WO2021031653A1 - 一种数字诊断信息获取方法、装置及光模块 - Google Patents

一种数字诊断信息获取方法、装置及光模块 Download PDF

Info

Publication number
WO2021031653A1
WO2021031653A1 PCT/CN2020/093229 CN2020093229W WO2021031653A1 WO 2021031653 A1 WO2021031653 A1 WO 2021031653A1 CN 2020093229 W CN2020093229 W CN 2020093229W WO 2021031653 A1 WO2021031653 A1 WO 2021031653A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic information
digital diagnostic
preset value
optical module
information acquisition
Prior art date
Application number
PCT/CN2020/093229
Other languages
English (en)
French (fr)
Inventor
王庆华
李刚
王力
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021031653A1 publication Critical patent/WO2021031653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • a mutual optical connection is established between the optical line terminal and the optical network unit to realize data communication.
  • the optical line terminal has a first optical module
  • the optical network unit has a second optical module.
  • An optical connection is established between the first optical module and the second optical module; the optical line terminal transmits to the second optical module through the first optical module.
  • the module sends optical signals to enable the optical line terminal to send data to the optical network unit; the optical line terminal receives the optical signal from the second optical module through the first optical module, so that the optical line terminal receives data from the optical network unit.
  • the optical line terminal and the optical network unit are the upper computer of the optical module.
  • the upper computer inputs the data electrical signal into the optical module, and the optical module converts the data electrical signal into an optical signal to send out data, so that the upper computer sends data; the optical module converts the external optical signal into a data electrical signal.
  • the data electrical signal is input to the upper computer to realize the upper computer to receive data.
  • optical module Since the optical module is only the data transmitter in the host computer, the optical module can only be controlled by the host computer, so it is necessary to manually control the optical module through the host computer.
  • optical line terminals and/or optical network units are often located in environments that are not convenient for manual operation, such as mountains, forests, and even water bodies. In these environments, operating the upper computer or using the upper computer to control the optical module is both It becomes very difficult.
  • a method for acquiring digital diagnostic information including:
  • the instruction to acquire the digital diagnostic information is loaded into the emitted light in the form of a low-frequency modulation signal
  • the digital diagnostic information acquisition enable flag is modified to the second preset value to stop the optical module at the transmitting end from sending out to obtain digital diagnosis Information instructions.
  • a device for acquiring digital diagnostic information in an optical module includes a processor and a memory, wherein:
  • the memory is used to store program code
  • the processor is configured to read the program code stored in the memory and execute the method provided in the first aspect of the embodiment of the present application.
  • an optical module characterized in that the optical module includes a light emitting component, a light receiving component, a printed circuit board, and an MCU arranged on the printed circuit board ,among them:
  • the digital diagnostic information acquisition device provided by the second aspect of the embodiments of the present application is provided in the MCU;
  • the light emitting component and the light receiving component are connected with the MCU through a printed circuit board.
  • FIG. 1 is a schematic diagram of the basic structure of an upper computer of an optical module provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of a partial structure of an upper computer provided by an embodiment of the application.
  • FIG. 3 is a cross-sectional view of an optical module and an optical module interface connection structure provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of an electrical connector in an optical module interface provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a golden finger structure of an optical module provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the basic flow of a method for acquiring digital diagnostic information provided by this embodiment.
  • FIG. 9 is a schematic diagram of the basic flow of another method for acquiring digital diagnostic information provided by this embodiment.
  • the optical module can only be controlled by its host computer, that is, it is necessary to manually control the optical module through the host computer, which brings inconvenience.
  • a new communication method can be adopted to make the optical module not only controlled.
  • the upper computer connected to it can also realize remote control, and the remote control of the upper computer can also be realized through the remote control of the optical module.
  • FIG. 1 is a schematic diagram of the basic structure of an upper computer of an optical module 30 provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a partial structure in an upper computer provided by an embodiment of the application.
  • the host computer includes an upper cover body 10, a lower cover body 20, a circuit board 40 and an optical module 30.
  • the upper cover body 10 and the lower cover body 20 form a cavity that wraps the circuit board 40 and the optical module 30.
  • the circuit board 40 has an optical module interface 401 and a network cable interface 402.
  • the optical module interface 401 is used to connect to the optical module 30, and an electrical connector 4011 is provided in the optical module interface 401 for connecting to the optical module electrical port such as golden finger, so as to establish a bidirectional electrical signal connection with the optical module 30;
  • the network cable interface 402 is used to connect to the network cable and establish a two-way electrical signal connection with the network cable; the optical module 30 and the network cable establish a connection through the upper computer.
  • the upper computer transmits the signal from the optical module 30 to the network cable, which will The signal is transmitted to the optical module 30, and the upper computer monitors the operation of the optical module 30.
  • the optical port of the optical module 30 is connected to the optical fiber to establish a two-way optical signal connection with the optical fiber; the electrical port of the optical module 30 is connected to the upper computer to establish a two-way electrical signal connection with the optical network unit; the optical module 30 realizes the optical signal and the electrical signal
  • the mutual conversion between the optical fiber and the host computer is realized; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module 30 and then input to the host computer, and the electrical signal from the host computer is converted by the optical module 30 The optical signal is input to the optical fiber.
  • FIG. 3 is a cross-sectional view of an optical module and an optical module interface connection structure provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of an electrical connector in an optical module interface provided by an embodiment of the application
  • FIG. 5 is an embodiment of the application
  • the schematic diagram of the golden finger structure of the optical module provided.
  • the end of the circuit board 301 of the optical module is inserted into the optical module interface 401 of the upper computer to realize the electrical connection between the optical module and the upper computer.
  • the optical module interface 401 has an electrical connector 4011.
  • the electrical connector 4011 has a gap for accommodating the optical module circuit board 40 and an elastic sheet 4012 pressed on the surface of the optical module circuit board 40.
  • the surface of the end of the optical module circuit board 301 has The golden finger 3011 in the shape of a metal pin, the elastic piece in the electrical connector 4011 contacts the golden finger to realize electrical conduction.
  • FIG. 6 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
  • the optical module provided by the embodiment of the present application includes a circuit board 301, an upper casing 302, a lower casing 303, an optical transceiver 304 (including a light emitting component and a light receiving component), and an unlocking handle 307 .
  • the upper shell 302 and the lower shell 303 form a wrapping cavity with two openings.
  • the two openings can be two openings (204, 205) at the same end of the optical module, or two openings at different ends of the optical module. Openings; one of the openings is the electrical port 305, which is used to insert the optical network unit and other upper computers, and the other is the optical port 306, which is used for external optical fiber access to connect the internal optical fiber, circuit board 301, optical transceiver 304, etc.
  • the device is located in the package cavity.
  • the upper shell 302 and the lower shell 303 are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the unlocking handle 303 is located on the outer wall of the package cavity and the lower housing 303. Pulling the end of the unlocking handle 307 can make the unlocking handle 307 move relatively on the outer wall surface; when the optical module is inserted into the upper computer, the optical module is fixed in the upper position by the unlocking handle 307 In the optical module interface 401 of the computer, by pulling the unlocking handle 307, the engagement relationship between the optical module and the host computer can be released, so that the optical module can be withdrawn from the optical module interface 401 of the host computer.
  • the golden finger 3011 on the surface of the optical module circuit board 301 has I2C pins, and the I2C protocol can be used between the host computer and the optical module to transmit information through the I2C pins.
  • the upper computer can write information to the optical module. Specifically, the upper computer can write information into the register of the optical module; the optical module cannot write information to the upper computer. When the optical module needs to provide information to the upper computer, the optical module The information is written into the preset register in the optical module. In some embodiments, the preset register is the sending status register and the data sending failure register set in this embodiment, and the upper computer reads the register.
  • the register of the optical module is generally integrated in the microprocessor (MCU) 3012 of the optical module, and can also be independently arranged on the circuit board 301 of the optical module.
  • MCU microprocessor
  • a relatively high-frequency data optical signal can be sent out according to the data electrical signal from the optical line terminal to maintain the original external data transmission service of the optical line terminal.
  • the optical module also sends out relatively low-frequency control optical signals for non-data electrical signals, where non-data electrical signals refer to signals used for normal transmission of services to send control information to the opposite optical module, so as to achieve normal operation without interruption.
  • transfer control data to the remote system for example, use the low-frequency message channel to transmit the system upgrade package to realize the online upgrade of the remote system, and report DDM (Digital Diagnostic Monitoring) information.
  • the microprocessor 3012 and the optical transceiver 304 in the optical module at the transmitting end can be designed so that the microprocessor 3012 controls the optical transceiver 304, and the high-frequency signal (data optical signal) sent by it Superimposed on the low-frequency modulation signal (control optical signal), this embodiment refers to the low-frequency modulation signal as a low-frequency message channel. For example, superimposing a low-frequency modulation signal of 50Kbps on a 10Gbps or 25Gbps signal, where the 10Gbps or 25Gbps signal is a normal business signal, and another 50Kbps low-frequency signal is added to perform other control functions.
  • the digital diagnostic information of the optical module is usually generated by the optical module, and is read from the optical module by the upper computer of the optical module to realize the monitoring of the working status of the optical module by the upper computer.
  • some upper computers have relatively simple functions and do not have the function of reading the digital diagnostic information of the optical module.
  • the low-frequency message channel can be used to transmit the digital diagnostic information of the optical module to the opposite optical module.
  • the upper computer realizes the monitoring of the local and remote optical modules.
  • FIG. 8 is a schematic diagram of the basic flow of a method for acquiring digital diagnostic information provided by this embodiment. As shown in Figure 8, the method specifically includes the following steps:
  • S101 Determine whether the digital diagnostic information acquisition enable flag bit is modified to a first preset value.
  • the I2C channel is used for data transmission between the optical module at the transmitting end and the upper computer at the transmitting end, and the upper computer at the transmitting end can modify the flag bit of the optical module at the transmitting end through the I2C channel.
  • the flag bit is stored in the memory of the optical module, and the optical module at the transmitting end can detect whether the upper computer it is connected to has an action to change the flag bit; if it is detected that the upper computer at the transmitting end changes the digital diagnostic information to obtain the enable flag Bit action is to query whether the value of the enable flag bit of the digital diagnostic information written by the host computer at the sending end is the first preset value.
  • the digital diagnostic information acquisition enable flag bit changes between the first preset value and the second preset value.
  • the initial state is the second preset value.
  • the host computer changes it from the second preset value to the second preset value in a specific state.
  • the first preset value is changed from the first preset value to the second preset value by the optical module in a specific state.
  • the state of the flag bit changes between 0 and 1.
  • the first preset value can be set to 0 or the first preset value can be set to 1.
  • the digital diagnostic information acquisition enable flag is modified to the first preset value, indicating that the host computer at the transmitting end instructs the transmitting optical module to issue an instruction to the receiving optical module, and the instruction is used to obtain the digital diagnostic information of the receiving optical module.
  • the transmitting end optical module sends an instruction to obtain digital diagnostic information to the receiving end optical module through its optical transmitting component.
  • the instruction is loaded into the output light of the transmitting end optical module in the form of a low-frequency modulation signal.
  • the output light also includes normal transmission. High-frequency modulation signal of business data.
  • Digital diagnostic information is the monitoring information generated by the optical module.
  • Common digital diagnostic information includes transmitted optical power, received optical power, bias current value, operating voltage, operating temperature, laser chip switching status, and light loss alarm LOS signal.
  • the optical module at the transmitting end waits for the information returned by the optical module at the receiving end, and the information returned by the optical module at the receiving end is the feedback of the instruction issued by the optical module at the transmitting end to obtain digital diagnostic information; the optical module at the receiving end generates and stores digital diagnostic information, When the receiving end optical module receives the digital diagnostic information command from the transmitting end optical module, it transmits the digital diagnostic information to the transmitting end optical module according to the requirements of the instruction.
  • the optical module at the transmitting end performs accuracy verification on the returned information to determine whether the returned information is accurate digital diagnostic information.
  • the optical module at the receiving end will send back multiple types of optical signals.
  • the optical module at the transmitting end needs to perform self-checking on the received optical signal, specifically, the received optical signal and the calibration
  • the verification information is compared; when the optical signal is consistent with the verification information, it means that the returned information is accurate digital diagnostic information.
  • the returned information has a specific encoding format.
  • the encoding format may include a data frame header, data length, command code, valid data, check code, and data frame end.
  • the host computer at the receiving end can be instructed to read the data stored in the optical module at the receiving end according to the length value.
  • the data length value can be stored in the data length register; the command code can be used to indicate the current reception.
  • the purpose of the data The receiving end can verify the accuracy of the valid data in the received data packet according to the check code, and compare the check code with the check information to determine whether it is digital diagnostic information.
  • the optical module at the transmitting end stores the received digital diagnostic information in a preset data storage space, and the preset data storage space can be read by a host computer at the transmitting end.
  • the preset data storage space may be a preset data buffer area, multiple registers for storing data, or an area opened in a certain register for storing data.
  • the optical module at the transmitting end verifies the returned digital diagnostic information, and when the digital diagnostic information is accurate, the digital diagnostic information acquisition success flag is modified to a second preset value.
  • the digital diagnostic information acquisition success flag changes between the third preset value and the fourth preset value.
  • the initial state is the fourth preset value
  • the host computer changes it from the third preset value to the fourth preset value in a specific state.
  • the preset value is changed from the fourth preset value to the third preset value by the optical module in a specific state.
  • the flag bit is a status indication for logical yes or no, combined with a binary mechanism, generally 0 and 1 are used for indication.
  • the third preset value may be 0 or 1.
  • a digital diagnostic information acquisition success flag is provided in the optical module at the transmitting end.
  • the host computer at the sending end can query the digital diagnostic information acquisition success flag bit by polling to be set to the second preset value, and then read the digital diagnostic information.
  • the host computer at the transmitting end finishes reading the digital diagnostic information, it will change the digital diagnostic information acquisition success flag from the third preset value to the fourth preset value.
  • the digital diagnostic information acquisition enable flag bit is modified to the second preset value to stop the optical module at the transmitting end from issuing instructions to acquire digital diagnostic information.
  • FIG. 9 is a schematic diagram of the basic flow of another method for acquiring digital diagnostic information provided by this embodiment. As shown in Figure 9, the method specifically includes the following steps:
  • S101 Determine whether the digital diagnostic information acquisition enable flag bit is modified to a first preset value.
  • step S202 is executed to start the data retransmission mechanism; otherwise, the digital diagnostics can be continuously queried after the preset time interval Information acquisition enable flag status.
  • the data retransmission flag g_SendMessageAble is set in the register of the optical module.
  • the optical module will change the data retransmission flag from the first
  • the sixth preset value is changed to the fifth preset value, such as set to 1, to start the data retransmission mechanism.
  • the optical module After the optical module sets the data retransmission flag bit to the fifth preset value, it loads an instruction to obtain digital diagnostic information into the outgoing light in the form of a low-frequency modulation signal and sends it to the receiving optical module.
  • the present embodiment also sets the sending count register sendcounter and the sending interval period register Runcounter inside the optical module, wherein, when the optical module is initially powered on, these two registers have a default value of 0.
  • the send interval period register Runcounter is equivalent to the timer to start timing.
  • the The register count value will increase by 1, and the present embodiment will first check whether the data retransmission flag is the fifth preset value before the register count value is increased by 1, and if so, the count value will be increased by 1. Otherwise, the counter value of this register can be reset to zero.
  • the data retransmission flag mode is checked every software cycle, so that it can be initialized in the next use, and the data retransmission can be ended earlier.
  • the count value of the Runcounter register can be used.
  • the value of the register does not reach the preset threshold value (the time corresponding to the preset threshold value is greater than the normal state when the transmitting end optical module receives the returned digital diagnostic information and is used for accuracy verification)
  • step S204 is executed; otherwise, if the preset threshold is reached and accurate digital diagnostic information has not been received, step S205 is executed.
  • the preset time in this step may not use the preset threshold corresponding to the Runcounter register.
  • the timer in the optical module MCU is used for timing and a corresponding time threshold is set. Among them, if it reaches If accurate digital diagnostic information has not been received when the time threshold is set, first check whether the data retransmission flag is the fifth preset value. If it is, then perform step S205, except that this method is the same as that of setting the Runcounter register. Compared with, the data processing capacity of MCU is larger.
  • the judgment method can be preset according to the actual situation; when accurate digital diagnostic information is received, the optical module at the transmitting end has achieved its purpose, the data retransmission mechanism can be stopped, and the The data retransmission flag is changed from the fifth preset value to the sixth preset value to end the data retransmission. At the same time, the Runcounter and sendcounter registers can be cleared so that they can be initialized in the next use.
  • S205 If accurate digital diagnostic information is not received, it is determined whether the number of times the instruction to obtain the digital diagnostic information is sent does not exceed the preset number of times threshold.
  • step S101 If yes, execute step S101. Otherwise, step S206 is executed.
  • the optical module at the transmitting end After the optical module at the transmitting end repeatedly sends the instruction to obtain the digital diagnostic information for many times, the accurate digital diagnostic information is still not obtained, indicating that the data transmission between the optical modules (also known as the underlying data transmission of the module) has completely failed, and the data is retransmitted
  • the flag bit g_SendMessageAble is changed from the third preset value to the fourth preset value, the bottom layer retransmission failure flag bit of the optical module is changed to the seventh preset value, and the count value of the sendcounter and Runcounter registers is reset to zero. End the data retransmission mechanism of the optical module and make its internal registers in the initialization state.
  • the optical module can modify the digital diagnostic information acquisition enable flag to the second preset value to stop the optical module from sending instructions; or the digital diagnostic information can be successfully acquired
  • the flag bit is modified to the fourth preset value to prompt the optical module to further modify the digital diagnostic information acquisition enable flag bit to the second preset value to stop the optical module from sending instructions; the host computer can also retransmit the failure flag bit according to the bottom layer Modify the digital diagnostic information acquisition success flag to the fourth preset value, or directly modify the digital diagnostic information acquisition enable flag to the second preset value according to the bottom layer retransmission failure flag.
  • the data transmission verification, error retransmission, and transmission failure reporting functions can be implemented at the module level, thereby reducing the burden when the upper computer implements the mechanism and improving the overall The efficiency when the system uses the message channel to transmit data.
  • this embodiment also provides a digital diagnostic information acquisition device, which mainly includes a processor and a memory, where: the memory is used to store program codes; the processor is used to read the Program code stored in the memory, and execute: determine whether the digital diagnostic information acquisition enable flag bit is modified to the first preset value;
  • the instruction to acquire the digital diagnostic information is loaded into the emitted light in the form of a low-frequency modulation signal
  • the digital diagnostic information acquisition enable flag is modified to the second preset value.
  • the processor may execute: determine whether the digital diagnostic information acquisition enable flag is modified to the first preset value; when the digital diagnostic information acquisition enable flag is modified to the first preset value, the data retransmission flag The bit is changed from the sixth preset value to the fifth preset value; it is judged whether the returned digital diagnostic information is accurate; if the digital diagnostic information is received, the data retransmission flag bit is changed from the fifth preset value to the first Six preset values; if the digital diagnostic information is not received, it is determined whether the number of times the instruction to obtain digital diagnostic information has not exceeded the preset threshold; if the number of times the instruction to obtain digital diagnostic information exceeds the preset threshold, the The data retransmission flag is changed from the fifth preset value to the sixth preset value, and the bottom retransmission failure flag of the optical module at the transmitting end is set to the seventh preset value.
  • the preset values of the digital diagnostic information acquisition enable flag are generally switched between 0 and 1, in order to To describe the consistency of concepts, the preset values of each flag bit are not named uniformly as the first or second, but are named separately.
  • this embodiment also provides a digital diagnostic information acquisition device, which mainly includes a processor and a memory, wherein:
  • the memory is used to store program code; the processor is used to read the program code stored in the memory and execute the above-mentioned method for acquiring digital diagnostic information.
  • This embodiment also provides an optical module, the specific structure of which can be referred to the structure in FIG. 3 to FIG. 7 and the corresponding text description.
  • the MCU is provided with the digital diagnostic information acquisition device provided in the above embodiment.
  • optical module at the transmitting end the optical module, and the corresponding host computer improved in this embodiment are only proposed from the perspective of enabling data transmission.
  • an optical module can be used as the optical module at the transmitting end.
  • the module can also be used as an optical module.
  • specific representation modes of the first preset value and the second preset value of different flag bits may be the same or different.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请的某些实施例中实施例提供了一种数字诊断信息获取方法、装置及光模块,属于光纤通信技术领域。本申请实施例提供的方法,通过数字诊断信息获取使能标志位触发对外发送获取数字诊断信息的指令,该指令以低频调制信号的方式加载到出射光中,不与正常的数据通信业务冲突;当接收到数字诊断信息时,通过数字诊断信息获取成功标志位提示上位机进行读取,待上位机读取后通过数字诊断信息获取成功标志位提示光模块已完成数字诊断信息的获取,光模块修改数字诊断信息获取使能标志位以停止该方法的执行;本申请实施例提供的技术方案可以实现获取远端光模块的数字诊断信息。

Description

一种数字诊断信息获取方法、装置及光模块
本申请要求在2019年08月16日提交中国专利局、申请号为201910758222.2、发明名称为“光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在接入网通信系统中,由光线路终端与光网络单元之间建立相互的光连接,以实现数据通信。具体地,光线路终端中具有第一光模块,光网络单元中具有第二光模块,第一光模块与第二光模块之间建立光连接;光线路终端通过第一光模块向第二光模块发送光信号,实现光线路终端向光网络单元发送数据;光线路终端通过第一光模块接收来自第二光模块的光信号,实现光线路终端接收来自光网络单元的数据。
在上述通信系统中,光线路终端及光网络单元是光模块的上位机。其中,上位机将数据电信号输入光模块中,由光模块将该数据电信号转换为光信号发出,以实现上位机发送数据;光模块将来自外部的光信号转换为数据电信号,将该数据电信号输入上位机,以实现上位机接收数据。
由于光模块在上位机中仅是数据传递者,光模块只能由其上位机进行操控,所以需要人工通过上位机来间接操控光模块。而在接入网物理网络中,光线路终端和/或光网络单元往往位于不便于人工操作的环境,比如高山、森林甚至水 体中,在这些环境下操作上位机或使用上位机操控光模块都变得十分困难。
发明内容
根据本申请实施例的第一方面,提供了一种数字诊断信息获取方法,该方法包括:
当检测到数字诊断信息获取使能标志位被上位机修改为第一预设值时,将获取数字诊断信息的指令以低频调制信号的方式加载到出射光中;
当接收到准确的数字诊断信息时,将数字诊断信息获取成功标志位修改为第三预设值,以通知上位机读取所述数字诊断信息;
当检测到数字诊断信息获取成功标志位被上位机修改为第四预设值时,将数字诊断信息获取使能标志位修改为第二预设值,以停止发送端光模块对外发出获取数字诊断信息的指令。
根据本申请实施例的第二方面,提供了一种光模块中数字诊断信息获取装置,该装置包括处理器和存储器,其中:
所述存储器,用于存储程序代码;
所述处理器,用于读取所述存储器中存储的程序代码,并执行本申请实施例第一方面所提供的方法。
根据本申请实施例的第三方面,提供了一种光模块,其特征在于,该光模块包括光发射组件、光接收组件、印制电路板、以及设置在所述印制电路板上的MCU,其中:
MCU中设置有本申请实施例第二方面所提供的数字诊断信息获取装置;
光发射组件及光接收组件通过印制电路板与MCU连接。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光模块的上位机基本结构示意图;
图2为本申请实施例提供的上位机的局部结构示意图;
图3为本申请实施例提供的一种光模块与光模块接口连接结构剖面图;
图4为本申请实施例提供的一种光模块接口中电连接器结构示意图;
图5为本申请实施例提供的光模块金手指结构示意图;
图6为本申请实施例提供的光模块结构示意图;
图7为本申请实施例提供的光模块分解结构示意图;
图8为本实施例提供的一种数字诊断信息获取方法的基本流程示意图;
图9为本实施例提供的另一种数字诊断信息获取方法的基本流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对目前光模块只能由其上位机进行操控,即需要人工通过上位机来间接操控光模块,所带来的操作不方便的问题,可以采用一种新的通信方式,使得光模块不仅受控于其接入的上位机,也可以实现远程操控,进而也可以通过对 光模块的远程操控实现对上位机的远程操控。
光模块被用在光纤通信技术领域中实现光电转换功能,其中,光信号与电信号的相互转换是光模块的核心功能。图1为本申请实施例提供的光模块30的上位机基本结构示意图。图2为本申请实施例提供的上位机中的局部结构示意图。如图1、图2所示,上位机包括上盖体10、下盖体20、电路板40及光模块30,上盖体10及下盖体20形成包裹电路板40及光模块30的腔体,电路板40上具有光模块接口401及网线接口402。
其中,光模块接口401用于接入光模块30,光模块接口401中设置有电连接器4011,用于接入金手指等光模块电口,从而与光模块30建立双向的电信号连接;网线接口402用于接入网线,与网线建立双向的电信号连接;光模块30与网线之间通过上位机建立连接,具体地,上位机将来自光模块30的信号传递给网线,将来自网线的信号传递给光模块30,上位机监控光模块30的工作。
光模块30的光口与光纤连接,与光纤建立双向的光信号连接;光模块30的电口接入上位机,与光网络单元建立双向的电信号连接;光模块30实现光信号与电信号的相互转换,从而实现在光纤与上位机之间建立连接;具体地,来自光纤的光信号由光模块30转换为电信号后输入至上位机,来自上位机的电信号由光模块30转换为光信号输入至光纤。
图3为本申请实施例提供的一种光模块与光模块接口连接结构剖面图,图4为本申请实施例提供的一种光模块接口中电连接器结构示意图,图5为本申请实施例提供的光模块金手指结构示意图。如图3、图4、图5所示,光模块的电路板301末端插入上位机的光模块接口401中,实现光模块与上位机之间的电连接。具体地,光模块接口401中具有电连接器4011,电连接器4011具有容纳 光模块电路板40的间隙以及压合在光模块电路板40表面的弹片4012,光模块电路板301末端的表面具有呈金属引脚状的金手指3011,电连接器4011中的弹片与金手指接触从而实现电导通。
图6为本申请实施例提供的光模块结构示意图。图7为本申请实施例提供的光模块分解结构示意图。如图6、图7所示,本申请实施例提供的光模块包括电路板301、上壳体302、下壳体303、光收发器件304(包括光发射组件及光接收组件)以及解锁手柄307。
上壳体302与下壳体303形成具有两个开口的包裹腔体,两个开口具体可以是位于光模块同一端的两处开口(204、205),也可以是在光模块不同端的的两处开口;其中一个开口为电口305,用于插入光网络单元等上位机中,另一个开口为光口306,用于外部光纤接入以连接内部光纤,电路板301、光收发器件304等光电器件位于包裹腔体中。
上壳体302及下壳体303一般采用金属材料,利于实现电磁屏蔽以及散热。解锁手柄303位于包裹腔体以及下壳体303的外壁,拉动解锁手柄307的末端可以在使解锁手柄307在外壁表面相对移动;光模块插入上位机时由通过解锁手柄307将光模块固定在上位机的光模块接口401里,通过拉动解锁手柄307可以解除光模块与上位机的卡合关系,从而将光模块从上位机的光模块接口401里抽出。
光模块电路板301表面的金手指3011具有I2C引脚,上位机与光模块之间可以采用I2C协议、通过I2C引脚进行信息传递。上位机可以向光模块写入信息,具体地,上位机可以将信息写入光模块的寄存器中;光模块无法向上位机写入信息,当光模块需要将信息提供给上位机时,光模块会将信息写入光模块中的 预设寄存器中,在一些实施例中,预设寄存器如本实施例设置的发送状态寄存器、数据发送失败寄存器,由上位机对该寄存器进行读取。光模块的寄存器一般集成在光模块的微处理器(MCU)3012中,也可以独立设置在光模块的电路板301上。
本申请的某些实施例中,该光模块在工作过程中,可以针对据来自光线路终端的数据电信号发出相对高频的数据光信号,以保持光线路终端原有的对外数据传输业务,同时,该光模块还针对非数据电信号发出相对低频的操控光信号,其中非数据电信号是指用于正常传输业务的信号,以向对端的光模块发出操控信息,实现在不打断正常业务的同时向远端系统传递操控数据,例如,利用低频消息通道传送系统升级包实现远端系统的在线升级、上报DDM(数字诊断监控,Digital Diagnostic Monitoring)信息等。
由于发送端光模块及接收端端的光模块均采用一根光纤对外连接,所以数据光信号及操控光信号混合在同一束光中,采用同一根光纤传输,为了对不同信号进行区分,可设置数据光信号与操控光信号具有不同的频率。在其实现方式上,可以通过对发送端光模块中的微处理器3012和光收发器件304的进行设计,使微处理器3012控制光收发器件304,在其发出的高频信号(数据光信号)上叠加低频调制信号(操控光信号),本实施例称低频调制信号为低频消息通道。例如,在10Gbps或25Gbps信号上叠加低频调制信号50Kbps,其中,10Gbps或25Gbps信号为正常的业务信号,增加的另一路50Kbps的低频信号执行其它操控功能。
光模块的数字诊断信息通常由光模块生成,由光模块的上位机从光模块中读取,以实现上位机对光模块工作状态的监控。然而,部分上位机的功能较简 单,不具有读取光模块数字诊断信息的功能,此时可以采用低频消息通道,将光模块的数字诊断信息传输给对端光模块,由对端光模块的上位机实现对本地及远程两个光模块的监控。
基于上述设计,下面将结合附图,对本实施例提供的光模块数字诊断信息的传输方法进行详细介绍。图8为本实施例提供的一种数字诊断信息获取方法的基本流程示意图。如图8所示,该方法具体包括如下步骤:
S101:判断数字诊断信息获取使能标志位是否被修改为第一预设值。
发送端光模块与发送端上位机之间采用I2C通道进行数据传输,发送端上位机可以通过I2C通道对发送端的光模块进行标志位修改。具体地,标志位存储在光模块的存储器中,发送端光模块可以通过检测其所接入的上位机是否有更改标志位的动作;如果检测发送端上位机有更改数字诊断信息获取使能标志位的动作,则查询该发送端上位机写入的数字诊断信息获取使能标志位的数值是否为第一预设值。
数字诊断信息获取使能标志位在第一预设值与第二预设值之间变化,初始状态为第二预设值,由上位机在特定状态下将其由第二预设值改为第一预设值,光模块在特定状态下将其由第一预设值改为第二预设值。一般地,标志位的状态在0与1之间改变,在特定的方案中,可以将第一预设值设定为0,也可以将第一预设值设定为1。
S102:当数字诊断信息获取使能标志位被修改为第一预设值时,将获取数字诊断信息的指令以低频调制信号的方式加载到出射光中。
数字诊断信息获取使能标志位被修改为第一预设值,表明发送端上位机指示发送端光模块向接收端光模块发出指令,该指令用于获取接收端光模块的数 字诊断信息。
发送端光模块通过其光发射组件向接收端光模块发出获取数字诊断信息的指令,该指令以低频调制信号的方式加载到发送端光模块的出射光中,同时,出射光中还包括传输正常业务数据的高频调制信号。
数字诊断信息是光模块生成的监控信息,常见的数字诊断信息包括发射光功率、接收光功率、偏置电流值、工作电压、工作温度、激光芯片开关状态及丢光告警LOS信号等。
S103:当回传的信息为数字诊断信息时,将数字诊断信息获取成功标志位修改为第三预设值。
发送端光模块等待接收端光模块回传的信息,接收端光模块回传的信息是针对发送端光模块发出的获取数字诊断信息的指令的反馈;接收端光模块生成并存储数字诊断信息,当接收端光模块接收到发送端光模块的获取数字诊断信息指令时,根据指令的要求将这些数字诊断信息传送给发送端光模块。
发送端光模块针对回传的信息进行准确性校验,以判断回传的信息是否为准确的数字诊断信息。应发送端光模块的请求/指令,接收端光模块会发回多种类型的光信号,发送端光模块需要对接收到的光信号进行自校验,具体地,对接收的光信号与校验信息进行比对;当光信号与校验信息一致时,则表示回传的信息为准确的数字诊断信息。回传的信息具有特定的编码格式,具体地,编码格式可以包括数据帧头、数据长度、命令代号、有效数据、校验码以及数据帧尾。进而,根据数据长度可以指示接收端上位机按照该长度值,读取接收端光模块中所存储的数据,其中,该数据长度值可以存储在数据长度寄存器中;利用命令代号可以指示本次接收数据的用途;接收端根据校验码可以校验所接 收的数据包中的有效数据的准确性,将校验码与校验信息比对,以判断是否为数字诊断信息。
发送端光模块将其接收的数字诊断信息存储在预设数据存储空间中,该预设数据存储空间可以由发送端上位机进行读取。其中,该预设数据存储空间可以为预设数据缓存区、多个用于存储数据的寄存器、或者某一个寄存器中开辟的用于存储数据的区域。
发送端光模块校验回传的数字诊断信息,当该数字诊断信息准确时,将数字诊断信息获取成功标志位修改为第二预设值。
数字诊断信息获取成功标志位在第三预设值与第四预设值之间变化,初始状态为第四预设值,上位机在特定状态下将其由第三预设值改为第四预设值,光模块在特定状态下将其由第四预设值改为第三预设值。标志位是针对逻辑是或否的状态指示,结合二进制机制,一般采用0和1进行指示,在特定的技术方案中,第三预设值可以为0,也可以为1。
为使发送端光模块可以通知其所接入的上位机(简称为发送端上位机)读取准确的数字诊断信息,本实施例在发送端光模块中设有数字诊断信息获取成功标志位。发送端上位机可以通过轮询的方式查询到该数字诊断信息获取成功标志位被设为第二预设值后,便会读取该次数字诊断信息。
S104:当数字诊断信息获取成功标志位被修改为第四预设值时,将数字诊断信息获取使能标志位修改为第二预设值。
发送端上位机完成数字诊断信息读取后,会将数字诊断信息获取成功标志位由第三预设值改为第四预设值,发送端光模块在检测到数字诊断信息获取成功标志位被上位机修改为第四预设值后,将数字诊断信息获取使能标志位修改 为第二预设值,以停止发送端光模块对外发出获取数字诊断信息的指令。
当发送端光模块未接收到准确的数字诊断信息,发送端光模块的数据重传机制会再次将获取数字诊断信息的指令以低频调制信号的方式加载到出射光中。本实施例还提供了建立在光模块内部的数据重传机制。图9为本实施例提供的另一种数字诊断信息获取方法的基本流程示意图。如图9所示,该方法具体包括如下步骤:
S101:判断数字诊断信息获取使能标志位是否被修改为第一预设值。
其中,在光模块的寄存器中设置数字诊断信息获取使能标志位。如果查询到数字诊断信息获取使能标志位已被上位机改为第一预设值,则执行步骤S202,以启动数据重传机制;否则,则可以在预设时间间隔后继续查询该数字诊断信息获取使能标志位的状态。
S202:当数字诊断信息获取使能标志位被修改为第一预设值时,将数据重传标志位由第六预设值改为第五预设值。
其中,在光模块的寄存器中设置数据重传标志位g_SendMessageAble,当数字诊断信息获取使能标志位被上位机改为第一预设值时,则光模块会将该数据重传标志位由第六预设值改为第五预设值、如置1,以启动数据重传机制。
光模块将数据重传标志位设为第五预设值后,将获取数字诊断信息的指令以低频调制信号的方式加载到出射光中,发送给接收端光模块。同时,本实施例还在光模块内部设置发送次数寄存器sendcounter和发送间隔周期寄存器Runcounter,其中,光模块初始上电时,这两个寄存器均为默认值0。当光模块每次将上述获取数字诊断信息的指令发送后,则发送次数寄存器sendcounter 的计数值会累加1,同时,发送间隔周期寄存器Runcounter相当于计时器开始计时,其每经过一个软件周期,该寄存器计数值就会加1,并且,本实施例设置在该寄存器的计数值加1之前会先查看数据重传标志位是否为第五预设值,如果是,才会将计数值加1,否则,则可以将该寄存器的计数值归零。当然,也可以在其计数值将要达到预设阈值时,先查看数据重传标志位是否为第五预设值,只是上述在每个软件周期查看数据重传标志位方式与该方式相比,每个软件周期查看数据重传标志位方式,可以更早的使其可以在下次使用时处于初始化状态,并更早的结束数据重传。
S203:判断回传的信息是否准确。
其中,可以利用Runcounter寄存器的计数值,当该寄存器值未达到预设阈值(该预设阈值对应的时间大于正常状态下发送端光模块接收到回传的数字诊断信息以及进行准确性校验所用的时间)时,回传的数字诊断信息准确,则执行步骤S204;否则,则若达到预设阈值,还未接收到准确的数字诊断信息,则执行步骤S205。
需要说明的是,本步骤中的预设时间也可以不利用Runcounter寄存器所对应设置的预设阈值,如利用光模块MCU中的定时器进行计时,并对应设定一个时间阈值,其中,如果到达设定的时间阈值时还未接收到准确的数字诊断信息,则先查看查看数据重传标志位是否为第五预设值,如果是,则执行步骤S205,只是该方式与设置Runcounter寄存器方式相比,需要MCU的数据处理量更大。
S204:如果接收到准确的数字诊断信息,则将所述数据重传标志位由第五预设值改为第六预设值。
是否为准确的数字诊断信息具有多种判断方式,而且判断方式可以根据实际情况预设;当收到准确的数字诊断信息,则发送端光模块已经达到目的,数据重传机制可以停止,进而将数据重传标志位由第五预设值改为第六预设值,以结束数据重传,同时还可以将Runcounter、sendcounter寄存器进行清,使其可以在下次使用时处于初始化状态。
S205:如果未接收到准确的数字诊断信息,则判断发送获取数字诊断信息指令的次数是否未超过预设次数阈值。
如果是,则执行步骤S101。否则,则执行步骤S206。
S206:如果发送获取数字诊断信息指令的次数超过预设次数阈值,则将所述数据重传标志位由第五预设值改为第六预设值、将发送端光模块底层重传失败标志位设置为第七预设值。
在发送端光模块重复发送获取数字诊断信息指令多次后,依然没有获得准确的数字诊断信息,表明该次光模块之间的数据传输(又称模块底层数据传输)彻底失败,将数据重传标志位g_SendMessageAble由第三预设值改为第四预设值、将光模块底层重传失败标志位改为第七预设值以及将发送次数寄存器sendcounter和Runcounter寄存器的计数值归零,用于结束光模块的数据重传机制并使其内部各寄存器处于初始化状态。
如果发送获取数字诊断信息指令的次数超过预设次数阈值,光模块可以将数字诊断信息获取使能标志位修改为第二预设值,以停止光模块发送指令;也可以将数字诊断信息获取成功标志位修改为第四预设值,以促使光模块进一步将数字诊断信息获取使能标志位修改为第二预设值,以停止光模块发送指令;上位机也可以根据底层重传失败标志位将数字诊断信息获取成功标志位修改为 第四预设值,也可以根据底层重传失败标志位直接将数字诊断信息获取使能标志位修改为第二预设值。
本实施例通过建立光模块内部的数据重传机制,可在模块层面实现数据传输的校验、错误重传、传输失败上报功能,进而减轻由上位机实现该机制时的负担,并提高了整体系统利用消息通道传输数据时的效率。
基于与上述方法同样的发明构思,本实施例还提供了一种数字诊断信息获取装置,该装置主要包括处理器和存储器,其中:存储器用于存储程序代码;处理器,用于读取所述存储器中存储的程序代码,并执行:判断数字诊断信息获取使能标志位是否被修改为第一预设值;
当数字诊断信息获取使能标志位被修改为第一预设值时,将获取数字诊断信息的指令以低频调制信号的方式加载到出射光中;
接收回传的数字诊断信息,当数字诊断信息准确时,将数字诊断信息获取成功标志位修改为第三预设值;
当数字诊断信息获取成功标志位被修改为第四预设值时,将数字诊断信息获取使能标志位修改为第二预设值。
或者,处理器可以执行:判断数字诊断信息获取使能标志位是否被修改为第一预设值;当数字诊断信息获取使能标志位被修改为第一预设值时,将数据重传标志位由第六预设值改为第五预设值;判断回传的数字诊断信息是否准确;如果接收到数字诊断信息,则将所述数据重传标志位由第五预设值改为第六预设值;如果未接收到数字诊断信息,则判断发送获取数字诊断信息指令的次数是否未超过预设次数阈值;如果发送获取数字诊断信息指令的次数超过预设次数阈值,则将所述数据重传标志位由第五预设值改为第六预设值、将发送端光 模块底层重传失败标志位设置为第七预设值。
关于数字诊断信息获取使能标志位、数字诊断信息获取成功标志位、数据重传标志位、底层重传失败标志位等各种标志位的预设值,一般在0、1之间切换,为了描述概念的一致性,并未将各个标志位的预设值统一使用第一或第二进行命名,而是分别进行了命名。
基于与上述方法同样的发明构思,本实施例还提供了一种数字诊断信息获取装置,该装置主要包括处理器和存储器,其中:
存储器,用于存储程序代码;处理器,用于读取所述存储器中存储的程序代码,并执行上述数字诊断信息获取方法。
本实施例还提供了一种光模块,其具体结构可以参考图3至图7中的结构以及对应的文字描述,同时,该其MCU中设有上述实施例提供的数字诊断信息获取装置。
需要说明的是,本实施例提高的发送端光模块、光模块以及其对应的上位机,只是从使能数据发送的角度所提出的,在实际使用中,一个光模块既可以作为发送端光模块、也可以作为光模块使用。另外,不同的标志位的第一预设值和第二预设值其具体表示方式可以相同也可以不同。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的 本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种光模块中数字诊断信息获取方法,包括:
    当检测到获取数字诊断信息的指示信息时,将获取所述数字诊断信息的指令以低频调制方式加载到出射光中;
    当接收到准确的数字诊断信息时,通知上位机读取所述数字诊断信息。
  2. 根据权利要求1所述的方法,包括:
    当检测到数字诊断信息获取使能标志位被所述上位机修改时,判断修改后的所述数诊断信息获取使能标志位是否为第一预设值;
    当数字诊断信息获取使能标志位被修改为第一预设值时,将获取所述数字诊断信息的指令以低频调制方式加载到出射光中。
  3. 根据权利要求1所述的方法,包括:
    当接收到的回传信息为准确的数字诊断信息时,将数字诊断信息获取成功标志位修改为第三预设值,以通知上位机读取所述数字诊断信息。
  4. 根据权利要求3所述的方法,包括:
    当接收到回传的信息时,对所述回传的信息进行准确性校验,以判断所述回传的信息是否为准确的数字诊断信息。
  5. 根据权利要求1所述的方法,还包括:
    当上位机完成所述数字诊断信息的读取时,将数字诊断信息获取成功标志位修改为第四预设值。
  6. 根据权利要求5所述的方法,包括:
    当所述数字诊断信息获取成功标志位为第四预设值时,将所述数字诊断信息获取使能标志位修改为第二预设值。
  7. 根据权利要求1或2所述的方法,还包括
    当所述数字诊断信息获取使能标志位被修改为第一预设值时,将数据重传标志位由第六预设值改为第五预设值;
    当接收到准确的数字诊断信息时,则将所述数据重传标志位由所述第五预设值修改为所述第六预设值。
  8. 根据权利要求1所述的方法,还包括
    如果未接收到数字诊断信息,则判断发送获取数字诊断信息指令的次数是否超过预设次数阈值;
    如果所述发送获取数字诊断信息指令的次数超过所述预设次数阈值,则将所述数据重传标志位由第五预设值改为第六预设值、将所述数字诊断信息获取使能标志位修改为第二预设值、将底层重传失败标志位设置为第七预设值;
    如果所述发送获取数字诊断信息指令的次数未超过所述预设次数阈值,则判断所述数字诊断信息获取使能标志位是否被上位机修改为所述第一预设值。
  9. 根据权利要求8所述的方法,还包括
    将所述底层重传失败标志位设置为所述第七预设值之后,判断所述数字诊断信息获取成功标志位是否被修改为所述第四预设值;
    当所述数字诊断信息获取成功标志位被修改为所述第四预设值时,将所述数字 诊断信息获取使能标志位修改为所述第二预设值。
  10. 一种数字诊断信息获取装置,其特征在于,所述装置包括处理器和存储器,其中:
    所述存储器,用于存储程序代码;
    所述处理器,用于读取所述存储器中存储的程序代码,并执行如权利要求1至9中任一项所述的方法。
  11. 一种光模块,其特征在于,所述光模块包括光发射组件、光接收组件、印制电路板、以及设置在所述印制电路板上的MCU,其中:
    所述MCU中设有权利要求10所述的数字诊断信息获取装置;
    所述光发射组件及所述光接收组件通过所述印制电路板与所述MCU连接。
PCT/CN2020/093229 2019-08-16 2020-05-29 一种数字诊断信息获取方法、装置及光模块 WO2021031653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910758222.2A CN110380785A (zh) 2019-08-16 2019-08-16 一种数字诊断信息获取方法、装置及光模块
CN201910758222.2 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031653A1 true WO2021031653A1 (zh) 2021-02-25

Family

ID=68259420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093229 WO2021031653A1 (zh) 2019-08-16 2020-05-29 一种数字诊断信息获取方法、装置及光模块

Country Status (2)

Country Link
CN (1) CN110380785A (zh)
WO (1) WO2021031653A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380785A (zh) * 2019-08-16 2019-10-25 青岛海信宽带多媒体技术有限公司 一种数字诊断信息获取方法、装置及光模块
CN113364523B (zh) * 2020-03-06 2022-06-28 青岛海信宽带多媒体技术有限公司 一种数据发送方法及光模块
CN114826410B (zh) * 2020-02-24 2024-03-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN113364524B (zh) * 2020-03-06 2022-06-28 青岛海信宽带多媒体技术有限公司 一种数据接收方法及光模块
CN113824492B (zh) * 2020-06-19 2022-11-25 青岛海信宽带多媒体技术有限公司 一种光链路自检方法及光模块
CN112198863A (zh) * 2020-09-23 2021-01-08 江铃汽车股份有限公司 诊断功能控制方法、系统、存储介质、车载通讯盒及车辆
CN113098596B (zh) * 2021-03-31 2023-07-18 青岛海信宽带多媒体技术有限公司 光模块及基于双mcu光模块获取远端监控数据的方法
CN114866140A (zh) * 2022-06-17 2022-08-05 苏州熹联光芯微电子科技有限公司 一种光模块、电子设备及光模块的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288274A1 (en) * 2011-05-15 2012-11-15 Wen Li Optical network system and devices enabling data, diagnosis, and management communications
CN103997372A (zh) * 2014-05-16 2014-08-20 青岛海信宽带多媒体技术有限公司 一种光线路终端光模块的状态监控方法及装置
CN107615684A (zh) * 2015-03-20 2018-01-19 Oe解决方案美国股份有限公司 光收发器的远程数字诊断监视信息的增强的发送和接收
CN109743105A (zh) * 2019-01-08 2019-05-10 郑州云海信息技术有限公司 智能网卡光模块管理方法、装置、系统及智能网卡和介质
CN110380785A (zh) * 2019-08-16 2019-10-25 青岛海信宽带多媒体技术有限公司 一种数字诊断信息获取方法、装置及光模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302484B (zh) * 2015-10-19 2018-09-28 上海斐讯数据通信技术有限公司 批量读取以太网卡光模块中数字诊断信息的装置及方法
CN106533976B (zh) * 2016-11-07 2019-12-06 深圳怡化电脑股份有限公司 一种数据包处理方法及装置
CN107707640A (zh) * 2017-09-25 2018-02-16 深圳市盛路物联通讯技术有限公司 一种点对点数据传输方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120288274A1 (en) * 2011-05-15 2012-11-15 Wen Li Optical network system and devices enabling data, diagnosis, and management communications
CN103997372A (zh) * 2014-05-16 2014-08-20 青岛海信宽带多媒体技术有限公司 一种光线路终端光模块的状态监控方法及装置
CN107615684A (zh) * 2015-03-20 2018-01-19 Oe解决方案美国股份有限公司 光收发器的远程数字诊断监视信息的增强的发送和接收
CN109743105A (zh) * 2019-01-08 2019-05-10 郑州云海信息技术有限公司 智能网卡光模块管理方法、装置、系统及智能网卡和介质
CN110380785A (zh) * 2019-08-16 2019-10-25 青岛海信宽带多媒体技术有限公司 一种数字诊断信息获取方法、装置及光模块

Also Published As

Publication number Publication date
CN110380785A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2021031653A1 (zh) 一种数字诊断信息获取方法、装置及光模块
CN110430017B (zh) 一种数据发送方法、装置及光模块
WO2021031652A1 (zh) 一种光模块波长配置方法、装置及光模块
CN110430025B (zh) 一种数据发送方法、装置及光模块
CN110430016B (zh) 一种数据接收方法、装置及光模块
US10812620B2 (en) Home gateway and control method thereof
CN113098613B (zh) 光模块及基于双mcu光模块的波长自动对通方法
CN111555810B (zh) 一种光模块以及数据传输方法
CN113098596B (zh) 光模块及基于双mcu光模块获取远端监控数据的方法
WO2021169463A1 (zh) 一种数据发送方法、接收方法及光模块
EP3502911A1 (en) Securing digital data transmission in a communication link
WO2021017527A1 (zh) 一种光模块数据发送与接收方法、装置及光模块
CN113364523B (zh) 一种数据发送方法及光模块
CN112579506A (zh) Bios与bmc通信的方法、bios、bmc和服务器
CN113098621B (zh) 光模块及基于双mcu光模块的波长自动轮询方法
CN113364524B (zh) 一种数据接收方法及光模块
CN113300773B (zh) 一种光模块
CN108197062B (zh) 实现单片机与终端设备通信的方法、系统、设备及介质
CN113904723A (zh) 一种红外通讯方法及装置、存储介质及电子装置
TW200425681A (en) De-activation, at least in part, of receiver, in response, at least in part, to determination that an idle condition exists
WO2023016125A1 (zh) 一种光模块及信号校准方法
CN219831747U (zh) 多节点管理电路及服务器
WO2019132822A1 (en) Universal communication module for industry 4.0
WO2017004908A1 (zh) 智能平台管理接口设备的通讯方法及装置、通讯设备
CN113824492B (zh) 一种光链路自检方法及光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855740

Country of ref document: EP

Kind code of ref document: A1