WO2021027573A1 - 激光投射器、深度相机及电子装置 - Google Patents

激光投射器、深度相机及电子装置 Download PDF

Info

Publication number
WO2021027573A1
WO2021027573A1 PCT/CN2020/105482 CN2020105482W WO2021027573A1 WO 2021027573 A1 WO2021027573 A1 WO 2021027573A1 CN 2020105482 W CN2020105482 W CN 2020105482W WO 2021027573 A1 WO2021027573 A1 WO 2021027573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
depth camera
laser
emitting units
Prior art date
Application number
PCT/CN2020/105482
Other languages
English (en)
French (fr)
Inventor
张学勇
吕向楠
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20851897.7A priority Critical patent/EP4013028A4/en
Publication of WO2021027573A1 publication Critical patent/WO2021027573A1/zh
Priority to US17/671,333 priority patent/US20220171207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/2224Studio circuitry; Studio devices; Studio equipment related to virtual studio applications
    • H04N5/2226Determination of depth image, e.g. for foreground/background separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0272Details of the structure or mounting of specific components for a projector or beamer module assembly

Definitions

  • This application relates to the technical field of depth information acquisition, and more specifically, to a laser projector, a depth camera, and an electronic device.
  • a depth acquisition device can be installed in the mobile phone.
  • the depth acquisition device is generally set on the front of the mobile phone to be used as a front camera, and the depth acquisition device can also be set on the back of the mobile phone to be used as a rear camera.
  • the embodiments of the present application provide a laser projector, a depth camera, and an electronic device.
  • the laser projector of the embodiment of the present application includes a substrate, a lens barrel, a light source, and a diffractive component; the lens barrel is arranged on the substrate, and the lens barrel and the substrate jointly enclose a receiving cavity; the light source is arranged in the On the substrate and located in the receiving cavity, the light source includes a plurality of light emitting units, and the divergence angle of each light emitting unit is less than 20 degrees; the diffraction component is installed on the lens barrel, and the diffraction component is located The light path of the light source.
  • the depth camera of the embodiment of the present application includes a laser projector and an image collector.
  • the image collector is used to collect a laser pattern projected by the laser projector to a target object and reflected by the target object;
  • the laser projector It includes a substrate, a lens barrel, a light source, and a diffractive component;
  • the lens barrel is arranged on the substrate, and the lens barrel and the substrate jointly enclose a receiving cavity;
  • the light source is arranged on the substrate and located in the receiving cavity In the cavity, the light source includes a plurality of light-emitting units, and the divergence angle of each light-emitting unit is less than 20 degrees;
  • the diffractive component is installed on the lens barrel, and the diffractive component is located on the light path of the light source.
  • the electronic device of the embodiment of the present application includes a casing, a display screen, and a depth camera; the casing includes a front and a back side opposite to each other; the display screen is mounted on the casing, and the display screen is located in the casing
  • the depth camera is mounted on the housing, the depth camera is located on the back of the housing; the depth camera includes a laser projector and an image collector, the image collector is used to collect
  • a laser projector projects a laser pattern on a target object and is reflected by the target object;
  • the laser projector includes a substrate, a lens barrel, a light source, and a diffraction component; the lens barrel is arranged on the substrate, and the lens barrel Together with the substrate, it forms a receiving cavity;
  • the light source is arranged on the substrate and located in the receiving cavity, the light source includes a plurality of light emitting units, and the divergence angle of each light emitting unit is less than 20 degrees;
  • the diffraction component is installed on the lens barrel,
  • the divergence angle of each light-emitting unit is less than 20 degrees, and the divergence angle of the light projected after passing through the diffractive component is smaller, and the light is projected to a target object at a longer distance
  • the energy density above is not too small and not easily disturbed, so that the final depth information obtained is more accurate.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a three-dimensional assembly of a laser projector according to an embodiment of the present application
  • FIG. 4 is a perspective exploded schematic diagram of the laser projector according to the embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of the laser projector shown in FIG. 3 along the line V-V;
  • Fig. 6 is a schematic structural diagram of a light source according to an embodiment of the present application.
  • FIG. 7 and 8 are schematic diagrams of the laser emission principle of the laser projector according to the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an image collector according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the optical path of the image collector according to the embodiment of the present application that uses the first optical path to collect laser patterns;
  • FIG. 11 is a schematic diagram of an optical path of the image collector according to an embodiment of the present application that uses a second optical path to collect laser patterns;
  • FIG. 12 is a schematic diagram of the structure of a reflective prism according to an embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional view of the reflective prism shown in FIG. 12 along the line XIII-XIII;
  • FIG. 14 is a schematic structural diagram of a photosensitive member according to an embodiment of the present application.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the laser projector of the embodiment of the present application includes a substrate, a lens barrel, a light source, and a diffractive component; the lens barrel is arranged on the substrate, and the lens barrel and the substrate jointly enclose a receiving cavity; the light source is arranged in the On the substrate and located in the receiving cavity, the light source includes a plurality of light emitting units, and the divergence angle of each light emitting unit is less than 20 degrees; the diffraction component is installed on the lens barrel, and the diffraction component is located The light path of the light source.
  • the divergence angle of each light-emitting unit is less than 7 degrees, and the light emitted by the light-emitting unit directly reaches the diffractive component.
  • the diffractive element includes a first diffractive element and a second diffractive element, the first diffractive element is used to diffract laser light to form a first zero-order beam, and the second diffractive element is used to The first zero-order beam is diffracted to form a second zero-order beam.
  • the laser projector further includes a protective cover provided on the lens barrel, and the protective cover is used to restrict the diffraction component from being installed on the lens barrel, so The gap between the protective cover and the outer wall of the lens barrel is sealed by sealant.
  • each of the light-emitting units can be independently controlled to emit light; and/or, each of the light-emitting units can be independently controlled to emit light.
  • the plurality of light-emitting units are divided into multiple groups, and the light-emitting units in the same group are used to emit light at the same time, and the light-emitting states of the light-emitting units in different groups are different.
  • the multiple light-emitting units are divided into multiple parts, and the light-emitting units in different parts have different divergence angles.
  • the depth camera of the embodiment of the present application includes the laser projector and the image collector described in any of the above embodiments.
  • the image collector is used to collect the laser projector projected to the target object and reflected by the target object. Laser pattern.
  • the wavelength range of the laser light emitted by the light emitting unit is [1350, 1550] nanometers
  • the image collector includes a photosensitive member for generating electrical signals according to the received laser light.
  • the photosensitive member is made of germanium silicon material.
  • the image collector includes a photosensitive member for generating electrical signals according to the received laser light, and the photosensitive member includes a plurality of photosensitive units, and the adjacent photosensitive units An isolation trench is formed between.
  • the image collector includes a first lens group, a second lens group, a reflective prism, and a reflective prism, and the optical axis of the first lens group and the optical axis of the second lens group are both Is the first direction and parallel to each other;
  • the reflection prism can be switched between transmission mode and reflection mode; when the reflection prism is in transmission mode, the light entering from the first lens group passes through the reflection prism Reflected to the second direction and transmitted through the reflective prism as the first optical path, the first direction is different from the second direction; when the reflective prism is in the reflective mode, from the second lens The group of incoming light rays are reflected to the second direction through the reflective prism to serve as a second light path.
  • the reflective prism includes a reflective prism body and a first attached lens
  • the reflective prism includes a reflective prism body, a first additional lens, and a second additional lens.
  • the reflecting prism body, the first attachment lens, the first additional lens, the reflecting prism body, and the second additional lens are used as a lens combination of the first optical path and have a first focal length;
  • the two lens groups, the reflective prism body and the second additional lens form a lens combination of the second optical path and have a second focal length, and the first focal length and the second focal length are different.
  • the depth camera uses the principle of structured light ranging to obtain depth; or, the depth camera uses the principle of time-of-flight ranging to obtain depth.
  • the electronic device of the embodiment of the present application includes a case, a display screen, and the depth camera described in any of the above embodiments;
  • the case includes a front and a back face opposite to each other;
  • the display screen is installed on the case, so The display screen is located on the front of the casing;
  • the depth camera is installed on the casing, and the depth camera is located on the back of the casing.
  • the electronic device 1000 includes a casing 200 and a depth camera 100.
  • the depth camera 100 is mounted on the cabinet 200.
  • the depth camera 100 includes a laser projector 10 and an image collector 20.
  • the laser projector 10 includes a substrate 11, a lens barrel 12, a light source 13 and a diffractive component 15.
  • the lens barrel 12 is disposed on the substrate 11, and the lens barrel 12 and the substrate 11 jointly enclose a receiving cavity 121.
  • the light source 13 is disposed on the substrate 11 and located in the receiving cavity 121.
  • the light source 13 includes a plurality of light emitting units 131 (as shown in FIG. 6), and the divergence angle of each light emitting unit 131 (such as the angle ⁇ in FIG.
  • the diffraction component 15 is installed on the lens barrel 12, and the diffraction component 15 is located on the optical path of the light source 13.
  • the image collector 20 is used to collect the laser pattern projected by the laser projector 10 to the target object and reflected by the target object.
  • the depth acquisition device is installed on the back of the mobile phone and used as a rear camera, since the shooting distance is generally far, the energy density of the light emitted by the depth acquisition device when it acts on the target object is weak, which is easy to be interfered with. The final depth information obtained is not accurate.
  • the divergence angle of each light-emitting unit 131 is less than 20 degrees, and the divergence angle of the light projected after passing through the diffraction component 15 is smaller, The energy density on the long-distance target object is not too small, and it is not easy to be disturbed, so that the final depth information obtained is more accurate.
  • the electronic device 1000 includes a casing 200 and a depth camera 100.
  • the electronic device 1000 may be a mobile phone, a tablet computer, a smart watch, a head-mounted display device, a game console, a notebook computer, etc.
  • the present application takes the electronic device 1000 as a mobile phone as an example for description. It is understood that the specific form of the electronic device 1000 is not limited to a mobile phone.
  • the case 200 can be used as a mounting carrier for the functional elements of the electronic device 1000.
  • the case 200 can provide protection against dust, water, and drop resistance for the functional elements.
  • the functional elements can be the display screen 400 of the electronic device 1000, the visible light camera 300, Depth camera 100, motherboard, power module and other components.
  • the casing 200 may include a front 201 and a back 202, the front 201 and the back 202 are opposite to each other, and functional elements may be installed on the front 201 or the back 202.
  • the display screen 400 is mounted on the housing 200 and located on the front 201
  • the visible light camera 300 is mounted on the housing 200 and located on the back 202
  • the depth camera 100 is mounted on the housing and located on the back 202.
  • the visible light camera 300 can be used as a rear camera, and the depth camera 100 can also be used as a rear depth camera.
  • the visible light camera 300 may include one or more of a telephoto camera, a wide-angle camera, a periscope camera, a black-and-white camera, etc.
  • the display screen 400 may be a display screen 400 such as a liquid crystal display, an OLED display, or a Microled display. .
  • the installation positions of the display screen 400, the visible light camera 300, and the depth camera 100 on the housing 200 can be arranged in other ways.
  • the display screen 400 can be set on the front 201 and the back 202 at the same time, and the visible light camera 300 can also be installed on the front 201 as a front camera, and the depth camera 100 can also be installed on the back 202 as a rear depth camera.
  • the visible light camera 300 can also be installed under the display 400, that is, a visible light camera. 300 receives light passing through the display screen 400 for imaging.
  • the depth camera 100 can also be arranged under the display screen 400.
  • the light signal emitted by the depth camera 100 passes through the display screen 400 and enters the outside of the electronic device 1000.
  • the depth camera 100 receives The light signal after passing through the display screen 400 from the outside of the electronic device 1000 obtains the depth.
  • the depth camera 100 is installed on the casing 200.
  • the present application takes the depth camera 100 on the back 202 of the casing 200 as an example for description.
  • the depth camera 100 may use the principle of structured light to obtain depth, or the depth camera 100 may use the principle of Time of Flight (TOF) to obtain depth.
  • TOF Time of Flight
  • the depth camera 100 uses structured light to measure the depth.
  • the principle of distance acquisition depth is explained as an example.
  • the depth camera 100 includes a laser projector 10, an image collector 20 and a processor 30.
  • the laser projector 10 can be used to project light to the target object, and the light can be an infrared laser.
  • the laser light projected by the laser projector 10 to the target object may have a specific pattern, where the pattern may be a speckle pattern, a stripe pattern, etc., and the laser pattern formed after the laser light is reflected by the target object is related to the distance of the target object.
  • the laser projector 10 includes a substrate 11, a lens barrel 12, a light source 13 and a diffractive component 15.
  • the substrate 11 may include a circuit board and a reinforcement board.
  • the circuit board can be any one of a printed circuit board, a flexible circuit board, and a rigid-flex board. A part of the circuit board is covered by the lens barrel 12, and the other part extends out and can be connected to the connector 18, which can connect the laser projector 10 to the main board of the electronic device 1000.
  • the reinforcing plate may be combined with the circuit board to increase the overall strength of the substrate 11, and the reinforcing plate may be made of materials such as steel plate, for example.
  • the lens barrel 12 is disposed on the substrate 11, and the lens barrel 12 and the substrate 11 jointly enclose a receiving cavity 121.
  • the lens barrel 12 as a whole may have a hollow cylindrical shape, and the side wall 123 of the lens barrel 12 encloses a receiving cavity 121.
  • the lens barrel 12 can be connected to the circuit board of the substrate 11, and the lens barrel 12 and the circuit board can be glued to improve the air tightness of the receiving cavity 121.
  • the accommodating cavity 121 can be used to accommodate components such as the light source 13, and the accommodating cavity 121 simultaneously forms a part of the optical path of the laser projector 10.
  • the lens barrel 12 may also be formed with a mounting cavity 122, which is in communication with the receiving cavity 121, and the mounting cavity 122 can be used to mount the diffraction component 15.
  • the light source 13 is used to emit laser light, the light source 13 is disposed on the substrate 11, and the light source 13 is located in the receiving cavity 121.
  • the light source 13 may specifically be a Vertical Cavity Surface Emitting Laser (VCSEL), and the light source 13 may be disposed on and connected to the circuit board.
  • the light source 13 includes a substrate 132 and a plurality of light emitting units 131, and the plurality of light emitting units 131 are arranged on the substrate 132.
  • Each light-emitting unit 131 can be independently controlled, for example, independently controlled whether to emit light, independently controlled light-emitting power, and so on.
  • a plurality of light emitting units 131 may be arranged irregularly on the substrate 132, so that the irrelevance of a specific pattern is high.
  • the multiple light-emitting units 131 can be divided into multiple groups.
  • the light-emitting units 131 in the same group can emit light at the same time.
  • the light-emitting states of the light-emitting units 131 in different groups can be different.
  • the distance between the target object is relatively small. When it is near, one group of light emitting units 131 can be controlled to emit light, and the other groups of light emitting units 131 can not emit light. When the target object is far away, all groups of light emitting units 131 can be controlled to emit light to increase the laser light irradiated to the target object. energy of.
  • the divergence angle ⁇ of each light emitting unit 131 is less than 20 degrees.
  • the divergence angle of each light-emitting unit 131 is 19 degrees, 15 degrees, 11.5 degrees, 10 degrees, 7 degrees, 5 degrees, 3 degrees, etc., any value less than 20 degrees.
  • the divergence angle of the light-emitting unit 131 is less than 20 degrees, the divergence angle of the laser light projected after being diffracted by the diffraction component 15 will not be too large. Even if the target object is far away, the laser irradiation range will not be too large. The energy density to the target object is not too small, and it is not easily interfered by external light.
  • the divergence angle of different light-emitting units 131 may be different.
  • the divergence angle of the first part of the light-emitting unit 131 is in the first range
  • the divergence angle of the second part of the light-emitting unit 131 is in the second range
  • the third-part light-emitting unit 131 The range of the divergence angle of is the third range
  • the range of the divergence angle of the N-th part of the light-emitting unit 131 is the Nth range, where the first range, the second range, the third range...
  • the Nth range are all less than 20 degrees
  • the light emitting unit 131 with a larger divergence angle is controlled to emit light, so that the energy of the laser light is more divergent, so as to avoid harm to the user.
  • the light emitting unit 131 with a small divergence angle emits light, so that the energy density of the laser light projected on the target object is relatively high and is not easily disturbed.
  • the diffraction component 15 is installed on the lens barrel 12, and the diffraction component 15 is located on the optical path of the light source 13. Specifically, the diffraction component 15 is installed in the mounting cavity 122, and the laser light emitted by the light source 13 is projected from the laser projector 10 after passing through the diffraction component 15. A diffraction structure is formed on the diffraction element 15, and the diffraction element 15 can diffract the laser light into the above-mentioned specific pattern.
  • the image collector 20 can be used to collect the laser pattern projected by the laser projector 10 to the target object and reflected by the target object. Specifically, after the laser light with a specific pattern emitted by the laser projector 10 is projected onto the target object, the laser light is reflected by the target object, and the image collector 20 receives the reflected laser light to obtain the laser pattern. It can be understood that the reflected laser pattern Related to the depth information of the target object, the reflected laser pattern actually already contains the depth information of the target object.
  • the energy density of the laser light projected by the laser projector 10 to the target object is high, it is not easy to be disturbed, for example, it is not easy to be disturbed by infrared light in the environment, the signal-to-noise ratio of the laser pattern collected by the image collector 20 is relatively high, which is convenient for follow-up Obtain more accurate depth information.
  • the processor 30 After the processor 30 acquires the laser pattern collected by the image collector 20, it processes the laser pattern according to the pre-stored calibration information to further obtain the depth information of the target object.
  • the processor 30 may be the application processor 30 of the electronic device 1000, The processor 30 may also be an external processing chip.
  • the divergence angle of each light-emitting unit 131 is less than 20 degrees, and the divergence angle of the light projected after passing through the diffractive component 15 is smaller, and the light is projected to a longer distance target object
  • the energy density is not too small and is not easy to be disturbed, so that the final depth information is more accurate, so that the user can use the depth information for games (such as AR games), modeling (such as 3D modeling), and measurement (such as The experience is better when applied to AR rulers.
  • the laser projector 10 further includes a collimating element 14.
  • the collimating element 14 can be installed in the accommodating cavity 121, the collimating element 14 is located between the light source 13 and the diffraction component 15, and the laser light passes through the collimating element 14 and then enters the diffraction component 15.
  • the collimating element 14 may be an optical lens, and the collimating element 14 is used to collimate the laser light emitted by the light source 13 to further make the divergence angle of the laser light projected by the laser projector 10 smaller.
  • the laser light is incident on the diffraction component 15 in a state of parallel light.
  • each light-emitting unit 131 when the divergence angle of each light-emitting unit 131 is less than 7 degrees, the light emitted by the light-emitting unit 131 directly reaches the diffraction component 15. At this time, the divergence angle of each light-emitting unit 131 may be any value less than 7 degrees, such as 6 degrees, 5 degrees, 3 degrees, and the like.
  • the collimating element 14 can be omitted to reduce the structural complexity and size of the laser projector 10.
  • the laser projector 10 further includes a protective cover 16, and the protective cover 16 is arranged on the lens barrel 12.
  • the protective cover 16 is used to restrict the installation of the diffraction component 15 on the lens barrel 12, and the gap between the protective cover 16 and the outer wall of the lens barrel 12 is sealed by a sealant 17.
  • the protective cover 16 is arranged on the lens barrel 12, and the protective cover 16 can be connected with the side wall 123 by a snap, so that the protective cover 16 will not be separated from the lens barrel 12 during normal use, and the diffraction component 15 is installed in the mounting cavity 122 Inside, the protective cover 16 protects the diffractive component 15 to prevent the diffractive component 15 from falling out of the mounting cavity 122, and prevents the laser light emitted from the light source 13 from being emitted without passing through the diffractive component 15 and harming users.
  • the sealant 17 may be that after the protective cover 16 is placed on the lens barrel 12, glue is dispensed in the gap between the protective cover 16 and the side wall 123, so that the sealant 17 is filled between the protective cover 16 and the side wall 123, The sealant 17 surrounds the lens barrel 12 to prevent liquid or dust from entering the diffractive structure of the diffractive component 15 through the gap between the protective cover 16 and the side wall 123, preventing the diffractive structure from being damaged and causing zero-order enhancement, and improving the laser projector 10. Safety of use.
  • the diffraction element 15 includes a first diffraction element 151 and a second diffraction element 152.
  • the first diffractive element 151 is used to diffract laser light to form a first zero-order beam L3
  • the second diffractive element 152 is used to diffract the first zero-order beam L3 to form a second zero-order beam L4.
  • the laser light L1 emitted by the light source 13 is collimated by the collimating element 14 to form the laser light L2.
  • the first diffractive element 151 includes a first optically effective area and a first non-optical effective area.
  • the first optically effective area is configured to be aligned with the collimating element.
  • the cross-section of the collimated laser light L2 corresponds to that, a diffraction grating is arranged on the first optical effective area, and the laser light L2 collimated by the collimating element 14 passes through the diffraction grating to form the first laser pattern P1 and the first zero order Light beam L3.
  • the second diffractive element 152 includes a second optically effective area and a second non-optical effective area.
  • the second optically effective area is configured to correspond to the cross section of the first zero-order beam L3, and a diffraction grating is provided on the second optically effective area.
  • the first zero-order beam L3 passes through the diffraction grating to form a second laser pattern P2 and a second zero-order beam L4, and the second non-optical effective area is a transparent part without a diffraction grating, so that the first laser pattern P1 can pass And the pattern style of the first laser pattern P1 will not be changed.
  • the diffraction grating of the first optical effective area and the diffraction grating of the second optical effective area have different grating structures, so that the first laser pattern P1 and the second laser pattern P2 have greater irrelevance.
  • the combination of the first laser pattern P1 and the second laser pattern P2 forms an overall specific pattern projected by the laser projector 10.
  • the first laser pattern P1 and the second laser pattern P2 may partially overlap. In this way, it can be further increased Irrelevance of a particular pattern.
  • the structure of the diffractive component 15 with double diffractive elements can further diffract the zero-order beam. Therefore, the energy of the zero-order beam is reduced.
  • the laser projector 10 uses the double diffractive element to project the specific The pattern has good brightness uniformity, and can also avoid possible damage to the user's eyes due to the strong energy of the zero-order beam, so that although the divergence angle of the laser projected by the laser projector 10 is small, no energy is generated.
  • the area that is too concentrated improves the safety when using the laser projector 10.
  • the laser light L1 emitted by the light source 13 directly irradiates the above-mentioned first optical effective area, and the diffraction effect of the diffraction component 15 on the laser light L1 is similar to the example shown in FIG. 7 , I won’t repeat it here.
  • the image collector 20 includes a first lens group 21, a second lens group 22, a reflective prism 23, a reflective prism 24 and a photosensitive member 25.
  • the optical axis of the first lens group 21 and the optical axis of the second lens group 22 are both in the first direction (the X direction in FIGS. 9 to 11) and are parallel to each other.
  • the reflection prism 24 can switch between a transmission mode and a reflection mode.
  • the reflecting prism 24 when the reflecting prism 24 is in the transmission mode, the light entering from the first lens group 21 is reflected by the reflecting prism 23 to the second direction (the Y direction in FIGS. 9 to 11) and The transmission through the reflection prism 24 is used as the first light path, and the light passing through the first lens group 21, the reflection prism 23 and the reflection prism 24 through the first light path reaches the photosensitive member 25.
  • the reflection prism 24 when the reflection prism 24 is in the reflection mode, the light entering from the second lens group 22 is reflected to the second direction through the reflection prism 24 as the second optical path, and passes through the second optical path.
  • the light after the second lens group 22 and the reflecting prism 24 reaches the photosensitive unit 251.
  • the second direction may be different from the first direction. In one example, the second direction is perpendicular to the first direction.
  • the reflective prism 23 includes a reflective prism body 231 and a first attachment lens 232.
  • the number of the first attachment lens 232 may be one or more.
  • the first attachment lens 232 may be bonded to the reflective prism body 231, and the first attachment lens 232 may also be integrated with the reflective prism body 231.
  • the reflection prism 24 includes a reflection prism body 241, a first additional lens 242 and a second additional lens 243.
  • the first additional lens 242 and the second additional lens 243 may be one or more.
  • the first additional lens 242 and the second additional lens 243 may be pasted on the reflection prism body 241, and the first additional lens 242, the second additional lens 243 and the reflection prism body 241 may also be integrated.
  • the first lens group 21, the reflective prism body 231, the first attached lens 232, the first additional lens 242, the reflective prism body 241, and the second additional lens 243 are combined as a lens combination of the first optical path It has a first focal length; please refer to FIGS. 9 and 11, the second lens group 22, the reflective prism body 241 and the second additional lens 243 form a second optical path combination and have a second focal length, the first focal length and the second focal length are different.
  • a shading plate (not shown) can be provided on the first lens group 21 and the second lens group 22.
  • the shading plate When the first focal length is needed for focusing, the shading plate is driven to block the second lens group 22, so that Light enters the image collector 20 from the first lens group 21; when the second focal length needs to be used for focusing, the light shielding film is driven to block the first lens group 21, so that the light enters the image collector 20 from the second lens group 22 ; In this way, the user can switch the focal length of the image collector 20 according to the distance of the target object, so that a clearer laser pattern can be obtained in more scenes.
  • the reflection prism 24 includes a transparent container 244 and a liquid crystal material layer 245 disposed in the transparent container 244.
  • the liquid crystal material layer 245 can switch the reflection prism 24 between the reflection mode and the lens mode under the action of an electric signal.
  • the liquid crystal material layer 245 can be a nematic liquid crystal material or a cholesteric liquid crystal material or the like.
  • the liquid crystal material layer 245 is in a reflective state when there is no electrical signal, that is, when there is no power, the reflective prism 24 is in a reflective mode.
  • the liquid crystal material layer 245 is in a transmissive state, that is, when power is applied, the reflective prism 24 is in a transmissive mode.
  • the electrical signal here can be a current signal or a voltage signal.
  • the liquid crystal material layer 245 uses a cholesteric liquid crystal material, which is composed of chiral dopants and nematic liquid crystals.
  • a cholesteric liquid crystal material which is composed of chiral dopants and nematic liquid crystals.
  • the molecules of the nematic liquid crystal are elongated along the longitudinal molecular axis to form a spiral arrangement.
  • the reflection prism 24 is in the transmission mode, the molecules of the nematic liquid crystal are not aligned and are in a dispersed state, and the cholesteric liquid crystal material layer 245 becomes transparent.
  • the molecular dispersion or molecular arrangement causes the cholesteric liquid crystal material layer 245 to switch back and forth between the reflective state and the transmissive state.
  • the photosensitive member 25 can be used to generate electrical signals according to the received laser light. Specifically, the stronger the intensity of the received laser light, the greater the amount of electrical signals generated.
  • the photosensitive member 25 may be made of a material with higher quantum efficiency for laser light (for example, infrared light with a wavelength of 940 nanometers), so as to improve the efficiency of the photosensitive member 25 to generate electrical signals after receiving the laser, and to improve the laser pattern acquired by the image collector 20 The signal-to-noise ratio.
  • the photosensitive member 25 includes a plurality of photosensitive units 251, and isolation grooves 252 are formed between adjacent photosensitive units 251.
  • the multiple photosensitive units 251 may be arranged in an array, for example, the multiple photosensitive units 251 are arranged in a matrix with multiple rows and multiple columns.
  • the isolation trench 252 may be an isolation trench 252 made by a shallow trench isolation process (STI) or a deep trench isolation process (DTI) to prevent laser light from being trapped in adjacent photosensitive cells 251. Crosstalk is formed between them, and the accuracy of the laser pattern collected by the image collector 20 is improved. Further, spacers can also be provided on the isolation trench 252 to further block the propagation of laser light between adjacent photosensitive units 251.
  • STI shallow trench isolation process
  • DTI deep trench isolation process
  • the wavelength range of the laser light emitted by the light emitting unit 131 is [1350, 1550] nanometers
  • the photosensitive member 25 is made of germanium silicon material.
  • the photosensitive member 25 made of germanium-silicon material has a higher quantum efficiency for light with a wavelength range of [1350, 1550] nanometers, and at the same time, the amount of light with a wavelength range of [1350, 1550] nanometers in the natural environment is less Therefore, the laser light emitted by the light emitting unit 131 is not easily disturbed by ambient light, and the signal-to-noise ratio of the laser pattern collected by the image collector 20 is improved.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, “plurality” means at least two, such as two or three, unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Studio Devices (AREA)

Abstract

一种激光投射器(10)、深度相机(100)及电子装置(1000)。激光投射器(10)包括基板(11)、镜筒(12)、光源(13)及衍射组件(15)。镜筒(12)设置在基板(11)上,镜筒(12)与基板(11)共同围成收容腔(121);光源(13)设置在基板(11)上且位于收容腔(121)内,光源(13)包括多个发光单元(131),每个发光单元(131)的发散角小于20度。衍射组件(15)安装在镜筒(12)上,衍射组件(15)位于光源(13)的光路上。

Description

激光投射器、深度相机及电子装置
优先权信息
本申请请求2019年08月14日向中国国家知识产权局提交的、专利申请号为201910750130.X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及深度信息获取技术领域,更具体而言,涉及一种激光投射器、深度相机及电子装置。
背景技术
手机中可以安装有深度采集装置,深度采集装置一般设置在手机的正面,以作为前置相机使用,深度采集装置也可以设置在手机的背面,以作为后置相机使用。
发明内容
本申请实施方式提供一种激光投射器、深度相机及电子装置。
本申请实施方式的激光投射器包括基板、镜筒、光源及衍射组件;所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;所述光源设置在所述基板上且位于所述收容腔内,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
本申请实施方式的深度相机包括激光投射器及图像采集器,所述图像采集器用于采集由所述激光投射器向目标物体投射,并由所述目标物体反射的激光图案;所述激光投射器包括基板、镜筒、光源及衍射组件;所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;所述光源设置在所述基板上且位于所述收容腔内,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
本申请实施方式的电子装置包括机壳、显示屏及深度相机;所述机壳包括相背的正面及背面;所述显示屏安装在所述机壳上,所述显示屏位于所述机壳的正面;所述深度相机安装在所述机壳上,所述深度相机位于所述机壳的背面;所述深度相机包括激光投射器及图像采集器,所述图像采集器用于采集由所述激光投射器向目标物体投射,并由所述目标物体反射的激光图案;所述激光投射器包括基板、镜筒、光源及衍射组件;所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;所述光源设置在所述基板上且位于 所述收容腔内,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
本申请实施方式的激光投射器、深度相机及电子装置中,每个发光单元的发散角小于20度,经过衍射组件后投射出去的光线的发散角较小,光线投射到较远距离的目标物体上的能量密度不至于太小,不容易被干扰,使得最终得到的深度信息较准确。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的电子装置的结构示意图;
图2是本申请实施方式的深度相机的结构示意图;
图3是本申请实施方式的激光投射器的立体装配示意图;
图4是本申请实施方式的激光投射器的立体分解示意图;
图5是图3所示的激光投射器沿V-V线的截面示意图;
图6是本申请实施方式的光源的结构示意图;
图7及图8是本申请实施方式的激光投射器的发射激光的原理示意图;
图9是本申请实施方式的图像采集器的结构示意图;
图10是本申请实施方式的图像采集器的采用第一光路采集激光图案的光路示意图;
图11是本申请实施方式的图像采集器的采用第二光路采集激光图案的光路示意图;
图12是本申请实施方式的反透棱镜的结构示意图;
图13是图12所示的反透棱镜沿XIII-XIII线的截面示意图;
图14是本申请实施方式的感光件的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征 在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请实施方式的激光投射器包括基板、镜筒、光源及衍射组件;所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;所述光源设置在所述基板上且位于所述收容腔内,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
在某些实施方式中,每个所述发光单元的发散角小于7度,所述发光单元发出的光线直接到达所述衍射组件。
在某些实施方式中,所述衍射组件包括第一衍射元件及第二衍射元件,所述第一衍射元件用于对激光进行衍射以形成第一零级光束,所述第二衍射元件用于对所述第一零级光束进行衍射以形成第二零级光束。
在某些实施方式中,所述激光投射器还包括保护盖,所述保护盖罩设在所述镜筒上,所述保护盖用于限制所述衍射组件安装在所述镜筒上,所述保护盖与所述镜筒的外壁之间的间隙由密封胶密封。
在某些实施方式中,每个所述发光单元能够被独立地控制是否发光;及/或,每个所述发光单元能够被独立地控制发光的功率。
在某些实施方式中,多个所述发光单元分为多组,同一个组内的所述发光单元用于同时发光,不同组内的所述发光单元之间的发光状态不同。
在某些实施方式中,多个所述发光单元分为多个部分,不同部分的所述发光单元的发散角不同。
本申请实施方式的深度相机包括上述任一实施方式所述的激光投射器及图像采集器,所述图像采集器用于采集由所述激光投射器向目标物体投射,并由所述目标物体反射的激光图案。
在某些实施方式中,所述发光单元发出的激光的波长范围为[1350,1550]纳米,所述图像采集器包括感光件,所述感光件用于依据接收到的所述激光生成电信号,所述感光件由锗硅材料制成。
在某些实施方式中,所述图像采集器包括感光件,所述感光件用于依据接收到的所述激光生成电信号,所述感光件包括多个感光单元,相邻的所述感光单元之间形成隔离沟槽。
在某些实施方式中,所述图像采集器包括第一透镜组、第二透镜组、反射棱镜及反透棱镜,所述第一透镜组的光轴与所述第二透镜组的光轴均为第一方向并且相互平行;所述反透棱镜能够在透射模式与反射模式之间切换;当所述反透棱镜处于透射模式时,从所述 第一透镜组进入的光线经过所述反射棱镜反射至第二方向并经过所述反透棱镜的透射以作为第一光路,所述第一方向与所述第二方向不同;当所述反透棱镜处于反射模式时,从所述第二透镜组进入的光线经过所述反透棱镜反射至所述第二方向以作为第二光路。
在某些实施方式中,所述反射棱镜包括反射棱镜本体和第一附和透镜,所述反透棱镜包括反透棱镜本体、第一附加透镜和第二附加透镜,所述第一透镜组、所述反射棱镜本体、所述第一附和透镜、所述第一附加透镜、所述反透棱镜本体和所述第二附加透镜作为所述第一光路的镜片组合并具有第一焦距;所述第二透镜组、所述反透棱镜本体和所述第二附加透镜形成所述第二光路的镜片组合并具有第二焦距,所述第一焦距和所述第二焦距不同。
在某些实施方式中,所述深度相机利用结构光测距的原理获取深度;或,所述深度相机利用飞行时间测距的原理获取深度。
本申请实施方式的电子装置包括机壳、显示屏及上述任一实施方式所述的深度相机;所述机壳包括相背的正面及背面;所述显示屏安装在所述机壳上,所述显示屏位于所述机壳的正面;所述深度相机安装在所述机壳上,所述深度相机位于所述机壳的背面。
请参阅图1至图4,本申请实施方式的电子装置1000包括机壳200及深度相机100。深度相机100安装在机壳200上。深度相机100包括激光投射器10及图像采集器20。激光投射器10包括基板11、镜筒12、光源13及衍射组件15。镜筒12设置在基板11上,镜筒12与基板11共同围成收容腔121。光源13设置在基板11上且位于收容腔121内,光源13包括多个发光单元131(如图6),每个发光单元131的发散角(如图6中的角α)小于20度。衍射组件15安装在镜筒12上,衍射组件15位于光源13的光路上。图像采集器20用于采集由激光投射器10向目标物体投射,并由目标物体反射的激光图案。
如果将深度采集装置设置在手机的背面,并作为后置相机使用时,由于拍摄的距离一般较远,深度采集装置发出的光线作用到目标物体上时的能量密度较弱,容易被干扰,导致最终获取的深度信息不准确。
本申请实施方式的激光投射器10、深度相机100及电子装置1000中,每个发光单元131的发散角小于20度,经过衍射组件15后投射出去的光线的发散角较小,光线投射到较远距离的目标物体上的能量密度不至于太小,不容易被干扰,使得最终得到的深度信息较准确。
具体地,请参阅图1及图2,电子装置1000包括机壳200及深度相机100。电子装置1000可以是手机、平板电脑、智能手表、头显设备、游戏机、笔记本电脑等,本申请以电子装置1000是手机作为示例进行说明,可以理解,电子装置1000的具体形式不限于手机。
机壳200可以作为电子装置1000的功能元件的安装载体,机壳200可以为功能元件提供防尘、防水、防摔等的保护,功能元件可以是电子装置1000的显示屏400、可见光相机 300、深度相机100、主板、电源模块等元件。机壳200可以包括正面201及背面202,正面201与背面202相背,功能元件可以安装在正面201或者背面202。例如如图1所示的例子中,显示屏400安装在机壳200上并位于正面201,可见光相机300安装在机壳200上并位于背面202,深度相机100安装在机壳上并位于背面202,此时,可见光相机300可作为后置相机使用,深度相机100也可作为后置深度相机使用。其中,可见光相机300可以包括长焦相机、广角相机、潜望式相机、黑白相机等中的一个或多个;显示屏400可以是液晶显示屏、OLED显示屏、Micro led显示屏等显示屏400。
当然,在其他实施例中,显示屏400、可见光相机300及深度相机100在机壳200上的安装位置可以有其他设置方式,例如,显示屏400可以同时设置在正面201及背面202,可见光相机300还可以设置在正面201以作为前置相机使用,深度相机100也可以安装在背面202以作为后置深度相机使用,另外,可见光相机300还可以设置在显示屏400的下方,即,可见光相机300接收穿过显示屏400的光线以用于成像,深度相机100还可以设置在显示屏400的下方,深度相机100发射的光信号穿过显示屏400后进入电子装置1000外界,深度相机100接收从电子装置1000的外界穿过显示屏400后的光信号以获取深度。
请参阅图1及图2,深度相机100安装在机壳200上,本申请以深度相机100位于机壳200的背面202为例进行说明。深度相机100可以是利用结构光测距的原理获取深度、或者深度相机100可以是利用飞行时间(Time of Flight,TOF)测距的原理获取深度,本申请实施例以深度相机100利用结构光测距的原理获取深度作为例子进行说明。深度相机100包括激光投射器10、图像采集器20及处理器30。
请参阅图3至图5,激光投射器10可用于向目标物体投射光线,光线可以是红外激光。激光投射器10向目标物体投射的激光可以是带有特定图案的,其中图案可以是散斑图案、条纹图案等,而激光被目标物体反射后形成的激光图案与目标物体的距离有关。激光投射器10包括基板11、镜筒12、光源13及衍射组件15。
基板11可以包括电路板及加强板。电路板可以是印刷电路板、柔性电路板、软硬结合板中的任意一种。电路板一部分被镜筒12罩住,另一部分延伸出来并可以与连接器18连接,连接器18可以将激光投射器10连接到电子装置1000的主板上。加强板可以与电路板结合以增加基板11整体的强度,加强板例如可以是钢板等材料制成。
请参阅图3至图5,镜筒12设置在基板11上,镜筒12与基板11共同围成收容腔121。镜筒12整体可以呈中空的筒状,镜筒12的侧壁123围成收容腔121。镜筒12可以与基板11的电路板连接,镜筒12与电路板可以通过粘胶粘接,以提高收容腔121的气密性。收容腔121可以用于容纳光源13等元器件,收容腔121同时形成激光投射器10的光路的一部分。在本申请实施例中,镜筒12还可以形成有安装腔122,安装腔122与收容腔121相 通,安装腔122可用于安装衍射组件15。
请参阅图5及图6,光源13用于发射激光,光源13设置在基板11上,光源13位于收容腔121内。光源13具体可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL),光源13可以设置在电路板上并与电路板连接。在本申请实施例中,光源13包括衬底132和多个发光单元131,多个发光单元131设置在衬底132上。每个发光单元131均可以独立地被控制,例如被独立地控制是否发光、被独立地控制发光的功率等。多个发光单元131可以在衬底132上不规则地排列,以使得特定图案的不相关性较高。在一个例子中,多个发光单元131可以分为多组,同一个组内的发光单元131可以同时发光,不同组的发光单元131之间的发光状态可以不同,例如,在目标物体的距离较近时,可以控制其中的某一组发光单元131发光,其余组发光单元131不发光,在目标物体的距离较远时,可以控制所有组发光单元131均发光,以增加照射到目标物体的激光的能量。
每个发光单元131的发散角α小于20度。例如每个发光单元131的发散角为19度、15度、11.5度、10度、7度、5度、3度等任意小于20度的数值。发光单元131的发散角小于20度时,激光经衍射组件15衍射后投射出去的激光的发散角也不会太大,即使目标物体的距离较远,激光的照射范围也不会太大,照射到目标物体上的能量密度不会太小,不容易被外界的光线干扰。不同发光单元131的发散角可以不同,例如第一部分发光单元131的发散角的大小范围为第一范围,第二部分发光单元131的发散角的大小范围为第二范围,第三部分发光单元131的发散角的大小范围为第三范围…第N部分发光单元131的发散角的大小范围为第N范围,其中,第一范围、第二范围、第三范围…第N范围均在小于20度的范围内,在目标物体的距离较近时,控制具有较大的发散角的发光单元131发光,以使激光的能量较发散,避免伤害用户,在目标物体的距离较远时,控制具有较小的发散角的发光单元131发光,以使投射到目标物体的激光的能量密度较高,不容易被干扰。
请参阅图3至图5,衍射组件15安装在镜筒12上,衍射组件15位于光源13的光路上。具体地,衍射组件15安装在安装腔122中,光源13发出的激光经过衍射组件15后从激光投射器10中投射出去。衍射组件15上形成有衍射结构,衍射组件15可以将激光衍射出上述的特定图案。
请参阅图2,图像采集器20可以用于采集由激光投射器10向目标物体投射,并由目标物体反射的激光图案。具体地,激光投射器10发出的带有特定图案的激光投射到目标物体后,激光由目标物体反射,图像采集器20接收被反射的激光以获得激光图案,可以理解,被反射后的激光图案与目标物体的深度信息相关,被反射后的激光图案实际上已经包含了目标物体的深度信息。由于激光投射器10投射到目标物体的激光的能量密度较高,不容易被干扰,例如不容易被环境中的红外光干扰,图像采集器20采集的激光图案的信噪比比较 高,便于后续得到较精确的深度信息。
处理器30获取由图像采集器20采集的激光图案后,依据预存的标定信息处理该激光图案以进一步得到目标物体的深度信息,其中,处理器30可以是电子装置1000的应用处理器30,处理器30也可以是外挂的处理芯片。
综上,本申请实施方式的电子装置1000中,每个发光单元131的发散角小于20度,经过衍射组件15后投射出去的光线的发散角较小,光线投射到较远距离的目标物体上的能量密度不至于太小,不容易被干扰,使得最终得到的深度信息较准确,以使用户在利用该深度信息进行游戏(例如AR游戏)、建模(例如3D建模)、测量(例如应用于AR尺子)时的体验较好。
请参阅图5及图7,在某些实施方式中,激光投射器10还包括准直元件14。准直元件14可以安装在收容腔121内,准直元件14位于光源13与衍射组件15之间,激光穿过准直元件14后进入衍射组件15。准直元件14可以是光学透镜,准直元件14用于准直光源13发射的激光,以进一步使得激光投射器10投射的激光的发散角较小。在一个例子中,光源13发出的激光经过准直元件14的作用后,激光呈平行光的状态入射到衍射组件15上。
请参阅图6及图8,当每个发光单元131的发散角小于7度时,发光单元131发出的光线直接到达衍射组件15。此时,每个发光单元131的发散角可以是6度、5度、3度等任意小于7度的数值。准直元件14可以被省略掉,以减小激光投射器10的结构复杂度及尺寸。
请参阅图5,在某些实施方式中,激光投射器10还包括保护盖16,保护盖16罩设在镜筒12上。保护盖16用于限制衍射组件15安装在镜筒12上,保护盖16与镜筒12的外壁之间的间隙由密封胶17密封。
保护盖16罩设在镜筒12上,保护盖16可以与侧壁123通过卡扣连接,以使保护盖16在正常使用时不会与镜筒12分离,而衍射组件15安装在安装腔122内,保护盖16保护住衍射组件15,避免衍射组件15从安装腔122中脱出,防止光源13发出的激光不经过衍射组件15就发射出去而伤害到用户。密封胶17可以是保护盖16罩设在镜筒12上后,在保护盖16与侧壁123之间的间隙中点胶,以使密封胶17填充在保护盖16与侧壁123之间,密封胶17环绕镜筒12,避免液体或粉尘通过保护盖16与侧壁123之间的间隙进入到衍射组件15的衍射结构中,防止衍射结构被破坏而导致零级增强,提高激光投射器10使用的安全性。
请参阅图7,在某些实施方式中,衍射组件15包括第一衍射元件151及第二衍射元件152。第一衍射元件151用于对激光进行衍射以形成第一零级光束L3,第二衍射元件152用于对第一零级光束L3进行衍射以形成第二零级光束L4。
光源13发出的激光L1经准直元件14准直后形成激光L2,第一衍射元件151包括第一光学有效区和第一非光学有效区,第一光学有效区被配置为与经准直元件14准直后的激光L2的横截面相对应,第一光学有效区上设置有衍射光栅,经准直元件14准直后的激光L2经衍射光栅后形成第一激光图案P1及第一零级光束L3。第二衍射元件152包括第二光学有效区和第二非光学有效区,第二光学有效区被配置为与第一零级光束L3的横截面相对应,第二光学有效区上设置有衍射光栅,第一零级光束L3经衍射光栅后形成第二激光图案P2及第二零级光束L4,而第二非光学有效区为未设置有衍射光栅的透明部分,以使第一激光图案P1通过且不会改变第一激光图案P1的图案样式。第一光学有效区的衍射光栅与第二光学有效区的衍射光栅具有不同的光栅结构,以使第一激光图案P1和第二激光图案P2具有较大的不相关性。第一激光图案P1和第二激光图案P2组合形成激光投射器10投射的整体的特定图案。第一激光图案P1和第二激光图案P2投射到某个与激光投射器10的光轴垂直的平面上时,第一激光图案P1和第二激光图案P2可以有部分重叠,如此,可进一步增加特定图案的不相关性。
相比于使用一个衍射元件,衍射组件15采用双衍射元件的结构能使得零级光束进一步被衍射,因此,零级光束的能量减小,如此,激光投射器10使用双衍射元件投射得到的特定图案具有较好的亮度均匀性,也可以避免因零级光束的能量较强而对可能对用户的眼睛产生伤害,使得尽管激光投射器10投射的激光的发散角较小,也不会产生能量过于集中的区域,提高使用激光投射器10时的安全性。
请参阅图8,在省略掉准直元件14时,光源13发出的激光L1直接照射到上述的第一光学有效区上,衍射组件15对激光L1的衍射作用与如图7所示的例子类似,在此不再赘述。
请参阅图9至图11,在某些实施方式中,图像采集器20包括第一透镜组21、第二透镜组22、反射棱镜23、反透棱镜24及感光件25。其中,第一透镜组21的光轴与第二透镜组22的光轴均为第一方向(如图9至图11中的X方向)并且互相平行。反透棱镜24能够在透射模式与反射模式之间切换。
如图10所示的例子中,当反透棱镜24处于透射模式时,从第一透镜组21进入的光线经过反射棱镜23反射至第二方向(如图9至图11中的Y方向)并经过反透棱镜24的透射以作为第一光路,以第一光路穿过第一透镜组21、反射棱镜23及反透棱镜24后的光线到达感光件25。如图11所示的例子中,当反透棱镜24处于反射模式时,从第二透镜组22进入的光线经过反透棱镜24反射至第二方向以作为第二光路,以第二光路穿过第二透镜组22及反透棱镜24后的光线到达感光单元251。第二方向可以与第一方向不同,在一个例子中,第二方向与第一方向垂直。
反射棱镜23包括反射棱镜本体231及第一附和透镜232。第一附和透镜232的数量可以是一个或多个。第一附和透镜232可以粘接在反射棱镜本体231上,第一附和透镜232也可以与反射棱镜本体231一体设置。反透棱镜24包括反透棱镜本体241、第一附加透镜242及第二附加透镜243。第一附加透镜242及第二附加透镜243可以是一个或多个。第一附加透镜242及第二附加透镜243可以粘贴在反透棱镜本体241上,第一附加透镜242、第二附加透镜243及反透棱镜本体241也可以是一体设置。
请参阅图9及图10,第一透镜组21、反射棱镜本体231、第一附和透镜232、第一附加透镜242、反透棱镜本体241和第二附加透镜243作为第一光路的镜片组合并具有第一焦距;请参阅图9及图11,第二透镜组22、反透棱镜本体241和第二附加透镜243形成第二光路组合并具有第二焦距,第一焦距和第二焦距不同。在使用时,可以在第一透镜组21与第二透镜组22上设置遮光片(图未示),在需要使用第一焦距进行对焦时,则驱动遮光片遮挡第二透镜组22,以使光线从第一透镜组21进入图像采集器20内;在需要使用第二焦距进行对焦时,则驱动遮光片遮挡第一透镜组21,以使光线从第二透镜组22进入图像采集器20内;如此,用户可以依据目标物体的距离切换图像采集器20的焦距,以便于在更多的场景下均能获得较为清晰的激光图案。
请参阅图12及图13,在某些实施方式中,反透棱镜24包括透光容器244和设置在透光容器244内的液晶材料层245。液晶材料层245能够在电信号的作用下使反透棱镜24在反射模式与透镜模式之间切换。液晶材料层245可采用向列型液晶材料或胆固醇液晶材料等等。在某些实施方式中,液晶材料层245在没有电信号时,为反射状态,即在没有通电时,反透棱镜24为反射模式。在有电信号输入时,液晶材料层245为透射状态,即在通电的情况下,反透棱镜24为透射模式。这里的电信号可以是电流信号或电压信号。
在一个例子中,液晶材料层245采用胆固醇液晶材料,胆固醇液晶材料由手性掺杂物和向列型液晶构成。在有手性掺杂物存在的情况下,反透棱镜24处于反射模式时,向列型液晶的分子沿纵向的分子轴被拉长,形成螺旋排列。当反透棱镜24处于透射模式时,向列型液晶的分子未排列,处于散布状态,胆固醇液晶材料层245变得透光。分子散布或分子排列使胆固醇液晶材料层245在反射状态和透射状态之间来回切换。
请参阅图14,感光件25可用于依据接收到的激光生成电信号,具体地,接收到的激光的强度越强,则生成的电信号的量越多。感光件25可以采用对激光(例如波长为940纳米的红外光)的量子效率较高的材料制成,以提升感光件25接收激光后生成电信号的效率,提高图像采集器20获取的激光图案的信噪比。
感光件25包括多个感光单元251,相邻的感光单元251之间形成隔离沟槽252。多个感光单元251可以呈阵列排布,例如多个感光单元251排成多行多列的矩阵。隔离沟槽252 可以是由浅沟槽隔离工艺(shallow trench isolation,STI)或由深沟槽隔离工艺(Deep Trench Isolation,DTI)制成的隔离沟槽252,以防止激光在相邻的感光单元251之间形成串扰,提升图像采集器20采集的激光图案的精确性。进一步地,还可以在隔离沟槽252上设置隔离件,以进一步阻隔激光在相邻的感光单元251之间的传播。
在一个例子中,发光单元131发出的激光的波长范围为[1350,1550]纳米,感光件25由锗硅材料制成。锗硅材料制成的感光件25对波长范围为[1350,1550]纳米的光线的量子效率较高,同时,自然环境的光线中,波长范围为[1350,1550]纳米的光线的量较少,发光单元131发出的激光不容易被环境光干扰,提高图像采集器20采集的激光图案的信噪比。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种激光投射器,其特征在于,包括:
    基板;
    镜筒,所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;
    光源,设置在所述基板上且位于所述收容腔内的光源,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;及
    衍射组件,所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
  2. 根据权利要求1所述的激光投射器,其特征在于,每个所述发光单元的发散角小于7度,所述发光单元发出的光线直接到达所述衍射组件。
  3. 根据权利要求1所述的激光投射器,其特征在于,所述衍射组件包括第一衍射元件及第二衍射元件,所述第一衍射元件用于对激光进行衍射以形成第一零级光束,所述第二衍射元件用于对所述第一零级光束进行衍射以形成第二零级光束。
  4. 根据权利要求1所述的激光投射器,其特征在于,所述激光投射器还包括保护盖,所述保护盖罩设在所述镜筒上,所述保护盖用于限制所述衍射组件安装在所述镜筒上,所述保护盖与所述镜筒的外壁之间的间隙由密封胶密封。
  5. 根据权利要求1所述的激光投射器,其特征在于,每个所述发光单元能够被独立地控制是否发光;及/或
    每个所述发光单元能够被独立地控制发光的功率。
  6. 根据权利要求1所述的激光投射器,其特征在于,多个所述发光单元分为多组,同一个组内的所述发光单元用于同时发光,不同组内的所述发光单元之间的发光状态不同。
  7. 根据权利要求1所述的激光投射器,其特征在于,多个所述发光单元分为多个部分,不同部分的所述发光单元的发散角不同。
  8. 一种深度相机,其特征在于,包括激光投射器及图像采集器,所述图像采集器用于采集由所述激光投射器向目标物体投射,并由所述目标物体反射的激光图案;所述激光投 射器包括:
    基板;
    镜筒,所述镜筒设置在所述基板上,所述镜筒与所述基板共同围成收容腔;
    光源,设置在所述基板上且位于所述收容腔内的光源,所述光源包括多个发光单元,每个所述发光单元的发散角小于20度;及
    衍射组件,所述衍射组件安装在所述镜筒上,所述衍射组件位于所述光源的光路上。
  9. 根据权利要求8所述的深度相机,其特征在于,每个所述发光单元的发散角小于7度,所述发光单元发出的光线直接到达所述衍射组件。
  10. 根据权利要求8所述的深度相机,其特征在于,所述衍射组件包括第一衍射元件及第二衍射元件,所述第一衍射元件用于对激光进行衍射以形成第一零级光束,所述第二衍射元件用于对所述第一零级光束进行衍射以形成第二零级光束。
  11. 根据权利要求8所述的深度相机,其特征在于,所述激光投射器还包括保护盖,所述保护盖罩设在所述镜筒上,所述保护盖用于限制所述衍射组件安装在所述镜筒上,所述保护盖与所述镜筒的外壁之间的间隙由密封胶密封。
  12. 根据权利要求8所述的深度相机,其特征在于,每个所述发光单元能够被独立地控制是否发光;及/或
    每个所述发光单元能够被独立地控制发光的功率。
  13. 根据权利要求8所述的深度相机,其特征在于,多个所述发光单元分为多组,同一个组内的所述发光单元用于同时发光,不同组内的所述发光单元之间的发光状态不同。
  14. 根据权利要求8所述的深度相机,其特征在于,多个所述发光单元分为多个部分,不同部分的所述发光单元的发散角不同。
  15. 根据权利要求8至14任意一项所述的深度相机,其特征在于,所述发光单元发出的激光的波长范围为[1350,1550]纳米,所述图像采集器包括感光件,所述感光件用于依据接收到的所述激光生成电信号,所述感光件由锗硅材料制成。
  16. 根据权利要求8至14任意一项所述的深度相机,其特征在于,所述图像采集器包括感光件,所述感光件用于依据接收到的所述激光生成电信号,所述感光件包括多个感光单元,相邻的所述感光单元之间形成隔离沟槽。
  17. 根据权利要求8至14任意一项所述的深度相机,其特征在于,所述图像采集器包括第一透镜组、第二透镜组、反射棱镜及反透棱镜,所述第一透镜组的光轴与所述第二透镜组的光轴均为第一方向并且相互平行;所述反透棱镜能够在透射模式与反射模式之间切换;
    当所述反透棱镜处于透射模式时,从所述第一透镜组进入的光线经过所述反射棱镜反射至第二方向并经过所述反透棱镜的透射以作为第一光路,所述第一方向与所述第二方向不同;
    当所述反透棱镜处于反射模式时,从所述第二透镜组进入的光线经过所述反透棱镜反射至所述第二方向以作为第二光路。
  18. 根据权利要求17所述的深度相机,其特征在于,所述反射棱镜包括反射棱镜本体和第一附和透镜,所述反透棱镜包括反透棱镜本体、第一附加透镜和第二附加透镜,所述第一透镜组、所述反射棱镜本体、所述第一附和透镜、所述第一附加透镜、所述反透棱镜本体和所述第二附加透镜作为所述第一光路的镜片组合并具有第一焦距;所述第二透镜组、所述反透棱镜本体和所述第二附加透镜形成所述第二光路的镜片组合并具有第二焦距,所述第一焦距和所述第二焦距不同。
  19. 根据权利要求8至14任意一项所述的深度相机,其特征在于,所述深度相机利用结构光测距的原理获取深度;或,
    所述深度相机利用飞行时间测距的原理获取深度。
  20. 一种电子装置,其特征在于,包括:
    机壳,所述机壳包括相背的正面及背面;
    显示屏,所述显示屏安装在所述机壳上,所述显示屏位于所述机壳的正面;及
    权利要求8至19任意一项所述的深度相机,所述深度相机安装在所述机壳上,所述深度相机位于所述机壳的背面。
PCT/CN2020/105482 2019-08-14 2020-07-29 激光投射器、深度相机及电子装置 WO2021027573A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20851897.7A EP4013028A4 (en) 2019-08-14 2020-07-29 LASER PROJECTOR, DEPTH CAMERA AND ELECTRONIC DEVICE
US17/671,333 US20220171207A1 (en) 2019-08-14 2022-02-14 Laser projector, depth camera, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910750130.X 2019-08-14
CN201910750130.XA CN110505380B (zh) 2019-08-14 2019-08-14 激光投射器、深度相机及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/671,333 Continuation US20220171207A1 (en) 2019-08-14 2022-02-14 Laser projector, depth camera, and electronic device

Publications (1)

Publication Number Publication Date
WO2021027573A1 true WO2021027573A1 (zh) 2021-02-18

Family

ID=68587366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105482 WO2021027573A1 (zh) 2019-08-14 2020-07-29 激光投射器、深度相机及电子装置

Country Status (4)

Country Link
US (1) US20220171207A1 (zh)
EP (1) EP4013028A4 (zh)
CN (2) CN114500808A (zh)
WO (1) WO2021027573A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500808A (zh) * 2019-08-14 2022-05-13 Oppo广东移动通信有限公司 激光投射器、深度相机及电子装置
CN113176555A (zh) * 2020-01-24 2021-07-27 上海禾赛科技有限公司 激光雷达的发射单元、激光雷达以及测距方法
US11394860B2 (en) 2020-04-03 2022-07-19 Qualcomm Incorporated Multiple optical path imaging techniques and shared emitter for active depth sensing techniques
CN111610633B (zh) * 2020-06-23 2023-08-11 京东方科技集团股份有限公司 光学模组、电子设备和眼镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226948A (zh) * 2018-03-09 2018-06-29 北京理工大学 一种三维固态面阵激光雷达及其测距方法
CN108490636A (zh) * 2018-04-03 2018-09-04 Oppo广东移动通信有限公司 结构光投射器、光电设备及电子装置
CN108646425A (zh) * 2018-04-03 2018-10-12 Oppo广东移动通信有限公司 激光投射器、图像获取装置及电子设备
CN109709756A (zh) * 2017-10-25 2019-05-03 华为技术有限公司 一种投影器、摄像头模组和终端设备
US10312656B1 (en) * 2017-06-15 2019-06-04 Facebook Technologies, Llc Wavelength tuning for diffractive optical elements of structured light projectors
CN110058424A (zh) * 2019-03-27 2019-07-26 努比亚技术有限公司 一种激光衍射装置、3d装置及终端
CN110505380A (zh) * 2019-08-14 2019-11-26 Oppo广东移动通信有限公司 激光投射器、深度相机及电子装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129488B2 (en) * 2003-12-23 2006-10-31 Sharp Laboratories Of America, Inc. Surface-normal optical path structure for infrared photodetection
EP2235584B1 (en) * 2008-01-21 2020-09-16 Apple Inc. Optical designs for zero order reduction
CN101344219B (zh) * 2008-08-27 2012-12-26 吴砺 一种救生信号发生器及其应用
CN101435700B (zh) * 2008-12-10 2010-09-01 中国电子科技集团公司第四十一研究所 红外激光照明源发散角的测试方法及测试装置
CN102323594B (zh) * 2011-08-08 2013-06-05 中国电子科技集团公司第十一研究所 亮度调制无扫描激光三维成像系统
CN102914934A (zh) * 2012-09-27 2013-02-06 西安瑞博华信息技术有限公司 激光照明成像装置
JP2014164216A (ja) * 2013-02-27 2014-09-08 Omron Corp 広角撮像装置
CN104181753A (zh) * 2014-08-20 2014-12-03 深圳市国扬通信股份有限公司 激光照明匀化装置的控制方法及控制装置
CN105404079A (zh) * 2014-09-09 2016-03-16 山东华光光电子有限公司 一种多发散角度的半导体激光照明模组
US10895753B2 (en) * 2014-11-14 2021-01-19 Ahead Optoelectronics, Inc. Structured light generation device and diffractive optical element thereof
US10761195B2 (en) * 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
CN108227232A (zh) * 2016-12-14 2018-06-29 浙江舜宇智能光学技术有限公司 发散光式散斑投射器及其调焦方法以及三维重建系统
CN106990548A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 阵列激光投影装置及深度相机
WO2019022941A1 (en) * 2017-07-28 2019-01-31 OPSYS Tech Ltd. VCSEL LIDAR TRANSMITTER WITH LOW ANGULAR DIVERGENCE
EP3462128B1 (en) * 2017-09-27 2021-11-10 Facebook Technologies, LLC 3d 360-degree camera system
CN108107663A (zh) * 2018-01-23 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置
CN108508622A (zh) * 2018-03-12 2018-09-07 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN108469680A (zh) * 2018-03-30 2018-08-31 中国科学院长春光学精密机械与物理研究所 一种激光光源
CN208351151U (zh) * 2018-06-13 2019-01-08 深圳奥比中光科技有限公司 投影模组、深度相机及电子设备
CN208795950U (zh) * 2018-10-09 2019-04-26 Oppo广东移动通信有限公司 光源组件、激光发射器、深度相机和电子装置
CN109521639A (zh) * 2019-01-15 2019-03-26 深圳市安思疆科技有限公司 一种不含准直透镜的结构光投射模组以及3d成像装置
WO2020164346A1 (zh) * 2019-02-14 2020-08-20 杭州驭光光电科技有限公司 分束光学模组及其制造方法
US11561085B2 (en) * 2019-06-05 2023-01-24 Qualcomm Incorporated Resolving multipath interference using a mixed active depth system
US11394860B2 (en) * 2020-04-03 2022-07-19 Qualcomm Incorporated Multiple optical path imaging techniques and shared emitter for active depth sensing techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312656B1 (en) * 2017-06-15 2019-06-04 Facebook Technologies, Llc Wavelength tuning for diffractive optical elements of structured light projectors
CN109709756A (zh) * 2017-10-25 2019-05-03 华为技术有限公司 一种投影器、摄像头模组和终端设备
CN108226948A (zh) * 2018-03-09 2018-06-29 北京理工大学 一种三维固态面阵激光雷达及其测距方法
CN108490636A (zh) * 2018-04-03 2018-09-04 Oppo广东移动通信有限公司 结构光投射器、光电设备及电子装置
CN108646425A (zh) * 2018-04-03 2018-10-12 Oppo广东移动通信有限公司 激光投射器、图像获取装置及电子设备
CN110058424A (zh) * 2019-03-27 2019-07-26 努比亚技术有限公司 一种激光衍射装置、3d装置及终端
CN110505380A (zh) * 2019-08-14 2019-11-26 Oppo广东移动通信有限公司 激光投射器、深度相机及电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4013028A4 *

Also Published As

Publication number Publication date
CN110505380B (zh) 2022-02-25
US20220171207A1 (en) 2022-06-02
CN110505380A (zh) 2019-11-26
EP4013028A4 (en) 2022-09-28
EP4013028A1 (en) 2022-06-15
CN114500808A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021027573A1 (zh) 激光投射器、深度相机及电子装置
US11546453B2 (en) Projection module and terminal
TWI697729B (zh) 鐳射投射模組、深度相機和電子裝置
JP2019110141A (ja) 照明器
WO2022193880A1 (zh) 近眼显示光学系统、滤光件及近眼显示设备
CN110068948A (zh) 一种可变视区的显示装置
JP2022157378A (ja) 空間浮遊映像表示装置
CN108415209A (zh) 结构光投射模组、摄像组件和电子装置
CN108388065A (zh) 结构光投射器、光电设备和电子装置
CN112393692B (zh) 激光投射模组、图像采集模组、深度相机及电子设备
WO2023112617A1 (ja) 空間浮遊映像表示システム
CN111953875B (zh) 深度检测组件及电子设备
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
WO2021026829A1 (zh) 光发射模组、光接收模组、深度相机和电子设备
WO2023199685A1 (ja) 空間浮遊映像表示システムおよび空間浮遊映像処理システム
WO2023136077A1 (ja) 空間浮遊映像表示システムおよびそれに用いられる光源装置、再帰反射部材、光学系
CN216561292U (zh) 具有3d摄像模组的显示装置和电子设备
CN215871662U (zh) 具有3d摄像模组的显示装置和电子设备
CN217008174U (zh) 点歌装置
WO2024117075A1 (ja) 空中表示装置
WO2023228530A1 (ja) 空間浮遊映像情報表示システム
WO2023037813A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる立体センシング装置
JP2023117741A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系
JP2023115747A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP2023102461A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851897

Country of ref document: EP

Effective date: 20220311