WO2020005116A1 - Способ позиционирования подводных объектов - Google Patents

Способ позиционирования подводных объектов Download PDF

Info

Publication number
WO2020005116A1
WO2020005116A1 PCT/RU2019/050077 RU2019050077W WO2020005116A1 WO 2020005116 A1 WO2020005116 A1 WO 2020005116A1 RU 2019050077 W RU2019050077 W RU 2019050077W WO 2020005116 A1 WO2020005116 A1 WO 2020005116A1
Authority
WO
WIPO (PCT)
Prior art keywords
sonar
buoys
signal
underwater
underwater object
Prior art date
Application number
PCT/RU2019/050077
Other languages
English (en)
French (fr)
Inventor
Александр Васильевич ДИКАРЕВ
Станислав Михайлович ДМИТРИЕВ
Original Assignee
Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" filed Critical Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации"
Publication of WO2020005116A1 publication Critical patent/WO2020005116A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves

Definitions

  • This invention relates to methods for positioning underwater objects, namely, to methods that receive signals from satellites located on sonar buoys, determine the coordinates of sonar buoys, synchronize the clocks of all sonar buoys, transmit data on the location of these sonar buoys, receive signals using located on the underwater object of the receiver of hydroacoustic signals, determine the coordinates of the underwater object using computing wow module.
  • This solution can be used while determining the geographical position of an unlimited number of underwater mobile objects, remotely controlled underwater vehicles, divers, marine animals, etc. in the process of moving.
  • Hydroacoustic buoy - a free-floating or anchored buoy designed to emit and / or receive and relay hydroacoustic signals over the air.
  • this invention proposes the synthesis of short-base and long-base systems, when the reference points (sonar buoys) are located at a considerable distance from each other, forming a long navigation base, but the positioning of the positioned object is determined by the differential-ranging method, as is predominantly in short-base systems.
  • the advantages of this method are, firstly, the ability to simultaneously position an unlimited number of objects, and secondly, the ability to implement a fully passive mode on the positioned object, in order to determine its own location it only needs to receive sonar buoy signals, decode the coordinates of sonar buoys and signals, and by the differences in the times of arrival of signals to determine their own geographical position.
  • the prior art describes a method for positioning underwater objects, in which they receive signals from satellites located on sonar buoys, determine the coordinates of sonar buoys using the computational modules of sonar buoys, synchronize the clocks of all sonars on the satellite navigation system, transmit location data of these sonars and their identification data in the form of hydroacoustic signals emitted by hydroelectric transmitters of buoy buoys, receive signals using a sonar receiver located on the underwater object, determine the coordinates of the underwater object using the computing module of the underwater object by the time delay for receiving sonar signals from sonar buoys, the location of which is known.
  • the present invention mainly aims to propose a method for positioning underwater objects, which allows at least smoothing out at least one of the above disadvantages, namely, to increase the accuracy of positioning of underwater objects.
  • the method for navigating underwater objects is characterized essentially by the fact that the method further includes the following steps:
  • the response sonar signal is received by at least three sonar buoys
  • the first sonar buoy which transmitted the first request and received a response through the sonar channel, directly determines the slant range of the signal propagation time, since the first sonar bucket that transmitted the first request duplicates the time of transmission of the first signal and its absolute geographical coordinates via the radio channel, and the clocks of all buoys are synchronized by satellite navigation system
  • the coordinates of the underwater object are determined from at least three distances from the reference points of sonar buoys with known coordinates to the desired point - the transponder beacon of the underwater object.
  • a request signal is generated, which contains a code defining a list of data to be transmitted in the response signal. Thanks to this advantageous characteristic, it becomes possible to request additional data that must be transmitted in the response signal.
  • it can be one or several of: the depth of the transponder, hydrostatic pressure, ambient temperature, the state of the power supply of the transponder, etc.
  • a response signal is generated that includes data on the depth of the underwater object, which improves the accuracy of determining its location in three-dimensional space.
  • a response signal is generated that includes data on the ambient temperature of the underwater object, which makes it possible to more accurately determine the speed of sound, respectively, and the inclined range to the transponder.
  • FIG. 1 depicts a functional diagram of a navigation system for underwater objects, according to the invention
  • FIG. 2 schematically depicts the steps of a method for navigating underwater objects according to the invention.
  • the navigation system of underwater objects includes sonar buoys 1, designated as 1A, 1 V, 1 C, having a satellite signal receiver 11 connected to a sonar buoy computing module 12, which is connected to a sonar transmitter 13 containing data the location of these sonar buoys and their identification data.
  • the system also includes a transponder beacon located on the underwater object 3 of the underwater object 31 sonar signals from the indicated sonar buoys 1, connected to the computing module 32 of the underwater object, which is connected to the depth sensor 33 of the underwater object and the temperature sensor 34 of the surrounding water.
  • At least three sonar buoys 1 must be used in the system.
  • position 4 denotes the boundary of the liquid and atmospheric media
  • dotted lines show the propagation of signals from sonar buoys to the receiver of an underwater object.
  • Pressure sensors can be installed on the antennas of sonar buoys, and pressure sensors can also be installed in the covers of sonar buoys.
  • At least three sonar navigation buoys 1A, 1 B, 1 C are installed on the water surface, each having a satellite signal receiver 11 connected to a sonar buoy computing module 12, which is connected to a sonar transmitter 13 containing location data of said sonar buoys 1 and their identification data.
  • Stage A2 Receive through the receivers 11 located on the sonar buoys 1 signals from satellites 2.
  • the coordinates of sonar buoys 1A, 1 V, 1 C are determined by means of computing modules 12 sonar buoys,
  • Stage A4 The clocks of all sonar buoys 1A, 1 V, 1 C are synchronized via a satellite navigation system.
  • Stage A5. Transmit using the first sonar buoy 1A transmit the first interrogative sonar signal to the beacon-transponder 31 of an underwater object located below the surface of the water.
  • Stage A6 The moment of the beginning of the transmission of the first interrogated hydroacoustic signal is fixed with reference to the time obtained by the satellite navigation signal.
  • Stage A7 At least this fixed time is transmitted over the air using the transmitter of the first sonar buoy 1A.
  • Stage A8 The receivers of the second 1 V and third 1 C sonar buoys take this fixed time.
  • Stage A9 A first interrogation signal of the first sonar buoy 1A is received by the transponder beacon 31 of an underwater object below the surface of the water.
  • the arrival time of the first hydroacoustic interrogation signal is determined by the clock of the responder beacon 31 of the underwater object that is not synchronized with the buoy clock.
  • Stage A11 A response signal is generated and transmitted after a fixed time after the moment the first request signal arrives.
  • the response sonar signal is received by at least three sonar buoys 1A, 1 V, 1 C.
  • the first sonar buoy 1A which transmitted the first request and received the response through the sonar channel, directly determines the slant range in the propagation time of the signal, since the first sonar bucket that transmitted the first request duplicates the time of the first signal and its absolute geographical coordinates via the radio channel, and the clocks of all buoys are synchronized by satellite navigation system.
  • the first sonar buoy 1A transmits a certain range over the air.
  • Stage A15 On the second and third sonar buoys 1 B and 1 C, the arrival time of the response signal of the beacon-responder 31 of the underwater object is determined, the oblique range from the requested buoy is received via the radio channel to the lawyer lighthouse of the underwater object, determine the inclined range from the court lighthouse to each of the second and third sonar buoys 1 V and 1 C.
  • the coordinates of the underwater object are determined from the obtained at least three distances from the reference points of sonar buoys 1A, 1 B and 1 C with known coordinates to the desired point — the transponder beacon 31 of the underwater object.
  • a response signal is generated, which includes data on the depth of the underwater object, which allows to increase the accuracy of determining its location in three-dimensional space
  • a response signal is generated, which includes data on the ambient water temperature of the underwater object, which allows you to more accurately determine the speed of sound, respectively, and the inclined range to the transponder.
  • the proposed method for positioning underwater objects can be carried out by a specialist in practice and, when implemented, ensure the implementation of the declared purpose, which allows us to conclude that the criterion of "industrial applicability" for the invention is met.
  • each receiver was made in the form of a separate stand-alone device
  • the standard deviation of the geographical position in meters was 0.30 meters according to the results for three transponder beacons operating continuously for 2.5 hours.
  • the amount of data transmitted through the sonar channel is significantly reduced.
  • An additional useful technical result of the claimed invention is that it improves accuracy if in this system pressure sensors are installed on the buoy antennas, and there are pressure sensors in the covers of the buoys. This is due to the fact that, firstly, the change in atmospheric pressure is constantly taken into account and the depth is more accurately determined, and secondly, if in that system the depth of the buoy antennas was taken based on the cable lengths, then it is directly measured here, which also increases accuracy (the antenna can be slightly tilted by the current and it pops up).
  • the data on the depth of the responder beacon provide an accurate solution and solve a flat problem, since the immersion depths of the buoy hydroacoustic antennas are known and it is possible to determine the projection of this range on the water surface from the slant range between each buoy and the responder beacon.
  • the goal is achieved - improving the accuracy of navigation of underwater objects, as well as providing navigation during information exchange when working with a large number addressed underwater objects, in particular, while ensuring the functioning of the so-called underwater wireless sensor networks.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Данное изобретение относится к способам позиционирования подводных объектов. Согласно изобретению, используют как минимум три гидроакустических буя, определяют три наклонные дальности по времени распространения сигнала, по полученным как минимум трем дистанциям от опорных точек гидроакустических буев с известными координатами до искомой точки - маяка- ответчика подводного объекта - определяют координаты подводного объекта. Достигаемый технический результат – повышение точности навигации подводных объектов, а также обеспечение навигации во время информационного обмена при работе с большим числом адресованных подводных объектов, в частности, при обеспечении функционирования так называемых подводных беспроводных сетей сенсоров.

Description

СПОСОБ ПОЗИЦИОНИРОВАНИЯ ПОДВОДНЫХ
ОБЪЕКТОВ
Область техники, к которой относится изобретение.
Данное изобретение относится к способам позиционирования подводных объектов, а именно к способам, при которых принимают посредством расположенных на гидроакустических буях приемников сигналы со спутников, определяют координаты гидроакустических буев, синхронизируют часы всех гидроакустических буев, передают данные о местоположении указанных гидроакустических буев, принимают сигналы с помощью расположенного на подводном объекте приемника гидроакустических сигналов, определяют координаты подводного объекта с помощью вычислительного модуля. Данное решение может быть использовано при одновременном определении географического положения неограниченного числа подводных мобильных объектов, дистанционно управляемых подводных аппаратов, водолазов, морских животных и т.д. в процессе движения.
В данном описании использованы следующие термины:
Гидроакустический буй— свободно плавающий или установленный на якоре буй, предназначенный для излучения и/или приёма и ретрансляции по радиоканалу гидроакустических сигналов.
Уровень техники.
Существуют способы позиционирования подводных объектов, которые заключаются в определении координат подводных объектов. Для этого известны три типа систем определения координат подводных объектов в гидроакустике, отличающиеся друг от друга размерами измерительных баз, представляющие собой расстояния между гидроакустическими антеннами. Это системы УКБ (Ультра-короткобазисные, USBL, ultra-short baseline), КБ (короткобазисные, SBL, short baseline) и ДБ (длиннобазисные, LBL, long baseline). Наиболее близкими по своим характеристикам к заявленному решению являются длиннобазисные системы, однако, в данном изобретении предлагается синтез короткобазисной и длиннобазисной систем, когда опорные точки (гидроакустические буи) располагаются на значительном удалении друг от друга, образуя длинную навигационную базу, но определение местоположения позиционируемого объекта производится разностно-дальномерным способом, как преимущественно в короткобазисных системах.
Достоинствами такого способа являются, во-первых, возможность одновременного позиционирования неограниченного числа объектов, а во-вторых, возможность реализовать на позиционируемом объекте полностью пассивный режим, когда для определения собственного местоположения ему достаточно только принимать сигналы гидроакустических буев, декодировать координаты гидроакустических буев и сигналов и по разностям времен прихода сигналов определять собственное географическое положение.
Из уровня техники известен способ позиционирования подводных объектов, при котором принимают посредством расположенных на гидроакустических буях приемников сигналы со спутников, определяют координаты гидроакустических буев посредством вычислительных модулей гидроакустических буев, синхронизируют часы всех гидроакустических буев по спутниковой навигационной системе, передают данные о местоположении указанных гидроакустических буев и их идентификационные данные в виде гидроакустических сигналов, излучаемых передатчиками гидроакустических буев, принимают сигналы с помощью расположенного на подводном объекте приемника гидроакустических сигналов, определяют координаты подводного объекта с помощью вычислительного модуля подводного объекта по задержке времени приема гидроакустических сигналов от гидроакустических буев, местоположение которых известно.
См патент на изобретение N° 2599902, опубликован в 2016 году.
Данный способ является наиболее близким по технической сути и достигаемому техническому результату и выбран за прототип предлагаемого изобретения.
Недостатком этого прототипа является его невысокая точность навигации, то есть определения координат подводных объектов. Это связано с тем, что:
- происходит потеря точности при работе вне базы (фигуры гидроакустических буев), - невозможно покрыть гидроакустическими буями любую акваторию, с обеспечением работы внутри базы всегда, с сохранением высокой точности позиционирования на всем полигоне работ.
- дополнительно нет возможности передать команды телеуправления на подводный объект.
- требуется точная настройка базовых линий, поскольку координаты буев фиксируются приемником глобальной спутниковой навигационной системы и соответственно уменьшается погрешность определения координат из-за неточной установки гидроакустических буев.
Раскрытие изобретения.
Опирающееся на это оригинальное наблюдение настоящее изобретение, главным образом, имеет целью предложить способ позиционирования подводных объектов, позволяющий, по меньшей мере, сгладить, как минимум, один из указанных выше недостатков, а именно обеспечить повышение точности позиционирования подводных объектов.
Для достижения этой цели способ навигации подводных объектов характеризуется по существу тем, что дополнительно способ включает в себя следующие этапы:
• используют по меньшей мере три гидроакустических буя,
• при помощи первого гидроакустического буя передают первый запросный гидроакустический сигнал маяку-ответчику подводного объекта, находящегося под поверхностью воды,
• фиксируют момент начала передачи первого запросного гидроакустического сигнала с привязкой ко времени, получаемого по спутниковому навигационному сигналу,
• передают как минимум это зафиксированное время по радиоканалу, при помощи передатчика первого гидроакустического буя,
• приемниками второго и третьего гидроакустических буев принимают это зафиксированное время,
• принимают первый запросный сигнал первого гидроакустического буя маяком-ответчиком подводного объекта, находящегося под поверхностью воды, • определяют время прихода первого гидроакустического запросного сигнала по часам маяка-ответчика подводного объекта, не синхронизированным с часами буев,
• формируют ответный сигнал и передают его через фиксированное время после момента прихода первого запросного сигнала,
• ответный гидроакустический сигнал принимают как минимум тремя гидроакустическими буями,
• первый гидроакустический буй, передавший первый запрос и принявший ответ по гидроакустическому каналу непосредственно определяет наклонную дальность по времени распространения сигнала, так как передавший первый запрос первый гидроакустический буй дублирует по радиоканалу время передачи первого сигнала и свои абсолютные географические координаты, а часы всех буев синхронизированы по спутниковой навигационной системе,
• первый гидроакустический буй передает определенную дальность по радиоканалу,
• на втором и третьем гидроакустических буях определяют время прихода ответного сигнала маяка-ответчика подводного объекта, принимают по радиоканалу наклонную дальность от запросившего буя до маяка-ответчика подводного объекта, определяют наклонные дальности от маяка-ответчика до каждого из второго и третьего гидроакустических буев,
• по полученным как минимум трем дистанциям от опорных точек гидроакустических буев с известными координатами до искомой точки - маяка-ответчика подводного объекта - определяют координаты подводного объекта.
Благодаря данным выгодным характеристикам появляется возможность повышения точности навигации путем вычисления координат по трем дистанциям от опорных точек гидроакустических буев с известными координатами до искомой точки.
Существует возможный вариант изобретения, в котором формируют запросный сигнал, который содержит код, определяющий перечень данных, которые должны быть переданы в ответном сигнале. Благодаря данной выгодной характеристике появляется возможность запрашивать дополнительные данные, которые должны быть переданы в ответном сигнале. Например, это может одно или несколько из: глубина ответчика, гидростатическое давление, температура окружающей среды, состояние источника питания ответчика и т.п.
Существует еще один возможный вариант изобретения, в котором формируют ответный сигнал, который включает в себя данные о глубине подводного объекта, что позволяет повысить точность определения его местоположения в трехмерном пространстве.
Благодаря данной выгодной характеристике появляется возможность повысить точность определения местоположения подводного объекта в трехмерном пространстве, так как данные о глубине непосредственно могут быть измерены с высокой точностью.
Существует также и такой вариант изобретения, в котором формируют ответный сигнал, который включает в себя данные о температуре окружающей воды подводного объекта, что позволяет более точно определить скорость звука, соответственно и наклонную дальность до ответчика.
Благодаря данной выгодной характеристике появляется возможность повысить точность определения его местоположения в трехмерном пространстве, так как данные о температуре окружающей воды позволяют точнее рассчитать скорость звука в воде, соответственно расстояние (наклонную дальность).
Совокупность существенных признаков предлагаемого изобретения неизвестна из уровня техники для способов аналогичного назначения, что позволяет сделать вывод о соответствии критерию «новизна» для изобретения в отношении способа. Кроме того, данное решение неочевидно для специалиста в данной области,
Краткое описание чертежей.
Другие отличительные признаки и преимущества данного изобретения ясно вытекают из описания, приведенного ниже для иллюстрации и не являющегося ограничительным, со ссылками на прилагаемые рисунки, на которых:
- фигура 1 изображает функциональную схему системы навигации подводных объектов, согласно изобретению, - фигура 2 схематично изображает этапы способа навигации подводных объектов, согласно изобретению.
Согласно фигуре 1 система навигации подводных объектов включает в себя гидроакустические буи 1 , обозначены как 1А, 1 В, 1 C, имеющие приемник 11 сигналов со спутников 2, соединенный с вычислительным модулем 12 гидроакустического буя, который соединен с передатчиком 13 гидроакустических сигналов, содержащих данные о местоположении указанных гидроакустических буев и их идентификационные данные.
Система также включает в себя расположенный на подводном объекте 3 маяк-ответчик подводного объекта 31 гидроакустических сигналов с указанных гидроакустических буев 1 , соединенный с вычислительным модулем 32 подводного объекта, который соединен с датчиком глубины 33 подводного объекта и датчиком температуры 34 окружающей воды.
В системе должно быть использовано как минимум три гидроакустических буя 1.
На фигуре 1 дополнительно позицией 4 обозначена граница жидкой и атмосферной сред, пунктирами - распространение сигналов от гидроакустических буев до приемника подводного объекта.
На антеннах гидроакустических буев могут быть установлены датчики давления, а также датчики давления могут быть установлены в крышках гидроакустических буев.
Осуществление изобретения.
Способ позиционирования подводных объектов работает следующим образом. Приведем наиболее исчерпывающий пример реализации изобретения. Имея в виду, что данный пример не ограничивает применения изобретения.
Согласно фигуре 2:
Этап А1. Предварительно на поверхности воды устанавливают по меньшей мере три гидроакустических навигационных буя 1А, 1 В, 1 C, имеющие каждый приемник 11 сигналов со спутников 2, соединенный с вычислительным модулем 12 гидроакустического буя, который соединен с передатчиком 13 гидроакустических сигналов, содержащих данные о местоположении указанных гидроакустических буев 1 и их идентификационные данные.
Этап А2. Принимают посредством расположенных на гидроакустических буях 1 приемников 11 сигналы со спутников 2. Этап АЗ. Определяют координаты гидроакустических буев 1А, 1 В, 1 C посредством вычислительных модулей 12 гидроакустических буев,
Этап А4. Синхронизируют часы всех гидроакустических буев 1А, 1 В, 1 C по спутниковой навигационной системе.
Этап А5. Передают при помощи первого гидроакустического буя 1А передают первый запросный гидроакустический сигнал маяку-ответчику 31 подводного объекта, находящегося под поверхностью воды.
Этап А6. Фиксируют момент начала передачи первого запросного гидроакустического сигнала с привязкой ко времени, получаемого по спутниковому навигационному сигналу.
Этап А7. Передают как минимум это зафиксированное время по радиоканалу, при помощи передатчика первого гидроакустического буя 1А.
Этап А8. Приемниками второго 1 В и третьего 1 C гидроакустических буев принимают это зафиксированное время.
Этап А9. Принимают первый запросный сигнал первого гидроакустического буя 1А маяком-ответчиком 31 подводного объекта, находящегося под поверхностью воды.
Этап А10. Определяют время прихода первого гидроакустического запросного сигнала по часам маяка-ответчика 31 подводного объекта, не синхронизированным с часами буев.
Этап А11. Формируют ответный сигнал и передают его через фиксированное время после момента прихода первого запросного сигнала.
Этап А12. Ответный гидроакустический сигнал принимают как минимум тремя гидроакустическими буями1А, 1 В, 1 C.
Этап А13. Первый гидроакустический буй 1А, передавший первый запрос и принявший ответ по гидроакустическому каналу непосредственно определяет наклонную дальность по времени распространения сигнала, так как передавший первый запрос первый гидроакустический буй дублирует по радиоканалу время передачи первого сигнала и свои абсолютные географические координаты, а часы всех буев синхронизированы по спутниковой навигационной системе.
Этап А14. Первый гидроакустический буй 1А передает определенную дальность по радиоканалу.
Этап А15. На втором и третьем гидроакустических буях 1 В и 1 C определяют время прихода ответного сигнала маяка-ответчика 31 подводного объекта, принимают по радиоканалу наклонную дальность от запросившего буя до маяка-ответчика подводного объекта, определяют наклонные дальности от маяка-ответчика до каждого из второго и третьего гидроакустических буев 1 В и 1 C.
Этап А16. По полученным как минимум трем дистанциям от опорных точек гидроакустических буев 1А, 1 В и 1 C с известными координатами до искомой точки - маяка-ответчика 31 подводного объекта - определяют координаты подводного объекта.
Этап А17. Опционально формируют ответный сигнал, который включает в себя данные о глубине подводного объекта, что позволяет повысить точность определения его местоположения в трехмерном пространстве
Этап А18. Опционально формируют ответный сигнал, который включает в себя данные о температуре окружающей воды подводного объекта, что позволяет более точно определить скорость звука, соответственно и наклонную дальность до ответчика.
Последовательность этапов является примерной и позволяет переставлять, убавлять, добавлять или производить некоторые операции одновременно без потери возможности обеспечивать навигацию подводных объектов.
Промышленная применимость.
Предлагаемый способ позиционирования подводных объектов может быть осуществлены специалистом на практике и при осуществлении обеспечивают реализацию заявленного назначения, что позволяет сделать вывод о соответствии критерию «промышленная применимость» для изобретения.
В соответствии с предложенным изобретением изготовлен опытный образец системы позиционирования подводных объектов. Он состоял из трех гидроакустических буев и трех маяков-ответчиков, были проведены испытания при следующих параметрах системы:
- гидроакустические буи располагались в квадрате 1500x1500 метров,
- каждый приемник был выполнен в виде отдельного автономного устройства,
- приемники были жестко зафиксированы на разных удалениях от буев (внутри квадрата) и на разных глубинах: 5, 8 и 17 метров. Длительность проведения эксперимента составила 2.5 часа, - частота обновления навигационных данных составила 0.25 Гц (1 раз в 4 секунды) для каждого маяка-ответчика;
Место проведения испытаний: устье реки «Пичуга», Волгоградская область. Максимальная глубина водоема: 25 метров, песчано-илистое дно.
Испытания опытного образца системы позиционирования подводных объектов показали, что она обеспечивает возможность:
- точного определения координат подводного объекта, а именно долготы и широты по полученным сигналам, в частности среднеквадратичное отклонение географической позиции в метрах составило 0.30 метров по результатам для трех маяков-ответчиков, работающих непрерывно в течение 2.5 часов.
- не требуется точной настройки базовых линий, поскольку координаты буев фиксируются приемником глобальной спутниковой навигационной системы и соответственно уменьшается погрешность определения координат из-за неточной установки гидроакустических буев;
- поскольку от ответчика требуется передать как минимум свою глубину, значительно сокращается объем передаваемых по гидроакустическому каналу данных.
Все это позволяет значительно повысить точность навигации подводных объектов.
Дополнительным полезным техническим результатом заявленного изобретения является то, что оно позволяет повышает точность в случае если в данной системе на антеннах буев установлены датчики давления, а также датчики давления есть в крышках буев. Это происходит благодаря тому, что, во-первых, постоянно учитывается изменение атмосферного давления и точнее определяется глубина, а во-вторых, если в той системе глубина антенн буев бралась исходя из длин кабелей, то здесь она непосредственно измеряется, что также повышает точность (антенну может немного наклонять течением и она всплывает).
Данные о глубине маяка-ответчика позволяют обеспечить точное решение и решать плоскую задачу, так как глубины погружения гидроакустических антенн буев известны и можно из наклонной дальности между каждым буем и маяком- ответчиком определить проекцию этой дальности на поверхность воды.
Таким образом, в данном изобретении достигнута поставленная задача - повышение точности навигации подводных объектов, а также обеспечение навигации во время информационного обмена при работе с большим числом адресованных подводных объектов, в частности, при обеспечении функционирования так называемых подводных беспроводных сетей сенсоров.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ позиционирования подводных объектов, при котором
• принимают посредством расположенных на гидроакустических буях приемников сигналы со спутников,
• определяют координаты гидроакустических буев посредством вычислительных модулей гидроакустических буев,
• синхронизируют часы всех гидроакустических буев по спутниковой навигационной системе
• передают данные о местоположении указанных гидроакустических буев и их идентификационные данные в виде гидроакустических сигналов, излучаемых передатчиками гидроакустических буев,
• принимают сигналы с помощью расположенного на подводном объекте приемника гидроакустических сигналов,
• определяют координаты подводного объекта с помощью вычислительного модуля подводного объекта по задержке времени приема гидроакустических сигналов от гидроакустических буев, местоположение которых известно,
отличающийся тем , что
• используют по меньшей мере три гидроакустических буя,
• при помощи первого гидроакустического буя передают первый запросный гидроакустический сигнал маяку-ответчику подводного объекта, находящегося под поверхностью воды,
• фиксируют момент начала передачи первого запросного гидроакустического сигнала с привязкой ко времени, получаемого по спутниковому навигационному сигналу,
• передают как минимум это зафиксированное время по радиоканалу, при помощи передатчика первого гидроакустического буя,
• приемниками второго и третьего гидроакустических буев принимают это зафиксированное время,
• принимают первый запросный сигнал первого гидроакустического буя маяком-ответчиком подводного объекта, находящегося под поверхностью воды, • определяют время прихода первого гидроакустического запросного сигнала по часам маяка-ответчика подводного объекта, не синхронизированным с часами буев,
• формируют ответный сигнал и передают его через фиксированное время после момента прихода первого запросного сигнала,
• ответный гидроакустический сигнал принимают как минимум тремя гидроакустическими буями,
• первый гидроакустический буй, передавший первый запрос и принявший ответ по гидроакустическому каналу непосредственно определяет наклонную дальность по времени распространения сигнала, так как передавший первый запрос первый гидроакустический буй дублирует по радиоканалу время передачи первого сигнала и свои абсолютные географические координаты, а часы всех буев синхронизированы по спутниковой навигационной системе,
• первый гидроакустический буй передает определенную дальность по радиоканалу,
• на втором и третьем гидроакустических буях определяют время прихода ответного сигнала маяка-ответчика подводного объекта, принимают по радиоканалу наклонную дальность от запросившего буя до маяка-ответчика подводного объекта, определяют наклонные дальности от маяка-ответчика до каждого из второго и третьего гидроакустических буев,
• по полученным как минимум трем дистанциям от опорных точек гидроакустических буев с известными координатами до искомой точки - маяка-ответчика подводного объекта - определяют координаты подводного объекта.
2. Способ по п.1 , отличающийся тем , что формируют запросный сигнал, который содержит код, определяющий перечень данных, которые должны быть переданы в ответном сигнале.
3. Способ по п.1 , отличающийся тем , что формируют ответный сигнал, который включает в себя данные о глубине подводного объекта, что позволяет повысить точность определения его местоположения в трехмерном пространстве.
4. Способ по п.1 , отличающийся тем, что формируют ответный сигнал, который включает в себя данные о температуре окружающей воды подводного объекта, что позволяет более точно определить скорость звука, соответственно и наклонную дальность до ответчика.
PCT/RU2019/050077 2018-06-24 2019-06-06 Способ позиционирования подводных объектов WO2020005116A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018122869A RU2691212C1 (ru) 2018-06-24 2018-06-24 Способ позиционирования подводных объектов
RU2018122869 2018-06-24

Publications (1)

Publication Number Publication Date
WO2020005116A1 true WO2020005116A1 (ru) 2020-01-02

Family

ID=66947396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/050077 WO2020005116A1 (ru) 2018-06-24 2019-06-06 Способ позиционирования подводных объектов

Country Status (2)

Country Link
RU (1) RU2691212C1 (ru)
WO (1) WO2020005116A1 (ru)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456803A (zh) * 2019-08-22 2019-11-15 嘉兴中科声学科技有限公司 声信标、声信标的控制装置及其应用方法
CN111948685A (zh) * 2020-06-19 2020-11-17 中国船舶重工集团公司第七一五研究所 一种浮标基组合基线水声定位方法
CN112433241A (zh) * 2020-11-09 2021-03-02 天津大学 基于浮标的潜器定位方法
CN112540340A (zh) * 2020-11-26 2021-03-23 博雅工道(北京)机器人科技有限公司 精度误差补偿方法和基于该方法的自校准声信标定位设备
CN113038366A (zh) * 2021-02-26 2021-06-25 深圳市智慧海洋科技有限公司 水下定位方法、水下定位系统及存储介质
CN113093108A (zh) * 2021-03-18 2021-07-09 天津大学 水下目标自定位与导航的倒置长/超短基线方法及装置
CN113686385A (zh) * 2021-08-25 2021-11-23 哈尔滨工程大学 一种多频段海底大地基准站
CN114018252A (zh) * 2021-10-24 2022-02-08 西北工业大学 一种基于水上浮标的自主水下航行器定位方法
CN114545467A (zh) * 2022-02-22 2022-05-27 中国人民解放军海军航空大学青岛校区 一种跨域联合救生定位装置及救生方法
CN115390012A (zh) * 2022-10-28 2022-11-25 国家深海基地管理中心 用于hov精准定位的多应答器坐标测量方法、装置及系统
CN115685165A (zh) * 2022-10-31 2023-02-03 浙江大学 一种立体阵超短基线定位系统安装偏差校准方法及装置
CN114545467B (zh) * 2022-02-22 2024-06-07 中国人民解放军海军航空大学青岛校区 一种跨域联合救生定位装置及救生方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752018C1 (ru) * 2021-02-02 2021-07-22 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Способ определения координат подводного объекта в переходной зоне шельф - глубокое море
CN114089280B (zh) * 2021-10-27 2024-05-07 山东科技大学 一种基于浮标的lbl/usbl混合基线合作目标水下定位方法
CN113983931B (zh) * 2021-11-02 2023-05-23 中国船舶科学研究中心 一种试验水池用清淤机器人水下定位装置和使用方法
CN115015839B (zh) * 2022-08-10 2022-11-22 中国海洋大学 一种浅海水下目标被动定位系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331602A (en) * 1993-04-26 1994-07-19 Hughes Aircraft Company Acoustic navigation and diving information system and method
RU2225991C2 (ru) * 2001-12-24 2004-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Навигационная гидроакустическая станция освещения ближней обстановки
RU2515179C1 (ru) * 2012-11-13 2014-05-10 Открытое Акционерное Общество "НИИ гидросвязи "Штиль" Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2561012C1 (ru) * 2014-04-23 2015-08-20 Открытое акционерное общество "Российский институт радионавигации и времени" Система определения и контроля местоположения подводного объекта
RU2599902C1 (ru) * 2015-09-08 2016-10-20 Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" Способ навигации подводных объектов и система для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331602A (en) * 1993-04-26 1994-07-19 Hughes Aircraft Company Acoustic navigation and diving information system and method
RU2225991C2 (ru) * 2001-12-24 2004-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Навигационная гидроакустическая станция освещения ближней обстановки
RU2515179C1 (ru) * 2012-11-13 2014-05-10 Открытое Акционерное Общество "НИИ гидросвязи "Штиль" Способ определения направления на гидроакустический маяк-ответчик в условиях многолучевого распространения навигационного сигнала
RU2561012C1 (ru) * 2014-04-23 2015-08-20 Открытое акционерное общество "Российский институт радионавигации и времени" Система определения и контроля местоположения подводного объекта
RU2599902C1 (ru) * 2015-09-08 2016-10-20 Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" Способ навигации подводных объектов и система для его осуществления

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456803B (zh) * 2019-08-22 2023-04-18 嘉兴中科声学科技有限公司 声信标、声信标的控制装置及其应用方法
CN110456803A (zh) * 2019-08-22 2019-11-15 嘉兴中科声学科技有限公司 声信标、声信标的控制装置及其应用方法
CN111948685A (zh) * 2020-06-19 2020-11-17 中国船舶重工集团公司第七一五研究所 一种浮标基组合基线水声定位方法
CN111948685B (zh) * 2020-06-19 2024-02-13 中国船舶重工集团公司第七一五研究所 一种浮标基组合基线水声定位方法
CN112433241A (zh) * 2020-11-09 2021-03-02 天津大学 基于浮标的潜器定位方法
CN112540340A (zh) * 2020-11-26 2021-03-23 博雅工道(北京)机器人科技有限公司 精度误差补偿方法和基于该方法的自校准声信标定位设备
CN112540340B (zh) * 2020-11-26 2024-04-30 博雅工道(北京)机器人科技有限公司 精度误差补偿方法和基于该方法的自校准声信标定位设备
CN113038366A (zh) * 2021-02-26 2021-06-25 深圳市智慧海洋科技有限公司 水下定位方法、水下定位系统及存储介质
CN113093108A (zh) * 2021-03-18 2021-07-09 天津大学 水下目标自定位与导航的倒置长/超短基线方法及装置
CN113686385B (zh) * 2021-08-25 2023-08-18 哈尔滨工程大学 一种多频段海底大地基准站
CN113686385A (zh) * 2021-08-25 2021-11-23 哈尔滨工程大学 一种多频段海底大地基准站
CN114018252A (zh) * 2021-10-24 2022-02-08 西北工业大学 一种基于水上浮标的自主水下航行器定位方法
CN114018252B (zh) * 2021-10-24 2024-01-30 西北工业大学 一种基于水上浮标的自主水下航行器定位方法
CN114545467A (zh) * 2022-02-22 2022-05-27 中国人民解放军海军航空大学青岛校区 一种跨域联合救生定位装置及救生方法
CN114545467B (zh) * 2022-02-22 2024-06-07 中国人民解放军海军航空大学青岛校区 一种跨域联合救生定位装置及救生方法
CN115390012A (zh) * 2022-10-28 2022-11-25 国家深海基地管理中心 用于hov精准定位的多应答器坐标测量方法、装置及系统
CN115390012B (zh) * 2022-10-28 2023-01-24 国家深海基地管理中心 用于hov精准定位的多应答器坐标测量方法、装置及系统
CN115685165A (zh) * 2022-10-31 2023-02-03 浙江大学 一种立体阵超短基线定位系统安装偏差校准方法及装置

Also Published As

Publication number Publication date
RU2691212C1 (ru) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2020005116A1 (ru) Способ позиционирования подводных объектов
RU2599902C1 (ru) Способ навигации подводных объектов и система для его осуществления
US7362653B2 (en) Underwater geopositioning methods and apparatus
US9372255B2 (en) Determining a position of a submersible vehicle within a body of water
US9791538B2 (en) Ocean-deployed subsurface sensor location positioning system
US7512036B2 (en) Underwater acoustic positioning system and method
US7139647B2 (en) Methods and systems for navigating under water
CN100495066C (zh) 无高稳定频标的水下gps定位导航方法及其系统
US11899104B2 (en) Navigation system for underwater vehicles
RU2437114C1 (ru) Система определения координат подводных объектов
CN110703203A (zh) 基于多声学波浪滑翔机的水下脉冲声定位系统
RU2674404C1 (ru) Способ навигации и позиционирования подводных объектов в глубоководном канале на больших дальностях и система для его осуществления
RU2469346C1 (ru) Способ позиционирования подводных объектов
RU2659299C1 (ru) Способ и система навигации подводных объектов
US7362655B1 (en) Time-synchronous acoustic signal ranging system and method
USH1618H (en) Coherent arrays of drifting sonobuoys
RU2303275C2 (ru) Система определения координат подводных объектов
WO2020096495A1 (ru) Способ позиционирования подводных объектов
JPH08248114A (ja) 水中航走体の測位方式
RU2568071C1 (ru) Гидроакустическая система для позиционирования
RU2529207C1 (ru) Система навигации буксируемого подводного аппарата
RU2792922C1 (ru) Способ позиционирования автономного подводного аппарата в глубоком море
RU2773497C1 (ru) Способ и система для навигационного обеспечения судовождения и определения координат
RU2703806C1 (ru) Бортовая система беспилотного летательного аппарата (БЛА) с автономной коррекцией координат
RU2717578C1 (ru) Способ определения географических координат подводного объекта

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825434

Country of ref document: EP

Kind code of ref document: A1