方法,其特征在于,在将波长配置指令以低频调制信号的方式加载到出射光中之前,还包括:判断接收光功率是否低于设定阈值,当所述接收光功率低于设定阈值时,将波长配置指令以低频调制信号的方式加载到出射光中。
- 一种光模块波长配置装置,其特征在于,所述装置包括处理器和存储器,其中:所述存储器,用于存储程序代码;所述处理器,用于读取所述存储器中存储的程序代码,并执行如权利要求1至5中任一项所述的方法。
- 一种光模块,其特征在于,所述光模块包括光发送组件、接收组件、印制电路板、以及设置在所述印制电路板上的MCU,其中:所述MCU中设有权利要求6所述的数据发送装置;所述光发送组件通过印制电路板与MCU连接,所述MCU可以控制光发送组件发送加载有低频调制信号的光;所述接收组件用于接收回传的设置信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910758691.4 | 2019-08-16 | ||
CN201910758691.4A CN110519666B (zh) | 2019-08-16 | 2019-08-16 | 一种光模块波长配置方法、装置及光模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031652A1 true WO2021031652A1 (zh) | 2021-02-25 |
Family
ID=68626327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/093199 WO2021031652A1 (zh) | 2019-08-16 | 2020-05-29 | 一种光模块波长配置方法、装置及光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110519666B (zh) |
WO (1) | WO2021031652A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113098596A (zh) * | 2021-03-31 | 2021-07-09 | 青岛海信宽带多媒体技术有限公司 | 光模块及基于双mcu光模块获取远端监控数据的方法 |
CN113824498A (zh) * | 2020-06-19 | 2021-12-21 | 青岛海信宽带多媒体技术有限公司 | 光模块的速率模式切换方法及光模块 |
CN117240363A (zh) * | 2023-11-14 | 2023-12-15 | 湖南省康普通信技术有限责任公司 | 一种基于光模块的信号传输方法及光模块传输系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110519666B (zh) * | 2019-08-16 | 2022-04-01 | 青岛海信宽带多媒体技术有限公司 | 一种光模块波长配置方法、装置及光模块 |
CN113364523B (zh) * | 2020-03-06 | 2022-06-28 | 青岛海信宽带多媒体技术有限公司 | 一种数据发送方法及光模块 |
CN115133998B (zh) * | 2021-03-24 | 2024-01-23 | 青岛海信宽带多媒体技术有限公司 | 一种光模块及基于消息通道的波长自适应方法 |
CN115037376A (zh) * | 2021-03-24 | 2022-09-09 | 青岛海信宽带多媒体技术有限公司 | 一种光模块及其波长配置方法 |
CN113098613B (zh) * | 2021-03-31 | 2022-09-09 | 青岛海信宽带多媒体技术有限公司 | 光模块及基于双mcu光模块的波长自动对通方法 |
CN113098621B (zh) * | 2021-03-31 | 2022-07-08 | 青岛海信宽带多媒体技术有限公司 | 光模块及基于双mcu光模块的波长自动轮询方法 |
CN114866140A (zh) * | 2022-06-17 | 2022-08-05 | 苏州熹联光芯微电子科技有限公司 | 一种光模块、电子设备及光模块的控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621723A (zh) * | 2009-08-12 | 2010-01-06 | 烽火通信科技股份有限公司 | 一种wdm-pon系统的波长分配方法 |
CN102104812A (zh) * | 2009-12-22 | 2011-06-22 | 华为技术有限公司 | 一种波长自动选择的方法和光模块 |
CN103916179A (zh) * | 2014-03-28 | 2014-07-09 | 武汉光迅科技股份有限公司 | 通过局端光线路终端监控用户端可调激光器波长的方法 |
CN104468024A (zh) * | 2013-09-23 | 2015-03-25 | 中兴通讯股份有限公司 | 一种配置节点的方法、装置及系统 |
CN110519666A (zh) * | 2019-08-16 | 2019-11-29 | 青岛海信宽带多媒体技术有限公司 | 一种光模块波长配置方法、装置及光模块 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332989B (zh) * | 2011-06-21 | 2014-12-24 | 杭州华三通信技术有限公司 | 一种配置信息的发送方法和业务板 |
CN105785335B (zh) * | 2016-03-28 | 2019-04-05 | 电子科技大学 | 一种基于cPCI的数字阵接收通道性能自动测试系统 |
CN108989103B (zh) * | 2018-07-11 | 2020-08-21 | 珠海格力电器股份有限公司 | 设备升级方法、调试器、网络设备和网络系统 |
CN109412013B (zh) * | 2018-11-09 | 2023-08-08 | 武汉联特科技股份有限公司 | 一种波长可调谐光模块、远程波长切换方法及锁定方法 |
-
2019
- 2019-08-16 CN CN201910758691.4A patent/CN110519666B/zh active Active
-
2020
- 2020-05-29 WO PCT/CN2020/093199 patent/WO2021031652A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621723A (zh) * | 2009-08-12 | 2010-01-06 | 烽火通信科技股份有限公司 | 一种wdm-pon系统的波长分配方法 |
CN102104812A (zh) * | 2009-12-22 | 2011-06-22 | 华为技术有限公司 | 一种波长自动选择的方法和光模块 |
CN104468024A (zh) * | 2013-09-23 | 2015-03-25 | 中兴通讯股份有限公司 | 一种配置节点的方法、装置及系统 |
CN103916179A (zh) * | 2014-03-28 | 2014-07-09 | 武汉光迅科技股份有限公司 | 通过局端光线路终端监控用户端可调激光器波长的方法 |
CN110519666A (zh) * | 2019-08-16 | 2019-11-29 | 青岛海信宽带多媒体技术有限公司 | 一种光模块波长配置方法、装置及光模块 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113824498A (zh) * | 2020-06-19 | 2021-12-21 | 青岛海信宽带多媒体技术有限公司 | 光模块的速率模式切换方法及光模块 |
CN113824498B (zh) * | 2020-06-19 | 2023-04-25 | 青岛海信宽带多媒体技术有限公司 | 光模块的速率模式切换方法及光模块 |
CN113098596A (zh) * | 2021-03-31 | 2021-07-09 | 青岛海信宽带多媒体技术有限公司 | 光模块及基于双mcu光模块获取远端监控数据的方法 |
CN113098596B (zh) * | 2021-03-31 | 2023-07-18 | 青岛海信宽带多媒体技术有限公司 | 光模块及基于双mcu光模块获取远端监控数据的方法 |
CN117240363A (zh) * | 2023-11-14 | 2023-12-15 | 湖南省康普通信技术有限责任公司 | 一种基于光模块的信号传输方法及光模块传输系统 |
CN117240363B (zh) * | 2023-11-14 | 2024-01-30 | 湖南省康普通信技术有限责任公司 | 一种基于光模块的信号传输方法及光模块传输系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110519666A (zh) | 2019-11-29 |
CN110519666B (zh) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031652A1 (zh) | 一种光模块波长配置方法、装置及光模块 | |
WO2021031653A1 (zh) | 一种数字诊断信息获取方法、装置及光模块 | |
CN110430017B (zh) | 一种数据发送方法、装置及光模块 | |
CN113098613B (zh) | 光模块及基于双mcu光模块的波长自动对通方法 | |
WO2021169463A1 (zh) | 一种数据发送方法、接收方法及光模块 | |
CN110430016B (zh) | 一种数据接收方法、装置及光模块 | |
CN113098596B (zh) | 光模块及基于双mcu光模块获取远端监控数据的方法 | |
CN111555810B (zh) | 一种光模块以及数据传输方法 | |
CN110430025B (zh) | 一种数据发送方法、装置及光模块 | |
CN113824498B (zh) | 光模块的速率模式切换方法及光模块 | |
CN114465662B (zh) | 光模块 | |
CN115037376A (zh) | 一种光模块及其波长配置方法 | |
CN113364523B (zh) | 一种数据发送方法及光模块 | |
WO2020108294A1 (zh) | 光模块 | |
CN212083742U (zh) | 一种光模块 | |
CN113098621B (zh) | 光模块及基于双mcu光模块的波长自动轮询方法 | |
CN113364524B (zh) | 一种数据接收方法及光模块 | |
CN113300773B (zh) | 一种光模块 | |
CN216290918U (zh) | 一种光模块 | |
CN113472449B (zh) | 一种光模块及信号极性定义方法 | |
CN216016871U (zh) | 一种光模块 | |
WO2021017527A1 (zh) | 一种光模块数据发送与接收方法、装置及光模块 | |
CN114466260B (zh) | 一种光模块升级方法及光模块 | |
CN113824492B (zh) | 一种光链路自检方法及光模块 | |
WO2023016125A1 (zh) | 一种光模块及信号校准方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854138 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20854138 Country of ref document: EP Kind code of ref document: A1 |