WO2020096495A1 - Способ позиционирования подводных объектов - Google Patents

Способ позиционирования подводных объектов Download PDF

Info

Publication number
WO2020096495A1
WO2020096495A1 PCT/RU2019/050168 RU2019050168W WO2020096495A1 WO 2020096495 A1 WO2020096495 A1 WO 2020096495A1 RU 2019050168 W RU2019050168 W RU 2019050168W WO 2020096495 A1 WO2020096495 A1 WO 2020096495A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater
underwater object
basic positioning
positioning devices
location
Prior art date
Application number
PCT/RU2019/050168
Other languages
English (en)
French (fr)
Inventor
Александр Васильевич ДИКАРЕВ
Станислав Михайлович ДМИТРИЕВ
Original Assignee
Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" filed Critical Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации"
Publication of WO2020096495A1 publication Critical patent/WO2020096495A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target

Definitions

  • This invention relates to methods and corresponding positioning systems for underwater objects, and in particular to methods in which basic positioning devices are located, the location of which is known or calculated in advance, determined using sensors located on basic positioning devices, the depth of the transmitters, and their location using satellite navigation system, transmit the request signal of the underwater object using the transmitter of the underwater object, the coordinates of which are needed determine whether the response signals are transmitted from the basic positioning devices using the transmitters of the basic positioning devices, receive the response signals using the signal receiver located on the underwater object, determine the coordinates of the underwater object using the computing module of the underwater object by the time delay of receiving signals from the basic positioning devices, the location of which it is known.
  • a short navigation base can be used, the elements of which are located on the support vessel or infrastructure elements (piers, berth walls, bridge supports, etc.)
  • Hydroacoustic buoy - a free-floating or anchored buoy designed to emit and / or receive and relay hydroacoustic signals over the air.
  • Request signal - it can be both hydroacoustic and electric, going through the cable. That is, the request signal may be in the form sonar signal or using a strobe electrical signal transmitted over the cable. This can be when the initiator is a surface navigation base, and the request signal is transmitted to the underwater.
  • the advantage of this method is, firstly, the increased accuracy of positioning due to additional a priori data on the relative position of the receivers on the underwater object, and secondly, the data on the azimuth, roll and trim angles, which allows not only determining the location of the underwater object, but also its orientation in three-dimensional space.
  • the prior art method for positioning underwater objects in which the positioning devices are positioned, the location of which is known or calculated in advance, they are determined using sensors located on the basic positioning devices, the depth of the transmitters, and their location using the satellite navigation system, a query signal is transmitted underwater object using the transmitter of the underwater object, the coordinates of which must be determined, transmit response signals from devices ba isnogo positioning transmitters basic positioning devices receiving response signals via disposed on an underwater object signal receiver, determine the coordinates of the underwater object by using the computing unit underwater object delay the time of reception of signals from basic positioning devices, the location of which is known.
  • This method is the closest in technical essence and the achieved technical result and is selected for the prototype of the invention as a method.
  • the present invention mainly aims to propose a method for positioning underwater objects, which allows at least smoothing out at least one of the above disadvantages, namely increasing the accuracy of navigation of underwater objects with determining their spatial orientation, which and is the task.
  • the method for navigating underwater objects is characterized essentially by the fact that the method further includes the following steps:
  • the prior art system includes a basic positioning device having a satellite signal receiver connected to a computing module of the basic positioning device, which is connected to a transmitter of signals containing the location data of these basic positioning devices, the system also includes a signal receiver located on the positioned underwater object from these basic positioning devices, connected to the computing module of the positioned underwater object, configured to determine the coordinates of the underwater object by the time delay of receiving signals from basic positioning devices, the location of which s known. See invention patent N ° 2599902, published in 2016.
  • This system is the closest in technical essence and the achieved technical result and is selected as a prototype of the invention as a system.
  • the present invention mainly aims to propose a positioning system for underwater objects, which allows at least to smooth out at least one of the above disadvantages, namely improving the accuracy of navigation of underwater objects with the determination of their spatial orientation, which and is the task.
  • the navigation system of underwater objects is characterized in that it is additionally positioned the underwater object includes three different receivers of signals from basic positioning devices connected to the computing module of the positioned underwater object.
  • FIG. 1 depicts a functional diagram of a positioning system for underwater objects, according to the invention
  • FIG. 2 depicts an alternative functional diagram of a positioning system for underwater objects, according to the invention
  • the positioning system of underwater objects includes a basic positioning device 1 having a receiver
  • the system also includes a receiver 31 of signals from said basic positioning devices located on a positioned underwater object 3, connected to a computing module 32 of a positioned underwater object, configured to determine the coordinates of the underwater object by delaying the reception of signals from the basic positioning devices, the location of which is known
  • the basic positioning device 1 is shown as sonar buoys, which are designated as 1A, 1 V, 1 C, having a receiver 1 1 of signals from satellites 2, connected to the computing module
  • position 4 denotes the boundary of the liquid and atmospheric media
  • dotted lines show the propagation of signals from sonar buoys to the receiver of an underwater object.
  • the positioned underwater object 3 includes three different receivers of signals from basic positioning devices connected to the computing module 32 of the positioned underwater object, which are designated as 31 A, 31 V, 31 C, each of which has its own depth sensor ZZA, 33V, ZZS.
  • Figure 1 shows an option when each receiver has its own computing module
  • figure 2 shows an option when it is common.
  • Stage A1 Basically positioning devices whose location is known or calculated in advance are pre-positioned. For example, several, for example, three sonar navigation buoys 1A, 1V, 1 C are installed on the water surface, each having a satellite signal receiver 11 connected to a sonar buoy computing module 12, which is connected to a sonar transmitter 13 containing data about the location of these sonar buoys 1 and their identification data.
  • Stage A2 Receive through the receivers 11 located on the sonar buoys 1 signals from satellites 2.
  • Stage AZ Determine using sensors located on the basic positioning devices, the depth of the transmitters, and their location using a satellite navigation system. That is, the coordinates of sonar buoys 1A, 1 B, 1 C are determined by means of computing modules 12 sonar buoys.
  • Stage A4 A request signal of the underwater object is transmitted using any transmitter of the underwater object, the coordinates of which must be determined.
  • Stage A6 Determine by means of sensors ZZA, 33V, ZZS located on each receiver 31 A, 31 V, 31 C of the positioned underwater object of their depth.
  • Stage A7 Given the speed of sound in the medium, the distances from each receiver 31 A, 31 V, 31 C of the positioned object to each transmitter of the basic positioning devices are determined. Indicated in figures 1 and 2 by dashed lines.
  • Stage A8 The receivers of the second 1 V and third 1 C sonar buoys take this fixed time.
  • Stage A9 Due to the fact that the relative position of the signal receivers on the positioned underwater object is known, they solve the problem of determining the location of these receivers with the calculation of the spatial position and orientation of the underwater object.
  • the sequence of steps is exemplary and allows you to rearrange, decrease, add or perform some operations at the same time without losing the ability to provide navigation for underwater objects.
  • the proposed method for positioning underwater objects and the system can be implemented by a specialist in practice and, when implemented, ensure the implementation of the declared purpose, which allows us to conclude that the criterion of "industrial applicability" for the invention is met.
  • an underwater part which is a square frame, 3x3 meters in size, in three corners of which there were receiving hydrophones and depth sensors, also a normobaric housing containing a digital signal processing module was located on the frame.
  • the underwater (positioned) part was interfaced informationally and electrically with the surface via a cable 100 meters long with the surface part.
  • the surface part was a splash-proof case, in which the digital signal processing module, a 4-channel power amplifier was located, four transmitting antennas located on vertical rods mounted on a small vessel were connected to the case.
  • the surface part was additionally informationally interfaced with a PC, to which an on-board navigation system was connected, providing the system with data on the geographical position of the vessel (respectively, of all the transmitters) and azimuthal angle.
  • the goal is achieved - improving the accuracy of navigation of underwater objects with the determination of their spatial orientation.
  • This is very important, for example, when flaw detection of pipelines in shallow areas, since it is impossible to fit a vessel with dynamic positioning and a robot, and you need to tow the flaw detector behind the boat, the flaw detector (magnetometer) must pass at a given height above the pipe, and you need: firstly , to know at every moment of time where he is in order to steer, and secondly, you need to know the angles of his tilt and direction for post-processing. You cannot use the compass because it will always point along the pipe, so the only option is the proposed system and method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Данное изобретение относится к способам и соответствующим системам позиционирования подводных объектов. Изобретение может быть использовано для точного позиционирования подводных объектов позволяющее определять также пространственную ориентацию подводного объекта. Согласно изобретению, принимают ответные гидроакустические сигналы на подводном позиционируемом объекте как минимум тремя разными приемниками, располагающимися на подводном позиционируемом объекте так, чтобы их взаимное расположение было точно известно и сохранялось в процессе работы системы. Решают задачи определения местоположения этих приемников с вычислением пространственного положения и ориентации подводного объекта. Достигаемый технический результат – повышение точности навигации подводных объектов с определением их пространственной ориентации.

Description

СПОСОБ ПОЗИЦИОНИРОВАНИЯ ПОДВОДНЫХ
ОБЪЕКТОВ
Область техники, к которой относится изобретение.
Данное изобретение относится к способам и соответствующим системам позиционирования подводных объектов, а именно к способам, при которых располагают устройства базисного позиционирования, местоположение которых заранее известно или вычисляемо, определяют при помощи датчиков, размещающихся на устройствах базисного позиционирования, глубины передатчиков, и их местоположение при помощи спутниковой навигационной системы, передают запросный сигнал подводного объекта при помощи передатчика подводного объекта, координаты которого нужно определить, передают ответные сигналы с устройств базисного позиционирования с помощью передатчиков устройств базисного позиционирования, принимают ответные сигналы с помощью расположенного на подводном объекте приемника сигналов, определяют координаты подводного объекта с помощью вычислительного модуля подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно.
В данном описании использованы следующие термины:
Устройства базисного позиционирования
- гидроакустический буй, или
- донные устройства, координаты которых вычисляют заранее, а потом они все или синхронизируются и хранят время или связаны электрически с верхом и на них приходит синхронизирующий сигнал от спутниковой системы или
- передатчики, располагаемые на судне/пантоне/плоту/пирсе и т .п.
(То есть вместо гидроакустических буев или донных станций, образующих длинную навигационную базу, может применяться короткая навигационная база, элементы которой располагаются на судне обеспечения или элементах инфраструктры (пирсы, причальные стенки, опоры мостов и т.п.)
Гидроакустический буй— свободно плавающий или установленный на якоре буй, предназначенный для излучения и/или приёма и ретрансляции по радиоканалу гидроакустических сигналов.
Запросный сигнал - может быть и гидроакустическим и электрическим, идущим по кабелю. То есть может запросный сигнал быть в виде гидроакустического сигнала или используется стробирующий электрический сигнал, передаваемый по кабелю. Это может быть, когда инициатором выступает надводная навигационная база, и запросный сигнал передается на подводную.
Уровень техники способа.
Существуют способы позиционирования подводных объектов, которые заключаются в определении координат подводных объектов. Для этого известны три типа систем определения координат подводных объектов в гидроакустике, отличающиеся друг от друга размерами измерительных баз, представляющие собой расстояния между гидроакустическими антеннами. Это системы УКБ (Ультра-короткобазисные, USBL, ultra-short baseline), КБ (короткобазисные, SBL, short baseline) и ДБ (длиннобазисные, LBL, long baseline). Наиболее близкими по своим характеристикам к заявленному решению являются длиннобазисные и короткобазисные системы, однако, в данном изобретении имеет место синтез короткобазисной системы (приемная часть, располагающаяся на подводном объекте) и длиннобазисной системы (передающая часть, основная навигационная база). Достоинством такого способа являются, во-первых, повышенная точность определения местоположения из-за дополнительных априорных данных о взаимном расположении приемников на подводном объекте, а во-вторых данные о углах азимута, крена и дифферента, что позволяет обеспечить не только определение местоположения подводного объекта, но и его ориентацию в трехмерном пространстве.
Из уровня техники известен способ позиционирования подводных объектов, при котором располагают устройства базисного позиционирования, местоположение которых заранее известно или вычисляемо, определяют при помощи датчиков, размещающихся на устройствах базисного позиционирования, глубины передатчиков, и их местоположение при помощи спутниковой навигационной системы, передают запросный сигнал подводного объекта при помощи передатчика подводного объекта, координаты которого нужно определить, передают ответные сигналы с устройств базисного позиционирования с помощью передатчиков устройств базисного позиционирования, принимают ответные сигналы с помощью расположенного на подводном объекте приемника сигналов, определяют координаты подводного объекта с помощью вычислительного модуля подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно.
См патент на изобретение N° 2599902, опубликован в 2016 году.
Данный способ является наиболее близким по технической сути и достигаемому техническому результату и выбран за прототип предлагаемого изобретения как способа.
Недостатком этого прототипа является его невысокая точность навигации, то есть определения координат подводных объектов. Это связано с тем, что:
- происходит значительная потеря точности при работе вне базы (фигуры гидроакустических буев),
- требуется точная настройка базовых линий, поскольку координаты буев фиксируются приемником глобальной спутниковой навигационной системы и соответственно уменьшается погрешность определения координат из-за неточной установки гидроакустических буев.
- решение задачи определения пространственной ориентации возможно, но не будет учитывать фактическое взаимное расположение гидроакустических приемников, расположенных на подводном объекте, и для малых объектов (порядка 1 -2 метров) не сможет обеспечить приемлемой точности.
Раскрытие изобретения как способа.
Опирающееся на это оригинальное наблюдение настоящее изобретение, главным образом, имеет целью предложить способ позиционирования подводных объектов, позволяющий, по меньшей мере, сгладить, как минимум, один из указанных выше недостатков, а именно повышение точности навигации подводных объектов с определением их пространственной ориентации, что и является поставленной задачей.
Для достижения этой цели способ навигации подводных объектов характеризуется по существу тем, что дополнительно способ включает в себя следующие этапы:
• принимают ответные гидроакустические сигналы на подводном позиционируемом объекте как минимум тремя разными приемниками, располагающимися на подводном позиционируемом объекте так, чтобы их взаимное расположение было точно известно и сохранялось в процессе работы системы, • определяют при помощи датчиков, расположенных на каждом приемнике позиционируемого подводного объекта их глубины,
• учитывая скорость звука в среде, определяют дистанции от каждого приемника позиционируемого объекта до каждого передатчика устройств базисного позиционирования,
• за счет того, что взаимное расположение приемников сигнала на позиционируемом подводном объекте известно, решают задачи определения местоположения этих приемников с вычислением пространственного положения и ориентации подводного объекта.
Благодаря данным выгодным характеристикам появляется возможность повышения точности позиционирования путем вычисления координат по трем дистанциям от опорных точек устройств базисного позиционирования с известными координатами до трех разных приемников, располагающихся на подводном позиционируемом объекте. При этом также определяется пространственная ориентация подводного объекта.
Существует преимущественный вариант исполнения данной системы, при котором приемники располагают на позиционируемом подводном объекте максимально далеко друг от друга.
Благодаря данным выгодным характеристикам появляется возможность максимально повысить точность позиционирования, так как чем дальше датчики, расположенные на каждом приемнике позиционируемого подводного объекта, друга от друга, тем больше масштаб для последующих вычислений и соответственно точнее можно вычислить пространственную ориентацию позиционируемого подводного объекта.
Совокупность существенных признаков предлагаемого изобретения неизвестна из уровня техники для способов аналогичного назначения, что позволяет сделать вывод о соответствии критерию «новизна» для изобретения в отношении способа. Кроме того, данное решение неочевидно для специалиста в данной области,
Уровень техники системы.
Из того же уровня техники известна система включающая в себя устройства базисного позиционирования, имеющие приемник сигналов со спутников, соединенный с вычислительным модулем устройства базисного позиционирования, который соединен с передатчиком сигналов, содержащих данные о местоположении указанных устройств базисного позиционирования, система также включает в себя расположенный на позиционируемом подводном объекте приемник сигналов с указанных устройств базисного позиционирования, соединенный с вычислительным модулем позиционируемого подводного объекта, выполненным с возможностью определения координат подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно. См патент на изобретение N° 2599902, опубликован в 2016 году.
Данная система является наиболее близкой по технической сути и достигаемому техническому результату и выбрана за прототип предлагаемого изобретения как системы.
Недостатком этого прототипа также является его невысокая точность навигации, то есть определения координат подводных объектов. Это связано с тем, что:
- происходит значительная потеря точности при работе вне базы (фигуры гидроакустических буев),
- требуется точная настройка базовых линий, поскольку координаты буев фиксируются приемником глобальной спутниковой навигационной системы и соответственно уменьшается погрешность определения координат из-за неточной установки гидроакустических буев.
- решение задачи определения пространственной ориентации возможно, но не будет учитывать фактическое взаимное расположение гидроакустических приемников, расположенных на подводном объекте, и для малых объектов (порядка 1 -2 метров) не сможет обеспечить приемлемой точности.
Раскрытие изобретения как системы.
Опирающееся на это оригинальное наблюдение настоящее изобретение, главным образом, имеет целью предложить систему позиционирования подводных объектов, позволяющую, по меньшей мере, сгладить, как минимум, один из указанных выше недостатков, а именно повышение точности навигации подводных объектов с определением их пространственной ориентации, что и является поставленной задачей.
Для достижения этой цели система навигации подводных объектов характеризуется по существу тем, что дополнительно позиционируемый подводный объект включает в себя три различных приемника сигналов с устройств базисного позиционирования, соединенные с вычислительным модулем позиционируемого подводного объект.
Благодаря данным выгодным характеристикам появляется возможность повышения точности позиционирования путем вычисления координат по трем дистанциям от опорных точек устройств базисного позиционирования с известными координатами до трех разных приемников, располагающихся на подводном позиционируемом объекте. При этом также определяется пространственная ориентация подводного объекта.
Существует преимущественный вариант исполнения данной системы, при котором три различных приемника сигналов расположены максимально далеко друг от друга на позиционируемом подводном объекте.
Благодаря данным выгодным характеристикам появляется возможность максимально повысить точность позиционирования, так как чем дальше датчики, расположенные на каждом приемнике позиционируемого подводного объекта, друга от друга, тем больше масштаб для последующих вычислений и соответственно точнее можно вычислить пространственную ориентацию позиционируемого подводного объекта.
Совокупность существенных признаков предлагаемого изобретения неизвестна из уровня техники для способов аналогичного назначения, что позволяет сделать вывод о соответствии критерию «новизна» для изобретения в отношении способа. Кроме того, данное решение неочевидно для специалиста в данной области,
Краткое описание чертежей.
Другие отличительные признаки и преимущества данного изобретения ясно вытекают из описания, приведенного ниже для иллюстрации и не являющегося ограничительным, со ссылками на прилагаемые рисунки, на которых:
- фигура 1 изображает функциональную схему системы позиционирования подводных объектов, согласно изобретению,
- фигура 2 изображает альтернативную функциональную схему системы позиционирования подводных объектов, согласно изобретению,
- фигура 3 схематично изображает этапы способа позиционирования подводных объектов, согласно изобретению. Согласно фигурам 1 и 2 система позиционирования подводных объектов включает в себя устройства базисного позиционирования 1 , имеющие приемник
1 1 сигналов со спутников 2, соединенный с вычислительным модулем 12 устройства базисного позиционирования, который соединен с передатчиком сигналов 13, содержащих данные о местоположении указанных устройств базисного позиционирования. Система также включает в себя расположенный на позиционируемом подводном объекте 3 приемник 31 сигналов с указанных устройств базисного позиционирования, соединенный с вычислительным модулем 32 позиционируемого подводного объекта, выполненным с возможностью определения координат подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно
На фигурах 1 и 2 устройства базисного позиционирования 1 изображены как гидроакустические буи, которые обозначены как 1А, 1 В, 1 C, имеющие приемник 1 1 сигналов со спутников 2, соединенный с вычислительным модулем
12 гидроакустического буя, который соединен с передатчиком 13 гидроакустических сигналов, содержащих данные о местоположении указанных гидроакустических буев и их идентификационные данные.
На фигурах 1 и 2 дополнительно позицией 4 обозначена граница жидкой и атмосферной сред, пунктирами - распространение сигналов от гидроакустических буев до приемника подводного объекта.
Позиционируемый подводный объект 3 включает в себя три различных приемника сигналов с устройств базисного позиционирования, соединенные с вычислительным модулем 32 позиционируемого подводного объекта, которые обозначены как 31 А, 31 В, 31 С, каждый из которых имеет свой датчик глубины ЗЗА, 33В, ЗЗС.
На фигуре 1 изображен вариант, когда у каждого приёмника свой вычислительный модуль, а на фигуре 2 - вариант, когда он общий.
Осуществление изобретения.
Способ позиционирования подводных объектов работает следующим образом. Приведем наиболее исчерпывающий пример реализации изобретения. Имея в виду, что данный пример не ограничивает применения изобретения.
Согласно фигуре 3: Этап A1. Предварительно располагают устройства базисного позиционирования, местоположение которых заранее известно или вычисляемо. Например, на поверхности воды устанавливают несколько, например, три гидроакустических навигационных буя 1А, 1 В, 1 C, имеющие каждый приемник 11 сигналов со спутников 2, соединенный с вычислительным модулем 12 гидроакустического буя, который соединен с передатчиком 13 гидроакустических сигналов, содержащих данные о местоположении указанных гидроакустических буев 1 и их идентификационные данные.
Этап А2. Принимают посредством расположенных на гидроакустических буях 1 приемников 11 сигналы со спутников 2.
Этап АЗ. Определяют при помощи датчиков, размещающихся на устройствах базисного позиционирования, глубины передатчиков, и их местоположение при помощи спутниковой навигационной системы. То есть определяют координаты гидроакустических буев 1А, 1 В, 1 C посредством вычислительных модулей 12 гидроакустических буев.
Этап А4. Передают запросный сигнал подводного объекта при помощи любого передатчика подводного объекта, координаты которого нужно определить.
Этап А5. Принимают ответные гидроакустические сигналы на подводном позиционируемом объекте как минимум тремя разными приемниками, 31 А, 31 В, 31 С, располагающимися на подводном позиционируемом объекте так, чтобы их взаимное расположение было точно известно и сохранялось в процессе работы системы.
Этап А6. Определяют при помощи датчиков ЗЗА, 33В, ЗЗС, расположенных на каждом приемнике 31 А, 31 В, 31 С позиционируемого подводного объекта их глубины.
Этап А7. Учитывая скорость звука в среде, определяют дистанции от каждого приемника 31 А, 31 В, 31 С позиционируемого объекта до каждого передатчика устройств базисного позиционирования. Обозначены на фигурах 1 и2 пунктирами.
Этап А8. Приемниками второго 1 В и третьего 1 C гидроакустических буев принимают это зафиксированное время.
Этап А9. За счет того, что взаимное расположение приемников сигнала на позиционируемом подводном объекте известно, решают задачи определения местоположения этих приемников с вычислением пространственного положения и ориентации подводного объекта. Последовательность этапов является примерной и позволяет переставлять, убавлять, добавлять или производить некоторые операции одновременно без потери возможности обеспечивать навигацию подводных объектов.
Промышленная применимость.
Предлагаемый способ позиционирования подводных объектов и система могут быть осуществлены специалистом на практике и при осуществлении обеспечивают реализацию заявленного назначения, что позволяет сделать вывод о соответствии критерию «промышленная применимость» для изобретения.
В соответствии с предложенным изобретением изготовлен опытный образец системы позиционирования подводных объектов. Он состоял из подводной части, представляющей собой квадратную раму, размерами 3x3 метра, в трех угла которой располагались приемные гидрофоны и датчики глубины, также на раме располагался нормобарический корпус, содержащий модуль цифровой обработки сигналов. Подводная (позиционируемая) часть сопрягалась информационно и электрически с надводной посредством кабеля длиной 100 метров с надводной частью.
Надводная часть представляла собой брызгозащитный кейс, в котором располагался модуль цифровой обработки сигналов, 4-х канальный усилитель мощности, к кейсу подключались четыре передающих антенны, располагающиеся на вертикальных штангах, закрепленных на малом судне.
Надводная часть дополнительно информационно сопрягалась с ПК, к которому подключалась бортовая навигационная система, обеспечивающая систему данными о географическом положении судна (соответственно и всех передатчиков) и азимутальном угле.
Экспериментальная проверка проводилась в сентябре 2018 года в проливе Невельского. Глубина места от 4 до 26 метров, температура воды 13 градусов, переменное течение до 5 узлов.
Испытания опытного образца системы позиционирования подводных объектов показали, что она обеспечивает возможность:
- точного определения координат подводного объекта, а именно: широта и долгота трех точек подводной части с повторяемостью лучше 0.5 метра; - точного определения пространственной ориентации подводного объекта: углов азимута, крена и дифферента с повторяемостью порядка 1 ° для азимутального угла и 2° для углов крена и дифферента
Таким образом, в данном изобретении достигнута поставленная задача - повышение точности навигации подводных объектов с определением их пространственной ориентации. Что является очень важным, например, при дефектоскопии трубопроводов на мелководных участках, так как нельзя подогнать судно с динамическим позиционированием и роботом, и нужно дефектоскоп буксировать за катером, дефектоскоп (магнитометр) должен пройти на заданной высоте над трубой, и нужно: во-первых, знать в каждый момент времени, где он находится, чтобы подруливать, а во-вторых, нужно знать углы его наклона и направления для постобработки. Применить компас нельзя т.к. он всегда будет указывать вдоль трубы, поэтому единственный вариант - предложенная система и способ.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ позиционирования подводных объектов, при котором
• располагают устройства базисного позиционирования, местоположение которых заранее известно или вычисляемо,
• определяют при помощи датчиков, размещающихся на устройствах базисного позиционирования, глубины передатчиков, и их местоположение при помощи спутниковой навигационной системы,
• передают запросный сигнал подводного объекта при помощи передатчика подводного объекта, координаты которого нужно определить,
• передают ответные гидроакустические сигналы с устройств базисного позиционирования с помощью передатчиков устройств базисного позиционирования,
• принимают ответные гидроакустические сигналы с помощью расположенного на подводном объекте приемника сигналов,
• определяют координаты подводного объекта с помощью вычислительного модуля подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно,
отличающийся тем , что
• принимают ответные гидроакустические сигналы на подводном позиционируемом объекте как минимум тремя разными приемниками, располагающимися на подводном позиционируемом объекте так, чтобы их взаимное расположение было точно известно и сохранялось в процессе работы системы,
• определяют при помощи датчиков, расположенных на каждом приемнике позиционируемого подводного объекта их глубины,
• учитывая скорость звука в среде, определяют дистанции от каждого приемника позиционируемого объекта до каждого передатчика устройств базисного позиционирования,
• за счет того, что взаимное расположение приемников сигнала на позиционируемом подводном объекте известно, решают задачи определения местоположения этих приемников с вычислением пространственного положения и ориентации подводного объекта.
2. Способ по п.1 , отличающийся тем, что приемники располагают на позиционируемом подводном объекте максимально далеко друг от друга.
3. Система позиционирования подводных объектов включающая в себя устройства базисного позиционирования, имеющие приемник сигналов со спутников, соединенный с вычислительным модулем устройства базисного позиционирования, который соединен с передатчиком сигналов, содержащих данные о местоположении указанных устройств базисного позиционирования, система также включает в себя расположенный на позиционируемом подводном объекте приемник сигналов с указанных устройств базисного позиционирования, соединенный с вычислительным модулем позиционируемого подводного объекта, выполненным с возможностью определения координат подводного объекта по задержке времени приема сигналов от устройств базисного позиционирования, местоположение которых известно, отличающаяся тем, что позиционируемый подводный объект включает в себя три различных приемника сигналов с устройств базисного позиционирования, соединенные с вычислительным модулем позиционируемого подводного объекта, каждый из которых имеет свой датчик глубины.
4. Система по п. 4, отличающаяся тем, что три различных приемника сигналов расположены максимально далеко друг от друга на позиционируемом подводном объекте.
PCT/RU2019/050168 2018-11-08 2019-10-03 Способ позиционирования подводных объектов WO2020096495A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018139454A RU2691217C1 (ru) 2018-11-08 2018-11-08 Способ позиционирования подводных объектов
RU2018139454 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020096495A1 true WO2020096495A1 (ru) 2020-05-14

Family

ID=66947414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/050168 WO2020096495A1 (ru) 2018-11-08 2019-10-03 Способ позиционирования подводных объектов

Country Status (2)

Country Link
RU (1) RU2691217C1 (ru)
WO (1) WO2020096495A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2772238C1 (ru) * 2021-04-29 2022-05-18 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ связи с подводными объектами с использованием беспилотного летательного аппарата

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713053C1 (ru) * 2019-06-13 2020-02-03 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ пассивного акустического определения местоположения водолаза
RU2752018C1 (ru) * 2021-02-02 2021-07-22 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ определения координат подводного объекта в переходной зоне шельф - глубокое море

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331602A (en) * 1993-04-26 1994-07-19 Hughes Aircraft Company Acoustic navigation and diving information system and method
RU2225991C2 (ru) * 2001-12-24 2004-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Навигационная гидроакустическая станция освещения ближней обстановки
RU2515179C1 (ru) * 2012-11-13 2014-05-10 Открытое Акционерное Общество "НИИ гидросвязи "Штиль" Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2561012C1 (ru) * 2014-04-23 2015-08-20 Открытое акционерное общество "Российский институт радионавигации и времени" Система определения и контроля местоположения подводного объекта
RU2599902C1 (ru) * 2015-09-08 2016-10-20 Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" Способ навигации подводных объектов и система для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331602A (en) * 1993-04-26 1994-07-19 Hughes Aircraft Company Acoustic navigation and diving information system and method
RU2225991C2 (ru) * 2001-12-24 2004-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Навигационная гидроакустическая станция освещения ближней обстановки
RU2515179C1 (ru) * 2012-11-13 2014-05-10 Открытое Акционерное Общество "НИИ гидросвязи "Штиль" Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2561012C1 (ru) * 2014-04-23 2015-08-20 Открытое акционерное общество "Российский институт радионавигации и времени" Система определения и контроля местоположения подводного объекта
RU2599902C1 (ru) * 2015-09-08 2016-10-20 Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" Способ навигации подводных объектов и система для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2772238C1 (ru) * 2021-04-29 2022-05-18 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ связи с подводными объектами с использованием беспилотного летательного аппарата

Also Published As

Publication number Publication date
RU2691217C1 (ru) 2019-06-11

Similar Documents

Publication Publication Date Title
Kussat et al. Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements
US7139647B2 (en) Methods and systems for navigating under water
US6501704B2 (en) Underwater object positioning system
RU2599902C1 (ru) Способ навигации подводных объектов и система для его осуществления
WO2020005116A1 (ru) Способ позиционирования подводных объектов
RU2456634C1 (ru) Способ навигации подводного объекта посредством гидроакустической навигационной системы
RU2563332C2 (ru) Способ навигации автономного необитаемого подводного аппарата
CN110703203A (zh) 基于多声学波浪滑翔机的水下脉冲声定位系统
US7639565B2 (en) Point source localization sonar system and method
JP2008128968A (ja) 水中測位システムおよび水中測位方法
RU2483326C2 (ru) Гидроакустическая синхронная дальномерная навигационная система для позиционирования подводных объектов в навигационном поле произвольно расставленных гидроакустических маяков-ответчиков
CN110294080B (zh) 一种利用超短基线实现水下精确作业的方法
KR101015039B1 (ko) 수중 위치 파악 시스템 및 그 방법
RU2659299C1 (ru) Способ и система навигации подводных объектов
CN102081170A (zh) 基于声学长基线和超短基线组合定位的海底电缆二次定位方法
JP2018084445A (ja) 水中音響測位システム
WO2020096495A1 (ru) Способ позиционирования подводных объектов
CN112147578B (zh) 一种高精度深水发射阵及多元垂直接收阵阵元定位系统与方法
RU2303275C2 (ru) Система определения координат подводных объектов
CN115390012B (zh) 用于hov精准定位的多应答器坐标测量方法、装置及系统
RU2555479C2 (ru) Способ высокоточного координирования подводного комплекса в условиях подледного плавания
US11953321B2 (en) Method for establishing a consolidated water current velocity profile
JP2755863B2 (ja) 水中航走体の位置検出装置及びその位置検出方法
RU2529207C1 (ru) Система навигации буксируемого подводного аппарата
RU2568071C1 (ru) Гидроакустическая система для позиционирования

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882365

Country of ref document: EP

Kind code of ref document: A1