WO2021029221A1 - 水中作業システム - Google Patents

水中作業システム Download PDF

Info

Publication number
WO2021029221A1
WO2021029221A1 PCT/JP2020/029014 JP2020029014W WO2021029221A1 WO 2021029221 A1 WO2021029221 A1 WO 2021029221A1 JP 2020029014 W JP2020029014 W JP 2020029014W WO 2021029221 A1 WO2021029221 A1 WO 2021029221A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
diving machine
submersible
diving
processing device
Prior art date
Application number
PCT/JP2020/029014
Other languages
English (en)
French (fr)
Inventor
紀幸 岡矢
厚市 福井
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to GB2200939.3A priority Critical patent/GB2600336B/en
Priority to AU2020328964A priority patent/AU2020328964B2/en
Publication of WO2021029221A1 publication Critical patent/WO2021029221A1/ja
Priority to NO20220145A priority patent/NO20220145A1/en
Priority to US17/590,201 priority patent/US11964745B2/en
Priority to AU2023204284A priority patent/AU2023204284B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/74Systems using reradiation of acoustic waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C7/00Salvaging of disabled, stranded, or sunken vessels; Salvaging of vessel parts or furnishings, e.g. of safes; Salvaging of other underwater objects
    • B63C7/26Means for indicating the location of underwater objects, e.g. sunken vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar

Definitions

  • This application relates to an underwater work system that works underwater using a diving machine.
  • the position of the diving machine is measured using an acoustic positioning system, but the measurement accuracy of the acoustic positioning system is not high.
  • the pipeline laid on the bottom of the water moves over time due to tidal currents. Therefore, when the pipeline search work is performed using the submersible, the area where the pipeline is not laid may be searched, and the pipeline search work may take time.
  • the present application has been made in view of the above circumstances, and an object of the present application is to provide an underwater work system capable of efficiently performing pipeline search work using a diving machine.
  • the underwater work system of the present application uses a surface ship located on the water, a diving machine for searching for a pipeline laid on the bottom of the water, and sound waves output from an acoustic positioning device mounted on the surface ship.
  • An acoustic positioning system for measuring the relative position of the diving machine with respect to the surface ship and a processing device are provided, and the processing device is relative to the surface ship from the acoustic positioning system at the start of the search operation.
  • the position is acquired, the position of the diving machine is calculated based on the acquired relative position, and the measurement error area centered on the calculated position of the diving machine and the expected laying area of the pipeline extending in a predetermined direction.
  • the presence or absence of the pipeline is displayed on the diving machine while crossing the expected laying area. Perform cross-sectional detection to detect.
  • the pipeline search work is performed in consideration of the measurement error of the acoustic positioning system and the aging movement of the pipeline, so basically the pipeline can be searched by one crossing detection. Therefore, the pipeline search work can be efficiently performed.
  • the underwater work system of the present application uses a surface ship located on the water, a diving machine for searching for a pipeline laid on the bottom of the water, and sound waves output from an acoustic positioning device mounted on the surface ship.
  • the diving machine is provided with an acoustic positioning system and a processing device for measuring the relative position of the diving machine with respect to the surface ship by using the processing device from the acoustic positioning system to the surface ship at the start of the search operation.
  • the relative position of the diving machine is acquired, the position of the diving machine is calculated based on the acquired relative position, and the measurement error region centered on the calculated position of the diving machine and the expected laying of the pipeline extending in a predetermined direction.
  • the diving machine When the distance from the area is not a predetermined distance, the diving machine is moved to a position where the distance between the measurement error area and the expected laying area is the predetermined distance, and then the expected laying area is provided to the diving machine.
  • Crossing detection may be performed to detect the presence or absence of the pipeline while crossing.
  • cross-sectional detection is started from a position where the distance between the measurement error area and the expected laying area is a predetermined distance. Therefore, it is possible to find the pipeline more reliably than when the crossing detection is started from a position where the distance between the measurement error region and the expected laying region is narrower than a predetermined distance. In addition, unnecessary work is reduced as compared with the case where the crossing detection is started from a position where the distance between the measurement error area and the expected laying area is wider than a predetermined distance, and the search work can be performed efficiently.
  • the underwater work system of the present application uses a surface ship located on the water, a diving machine for searching for a pipeline laid on the bottom of the water, and sound waves output from an acoustic positioning device mounted on the surface ship. It comprises an acoustic positioning system for measuring the relative position of the diving machine with respect to the surface ship and a processing device, the processing device of the pipeline extending in a predetermined direction to the diving machine in the search operation. While performing cross-sectional detection that detects the pipeline while crossing the expected laying area, the relative position of the diving machine with respect to the surface ship is acquired from the acoustic positioning system, and the diving machine is based on the acquired relative position.
  • the traveling direction of the diving machine may be changed so that the diving machine may perform the crossing detection again.
  • the underwater work system includes a surface vessel located on the water, a transponder dropped from the surface vessel to the bottom of the water, and a pipeline laid on the bottom of the water based on the dropped transponder. It is equipped with a submersible that performs search work to find out.
  • pipeline search work is performed using a transponder. Since the transponder is less affected by the tidal current than the submersible when it is dropped, it can be dropped closer to the target position than the submersible. Therefore, according to the above configuration, the pipeline search work can be efficiently performed.
  • FIG. 1 is a block diagram of an underwater work system according to the first embodiment.
  • FIG. 2 is a flowchart of the search program of the first embodiment.
  • FIG. 3 is a diagram showing the operation of the diving machine at the start of the search of the first embodiment.
  • FIG. 4 is a diagram showing the operation of the diving machine when the pipeline cannot be detected.
  • FIG. 5 is a block diagram of the underwater work system according to the second embodiment.
  • FIG. 6 is a flowchart of the search program of the second embodiment.
  • FIG. 7 is a diagram showing the operation of the diving machine at the start of the search of the second embodiment.
  • FIG. 1 is a block diagram of the underwater work system 100 according to the present embodiment.
  • the underwater work system 100 includes a surface vessel 10, a submersible 20, and an acoustic positioning system 40.
  • position simply means an absolute position (position in the earth coordinate system).
  • the surface vessel 10 is a maritime support vessel that navigates on the water and supports the submersible 20.
  • the surface vessel 10 supplies electric power to the submersible 20 and stores data acquired by the submersible 20.
  • the surface vessel 10 has a propulsion device 11, a GPS (Global Positioning System) device 12, an acoustic communication device 13, and a power feeding device 14. Further, the surface vessel 10 is provided with a processing device 15.
  • the propulsion device 11 is a device that generates thrust for navigating on the water.
  • the GPS device 12 is a device that acquires the position information of the surface ship 10 on the water.
  • the acoustic communication device 13 is a device that communicates with the acoustic communication device 26 of the submersible 20 described later by using sound. The acoustic communication device 13 can acquire information acquired by each device of the diving machine 20 (for example, the remaining amount of the battery 25 of the diving machine 20) from the diving machine 20.
  • the power supply device 14 is a device that supplies electric power to the power receiving device 24 of the diving machine 20, which will be described later.
  • the submersible 20 approaches the surface vessel 10 and supplies electric power from the power supply device 14 of the surface vessel 10 to the power receiving device 24 of the submersible 20.
  • the power supply device 14 may be a non-contact type power supply device that supplies electric power to the power receiving device 24 in a non-contact manner, and is a contact type that supplies electric power via a connector or the like that connects the surface vessel 10 and the submersible 20. It may be a power supply device.
  • the diving vessel 20 is charged by the surface vessel 10, but a floating body is provided on the water or a charging station is provided on the seabed to provide the above-mentioned charging function of the surface vessel 10 and the like. It may be held so that the diving machine 20 is charged by a floating body or a charging station.
  • the processing device 15 is a device that performs various processing such as controlling the entire surface vessel 10.
  • the processing device 15 has a processor, a volatile memory, a non-volatile memory, an SSD, an I / O interface, and the like. Then, various control programs including a search program described later and various data are stored in the SSD, and after the non-volatile memory downloads various control programs from the SSD, the processor uses the volatile memory based on the various control programs. Perform arithmetic processing. Further, the processing device 15 is electrically connected to each device of the surface vessel 10 described above, acquires various information based on the measurement signals transmitted from each device, and calculates based on the information. And send a control signal to each device.
  • the submersible 20 is an autonomous unmanned submersible that can navigate independently of the surface vessel 10, and can work underwater.
  • the submersible 20 includes a propulsion device 21, an object detection device 22, an inspection device 23, a power receiving device 24, a battery 25, an acoustic communication device 26, an inertial navigation system 27, a depth meter 28, and a relative speed. It has a total of 29. Further, the diving machine 20 is provided with a processing device 30.
  • the propulsion device 21 is a device that generates thrust for navigating underwater.
  • the propulsion device 21 includes, for example, a main propulsion thruster for moving the diving machine 20 forward, a vertical thruster for moving the diving machine 20 in the vertical direction, a horizontal thruster for moving the diving machine 20 in the horizontal direction, and the like. Includes a plurality of propulsion units and a steering device that diverts the submersible 20.
  • the propulsion device 21 is not limited to this, and may have, for example, a swing-type thruster capable of changing the direction in which thrust is generated.
  • the object detection device 22 is a device that detects a pipeline that is a work object.
  • the object detection device 22 of the present embodiment is a so-called multi-beam sonar.
  • the object detection device 22 may be a shape grasping laser, or may be both a multi-beam sonar and a shape grasping laser.
  • the position and number of object detection devices 22 are not particularly limited.
  • the inspection device 23 is a device for inspecting the pipeline.
  • the inspection device 23 of the present embodiment is an imaging camera (for example, a television camera) that images a pipeline.
  • the inspection device 23 is an anticorrosion inspection device that inspects the degree of deterioration of the anticorrosion treatment (for example, anticorrosion coating) over the entire length of the pipeline, and corrosion, instead of the imaging camera or in addition to the imaging camera.
  • One or both of the wall thickness inspectors for inspecting the wall thickness of the pipeline to inspect the degree of damage and the presence or absence of damage may be included.
  • the power receiving device 24 is a device for receiving electric power supplied from the power feeding device 14 of the surface ship 10.
  • the battery 25 is charged based on the electric power received by the power receiving device 24.
  • the electric power stored in the battery 25 is used to operate each device of the diving machine 20 such as the propulsion device 21.
  • the acoustic communication device 26 is a device that communicates with the acoustic communication device 13 of the surface ship 10 using sound.
  • the acoustic communication device 26 can transmit information (for example, the remaining amount of the battery 25) acquired by various devices included in the diving machine 20 from the diving machine 20 to the surface ship 10.
  • the inertial navigation system (INS) 27 is a device that measures the direction, position, and speed of the submersible 20 in the absolute coordinate system using an acceleration sensor and a gyro sensor.
  • the depth meter 28 is a device that measures the depth of the diving machine 20.
  • the relative speedometer 29 is a device that uses the Doppler effect to measure the relative moving direction and relative speed of the submersible 20 based on a fixed object such as the bottom of the water and a pipeline.
  • the processing device 30 has a processor, a volatile memory, a non-volatile memory, an SSD, an I / O interface, and the like.
  • the processing device 30 is electrically connected to each device of the diving machine 20 described above, acquires various information based on the measurement signals transmitted from each device, and performs calculations based on the information. , Send a control signal to each device.
  • the acoustic positioning system 40 is a system for measuring the position of the diving vessel 20 with respect to the surface vessel 10 and measuring the position of the surface vessel 10 with respect to the diving vessel 20.
  • the acoustic positioning system 40 of the present embodiment includes acoustic positioning devices 41 and 42 provided on the surface vessel 10 and the submersible 20, respectively, and response devices 43 and 44 provided on the surface vessel 10 and the submersible 20 respectively. ,have.
  • the acoustic positioning device 41 of the surface vessel 10 may be integrally configured with the acoustic communication device 13 of the surface vessel 10.
  • the acoustic positioning device 42 of the diving machine 20 may be integrally configured with the acoustic communication device 26 of the diving machine 20.
  • the response device 44 that detects the sound wave sends a response wave (response signal) to the acoustic positioning device 41.
  • the acoustic positioning device 41 can measure the relative position of the diving machine 20 with respect to the surface vessel 10 based on the response wave from the response device 44. Further, the processing device 15 of the surface vessel 10 acquires the relative position of the submersible 20 with respect to the surface vessel 10 from the acoustic positioning device 41, and based on the relative position and the position information of the surface vessel 10 acquired from the GPS device 12. , The position of the submersible 20 (apparent absolute position) can be calculated. Since the measurement by the acoustic positioning device 41 causes an error, the position of the diving machine 20 calculated here is just an apparent absolute position and is used for setting the measurement error region described later.
  • the response device 43 that detects the sound wave sends a response wave (response signal) to the acoustic positioning device 42.
  • the acoustic positioning device 42 can measure the relative position of the surface vessel 10 with respect to the submersible 20 based on the response wave from the response device 43.
  • the processing device 30 of the submersible 20 acquires the relative position of the surface vessel 10 with respect to the submersible 20 from the acoustic positioning device 42, and the relative position and the acoustic. Based on the information acquired from the positioning device 42, the propulsion device 21 is driven so that the diving machine 20 approaches the surface vessel 10.
  • the acoustic positioning system 40 in this embodiment employs a USBL (UltraShortBaseLine) type positioning system. That is, each of the acoustic positioning devices 41 and 42 has a transmitter and a receiving array, sends sound waves from the transmitter, and receives the response waves sent from the responding devices 43 and 44 that detect the sound waves in the receiving array. receive.
  • the acoustic positioning devices 41 and 42 calculate the distance from the reciprocating time of the sound wave between the response devices 43 and 44 to the response devices 43 and 44, and the phase difference of the response waves arriving at each element in the receiving array.
  • the orientations of the response devices 43 and 44 are specified based on the above.
  • the acoustic positioning system 40 is not limited to the USBL type positioning system.
  • the acoustic positioning devices 41 and 42 are provided with three or more receivers on each of the surface vessel 10 and the submersible 20 so as to be separated from each other, and the acoustic positioning devices are based on the arrival time difference of the response waves received by them.
  • An SBL (Short Base Line) method for specifying the orientation of the response devices 43 and 44 in response to 41 and 42 may be adopted.
  • the pipeline search work is performed before performing work such as inspection on the pipeline.
  • the processing device 15 of the surface vessel 10 acquires various information from the processing device 30 of the diving machine 20 via the acoustic communication devices 13 and 26, and executes a search program based on the information.
  • the processing device 15 of the surface vessel 10 performs various arithmetic processing in the search program, and transmits a control signal to the processing device 30 of the diving machine 20 via the acoustic communication devices 13 and 26.
  • the processing device 30 of the diving machine 20 controls the propulsion device 21 and the like based on the received control signal.
  • FIG. 2 is a flowchart of the search program.
  • the search program shown in FIG. 2 is executed by the processing device 15 of the surface vessel 10.
  • the search program is started when the submersible 20 is located at a predetermined height from the seabed.
  • the processing device 15 sets the expected laying area of the pipeline (step S1).
  • the "expected laying area" of a pipeline is the area where the pipeline may move over time.
  • the processing device 15 of the present embodiment stores the laying position at the time when the pipeline is laid, and sets the laying position based on the memorized laying position and the elapsed period from the time of laying.
  • FIG. 3 is a diagram showing the operation of the diving machine 20 in the search work.
  • the two-dot chain line in FIG. 3 is the laying position of the pipeline at the beginning of laying, and the area sandwiched by the straight lines parallel to the two-dot chain line is the expected laying area of the pipeline.
  • the expected laying area of the present embodiment is strip-shaped and extends linearly.
  • the installation position of the pipeline at the time of laying is located in the center of the expected laying area. However, for example, when the pipeline is expected to move over time in only one direction, the pipeline at the time of laying The laying position will deviate from the center of the expected laying area.
  • the processing device 15 calculates the position of the diving machine 20 (step S2).
  • the position of the submersible 20 (apparent absolute position) is such that the processing device 15 obtains the position information of the surface vessel 10 acquired from the GPS device 12 and the submersible 20 with respect to the surface vessel 10 acquired from the acoustic positioning device 41. It can be calculated based on the relative position of.
  • the processing device 15 sets the measurement error region of the surface vessel 10 (step S3).
  • the “measurement error region” is a region in which the diving machine 20 may be located, and is a region centered on the position of the diving machine 20 calculated in step S2.
  • the region surrounded by the circle with the reference numeral 20a is the measurement error region.
  • the measurement error region increases as the distance between the surface vessel 10 and the submersible 20 increases. The distance between the surface vessel 10 and the submersible 20 can be estimated by the depth gauge 28.
  • the processing device 15 determines whether or not the measurement error area of the surface vessel 10 and the expected laying area of the pipeline overlap (step S4).
  • the processing device 15 determines that the measurement error area and the expected laying area overlap (YES in step S4)
  • the processing device 15 moves the diving machine 20 to a position where those areas are separated (step S5).
  • the measurement error area and the expected laying area overlap as shown by the circle with reference numeral 20a in FIG. 3
  • the measurement error area and the expected laying area overlap as shown by the circle with reference numeral 20b.
  • the submersible 20 is moved to a position where it disappears (see the submersible with reference numeral 20B in FIG. 3).
  • cross-sectional detection described later is started (step S6).
  • step S6 when the processing device 15 determines that the measurement error area and the expected laying area do not overlap (NO in step S4), the cross-sectional detection is started as it is (step S6).
  • crossing detection is a work in which the submersible 20 detects the presence or absence of a pipeline while crossing the expected laying area.
  • object detection device 22 of the diving machine 20 By using the object detection device 22 of the diving machine 20, it is possible to detect the presence or absence of a pipeline.
  • the position of the diving machine 20 calculated by the processing device 15 moves from the position of the diving machine with the reference numeral 20B to the position of the diving machine with the reference numeral 20C. go.
  • the processing device 15 determines whether or not the diving machine 20 has detected the pipeline (step S7). If it is determined that the submersible 20 has not detected the pipeline (NO in step S7), the crossing detection is continued (step S8). This crossing detection is repeated until the pipeline is detected. On the other hand, when it is determined that the diving machine 20 has detected the pipeline (YES in step S7), the search program ends, and the diving machine 20 starts the next work such as inspection of the pipeline.
  • the underwater work system 100 is composed of a surface vessel 10 located on the water, a submersible 20 for searching for a pipeline laid on the bottom of the water, and an acoustic positioning device 41 mounted on the surface vessel 10. It includes an acoustic positioning system 40 that measures the relative position of the diving vessel 20 with respect to the surface vessel 10 using the output sound waves, and a processing device 15. Then, the processing device 15 acquires the relative position of the diving machine 20 with respect to the surface ship 10 from the acoustic positioning system 40 at the start of the search work, calculates the position of the diving machine 20 based on the acquired relative position, and calculates the diving.
  • the diving machine 20 If the measurement error area centered on the position of the machine 20 and the expected laying area of the pipeline extending in a predetermined direction overlap, the diving machine 20 is moved to a position where the measurement error area and the expected laying area do not overlap. After that, the diving machine 20 is made to perform crossing detection to detect the presence or absence of the pipeline while crossing the expected laying area.
  • the pipeline search work is performed in consideration of the measurement error of the acoustic positioning system 40 and the aged movement of the pipeline, basically, the crossing detection is performed once. You can find the pipeline. Therefore, the pipeline search work can be efficiently performed.
  • the crossing detection is started from a position where the measurement error area and the expected laying area do not overlap, but the crossing is started from a position where the distance between the measurement error area and the expected laying area is a predetermined distance. Detection may be started. That is, the processing device 15 acquires the relative position of the diving machine 20 with respect to the surface ship 10 from the acoustic positioning system 40 at the start of the search work, calculates the position of the diving machine 20 based on the acquired relative position, and calculates the diving.
  • the distance between the measurement error area centered on the position of the machine 20 and the expected laying area of the pipeline extending in a predetermined direction is not a predetermined distance, the distance between the measurement error area and the expected laying area becomes a predetermined distance.
  • the diving machine 20 may be made to perform crossing detection for detecting the presence or absence of a pipeline while crossing the expected laying area.
  • the pipeline can be basically found by one crossing detection, but if the pipeline cannot be found by one crossing detection, the pipeline can be found again.
  • Crossover detection may be performed. For example, as shown by the circle with reference numeral 20d in FIG. 4, the diving machine 20 passes through the expected laying area, and the diving machine 20 moves to a position where the measurement error area and the expected laying area do not overlap. However, if the pipeline cannot be detected, the traveling direction of the diving machine 20 may be changed and the crossing detection may be performed again (see the diving machines with reference numerals 20E and 20F in FIG. 4).
  • the processing device 15 causes the diving machine 20 to perform cross-sectional detection for detecting the pipeline while crossing the expected laying area of the pipeline extending in a predetermined direction, and the surface ship 10 from the acoustic positioning system 40.
  • the relative position of the diving machine 20 with respect to the diving machine 20 is acquired, the position of the diving machine 20 is calculated based on the acquired relative position, and the measurement error area centered on the calculated position of the diving machine 20 and the expected laying area do not overlap. If the pipeline cannot be detected even if the diving machine 20 moves to the position, the traveling direction of the diving machine 20 may be changed and the diving machine 20 may perform the crossing detection again.
  • the changing angle of the traveling direction may be 180 degrees or may be other than 180 degrees.
  • FIG. 5 is a block diagram of the underwater work system 200 according to the present embodiment.
  • the underwater work system 200 includes a transponder 50 in addition to the surface vessel 10 and the submersible 20 described above.
  • the acoustic positioning system 40 of the second embodiment has a response device 45 provided in the transponder 50 in addition to the above-mentioned acoustic positioning devices 41 and 42 and response devices 43 and 44.
  • FIG. 6 is a flowchart of the search program of the second embodiment.
  • the search work of this embodiment is carried out based on this search program.
  • the search program shown in FIG. 6 is executed by the processing device 15 of the surface vessel 10.
  • the search program is started after the transponder 50 is dropped from the surface vessel 10 near the laying position of the pipeline at the initial stage of laying.
  • the transponder 50 may be provided with a "weight” and a "float” so that the height position from the bottom of the water is constant.
  • the processing device 15 moves the diving machine 20 to the transponder 50 (step S11).
  • the movement of the diving machine 20 is performed while measuring the relative position of the diving machine 20 with respect to the transponder 50 using the acoustic positioning system 40.
  • the measurement error by the acoustic positioning system 40 becomes smaller, so that the diving machine 20 can accurately reach the transponder 50 (the diving machines with reference numerals 20A and 20B in FIG. 7 described later). reference).
  • FIG. 7 is a diagram showing the operation of the diving machine 20 in the search work of the present embodiment. Similar to FIG. 3, the alternate long and short dash line in FIG. 7 is the laying position of the pipeline at the beginning of laying, and the region sandwiched by the straight lines parallel to the alternate long and short dash line is the expected laying area of the pipeline.
  • the processing device 15 calculates the position of the transponder 50 (step S13).
  • the processing device 15 is based on the position information of the surface vessel 10 acquired from the GPS device 12 and the relative position of the transponder 50 with respect to the surface vessel 10 acquired from the acoustic positioning device 41, and the position of the transponder 50 (apparent absolute position). Can be calculated.
  • the processing device 15 sets the measurement error region of the transponder 50 (step S14).
  • the measurement error region is a region in which the transponder 50 may be located, and is a region centered on the position of the transponder 50 calculated in step S13.
  • the region surrounded by the circle with reference numeral 50a is the measurement error region.
  • the measurement error region increases as the distance between the surface vessel 10 and the transponder 50 increases. The distance between the surface vessel 10 and the transponder 50 can be estimated by the depth gauge 28 of the submersible 20 located in the vicinity of the transponder 50.
  • the processing device 15 determines whether or not the measurement error area of the transponder 50 and the expected laying area of the pipeline overlap (step S15). When the processing device 15 determines that the measurement error area and the expected laying area overlap (YES in step S15), the processing device 15 sets the target position (step S16).
  • This "target position” is the position of the transponder 50 so that the measurement error area and the expected laying area do not overlap. That is, the target position is the position of the transponder 50 so that the measurement error area and the expected laying area do not overlap. Further, in the present embodiment, the processing device 15 sets the target position so that the target position is located on a virtual line that passes through the position of the transponder 50 calculated in step S13 and is orthogonal to the expected laying area of the pipeline.
  • the circle with reference numeral 50b in FIG. 7 is a measurement error region, since this measurement error region does not overlap with the expected laying region, reference numeral 50B located at the center of the circle with reference numeral 50b is attached.
  • the point can be the target position.
  • the position of the transponder 50 calculated in step S13 is the point with the reference numeral 50A
  • the point with the reference numeral 50B is on the virtual line 102 that passes through the reference numeral 50A and is orthogonal to the expected laying area of the pipeline. Since it is located, it can be the target position from this condition as well.
  • the processing device 15 moves the diving machine 20 to the target position (see step S17; the diving machine with reference numeral 20C in FIG. 7).
  • the relative position of the diving machine 20 with respect to the transponder 50 is calculated based on the relative speed of the diving machine 20 with respect to the water bottom obtained from the relative speed meter 29 of the diving machine 20.
  • the submersible 20 is moved to the target position.
  • step S18 After the diving machine 20 reaches the target position, the processing device 15 changes the traveling direction and starts crossing detection (see step S18; the diving machine with reference numeral 20D in FIG. 7). Further, in step S15, when the processing device 15 determines that the expected laying area and the measurement error area do not overlap (NO in step S15), cross-sectional detection is started (step S18).
  • the processing device 15 determines whether or not the diving machine 20 has detected the pipeline (step S19). If it is determined that the diving machine 20 has not detected the pipeline (NO in step S19), the crossing detection is continued (step S20; see the diving machines with reference numerals 20E and 20F in FIG. 7). Step S20 is repeated until the pipeline is detected. On the other hand, when it is determined that the diving machine 20 has detected the pipeline (YES in step S19), the search program ends, and the diving machine 20 starts work such as inspection of the pipeline.
  • the underwater work system 200 includes a surface vessel 10 located on the water, a transponder 50 dropped from the surface vessel 10 to the bottom of the water, and a pipeline laid on the bottom of the water based on the dropped transponder 50. It is equipped with a submersible 20 that performs search work for finding out.
  • the pipeline search work is performed using the transponder 50.
  • the transponder 50 is less susceptible to the tidal current than the submersible 20 when dropped. Therefore, it can be dropped closer to the position where the pipeline search work is started than the submersible 20. As a result, according to the present embodiment, the pipeline search work can be efficiently performed.
  • the underwater work system 200 includes an acoustic positioning system 40 that measures the relative position of the transponder 50 with respect to the surface vessel 10 using sound waves output from the acoustic positioning device 41 mounted on the surface vessel 10. Further includes a processing device 15. Further, the diving machine 20 has a relative speedometer 29 capable of measuring the relative speed of the diving machine 20 with respect to the bottom of the water.
  • the processing device 15 acquires the relative position of the transponder 50 with respect to the surface ship 10 from the acoustic positioning system 40 at the start of the search operation, calculates the position of the transponder 50 based on the acquired relative position, and the calculated transponder 50
  • a temporary transponder 50 is provided so that the measurement error area and the expected laying area do not overlap.
  • the submersible 20 While calculating the relative position of the machine 20, the submersible 20 is moved until the position of the submersible 20 reaches the target position, and then the submersible 20 is subjected to crossing detection to detect the presence or absence of a pipeline while crossing the expected laying area. I am doing it.
  • the pipeline search work is performed in consideration of the measurement error of the acoustic positioning system 40 and the aged movement of the pipeline, it is basically possible to search for the pipeline by one crossing detection. it can. Therefore, the pipeline search work can be efficiently performed.
  • the processing device 15 sets the target position on a virtual line that passes through the drop position of the transponder 50 measured at the start of the search work and is orthogonal to the expected laying area of the pipeline. ing.
  • the moving distance at the time of crossing detection can be reduced, and as a result, the pipeline search work can be performed more efficiently.
  • the processing device 15 determines that the pipeline is not detected even if the crossing detection is performed once or a plurality of times, the diving machine 20 May be re-performed by the submersible 20 after being moved along the direction in which the expected laying area of the pipeline extends.
  • the crossing detection is performed again by changing the position where the crossing detection is performed, so that the pipeline can be searched more reliably.
  • the processing device 15 when the pipeline is not detected even if the crossing detection is performed once or a plurality of times, the processing device 15 performs the crossing detection.
  • the movement distance of the submersible 20 may be extended so that the submersible 20 may perform crossing detection again.
  • the operation program was executed by the processing device 15 provided on the surface vessel 10, but the processing provided on the diving machine 20 was executed.
  • the operation program may be executed by the device 30, or the operation program may be executed by both processing devices 15 and 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

本願の水中作業システムでは、処理装置は、探索作業の開始時に音響測位システムから水上船に対する潜水機の相対位置を取得し、取得した相対位置に基づいて潜水機の位置を算出し、算出した潜水機の位置を中心とする測定誤差領域と所定の方向に延びるパイプラインの予想敷設領域とが重複する場合には、測定誤差領域と前記予想敷設領域とが重複しない位置にまで潜水機を移動させた後、潜水機に前記予想敷設領域を横断しながらパイプラインの有無を検知する横断検知を実施させる。

Description

水中作業システム
 本願は、潜水機を用いて水中で作業を行う水中作業システムに関する。
 近年、水底に敷設されたパイプラインに対する作業は、無人の潜水機を用いて行われる(例えば、特許文献1参照)。そのため、事前のパイプラインを探し出す探索作業も潜水機で行うことができれば効率的である。
特開2013-67358号公報
 潜水機の位置は音響測位システムを用いて測定されるが、音響測位システムの測定精度は高いとは言えない。また、水底に敷設されたパイプラインは潮流によって経年移動する。そのため、潜水機を用いてパイプラインの探索作業を行う場合、パイプラインが敷設されていないエリアを探索してしまう場合もあり、パイプラインの探索作業に時間がかかるおそれがある。
 本願は、以上のような事情に鑑みてなされたものであり、潜水機を用いたパイプラインの探索作業を効率よく行うことができる水中作業システムを提供することを目的とする。
 本願の水中作業システムは、水上に位置する水上船と、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、処理装置と、を備え、前記処理装置は、前記探索作業の開始時に前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と所定の方向に延びる前記パイプラインの予想敷設領域とが重複する場合には、前記測定誤差領域と前記予想敷設領域とが重複しない位置にまで前記潜水機を移動させた後、前記潜水機に前記予想敷設領域を横断しながら前記パイプラインの有無を検知する横断検知を実施させる。
 この構成では、音響測位システムの測定誤差とパイプラインの経年移動を考慮してパイプラインの探索作業を行うため、基本的には一度の横断検知によりパイプラインを探し出すことができる。よって、パイプラインの探索作業を効率よく行うことができる。
 また、本願の水中作業システムは、水上に位置する水上船と、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、処理装置と、を備え、前記処理装置は、前記探索作業の開始時に前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と所定の方向に延びる前記パイプラインの予想敷設領域との間隔が所定距離でない場合には、前記測定誤差領域と前記予想敷設領域の間隔が前記所定距離となる位置にまで前記潜水機を移動させた後、前記潜水機に前記予想敷設領域を横断しながら前記パイプラインの有無を検知する横断検知を実施させてもよい。
 この構成では、測定誤差領域と予想敷設領域の間隔が所定距離となる位置から横断検知を開始する。そのため、測定誤差領域と予想敷設領域の間隔が所定距離よりも狭い位置から横断検知を開始する場合に比べて確実にパイプラインを探し出すことができる。また、測定誤差領域と予想敷設領域の間隔が所定距離よりも広い位置から横断検知を開始する場合に比べて不要な作業が減り、効率よく探索作業を行うことができる。
 また、本願の水中作業システムは、水上に位置する水上船と、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、処理装置と、を備え、前記処理装置は、前記探索作業において、前記潜水機に所定の方向に延びる前記パイプラインの予想敷設領域を横断しながら前記パイプラインを検知する横断検知を実施させつつ、前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と前記予想敷設領域とが重複しなくなる位置にまで前記潜水機が移動しても前記パイプラインを検知できない場合には、前記潜水機の進行方向を変えて前記潜水機に前記横断検知を再度実施させてもよい。
 この構成によれば、潜水機による横断検知を行ってもパイプラインを検知できない場合には、横断検知が再度実施されるため、より確実にパイプラインを探し出すことができる。
 また、本願の他の態様に係る水中作業システムは、水上に位置する水上船と、前記水上船から水底に投下されるトランスポンダと、投下された前記トランスポンダを基準として、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、を備えている。
 この構成では、トランスポンダを用いてパイプラインの探索作業が行われる。トランスポンダは、投下の際に潜水機よりも潮流の影響を受けにくいため、潜水機よりも狙った位置の近くに投下することができる。そのため、上記の構成によれば、パイプラインの探索作業を効率よく行うことができる。
 上記の構成によれば、潜水機を用いたパイプラインの探索作業を効率よく行うことができる水中作業システムを提供することができる。
図1は、第1実施形態に係る水中作業システムのブロック図である。 図2は、第1実施形態の探索プログラムのフローチャートである。 図3は、第1実施形態の探索開始時における潜水機の動作を示す図である。 図4は、パイプラインが検知できなかった場合における潜水機の動作を示す図である。 図5は、第2実施形態に係る水中作業システムのブロック図である。 図6は、第2実施形態の探索プログラムのフローチャートである。 図7は、第2実施形態の探索開始時における潜水機の動作を示す図である。
 (第1実施形態)
 はじめに、本願の第1実施形態に係る水中作業システム100について説明する。まず、水中作業システム100の全体構成について説明する。本実施形態の水中作業システム100では、パイプラインに対して検査等の作業を行う前に、潜水機20を用いて水底に敷設されたパイプラインの探索が実施される。図1は、本実施形態に係る水中作業システム100のブロック図である。図1に示すように、水中作業システム100は、水上船10と、潜水機20と、音響測位システム40と、を備えている。なお、以下で単に「位置」というときは、絶対位置(地球座標系の位置)を意味するものとする。
 <水上船>
 水上船10は、水上を航行して潜水機20を支援する海上支援船である。水上船10は、潜水機20への電力供給や潜水機20が取得したデータの保存等を行っている。水上船10は、推進装置11と、GPS(Global Positioning System)装置12と、音響通信装置13と、給電装置14と、を有している。また、水上船10には処理装置15が設けられている。
 推進装置11は、水上を航行するための推力を発生させる装置である。GPS装置12は、水上における水上船10の位置情報を取得する装置である。音響通信装置13は、後述する潜水機20の音響通信装置26との間で音響を用いて通信を行う装置である。音響通信装置13により、潜水機20の各機器が取得した情報(例えば、潜水機20のバッテリ25の残量など)を潜水機20から取得できる。
 給電装置14は、後述する潜水機20の受電装置24に電力を供給する装置である。本実施形態では、潜水機20が水上船10にアプローチし、水上船10の給電装置14から潜水機20の受電装置24に電力を供給する。給電装置14は、受電装置24に非接触に電力を供給する非接触式の給電装置であってもよく、水上船10と潜水機20とをつなぐコネクタ等を介して電力を供給する接触式の給電装置であってもよい。なお、本実施形態では、水上船10で潜水機20の充電を行っているが、水上に浮き体を設け、又は、海底に充電ステーションを設け、これらに上述した水上船10の充電機能等を持たせて、潜水機20の充電を浮き体又は充電ステーションで行うようにしてもよい。
 処理装置15は、水上船10の全体を制御するなど種々の処理を行う装置である。処理装置15は、プロセッサ、揮発性メモリ、不揮発性メモリ、SSD、及び、I/Oインターフェース等を有している。そして、SSDには後述する探索プログラムを含む各種制御プログラム及び種々のデータが保存されており、不揮発性メモリがSSDから各種制御プログラムをダウンロードした後、プロセッサが各種制御プログラムに基づき揮発性メモリを用いて演算処理を行う。また、処理装置15は、上述した水上船10の各機器と電気的に接続されており、各機器から送信される測定信号に基づいて種々の情報を取得するとともに、これらの情報に基づいて演算を行い、各機器に制御信号を送信する。
 <潜水機>
 潜水機20は、水上船10から独立して航行が可能な自律型無人潜水機であり、水中で作業を行うことができる。潜水機20は、推進装置21と、対象物検知装置22と、検査装置23と、受電装置24と、バッテリ25と、音響通信装置26と、慣性航法装置27と、深度計28と、相対速度計29と、を有している。また、潜水機20には、処理装置30が設けられている。
 推進装置21は、水中を航行するための推力を発生させる装置である。推進装置21は、例えば潜水機20を前方へ移動させるための主推進用スラスタ、潜水機20を上下方向に移動させるための垂直スラスタ、潜水機20を左右方向に移動させるための水平スラスタなど、複数の推進器および潜水機20の進路を変更する舵装置を含む。ただし、推進装置21は、これに限定されず、例えば推力を発生させる方向を変更可能な首振り式のスラスタを有していてもよい。
 対象物検知装置22は、作業対象物であるパイプラインを検知する装置である。本実施形態の対象物検知装置22は、いわゆるマルチビームソーナである。ただし、対象物検知装置22は、形状把握用レーザであってもよく、マルチビームソーナと形状把握用レーザの双方であってもよい。なお、対象物検知装置22が設けられる位置や個数は特に限定されない。
 検査装置23は、パイプラインを検査するための装置である。本実施形態の検査装置23は、パイプラインを撮像する撮像用カメラ(例えばテレビカメラ)である。ただし、検査装置23は、撮像用カメラの代わりに又は撮像用カメラに加えて、例えばパイプラインの全長に亘って防食処置(例えば防食塗装)の劣化の程度を検査する防食検査器、及び、腐食の程度や損傷の有無を検査するためにパイプラインの肉厚を検査する肉厚検査器の一方又は双方を含んでもよい。
 受電装置24は、水上船10が有する給電装置14から供給される電力を受電するための装置である。受電装置24が受電した電力に基づき、バッテリ25が充電される。バッテリ25が蓄積する電力は、推進装置21など潜水機20が有する各機器の作動に使用される。
 音響通信装置26は、水上船10が有する音響通信装置13との間で音響を用いて通信を行う装置である。音響通信装置26により、潜水機20が有する各種装置が取得した情報(例えば、バッテリ25の残量など)を潜水機20から水上船10に送信することができる。
 慣性航法装置(Inertial Navigation System;INS)27は、加速度センサとジャイロセンサを用いて絶対座標系における潜水機20の向き、位置、及び速度を測定する装置である。深度計28は、潜水機20の深度を計測する機器である。相対速度計29は、ドップラー効果を利用して水底及びパイプラインなどの固定物を基準とする潜水機20の相対移動方向及び相対速度を計測する機器である。
 処理装置30は、プロセッサ、揮発性メモリ、不揮発性メモリ、SSD、及び、I/Oインターフェース等を有している。処理装置30は、上述した潜水機20の各機器と電気的に接続されており、各機器から送信される測定信号に基づいて種々の情報を取得するとともに、これらの情報に基づいて演算を行い、各機器に制御信号を送信する。
 <音響測位システム>
 音響測位システム40は、水上船10に対する潜水機20の位置を測定するとともに、潜水機20に対する水上船10の位置を測定するためのシステムである。本実施形態の音響測位システム40は、水上船10及び潜水機20のそれぞれに設けられた音響測位装置41、42と、水上船10及び潜水機20のそれぞれに設けられた応答装置43、44と、を有している。なお、水上船10の音響測位装置41は、水上船10の音響通信装置13と一体的に構成されていてもよい。また、潜水機20の音響測位装置42は、潜水機20の音響通信装置26と一体的に構成されていてもよい。
 水上船10の音響測位装置41から潜水機20の応答装置44に音波を送ると、その音波を検出した応答装置44は音響測位装置41に応答波(応答信号)を送る。音響測位装置41は、応答装置44からの応答波に基づいて、水上船10に対する潜水機20の相対位置を計測することができる。さらに、水上船10の処理装置15は、音響測位装置41から水上船10に対する潜水機20の相対位置を取得し、当該相対位置とGPS装置12から取得した水上船10の位置情報とに基づいて、潜水機20の位置(見かけの絶対位置)を算出することができる。なお、音響測位装置41による測定は誤差が生じるため、ここで算出する潜水機20の位置は、あくまでも見かけの絶対位置であり、後述する測定誤差領域の設定に利用される。
 また、潜水機20の音響測位装置42から水上船10の応答装置43に音波を送ると、その音波を検出した応答装置43は音響測位装置42に応答波(応答信号)を送る。音響測位装置42は、応答装置43からの応答波に基づいて、潜水機20に対する水上船10の相対位置を計測することができる。潜水機20の処理装置30は、潜水機20が充電等のために水上船10に帰還する際、音響測位装置42から潜水機20に対する水上船10の相対位置を取得し、当該相対位置と音響測位装置42から取得した情報に基づいて、潜水機20が水上船10に近づくように推進装置21を駆動させる。
 なお、本実施形態における音響測位システム40は、USBL(Ultra Short Base Line)方式の測位システムを採用している。すなわち、各音響測位装置41、42は、送波器と受波アレイとを有し、送波器から音波を送り、それを検出した応答装置43、44から送られる応答波を受波アレイで受ける。音響測位装置41、42は、応答装置43、44との間の音波の往復時間から応答装置43、44までの距離を計算するとともに、受波アレイ内の各素子へ到達した応答波の位相差をもとに応答装置43、44の方位を特定する。
 ただし、音響測位システム40は、USBL方式の測位システムに限定されない。例えば、音響測位装置41、42は、水上船10及び潜水機20のそれぞれに3つ以上の受波器を互いに離間するように設けて、これらが受ける応答波の到達時間差に基づいて音響測位装置41、42に対する応答装置43、44の方位を特定するSBL(Short Base Line)方式を採用してもよい。
 <パイプラインの探索作業>
 次に、水底に敷設されたパイプラインを探し出す探索作業について説明する。パイプラインの探索作業は、パイプラインに対して検査等の作業を行う前に実施される。水上船10の処理装置15は、音響通信装置13、26を介して潜水機20の処理装置30から種々の情報を取得し、これらの情報基づいて探索プログラムを実行する。水上船10の処理装置15は、探索プログラムにおいて種々の演算処理を行い、音響通信装置13、26を介して潜水機20の処理装置30に制御信号を送信する。潜水機20の処理装置30は、受信した制御信号に基づいて推進装置21等を制御する。
 図2は、探索プログラムのフローチャートである。図2で示す探索プログラムは、水上船10の処理装置15によって実行される。探索プログラムは、潜水機20が海底から所定の高さ位置に位置したときに開始される。探索プログラムが開始されると、処理装置15は、パイプラインの予想敷設領域を設定する(ステップS1)。パイプラインの「予想敷設領域」とは、パイプラインが経年移動する可能性がある領域である。本実施形態の処理装置15はパイプラインを敷設した当時の敷設位置を記憶しており、この記憶している敷設位置と敷設時からの経過期間に基づいて設定する。
 図3は、探索作業における潜水機20の動作を示した図である。図3の二点鎖線は敷設当初におけるパイプラインの敷設位置であり、二点鎖線に平行な直線で挟まれた領域がパイプラインの予想敷設領域である。本実施形態の予想敷設領域は帯状であり、直線状に延びている。なお、図3では、敷設当初のパイプラインの設置位置が予想敷設領域の中央に位置しているが、例えば、パイプラインが一方向にのみ経年移動すると予想される場合は、敷設当初のパイプラインの敷設位置は予想敷設領域の中央からずれることになる。
 続いて、処理装置15は、潜水機20の位置を算出する(ステップS2)。前述のとおり、潜水機20の位置(見かけの絶対位置)は、処理装置15は、GPS装置12から取得した水上船10の位置情報と、音響測位装置41から取得した水上船10に対する潜水機20の相対位置とに基づいて算出することができる。
 続いて、処理装置15は、水上船10の測定誤差領域を設定する(ステップS3)。前述のとおり、音響測位装置41の測定精度は高くないため、ステップS2で算出した潜水機20の位置は測定誤差が存在する。「測定誤差領域」とは、潜水機20が位置する可能性がある領域であって、ステップS2で算出した潜水機20の位置を中心とした領域である。例えば、図3において、符号20Aを付した潜水機の位置がステップS2で算出した潜水機20の位置であるとすると、符号20aを付した円で囲まれた領域が測定誤差領域である。測定誤差領域は、水上船10と潜水機20の距離が大きくなるにしたがって大きくなる。なお、水上船10と潜水機20の距離は、深度計28によって推定することができる。
 続いて、処理装置15は、水上船10の測定誤差領域とパイプラインの予想敷設領域が重複するか否かを判定する(ステップS4)。処理装置15は、測定誤差領域と予想敷設領域が重複すると判定した場合(ステップS4でYES)、それらの領域が離れる位置にまで潜水機20を移動させる(ステップS5)。例えば、図3の符号20aを付した円で示すように、測定誤差領域と予想敷設領域が重複する場合には、符号20bを付した円で示すような測定誤差領域と予想敷設領域が重複しなくなる位置にまで潜水機20を移動させる(図3の符号20Bを付した潜水機を参照)。ステップS5を経た後は、後述する横断検知を開始する(ステップS6)。
 一方、処理装置15が、測定誤差領域と予想敷設領域が重複しないと判定した場合(ステップS4でNO)、そのまま横断検知を開始する(ステップS6)。ここで、「横断検知」とは、潜水機20が予想敷設領域を横断しながらパイプラインの有無を検知する作業である。潜水機20の対象物検知装置22を用いれば、パイプラインの有無を検知することができる。潜水機20が予想敷設領域を横断する際、例えば処理装置15が算出する潜水機20の位置は、符号20Bを付した潜水機の位置から符号20Cを付した潜水機の位置へと移動してゆく。
 続いて、処理装置15は、潜水機20がパイプラインを検知したか否かを判定する(ステップS7)。潜水機20がパイプラインを検知していないと判定した場合(ステップS7でNO)、横断検知を続行する(ステップS8)。この横断検知は、パイプラインが検知されるまで繰り返される。一方、潜水機20がパイプラインを検知したと判定した場合(ステップS7でYES)、探索プログラムは終了し、潜水機20はパイプラインの検査等の次の作業を開始する。
 <作用効果等>
 以上が本実施形態に係る水中作業システム100の説明である。本実施形態に係る水中作業システム100は、水上に位置する水上船10と、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機20と、水上船10に搭載された音響測位装置41から出力された音波を用いて水上船10に対する潜水機20の相対位置を測定する音響測位システム40と、処理装置15と、を備えている。そして、処理装置15は、探索作業の開始時に音響測位システム40から水上船10に対する潜水機20の相対位置を取得し、取得した相対位置に基づいて潜水機20の位置を算出し、算出した潜水機20の位置を中心とする測定誤差領域と所定の方向に延びるパイプラインの予想敷設領域とが重複する場合には、測定誤差領域と予想敷設領域とが重複しない位置にまで潜水機20を移動させた後、潜水機20に予想敷設領域を横断しながらパイプラインの有無を検知する横断検知を実施させている。
 このように、本実施形態に係る水中作業システム100では、音響測位システム40の測定誤差とパイプラインの経年移動を考慮してパイプラインの探索作業を行うため、基本的には一度の横断検知によりパイプラインを探し出すことができる。よって、パイプラインの探索作業を効率よく行うことができる。
 また、本実施形態に係る水中作業システム100では、測定誤差領域と予想敷設領域とが重複しない位置から横断検知を開始したが、測定誤差領域と予想敷設領域の間隔が所定距離となる位置から横断検知を開始してもよい。つまり、処理装置15は、探索作業の開始時に音響測位システム40から水上船10に対する潜水機20の相対位置を取得し、取得した相対位置に基づいて潜水機20の位置を算出し、算出した潜水機20の位置を中心とする測定誤差領域と所定の方向に延びるパイプラインの予想敷設領域との間隔が所定距離でない場合には、測定誤差領域と予想敷設領域の間隔が所定距離となる位置にまで潜水機20を移動させた後、潜水機20に予想敷設領域を横断しながらパイプラインの有無を検知する横断検知を実施させてもよい。
 この構成によれば、測定誤差領域と予想敷設領域の間隔が所定距離よりも狭い位置から横断検知を開始する場合に比べて確実にパイプラインを探し出すことができる。また、測定誤差領域と予想敷設領域の間隔が所定距離よりも広い位置から横断検知を開始する場合に比べて不要な作業が減り、効率よく探索作業を行うことができる。
 また、上記の実施形態に係る水中作業システム100によれば、基本的には一度の横断検知によりパイプラインを探し出すことができるが、一度の横断検知でパイプラインを探し出すことができない場合は、再度横断検知を実施してもよい。例えば、図4の符号20dを付した円で示すように、潜水機20が予想敷設領域を通過して、測定誤差領域と予想敷設領域とが重複しなくなる位置にまで潜水機20が移動してもパイプラインを検知できない場合には、潜水機20の進行方向を変えて横断検知を再度実施させてもよい(図4の符号20E、20Fを付した潜水機を参照)。
 つまり、処理装置15は、探索作業において、潜水機20に所定の方向に延びるパイプラインの予想敷設領域を横断しながらパイプラインを検知する横断検知を実施させつつ、音響測位システム40から水上船10に対する潜水機20の相対位置を取得し、取得した相対位置に基づいて潜水機20の位置を算出し、算出した潜水機20の位置を中心とする測定誤差領域と予想敷設領域とが重複しなくなる位置にまで潜水機20が移動してもパイプラインを検知できない場合には、潜水機20の進行方向を変えて潜水機20に横断検知を再度実施させてもよい。
 この構成によれば、潜水機20による横断検知を行ってもパイプラインを検知できない場合には、横断検知が再度実施されるため、より確実にパイプラインを探し出すことができる。なお、進行方向を変える場合、進行方向の変更角度は180度であってもよく、180度以外であってもよい。
 (第2実施形態)
 次に、本願の第2実施形態に係る水中作業システム200について説明する。図5は、本実施形態に係る水中作業システム200のブロック図である。図5に示すように、水中作業システム200は、上述した水上船10及び潜水機20に加え、トランスポンダ50を備えている。また、第2実施形態の音響測位システム40は、上述した音響測位装置41、42、応答装置43、44に加え、トランスポンダ50に設けられた応答装置45を有している。
 図6は、第2実施形態の探索プログラムのフローチャートである。本実施形態の探索作業は、この探索プログラムに基づいて実施される。図6で示す探索プログラムは、水上船10の処理装置15によって実行される。本実施形態では、敷設当初におけるパイプラインの敷設位置付近に水上船10からトランスポンダ50を投下した後、探索プログラムが開始される。なお、トランスポンダ50には、水底からの高さ位置が一定となるように「重り」及び「浮き」を設けてもよい。
 探索プログラムが開始されると、処理装置15は、潜水機20をトランスポンダ50まで移動させる(ステップS11)。潜水機20の移動は、音響測位システム40を用いてトランスポンダ50に対する潜水機20の相対位置を測定しながら行われる。潜水機20がトランスポンダ50に近づくにつれて音響測位システム40による測定誤差が小さくなるため、潜水機20はトランスポンダ50に正確にたどり着くことができる(後述する図7の符号20A及び20Bを付した潜水機を参照)。
 続いて、処理装置15は、パイプラインの予想敷設領域を設定する(ステップS12)。パイプラインの予想敷設領域の設定方法は、前述したステップS1と同じである。図7は、本実施形態の探索作業における潜水機20の動作を示した図である。図3と同様に、図7の二点鎖線は敷設当初におけるパイプラインの敷設位置であり、二点鎖線に平行な直線で挟まれた領域がパイプラインの予想敷設領域である。
 続いて、処理装置15は、トランスポンダ50の位置を算出する(ステップS13)。処理装置15は、GPS装置12から取得した水上船10の位置情報と、音響測位装置41から取得した水上船10に対するトランスポンダ50の相対位置とに基づいて、トランスポンダ50の位置(見かけの絶対位置)を算出することができる。
 続いて、処理装置15は、トランスポンダ50の測定誤差領域を設定する(ステップS14)。測定誤差領域は、トランスポンダ50が位置する可能性がある領域であって、ステップS13で算出したトランスポンダ50の位置を中心とする領域である。例えば、図7において、符号50Aを付した点の位置がステップS13で算出したトランスポンダ50の位置であるとすると、符号50aを付した円で囲まれた領域が測定誤差領域である。測定誤差領域は、水上船10とトランスポンダ50の距離が大きくなるにしたがって大きくなる。水上船10とトランスポンダ50の距離は、トランスポンダ50の近傍に位置する潜水機20の深度計28によって推定することができる。
 続いて、処理装置15は、トランスポンダ50の測定誤差領域とパイプラインの予想敷設領域が重複するか否かを判定する(ステップS15)。処理装置15は、測定誤差領域と予想敷設領域が重複すると判定した場合(ステップS15でYES)、目標位置を設定する(ステップS16)。
 この「目標位置」とは、測定誤差領域と予想敷設領域が重複しなくなるようなトランスポンダ50の位置である。つまり、目標位置とは、測定誤差領域と予想敷設領域が重複しなくなるようなトランスポンダ50の位置である。さらに、本実施形態では、処理装置15は、ステップS13で算出したトランスポンダ50の位置を通りパイプラインの予想敷設領域に直交する仮想線上に目標位置が位置するように、目標位置を設定する。
 例えば、仮に、図7の符号50bを付した円が測定誤差領域であるとすると、この測定誤差領域は予想敷設領域と重複しないため、符号50bを付した円の中心に位置する符号50Bを付した点は目標位置になりうる。さらに、ステップS13で算出したトランスポンダ50の位置が符号50Aを付した点であるとすれば、符号50Bを付した点は、符号50Aを通りパイプラインの予想敷設領域に直行する仮想線102上に位置しているため、この条件からも目標位置になりうる。
 処理装置15は、ステップS16で目標位置を設定した後、潜水機20を目標位置にまで移動させる(ステップS17;図7の符号20Cを付した潜水機参照)。なお、潜水機20を目標位置にまで移動させる際、潜水機20の相対速度計29から取得した潜水機20の水底に対する相対速度に基づいてトランスポンダ50に対する潜水機20の相対位置を算出しつつ算出した潜水機20が目標位置に至るまで潜水機20を移動させる。
 処理装置15は、潜水機20が目標位置に到達した後、進行方向を変えて横断検知を開始する(ステップS18;図7の符号20Dを付した潜水機参照)。また、ステップS15において、処理装置15が予想敷設領域と測定誤差領域が重複しないと判定した場合も(ステップS15においてNO)、横断検知を開始する(ステップS18)。
 続いて、処理装置15は、潜水機20がパイプラインを検知したか否かを判定する(ステップS19)。潜水機20がパイプラインを検知していないと判定した場合(ステップS19でNO)、横断検知を続行する(ステップS20;図7の符号20E、20Fを付した潜水機参照)。ステップS20は、パイプラインが検知されるまで繰り返される。一方、潜水機20がパイプラインを検知したと判定した場合(ステップS19でYES)、探索プログラムは終了し、潜水機20はパイプラインの検査等の作業を開始する。
 <作用効果等>
 以上が、本実施形態に係る水中作業システム200の説明である。本実施形態に係る水中作業システム200は、水上に位置する水上船10と、水上船10から水底に投下されるトランスポンダ50と、投下されたトランスポンダ50を基準として、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機20と、を備えている。
 このように、本実施形態に係る水中作業システム200では、トランスポンダ50を用いてパイプラインの探索作業が行われる。ここで、トランスポンダ50は、投下の際に潜水機20よりも潮流の影響を受けにくい。そのため、潜水機20よりもパイプラインの探索作業を開始する位置の近くに投下することができる。その結果、本実施形態によれば、パイプラインの探索作業を効率よく行うことができる。
 また、本実施形態に係る水中作業システム200は、水上船10に搭載された音響測位装置41から出力された音波を用いて水上船10に対するトランスポンダ50の相対位置を測定する音響測位システム40と、処理装置15と、をさらに備えている。また、潜水機20は水底に対する当該潜水機20の相対速度を計測可能な相対速度計29を有している。そして、処理装置15は、探索作業の開始時に音響測位システム40から水上船10に対するトランスポンダ50の相対位置を取得し、取得した相対位置に基づいてトランスポンダ50の位置を算出し、算出したトランスポンダ50が投下された位置を中心とする測定誤差領域と所定の方向に延びるパイプラインの予想敷設領域とが重複する場合には、測定誤差領域と予想敷設領域とが重複しなくなるような仮のトランスポンダ50が投下された位置を目標位置に設定し、潜水機20をトランスポンダ50が投下された位置まで移動させた後、相対速度計29から取得した潜水機20の水底に対する相対速度に基づいてトランスポンダ50に対する潜水機20の相対位置を算出しつつ潜水機20の位置が目標位置に至るまで潜水機20を移動させ、その後、潜水機20に予想敷設領域を横断しながらパイプラインの有無を検知する横断検知を実施させている。
 このように、本実施形態では、音響測位システム40の測定誤差とパイプラインの経年移動を考慮してパイプラインの探索作業を行うため、基本的には一度の横断検知によりパイプラインを探し出すことができる。よって、パイプラインの探索作業を効率よく行うことができる。
 また、本実施形態に係る水中作業システム200では、処理装置15は、探索作業の開始時に測定したトランスポンダ50の投下位置を通りパイプラインの予想敷設領域に直交する仮想線上に前記目標位置を設定している。
 そのため、本実施形態によれば、横断検知の際の移動距離を少なくすることができる結果、パイプラインの探索作業をより効率的に行うことができる。
 また、上述した第1実施形態及び第2実施形態に係る水中作業システム100、200において、処理装置15は、横断検知を1回又は複数回実施してもパイプラインが検知されない場合、潜水機20をパイプラインの予想敷設領域が延びる方向に沿って移動させた後、潜水機20に横断検知を再度実施させてもよい。
 この構成によれば、横断検知を行ってもパイプラインを検知できない場合には、横断検知を行う位置を変えて横断検知が再度実施されるため、より確実にパイプラインを探し出すことができる。
 また、上述した第1実施形態及び第2実施形態に係る水中作業システム100、200において、処理装置15は、横断検知を1回又は複数回実施してもパイプラインが検知されない場合、横断検知における潜水機20の移動距離を延ばして潜水機20に横断検知を再度実施させてもよい。
 この構成によれば、横断検知を行ってもパイプラインを検知できない場合には、横断検知の際の移動距離を延ばして横断検知が再度実施されるため、より確実にパイプラインを探し出すことができる。
 また、上述した第1実施形態及び第2実施形態に係る水中作業システム100、200では、水上船10に設けられた処理装置15によって操作プログラムが実行されたが、潜水機20に設けられた処理装置30によって操作プログラムを実行してもよく、両処理装置15、30によって操作プログラムを実行してもよい。
10 水上船
15 処理装置
20 潜水機
30 処理装置
40 音響測位システム
41 音響測位装置
42 音響測位装置
50 トランスポンダ
100 水中作業システム
102 仮想線
200 水中作業システム
 

Claims (8)

  1.  水上に位置する水上船と、
     水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、
     前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、
     処理装置と、を備え、
     前記処理装置は、前記探索作業の開始時に前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と所定の方向に延びる前記パイプラインの予想敷設領域とが重複する場合には、前記測定誤差領域と前記予想敷設領域とが重複しない位置にまで前記潜水機を移動させた後、前記潜水機に前記予想敷設領域を横断しながら前記パイプラインの有無を検知する横断検知を実施させる、水中作業システム。
  2.  水上に位置する水上船と、
     水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、
     前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、
     処理装置と、を備え、
     前記処理装置は、前記探索作業の開始時に前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と所定の方向に延びる前記パイプラインの予想敷設領域との間隔が所定距離でない場合には、前記測定誤差領域と前記予想敷設領域の間隔が前記所定距離となる位置にまで前記潜水機を移動させた後、前記潜水機に前記予想敷設領域を横断しながら前記パイプラインの有無を検知する横断検知を実施させる、水中作業システム。
  3.  水上に位置する水上船と、
     水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、
     前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記潜水機の相対位置を測定する音響測位システムと、
     処理装置と、を備え、
     前記処理装置は、前記探索作業において、前記潜水機に所定の方向に延びる前記パイプラインの予想敷設領域を横断しながら前記パイプラインを検知する横断検知を実施させつつ、前記音響測位システムから前記水上船に対する前記潜水機の相対位置を取得し、取得した前記相対位置に基づいて前記潜水機の位置を算出し、算出した前記潜水機の位置を中心とする測定誤差領域と前記予想敷設領域とが重複しなくなる位置にまで前記潜水機が移動しても前記パイプラインを検知できない場合には、前記潜水機の進行方向を変えて前記潜水機に前記横断検知を再度実施させる、水中作業システム。
  4.  水上に位置する水上船と、
     前記水上船から水底に投下されるトランスポンダと、
     投下された前記トランスポンダを基準として、水底に敷設されたパイプラインを探し出す探索作業を行う潜水機と、を備えた水中作業システム。
  5.  前記水上船に搭載された音響測位装置から出力された音波を用いて前記水上船に対する前記トランスポンダの相対位置を測定する音響測位システムと、
     処理装置と、をさらに備え、
     前記潜水機は水底に対する当該潜水機の相対速度を計測可能な相対速度計を有し、
     前記処理装置は、前記探索作業の開始時に音響測位システムから前記水上船に対する前記トランスポンダの相対位置を取得し、取得した前記相対位置に基づいて前記トランスポンダの位置を算出し、算出した前記トランスポンダが投下された位置を中心とする測定誤差領域と所定の方向に延びる前記パイプラインの予想敷設領域とが重複する場合には、前記測定誤差領域と前記予想敷設領域とが重複しなくなるような仮の前記トランスポンダが投下された位置を目標位置に設定し、前記潜水機を前記トランスポンダが投下された位置まで移動させた後、前記相対速度計から取得した前記潜水機の水底に対する相対速度に基づいて前記トランスポンダに対する前記潜水機の相対位置を算出しつつ前記潜水機の位置が前記目標位置に至るまで前記潜水機を移動させ、その後、前記潜水機に前記予想敷設領域を横断しながら前記パイプラインの有無を検知する横断検知を実施させる、請求項4に記載の水中作業システム。
  6.  前記処理装置は、前記探索作業の開始時に測定した前記トランスポンダの投下位置を通り前記パイプラインの予想敷設領域に直交する仮想線上に前記目標位置を設定する、請求項5に記載の水中作業システム。
  7.  前記処理装置は、前記横断検知を1回又は複数回実施しても前記パイプラインが検知されない場合、前記潜水機を前記パイプラインの予想敷設領域が延びる方向に沿って移動させた後、前記潜水機に前記横断検知を再度実施させる、請求項1乃至6のうちいずれか一の項に記載の水中作業システム。
  8.  前記処理装置は、前記横断検知を1回又は複数回実施しても前記パイプラインが検知されない場合、前記横断検知における前記潜水機の移動距離を延ばして前記潜水機に前記横断検知を再度実施させる、請求項1乃至6のうちいずれか一の項に記載の水中作業システム。
     
PCT/JP2020/029014 2019-08-09 2020-07-29 水中作業システム WO2021029221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB2200939.3A GB2600336B (en) 2019-08-09 2020-07-29 Underwater work system
AU2020328964A AU2020328964B2 (en) 2019-08-09 2020-07-29 Underwater operation system
NO20220145A NO20220145A1 (ja) 2019-08-09 2022-01-28
US17/590,201 US11964745B2 (en) 2019-08-09 2022-02-01 Underwater work system
AU2023204284A AU2023204284B2 (en) 2019-08-09 2023-07-04 Underwater work system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-147156 2019-08-09
JP2019147156A JP7362343B2 (ja) 2019-08-09 2019-08-09 水中作業システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/590,201 Continuation US11964745B2 (en) 2019-08-09 2022-02-01 Underwater work system

Publications (1)

Publication Number Publication Date
WO2021029221A1 true WO2021029221A1 (ja) 2021-02-18

Family

ID=74569425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029014 WO2021029221A1 (ja) 2019-08-09 2020-07-29 水中作業システム

Country Status (6)

Country Link
US (1) US11964745B2 (ja)
JP (1) JP7362343B2 (ja)
AU (2) AU2020328964B2 (ja)
GB (2) GB2616391B (ja)
NO (1) NO20220145A1 (ja)
WO (1) WO2021029221A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139494A (ja) * 1989-10-25 1991-06-13 Mitsui Eng & Shipbuild Co Ltd 有索無人潜水機の自動目標誘導方法
EP1215114A1 (en) * 2000-12-13 2002-06-19 PIRELLI CAVI E SISTEMI S.p.A. Method of laying an underwater cable
US20030078706A1 (en) * 2000-03-03 2003-04-24 Larsen Mikael Bliksted Methods and systems for navigating under water
KR100649620B1 (ko) * 2005-08-22 2006-11-27 한국전력공사 유인잠수정에 의한 해저케이블 점검시스템
US20140165898A1 (en) * 2011-10-20 2014-06-19 Franhofer-Gesellschaft Zur Forderung Der Angewandt Forschung E.V. Unmanned Underwater Vehicle and Method for Localizing and Examining An Object Arranged At The Bottom Of A Body Of Water and System Having the Unmanned Underwater Vehicle
JP2016159662A (ja) * 2015-02-26 2016-09-05 三菱重工業株式会社 水中パイプライン検査用の自律型水中航走体
US20170268714A1 (en) * 2015-11-09 2017-09-21 Halliburton Energy Services, Inc. Pig tracking by unmanned submarine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726246B1 (fr) * 1994-10-28 1996-11-29 Thomson Csf Procede et systeme de destruction d'objets sous-marins, notamment de mines sous-marines
US7362653B2 (en) * 2005-04-27 2008-04-22 Teledyne Benthos, Inc. Underwater geopositioning methods and apparatus
US7512036B2 (en) * 2005-08-16 2009-03-31 Ocean Server Technology, Inc. Underwater acoustic positioning system and method
JP3139494U (ja) * 2007-11-21 2008-02-21 中外テクノス株式会社 林地残材圧縮結束切断装置
WO2012135057A2 (en) * 2011-03-25 2012-10-04 Teledyne Instruments, Inc. Determining a position of a submersible vehicle within a body of water
JP5806568B2 (ja) 2011-09-26 2015-11-10 川崎重工業株式会社 水中移動型検査装置及び水中検査設備
BR112015025450A2 (pt) 2013-04-05 2017-07-18 Lockheed Corp plataforma submarina com lidar e métodos relacionados
WO2016149199A1 (en) 2015-03-16 2016-09-22 Saudi Arabian Oil Company Communications among water environment mobile robots

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139494A (ja) * 1989-10-25 1991-06-13 Mitsui Eng & Shipbuild Co Ltd 有索無人潜水機の自動目標誘導方法
US20030078706A1 (en) * 2000-03-03 2003-04-24 Larsen Mikael Bliksted Methods and systems for navigating under water
EP1215114A1 (en) * 2000-12-13 2002-06-19 PIRELLI CAVI E SISTEMI S.p.A. Method of laying an underwater cable
KR100649620B1 (ko) * 2005-08-22 2006-11-27 한국전력공사 유인잠수정에 의한 해저케이블 점검시스템
US20140165898A1 (en) * 2011-10-20 2014-06-19 Franhofer-Gesellschaft Zur Forderung Der Angewandt Forschung E.V. Unmanned Underwater Vehicle and Method for Localizing and Examining An Object Arranged At The Bottom Of A Body Of Water and System Having the Unmanned Underwater Vehicle
JP2016159662A (ja) * 2015-02-26 2016-09-05 三菱重工業株式会社 水中パイプライン検査用の自律型水中航走体
US20170268714A1 (en) * 2015-11-09 2017-09-21 Halliburton Energy Services, Inc. Pig tracking by unmanned submarine

Also Published As

Publication number Publication date
GB2616391A (en) 2023-09-06
GB2600336B (en) 2023-08-30
AU2023204284A1 (en) 2023-07-27
AU2023204284B2 (en) 2024-08-29
GB2600336A (en) 2022-04-27
US11964745B2 (en) 2024-04-23
NO20220145A1 (ja) 2022-01-28
GB202200939D0 (en) 2022-03-09
GB2616391B (en) 2024-01-31
AU2020328964B2 (en) 2023-06-22
US20220153396A1 (en) 2022-05-19
JP7362343B2 (ja) 2023-10-17
AU2020328964A1 (en) 2022-02-24
GB2600336A9 (en) 2022-11-23
JP2021028186A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
US9372255B2 (en) Determining a position of a submersible vehicle within a body of water
US20140165898A1 (en) Unmanned Underwater Vehicle and Method for Localizing and Examining An Object Arranged At The Bottom Of A Body Of Water and System Having the Unmanned Underwater Vehicle
CN104316045A (zh) 一种基于sins/lbl的auv水下交互辅助定位系统及定位方法
WO2008048346A2 (en) System and method for determining the position of an underwater vehicle
RU2563332C2 (ru) Способ навигации автономного необитаемого подводного аппарата
CN110727282B (zh) Auv的对接方法、装置及水下对接系统
JP2019189112A (ja) 自律型無人潜水機を用いた作業方法
KR101047960B1 (ko) 수중 운동체의 위치를 추정하기 위한 음향 센서 시스템 및 그 방법
JP6733416B2 (ja) 水中航走体監視装置および水中航走体監視方法
JP2023034807A (ja) 水中航走体の音響測位処理方法、音響測位処理プログラム、及び音響測位処理システム
WO2021029221A1 (ja) 水中作業システム
JP7064604B2 (ja) 潜水機システム及び作業方法
RU2555479C2 (ru) Способ высокоточного координирования подводного комплекса в условиях подледного плавания
WO2020096495A1 (ru) Способ позиционирования подводных объектов
KR101158721B1 (ko) 자항기뢰 및 자항기뢰를 부설위치로 유도하는 방법
Kim et al. Imaging sonar based navigation method for backtracking of AUV
Baker et al. A new procedure for simultaneous navigation of multiple auv's
JP4030088B2 (ja) 海底物理探査における潜水艇の制御方法およびシステム
RU2556326C1 (ru) Способ навигации подводного робота с использованием одномаяковой системы
AU2012200886A1 (en) System and method for determining the position of an underwater vehicle
RU201786U1 (ru) Автоматическое устройство пространственной ориентации подвижного подводного объекта
JPH1068773A (ja) 被曳航体の位置計測装置
CZ2021330A3 (cs) Způsob a zařízení pro určování polohy předmětu pod vodní hladinou
JPS6230975A (ja) 音響測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202200939

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200729

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020328964

Country of ref document: AU

Date of ref document: 20200729

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20851441

Country of ref document: EP

Kind code of ref document: A1