WO2023228530A1 - 空間浮遊映像情報表示システム - Google Patents

空間浮遊映像情報表示システム Download PDF

Info

Publication number
WO2023228530A1
WO2023228530A1 PCT/JP2023/011013 JP2023011013W WO2023228530A1 WO 2023228530 A1 WO2023228530 A1 WO 2023228530A1 JP 2023011013 W JP2023011013 W JP 2023011013W WO 2023228530 A1 WO2023228530 A1 WO 2023228530A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
information display
display system
video information
Prior art date
Application number
PCT/JP2023/011013
Other languages
English (en)
French (fr)
Inventor
浩二 平田
寿紀 杉山
浩司 藤田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023228530A1 publication Critical patent/WO2023228530A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/16Signs formed of or incorporating reflecting elements or surfaces, e.g. warning signs having triangular or other geometrical shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to a spatially floating video information display system and an optical system used therein.
  • a spatial floating information display system As a spatial floating information display system, a video display device that displays images directly to the outside and a display method that displays images as a spatial screen are already known. Further, a detection system that reduces false detections caused by operations on the operation surface of the displayed spatial image is also disclosed in Patent Document 1, for example.
  • An object of the present invention is to provide a space-floating information display system or a space-floating video display device capable of displaying a space-floating video with high visibility (visual resolution and contrast) and reducing the influence of external light. It is an object of the present invention to provide a method of operating a display image with high precision and a technique capable of displaying a suitable image by forming a unit structure whose position can be changed according to a customer's request.
  • a space floating video information display system as an example of the present application includes a display panel for displaying video, a light source device for the display panel, and a real image space in the air by reflecting video light.
  • a unit comprising a retroreflective member that displays a floating image, and an optical member that once transmits image light from the display panel and reflects the image light reflected by a retroreflective member having a ⁇ /4 plate on its surface.
  • the space floating image is displayed at a desired position in the front and back direction by having a structure in which the distance between the display panel and the optical member can be changed; and further, by providing a structure in which the unit can be rotated at once, the space floating image is displayed at a desired position in the vertical direction.
  • the image quality of the spatially floating image does not deteriorate even when external light is incident, and the spatially floating image information is suitably displayed. Furthermore, the display position of the spatial floating image can be arbitrarily set. Furthermore, the floating image display device allows operation input to be performed without directly touching the display screen.
  • FIG. 3 is a principle diagram for explaining the principle and problem of forming a floating image in the floating image information display system of the present invention.
  • 1 is a diagram illustrating the appearance, main configuration, and generation position of a spatially floating image of an embodiment of a spatially floating image information display unit according to an embodiment of the present invention
  • FIG. 2 is an explanatory diagram for explaining the external appearance, the generation position of a spatially floating image, and the horizontal and vertical viewing ranges of a spatially floating image information system according to an embodiment of the present invention. It is a figure which shows the external appearance and main part structure of the second Example of the other spatially floating video information display system based on one Example of this invention.
  • FIG. 1 is a diagram illustrating the appearance, main configuration, and generation position of a spatially floating image of an embodiment of a spatially floating image information display unit according to an embodiment of the present invention
  • FIG. 2 is an explanatory diagram for explaining the external appearance, the generation position of a spatially floating image, and the horizontal and vertical viewing ranges
  • FIG. 3 is an explanatory diagram for explaining sensing means provided in the floating video information display system according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing another example of a specific configuration of a light source device according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type. It is an enlarged view which shows the surface shape of the light guide diffuser part of another example of the specific structure of a light source device.
  • FIG. 2 is a cross-sectional view showing an example of a specific configuration of a light source device.
  • FIG. 2 is a structural diagram showing an example of a specific configuration of a light source device.
  • FIG. 3 is a perspective view, a top view, and a cross-sectional view showing an example of a specific configuration of a light source device.
  • FIG. 1 is a structural diagram showing another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type. It is an enlarged view which shows the surface shape of the light guide diffuser part of another
  • FIG. 2 is a perspective view and a top view showing an example of a specific configuration of a light source device.
  • FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device.
  • FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device.
  • FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device.
  • FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device.
  • FIG. 3 is a diagram showing a coordinate system for measuring visual characteristics of a liquid crystal panel.
  • FIG. 2 is a diagram showing brightness angle characteristics (longitudinal direction) of a general liquid crystal panel.
  • FIG. 3 is a diagram showing the brightness angle characteristics (in the lateral direction) of a general liquid crystal panel.
  • FIG. 2 is a diagram showing contrast angle characteristics (longitudinal direction) of a general liquid crystal panel.
  • FIG. 3 is a diagram showing contrast angle characteristics (lateral direction) of a general liquid
  • the present disclosure transmits an image of image light from a large-area image light source through a transparent member that partitions a space, such as glass in a show window, and floats the image inside or outside of a store (space).
  • the present invention relates to an information display system that can display images.
  • the present disclosure also relates to a large-scale digital signage system configured using a plurality of such information display systems.
  • the following embodiments it is possible to display high-resolution video information floating in space, for example, on the glass surface of a show window or on a light-transmitting board.
  • the divergence angle of the emitted image light small, that is, an acute angle, and aligning it with a specific polarization, it is possible to efficiently reflect only the regular reflected light to the retroreflection member. Therefore, it has high light utilization efficiency and suppresses ghost images that occur in addition to floating images in the main space, which were problems with conventional retroreflection methods, and colored reflected light caused by external light that enters the retroreflection member. It is possible to obtain clear spatial floating images.
  • a device including the light source of the present disclosure it is possible to provide a novel and highly usable space-floating video information display system that can significantly reduce power consumption. Further, according to the technology of the present disclosure, it is possible to display a so-called unidirectional spatial floating image that is visible from outside the vehicle, for example, through the shield glass including the windshield, rear glass, and side glass of the vehicle.
  • a floating video information display system for a vehicle can be provided.
  • an organic EL panel or a liquid crystal display panel (liquid crystal panel or display panel) is combined with a retroreflective member as a high-resolution color display video source.
  • the first retroreflective member 2 used in the conventional space-floating image display device since the image light is diffused at a wide angle, the first retroreflective member 2, which is the first embodiment composed of polyhedrons shown in FIG. 1(B), is used.
  • the shape used for the retroreflective part 2a is a hexahedron, multiple ghost images are generated by the image light incident obliquely. This caused the image quality of the floating image to deteriorate. Additionally, the ghost images floating in the same space could be viewed by people other than the viewers, which posed a major problem from a security perspective.
  • a reflective polarizing plate 101 that reflects light of a specific polarization is provided on a second transparent plate 100 disposed at an angle of approximately 45 degrees with respect to the image display device 1.
  • a spatially floating image is obtained by the retroreflective member 2 disposed at approximately 45 degrees with respect to the second transparent plate 100 or the reflective polarizing plate 101.
  • a ⁇ /4 plate 21 is provided on the surface of the retroreflective member 2, and before the image light enters the retroreflective member 2 and is reflected, it is converted into the other polarized wave by a retardation plate, and then transferred to the second transparent plate 100.
  • the light passes through a reflective polarizing plate 101 and an absorbing polarizing plate 102 provided in the second transparent plate 100 to obtain a spatially floating image in a space separated by a second transparent plate 100.
  • the retroreflective member 2 has a structure in which reflective surfaces of polyhedrons are arranged in alignment, and the image light is reflected twice by the polyhedron 2a (hexahedron in the figure) and becomes retroreflected light, floating in space. form an image.
  • the resolution of the floating image is generally determined by the pitch per unit area of the polyhedrons 2a provided on the retroreflective member 2.
  • the spatial image 220 formed by the image light reflected by the retroreflective member 2 is formed in a space separated by the second transparent plate 100, and the distance from the retroreflective member 2 to the spatial image 220 is determined by the image display device.
  • the optical distance from the retroreflective member 1 to the retroreflective member 2 is the same.
  • the diffusion angle of the image light is large, abnormal light other than the image light that is normally reflected by the polyhedron provided on the reflective surface of the retroreflective member 2 is generated, so ghost images g1, g2 (occurs depending on the number of reflective surfaces, but only two are shown in FIG. 1).
  • FIG. 2A is a diagram illustrating an example of the form of a reflexive optical system (hereinafter also referred to as a "unit") used to realize the spatially floating video information display system of the present disclosure.
  • FIG. 2(B) is a diagram illustrating the overall configuration of the spatial floating video information display system in this embodiment.
  • a space floating video display system or a space floating video display device having a light source device 13, a display panel 11, a retroreflective member 2, and a first transparent plate 110 is built into a housing, and a space floating video display system is installed in a part of the housing. Alternatively, it includes a member to be connected to a floating image display device.
  • the spatial floating video information display system is displayed to the viewer of the spatial floating video. If placed on a desk, you will be looking down at the floating image.
  • the video display device 1 and the retroreflective member 2 are arranged to be substantially parallel or parallel to each other, and specifically, the video display surface of the display panel 11 constituting the video display device 1 or The image light output surface and the reflection surface of the retroreflection member 2 are arranged to face each other.
  • the imaging position of the spatially floating image shown at 220A and 220B in FIG. It moves up and down depending on this amount of movement.
  • the movement of the video display device 1 in the left-right direction herein means moving in a direction toward the retroreflective member 2 and moving in a direction away from the retroreflective member 2, as shown in FIG. 2(A). That is, by changing the position of the video display device 1 even in systems of the same type, the imaging position of the spatially floating image can be changed arbitrarily.
  • the video display device 1 includes a light source device 13 having narrow-angle diffusion characteristics and a liquid crystal display panel 11.
  • image light of a specific polarization having narrow-angle diffusion characteristics is obtained, and is directed toward the first transparent plate 110.
  • a reflective polarizing plate sheet 111 that functions as a polarizing beam splitter is provided on one side of the first transparent plate 110, but light of a specific polarization from the image display device 1 is transmitted therethrough.
  • an anti-reflection film or a sheet 113 having a moth-eye structure on its surface whose reflectance does not change depending on the incident angle or wavelength of the light beam may be provided on the light incident surface of the first transparent plate 110. .
  • the image light transmitted through the first transparent plate 110 is retroreflected by the retroreflection member 2.
  • the first transparent plate 110 is arranged at an angle of ⁇ 1 (approximately 45 degrees) with respect to the optical axis connecting the image display device 1 and the retroreflective member 2.
  • ⁇ 1 approximately 45 degrees
  • the imaging position of the floating image 220A shown in FIG. 2(A) can be moved to the left side of the drawing.
  • the imaging position of the spatial floating image 220A shown in FIG. 2(A) can be moved to the right side of the drawing.
  • the imaging position of the spatially floating image can be adjusted to a desired position by changing the arrangement of the optical members that constitute the unit. It can be standardized and mass production efficiency can be increased.
  • the retroreflective member 2 not only forms retroreflected light, but also converts the image light of the specific polarization into the other polarization using the ⁇ /4 plate provided on the surface of the first transparent plate.
  • the light is reflected by the reflective polarizing plate sheet 111 provided on one side of the light beam 110 and transmitted through the first transparent plate 110 provided on the upper surface to form a spatial floating image 220A.
  • an anti-reflection film or a sheet 104 having a moth-eye structure on the surface whose reflectance does not change depending on the incident angle or wavelength of the light beam is provided. You can.
  • the generation position of the spatially floating image 220A can be set to the position 220B, for example.
  • the video display device 1 and the retroreflective member 2 are arranged substantially parallel or parallel to each other.
  • the distance from the image display device 1 to the retroreflective member 2 may be increased, as shown in FIG. 2(A).
  • the amount of floating here is the distance from the first transparent plate 110 to the spatial floating image.
  • the spatially floating video display system or spatially floating video display device of this embodiment may have a structure in which the video display device 1 or the display panel 11 is moved. Specifically, the video display device 1 has an elastic housing. It is fixed via a member.
  • the spatial floating image display system or the spatial floating image display device may have a structure in which the arrangement angle of the first transparent plate 110 is adjusted. Specifically, the first transparent plate 110 may be It is fixed to the housing via an elastic member.
  • the imaging position of the spatially floating image changes depending on the distance between the image display device 1 (or display panel 11) and the first transparent plate 110.
  • the imaging position of the spatially floating image depends on the distance between the image display device 1 or the display panel 11 and the first transparent plate 110.
  • the position is determined by Alternatively, the imaging position of the spatially floating image changes depending on the arrangement angle of the first transparent plate 110.
  • the image formation position of the spatially floating image is a position determined according to the arrangement angle of the first transparent plate 110. be.
  • the distance between an arbitrary point on the video display device 1 or the display panel 11 and a corresponding point on the first transparent plate 110, and the distance between an arbitrary point on the spatial floating image 220A and the first transparent plate 110 are determined. Since the distance connecting the corresponding points is the same at all positions in the left and right directions of the spatially floating image 220A, it is possible to obtain a spatially floating image with an equally good sense of focus in the entire screen area.
  • the distance between an arbitrary point on the image light output surface of the display panel 11 and a corresponding point on the first transparent plate 110 and the distance between an arbitrary point on the spatial floating image 220A and the first transparent plate
  • the distance between the corresponding points 110 and 110 is the same at all positions in the left and right direction of the spatially floating image 220A.
  • external light that passes through the second transparent plate 100, which is an opening, and enters the unit from outside the casing is substantially perpendicular to the first transparent plate 110 and is located away from the opening.
  • the light does not directly enter the surface of the retroreflective member 2 or the image display device 1 placed at the position.
  • light with the same polarization as the video light of a specific polarization from the video display device 1 acts as a polarizing beam splitter provided on one side of the first transparent plate 110. Since the light passes through the reflective polarizing plate sheet 111 having a reflective polarizing plate sheet 111 and is absorbed by the light absorber 106, the image quality of the spatially floating image is not affected.
  • a sensing system 203 (described later) is placed at the edge of the spatially floating image, and the sensing area is moved to the spatially floating image. Good performance can be obtained by making it larger than the image.
  • FIG. 2(B) is a diagram showing the configuration of the spatially floating video information display system of the present disclosure.
  • the functions of the optical members constituting the unit shown in FIG. 2(A) have been described above, and will therefore be omitted here.
  • a space floating video display system or a space floating video display device having a light source device 13, a display panel 11, a retroreflective member 2, and a first transparent plate 110 is built into a housing, and a space floating video display system is installed in a part of the housing. Alternatively, it includes a member to be connected to a floating image display device.
  • the spatially floating image 204 (imaging positions are shown at A1 and A2), for example, according to the present system of the present disclosure.
  • this system is placed opposite a viewer of a spatially floating image, the viewer will view the spatially floating image diagonally downward.
  • the retroreflective member 2 not only forms retroreflected light, but also converts the image light of the specific polarization into the other polarization using the ⁇ /4 plate provided on the surface.
  • the light is reflected by the reflective polarizer sheet 111 provided on one side of the first transparent plate 110 and transmitted through the second transparent plate 100 provided on the upper surface, forming a spatial floating image 220A.
  • an antireflection film or a sheet 113 having a moth-eye structure on the surface having a characteristic that the reflectance does not change depending on the incident angle or wavelength of the light beam is provided. You can.
  • the generation position of the spatially floating image 204 can be arbitrarily set, for example, in the front-rear direction toward the viewer.
  • moving the installation position of the video display device 1 in the vertical direction means moving the video display device 1 in the vertical direction along the second transparent plate 100.
  • the image display device 1 moves vertically with respect to the second transparent plate 100.
  • the distance between the center point of the image display device 1 or the display panel 11 and the corresponding point on the first transparent plate 110 and the distance between the center point of the spatial floating image 204 and the first transparent plate 110 are determined. Since the distance between the corresponding points is the same at all positions in the vertical direction of the spatially floating image, it is possible to obtain a spatially floating image that has the same good focus in the entire screen area.
  • the center point of the video display device 1 or the display panel 11 here refers to the center point of the video light exit surface of the video display device 1 or the display panel 11.
  • external light that passes through the second transparent plate 100, which is the opening, and enters the unit from the outside of the casing is substantially perpendicular to the second transparent plate 100 and is located away from the opening. Since the light is not directly incident on the retroreflective member 2 placed at the position or the surface of the image display device 1, it does not affect the image quality of the spatially floating image.
  • a sensing system 203 (described later) is placed inside the housing to reduce the influence of the usage environment. A reduced sensing system can be realized. At this time, the near-infrared light used for sensing passes through the first transparent plate 110, so it does not affect the sensing performance. Furthermore, by making the detection area of this sensing system larger than the spatial floating image 204, good performance can be obtained.
  • FIG. 3(A) is a diagram showing the appearance of the spatial floating video information display system of the present disclosure.
  • This device incorporates the unit shown in FIG. 2(B), and by fixing the unit to a supporting body 107 and a rotating structure 108 (not shown), a spatially floating image A1 is generated at a desired position.
  • the setting angle ⁇ 3 of the unit placed inside the system By changing the setting angle ⁇ 3 of the unit placed inside the system, the formation position of the spatial floating image can be changed. For example, when the reference setting position is set to A1, the angle ⁇ 3 of the entire unit is made larger than the reference angle in order to set the formation position of the spatial floating image to the upper part A2.
  • the mounting angle ⁇ 4 of the retroreflective member 2 may be set to be an angle that is open to the video display device 1. Furthermore, the same effect can be obtained even if the set angle ⁇ 5 of the second transparent plate 100 provided with the reflective polarizing plate sheet 101 is tilted more greatly with respect to the opening of the casing.
  • the detection area 205 of the above-described sensing system is preferably determined to include all the spatial floating images whose formation positions change depending on the arrangement of the optical members constituting the unit.
  • the diffusion distribution of image light from the liquid crystal display panel 11, which is the image source of the image display device 1 is adjusted by adjusting the diffusion characteristics of the light source device 13 by the shape and surface roughness of the surface of the light guide.
  • a lenticular lens is provided between the retroreflective member 2 and the liquid crystal display panel 11 or on the surface of the liquid crystal display panel 11, and the shape of the lens is optimized to control the direction of emission of the image light. That is, by optimizing the shape of the lenticular lens, the emission characteristics of the image light (hereinafter also referred to as "image light flux”) emitted from the liquid crystal display panel 11 in one direction can be adjusted.
  • microlens arrays may be arranged in a matrix on the surface of the liquid crystal display panel 11 (or between the light source device 13 and the liquid crystal display panel 11), and the mode of arrangement may be adjusted. That is, by adjusting the arrangement of the microlens array, it is possible to adjust the emission characteristics in the X-axis and Y-axis directions of the image light flux emitted from the image display device 1, and as a result, the desired diffusion characteristics can be adjusted. It is possible to obtain a video display device having the following.
  • a combination of two lenticular lenses may be arranged at a position through which the image light emitted from the image display device 1 passes, or a microlens array may be arranged in a matrix to adjust the diffusion characteristics.
  • a sheet may also be provided.
  • the graphs (plot curves) of "Example 1 (ZY direction)” in FIG. 3(B) and “Example 2 (ZX direction)” in FIG. 3(C) it is also possible to obtain different diffusion properties in each plane.
  • the horizontal direction of the space floating video information device is By setting the viewing angle characteristic as characteristic O in the ZX plane and setting the diffusion characteristic in the vertical direction as characteristic A shown in FIG. 3(B), it becomes possible to individually control the diffusion characteristic.
  • optimal viewing angle characteristics can be obtained depending on the application of the spatially floating image display device, and at the same time, a spatially floating image with higher brightness can be obtained compared to an image display device using a conventional light source device with diffusion characteristics. I can do it.
  • FIG. 4 A second embodiment of the spatial floating video information display system will be described using FIG. 4.
  • the unit shown in FIG. 2(B) is arranged inside the casing 121, and a sensing unit (not shown) is provided inside the first transparent plate 110 to detect the spatial floating image A1.
  • a sensing area 205 of sufficient size is ensured.
  • the sensing unit 203 shown in FIG. 5 is disposed inside the casing 121, and an O-ring or the like is provided on the casing side of the first transparent plate 110 to prevent moisture from entering from outside.
  • a sensing unit 203 that senses a sensing area (sensing area) 205 that covers the imaging area A1 of the spatial floating image display device is provided inside the housing 121 and passes through the first transparent plate 110 to form a sensing area. do.
  • the user can perform spatial operation input on the displayed spatial floating video A1. Furthermore, as a result of evaluating finger contact with the prototype using an actual device, it was found that by setting the imaging position of the spatially floating image A1 at least 50 mm away from the first transparent plate 110, the operator can touch the screen. It was possible to input spatial operations to the video information display system without any problems.
  • FIG. 4 may be incorporated into various display devices such as ATMs, automatic ticket vending machines, kiosk terminals, and stationary display devices.
  • Sensing technology for pseudo-manipulating a space-floating image so that a viewer (operator) is bidirectionally connected to an information system via a space-floating image display device will be described below.
  • image manipulation on the displayed video is made possible by reading sensing information together with the space floating video using a two-dimensional sensor, which will be described later.
  • FIG. 5 is a principle diagram for explaining the sensing technology.
  • a distance measuring device 203 having a built-in TOF (Time of Flight) system compatible with spatial floating images is provided.
  • An optical element for adjusting the divergence angle is provided on the light emitting side of the LED, and a pair of highly sensitive avalanche diodes with a picosecond time resolution are arranged as light receiving elements in the horizontal direction so as to correspond to the area.
  • the LED which is a light source, emits light in synchronization with the signal from the system, and the phase ⁇ t is shifted by the time it takes for the light to reflect on the object to be measured (the tip of the viewer's finger) and return to the light receiving unit. .
  • the distance to the object is calculated from this time difference ⁇ t, and the position and movement of the operator's finger is sensed as two-dimensional information by combining it with position information from a plurality of sensors arranged in parallel.
  • ⁇ Ghost image reduction technology> When using a 7-inch WUXGA (1920 x 1200 pixels) liquid crystal display panel as the liquid crystal panel 11 used in the video display device 1, even if one pixel (one triplet) is approximately 80 ⁇ m, for example, the transmissive part of the retroreflective part If the pitch B is 420 ⁇ m, where d2 is 400 ⁇ m and the light absorption part d1 is 20 ⁇ m, sufficient transmission characteristics and the diffusion characteristics of image light from the image display device, which causes abnormal light generation in retroreflective members, can be controlled and the space can be improved. Reduces ghost images that occur on both sides of floating images.
  • An image light control sheet is provided on the surface of the liquid crystal panel 11.
  • This image light control sheet also prevents external light from entering the space floating image display device and entering the liquid crystal panel 11, leading to improved reliability of the components.
  • a viewing angle control film (VCF) manufactured by Shin-Etsu Polymer Co., Ltd. is suitable as this image light control sheet, and its structure consists of alternating transparent silicon and black silicon, and a synthetic resin on the light input/output surface. Since it has a sandwich structure, it is possible to control external light.
  • the contrast performance in the transverse (vertical) direction of the panel is excellent in the range of -15 degrees to +15 degrees, as shown in Figure 22, and when combined with the brightness characteristics, the contrast performance is excellent in the range of -15 degrees to +15 degrees, with a range of ⁇ 10 degrees around 5 degrees. The best properties will be obtained if used within this range.
  • the characteristics of brightness and viewing angle in the longitudinal (left and right) direction of the panel are excellent at the emission angle perpendicular to the panel surface (output angle of 0 degrees).
  • the reason for this is that the characteristic of twisting light in the longitudinal direction (horizontal direction) of the liquid crystal panel becomes 0 degrees when the applied voltage is maximum.
  • the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees, as shown in Figure 21, and when combined with the brightness characteristics, the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees.
  • the best properties will be obtained if used within this range. Therefore, the emission angle of the image light emitted from the liquid crystal panel is changed from the direction in which the best characteristics can be obtained by the light beam direction conversion means (reflection surfaces 307, 314, etc.) provided on the light guide of the light source device 13 described above. Making light incident on the panel and modulating the light with a video signal improves the image quality and performance of the video display device 1.
  • the configuration includes a light source device 13 and a liquid crystal display panel 11 in order to improve the utilization efficiency of the luminous flux emitted from the light source device 13 and significantly reduce power consumption.
  • the light source device 13 enters the liquid crystal panel 11 at an incident angle that maximizes the characteristics of the liquid crystal panel 11, and then directs the video light beam, whose brightness is modulated according to the video signal, toward the retroreflective member. Make it emit.
  • it is desired to increase the degree of freedom in the arrangement of the liquid crystal panel 11 and the retroreflective member.
  • the following technical means are used.
  • a transparent sheet made of optical components such as a linear Fresnel lens shown on the front surface of the light direction conversion panel is provided on the image display surface of the liquid crystal panel 11, and a transparent sheet made of optical components such as a linear Fresnel lens shown on the front surface of the light direction conversion panel is provided to change the exit direction of the incident light beam to the retroreflective optical member while providing high directivity. control to determine the imaging position of the spatially floating image. According to this configuration, the image light from the image display device 1 efficiently reaches the viewer with high directivity (straightness) like laser light, and as a result, a high-quality floating image can be displayed with high quality. It is possible to display images with high resolution and to significantly reduce power consumption by the video display device 1 including the light source device 13.
  • FIG. 11 shows another example of a specific configuration of the video display device 1.
  • the light source device in FIG. 11 is similar to the light source device in FIG. 12 and the like.
  • the light source device 13 is configured by housing an LED, a collimator, a synthetic diffusion block, a light guide, etc. in a case made of plastic, for example, and has a liquid crystal display panel 11 attached to its upper surface.
  • LED (Light Emitting Diode) elements 14a and 14b which are semiconductor light sources, and an LED board on which their control circuits are mounted are attached, and on the outer side of the LED board, A heat sink, which is a member for cooling the heat generated by the LED elements and the control circuit, is attached (not shown).
  • the liquid crystal display panel frame attached to the top surface of the case includes the liquid crystal display panel 11 attached to the frame and an FPC (Flexible Printed Circuits) electrically connected to the liquid crystal display panel 11. ) (not shown), etc. are attached. That is, the liquid crystal display panel 11 that is a liquid crystal display element, together with the LED elements 14a and 14b that are solid-state light sources, adjusts the intensity of transmitted light based on a control signal from a control circuit (not shown here) that constitutes an electronic device. A display image is generated by modulating the .
  • FPC Flexible Printed Circuits
  • each of the collimators 15 is made of a translucent resin such as acrylic.
  • this collimator 15 has an outer circumferential surface 156 with a conical convex shape obtained by rotating a parabolic cross section, and its center at the top (side in contact with the LED board). It has a concave portion 153 in which a convex portion (that is, a convex lens surface) 157 is formed.
  • the collimator 15 has a convex lens surface (or a concave lens surface recessed inward) 154 that protrudes outward at the center of the plane portion (the side opposite to the above-mentioned top portion).
  • the paraboloid 156 forming the conical outer circumferential surface of the collimator 15 is set within an angle range that allows total reflection of the light emitted from the LEDs 14a and 14b in the peripheral direction, or, A reflective surface is formed.
  • the LEDs 14a and 14b are each placed at a predetermined position on the surface of the board 102, which is the circuit board.
  • This substrate 102 is arranged and fixed to the collimator 15 such that the LEDs 14a or 14b on the surface thereof are located at the center of the recess 153, respectively.
  • the outer shape of the collimator 15 is The two convex lens surfaces 157 and 154 converge the light into parallel light. Further, light emitted from other parts toward the periphery is reflected by the paraboloid that forms the conical outer peripheral surface of the collimator 15, and is similarly condensed into parallel light.
  • the collimator 15 that has a convex lens in its center and a paraboloid in its periphery, it is possible to extract almost all of the light generated by the LED 14a or 14b as parallel light. , it becomes possible to improve the utilization efficiency of the generated light.
  • a polarization conversion element 21 is provided on the light output side of the collimator 15.
  • the polarization conversion element 21 may also be referred to as a polarization conversion member.
  • this polarization conversion element 21 includes a columnar (hereinafter referred to as a parallelogram column) translucent member having a parallelogram cross section and a columnar member (hereinafter referred to as a parallelogram column) having a triangular cross section. , triangular prism), and are arranged in a plurality in an array parallel to a plane perpendicular to the optical axis of the parallel light from the collimator 15.
  • polarizing beam splitters (hereinafter abbreviated as "PBS films”) 211 and reflective films 212 are alternately provided at the interfaces between adjacent light-transmitting members arranged in an array. Further, a ⁇ /2 plate 213 is provided on the exit surface from which the light that has entered the polarization conversion element 21 and transmitted through the PBS film 211 exits.
  • the output surface of this polarization conversion element 21 is further provided with a rectangular synthetic diffusion block 16, which is also shown in FIG. 11(a). That is, the light emitted from the LED 14a or 14b becomes parallel light due to the action of the collimator 15, enters the composite diffusion block 16, is diffused by the texture 161 on the exit side, and then reaches the light guide 17.
  • the light guide 17 is a rod-shaped member with a substantially triangular cross section (see FIG. 11(b)) made of a translucent resin such as acrylic, and as is clear from FIG.
  • a light guide light emitting portion (surface) 173 is provided, which faces the liquid crystal display panel 11, which is a liquid crystal display element, through the plate 18b.
  • FIG. 10 which is a partially enlarged view of the light guide light reflecting portion (surface) 172 of the light guide 17, a large number of reflecting surfaces 172a and connecting surfaces 172b are alternately formed in a sawtooth shape. has been done.
  • the reflective surface 172a (line segment sloping upward to the right in the figure) forms ⁇ n (n: a natural number, for example, 1 to 130) with respect to the horizontal plane indicated by the dashed line in the figure.
  • ⁇ n is set to 43 degrees or less (however, 0 degrees or more).
  • the light guide entrance portion (surface) 171 is formed in a curved convex shape inclined toward the light source side. According to this, the parallel light from the output surface of the composite diffusion block 16 is diffused and incident through the first diffusion plate 18a, and as is clear from FIG. The light is slightly bent (deflected) upward by 171 and reaches a light guide light reflecting portion (surface) 172, where it is reflected and reaches the liquid crystal display panel 11 provided on the emission surface in the upper part of the figure.
  • the video display device 1 it is possible to further improve the light utilization efficiency and its uniform illumination characteristics, and at the same time, it can be manufactured in a small size and at low cost, including a modular S-polarized light source device. It becomes possible.
  • the polarization conversion element 21 was explained as being attached after the collimator 15, but the present invention is not limited thereto, and the same effect can be obtained by providing it in the optical path leading to the liquid crystal display panel 11. ⁇ Effects can be obtained.
  • the light guide light reflecting portion (surface) 172 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately formed in a sawtooth shape, and the illumination light flux is totally reflected on each reflecting surface 172a. Furthermore, a narrow-angle diffuser plate is provided on the light guide light emitting part (surface) 173, and the light enters the light direction conversion panel 54 that adjusts the directivity as a substantially parallel diffused light flux, and from an oblique direction. The light enters the liquid crystal display panel 11. The direction of the light emitted from the video display device 1 is adjusted by a light direction conversion panel 54 provided on the top surface of the light source device 13.
  • the light emitted from the liquid crystal display panel 11 is also controlled, and the direction of light diffusion of the spatially floating image obtained by the spatially floating image information system using this image display device 1 is controlled.
  • the light direction conversion panel 54 is provided between the light guide output surface 173 and the liquid crystal display panel 11, but the same effect can be obtained even if it is provided on the output surface of the liquid crystal display panel 11.
  • the light emitted from the liquid crystal display panel 11 has, for example, the "conventional characteristic (X direction)" in FIG. 17(A) and the “conventional characteristic (Y direction)” in FIG. 17(B).
  • X direction the "conventional characteristic
  • Y direction the "conventional characteristic" in FIG. 17(B)
  • the screen horizontal direction display direction corresponding to the X-axis of the graph in FIG. 30(A)
  • the screen vertical direction display direction corresponding to the Y-axis of the graph in FIG. 17(B)
  • the diffusion characteristics of the emitted light flux from the liquid crystal display panel of this example are, for example, "Example 1 (X direction)" in FIG. 17(A) and “Example 1 (Y direction)” in FIG. 17(B).
  • the diffusion characteristics are as shown in the plot curve of ⁇ direction)''.
  • the viewing angle is set to 13 degrees at which the brightness is 50% of the brightness when viewed from the front (angle of 0 degrees) (brightness reduced by about half), The angle is approximately 1/5 of the diffusion characteristic (angle of 62 degrees) of a device for TV use.
  • the upper viewing angle may be suppressed (narrowed) to about 1/3 of the lower viewing angle. , optimize the reflection angle of the reflective light guide, the area of the reflective surface, etc.
  • the amount of light directed toward the user's viewing direction is significantly increased (significantly improved in terms of image brightness).
  • the brightness of such an image is 50 times or more.
  • the viewing angle is such that the brightness is 50% (brightness reduced to about half) of the brightness of the image obtained when viewed from the front (angle 0 degrees). If it is set to be 5 degrees, the angle will be about 1/12 (narrow viewing angle) of the diffusion characteristic (angle of 62 degrees) of a typical home TV device.
  • reflective type Optimize the reflection angle of the light guide and the area of the reflection surface.
  • the brightness (amount of light) of images directed toward the viewing direction (direction of the user's line of sight) is significantly improved compared to conventional LCD TVs, and the brightness of such images is more than 100 times higher. .
  • the viewing angle a narrow angle
  • the amount of light directed toward the viewing direction can be concentrated, so the efficiency of light utilization is greatly improved.
  • the light diffusion characteristics of the light source device it is possible to significantly improve brightness with the same power consumption, making it ideal for bright outdoor environments. It can be a video display device compatible with an information display system.
  • FIG. 14 shows the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are used as parameters.
  • the convergence angle may be set in accordance with the short side of the liquid crystal display panel (as appropriate, refer to the direction of arrow V in FIG. 14).
  • the convergence angle is set to 10 degrees.
  • image light from each corner (four corners) of the screen can be effectively projected or output toward the viewer.
  • the basic configuration is such that a light beam with a narrow directional characteristic is made incident on the liquid crystal display panel 11 by a light source device, and the brightness is modulated in accordance with the video signal.
  • a spatially floating image obtained by reflecting the image information displayed on the screen by a retroreflective member is displayed outdoors or indoors via a transparent member 100.
  • FIG. 15 shows the convergence of the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are taken as parameters. The angle is determined based on the positions of the left and right eyes.
  • the convergence angle in binocular vision between the left and right eyes is an important requirement. It is designed so that the image light is directed to the optimum viewing range of the system.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 6A and 6B are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide
  • FIG. 6 shows a state in which the LED 14 constituting the light source is attached to the substrate 102. These LEDs 14 and substrate 102 are attached to the reflector 300 at predetermined positions.
  • the LEDs 14 are arranged in a line in a direction parallel to the side (the short side in this example) of the liquid crystal display panel 11 on which the reflector 300 is arranged.
  • a reflector 300 is arranged corresponding to the arrangement of the LEDs. Note that a plurality of reflectors 300 may be arranged.
  • the reflectors 300 are each formed from a plastic material.
  • the reflector 300 may be formed of a metal material or a glass material, but since a plastic material is easier to mold, a plastic material is used in this embodiment.
  • the inner surface (the right side in the figure) of the reflector 300 is a reflecting surface in the shape of a paraboloid cut along the meridian plane (hereinafter sometimes referred to as a "paraboloid"). ) 305.
  • the reflector 300 converts the diverging light emitted from the LED 14 into approximately parallel light by reflecting it on the reflecting surface 305 (paraboloid), and the converted light enters the end surface of the light guide 311.
  • light guide 311 is a transmissive light guide.
  • the reflective surface of the reflector 300 has an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. Further, the reflective surface 305 of the reflector 300 is a paraboloid as described above, and by arranging the LED at the focal point of the paraboloid, the reflected light beam is converted into substantially parallel light.
  • the LED 14 is a surface light source, the diverging light from the LED cannot be converted into completely parallel light even if it is placed at the focal point of a paraboloid, but this does not affect the performance of the light source of the present invention.
  • the LED 14 and the reflector 300 are a pair.
  • the number of LEDs mounted on the board should be no more than 10 at most, and if mass production is considered, it should be kept to about 5. Good.
  • the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, so the temperature rise of the LED can be reduced. Therefore, the reflector 300 made of plastic molding can be used. As a result, according to this reflector 300, the shape precision of the reflecting surface can be improved by more than 10 times compared to a reflector made of glass material, so that the light utilization efficiency can be improved.
  • a reflective surface is provided on the bottom surface 303 of the light guide 311, and the light from the LED 14 is converted into a parallel beam by the reflector 300, then reflected by the reflective surface, and is placed opposite the light guide 311. The light is emitted toward the liquid crystal display panel 11.
  • the reflective surface provided on the bottom surface 303 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300, as shown in FIG. 6(a). Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300.
  • the shape of the reflective surface provided on the bottom surface 303 may be a planar shape.
  • the refracting surface 314 provided on the surface of the light guide 311 facing the liquid crystal display panel 11 refracts the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311, so that the liquid crystal display panel 11 It is possible to adjust the amount of light and the direction of emission of the light beam toward the target with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so spatial video information can be displayed using a video display device using this light source.
  • the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.
  • the refracting surface 314 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300.
  • Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300.
  • the inclinations of the plurality of surfaces cause the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311 to be refracted toward the liquid crystal display panel 11 .
  • the refraction surface 314 may be a transmission surface.
  • the diffuser plate 206 when the diffuser plate 206 is provided in front of the liquid crystal display panel 11, the light reflected by the reflective surface is refracted toward the diffuser plate 206 by the plurality of inclinations of the refracting surface 314. That is, the extending direction of the plurality of surfaces having different inclinations of the refractive surface 314 and the extending direction of the plurality of surfaces having different inclinations of the reflective surface provided on the bottom surface 303 are parallel. By making both stretching directions parallel, the angle of light can be adjusted more suitably.
  • the LED 14 is soldered to the metallic substrate 102. Therefore, the heat generated by the LED can be radiated into the air through the substrate.
  • the reflector 300 may be in contact with the substrate 102, but a space may be left open.
  • a space When opening a space, the reflector 300 is placed in a state where it is adhered to the casing.
  • the heat generated by the LED can be dissipated into the air, increasing the cooling effect.
  • the operating temperature of the LED can be reduced, making it possible to maintain luminous efficiency and extend the lifespan.
  • FIGS. 7A, 7B, 7C, and 7D show the configuration of an optical system for a light source device that uses polarization conversion to improve light utilization efficiency by 1.8 times compared to the light source device shown in FIG. 6. This will be explained in detail with reference to the following. Note that the illustration of the sub-reflector 308 is omitted in FIG. 7A.
  • FIG. 7A, FIG. 7B, and FIG. 7C show a state in which the LED 14 constituting the light source is attached to the substrate 102, and these are configured by a unit 312 having a plurality of blocks, including a reflector 300 and the LED 14 as a pair of blocks. .
  • the base material 320 shown in FIG. 7A(2) is the base material of the substrate 102.
  • the metallic substrate 102 has heat, so in order to insulate (insulate) the heat of the substrate 102, the base material 320 is preferably made of a plastic material or the like.
  • the material and the shape of the reflecting surface of the reflector 300 may be the same as those of the example of the light source device in FIG. 6 .
  • the reflective surface of the reflector 300 may have an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. The reason for this will be explained with reference to FIG. 7A(2).
  • the reflective surface of the reflector 300 is a paraboloid, as in the example of FIG. 6, and the center of the light emitting surface of the LED, which is a surface light source, is placed at the focal point of the paraboloid.
  • the light emitted from the four corners of the light emitting surface also becomes a substantially parallel light beam, and the only difference is the emission direction. Therefore, even if the light emitting part has a large area, the amount of light incident on the polarization conversion element 21 and the conversion efficiency will hardly be affected if the distance between the polarization conversion element 21 and the reflector 300 arranged at the subsequent stage is short.
  • an optical system can be realized that can reduce the decrease in light conversion efficiency for the above-mentioned reasons. Furthermore, even if the mounting position of the LED 14 varies in the Z-axis direction, the converted parallel light beam only moves within the ZX plane, and the mounting accuracy of the LED, which is a surface light source, can be significantly reduced.
  • a reflector 300 having a reflecting surface formed by cutting out a part of a paraboloid in a meridian direction has been described, but an LED may be placed in a part of the entire paraboloid which is cut out as a reflecting surface.
  • the polarization conversion element 21 in the subsequent stage is The characteristic configuration is that the light is made incident on the end face and aligned to a specific polarization by the polarization conversion element 21. Due to this characteristic configuration, in this embodiment, the light utilization efficiency is 1.8 times that of the example shown in FIG. 6 described above, and a highly efficient light source can be realized.
  • the substantially parallel light obtained by reflecting the diverging light from the LED 14 on the paraboloid 321 is not all uniform. Therefore, by adjusting the angular distribution of the reflected light using the reflective surfaces 307 having a plurality of inclinations, the reflected light can be directed toward the liquid crystal display panel 11 in a direction perpendicular to the liquid crystal display panel 11 .
  • the arrangement is such that the direction of light (principal ray) entering the reflector from the LED and the direction of light entering the liquid crystal display panel are approximately parallel.
  • This arrangement is easy to arrange in terms of design, and it is preferable to arrange the heat source under the light source device because air escapes upward and the temperature rise of the LED can be reduced.
  • the light flux that cannot be captured by the reflector 300 is reflected by the sub-reflector 308 provided on the light shielding plate 309 disposed above the reflector.
  • the light is reflected by the slope of the lower sub-reflector 310 and enters the effective area of the polarization conversion element 21 in the subsequent stage, further improving the light utilization efficiency. That is, in this embodiment, a part of the light reflected by the reflector 300 is reflected by the sub-reflector 308, and the light reflected by the sub-reflector 308 is reflected by the sub-reflector 310 in the direction toward the light guide 306.
  • a substantially parallel light beam aligned to a specific polarization by the polarization conversion element 21 is reflected by a reflection shape provided on the surface of the reflective light guide 306 toward the liquid crystal display panel 11 disposed opposite the light guide 306. Ru.
  • the light intensity distribution of the light beam incident on the liquid crystal display panel 11 is optimally designed based on the shape and arrangement of the reflector 300 described above, the shape (cross-sectional shape) of the reflective surface of the reflective light guide, the inclination of the reflective surface, and the surface roughness. be done.
  • the shape of the reflective surface provided on the surface of the light guide 306 a plurality of reflective surfaces are arranged opposite to the output surface of the polarization conversion element 21, and the inclination of the reflective surface is adjusted depending on the distance from the polarization conversion element 21.
  • the light intensity distribution of the light flux incident on the liquid crystal display panel 11 can be set to a desired value, as described above.
  • the reflective surface 307 provided on the reflective light guide By configuring the reflective surface 307 provided on the reflective light guide to have multiple inclinations on one surface, as shown in FIG. 7B (2), it is possible to adjust the reflected light with higher precision.
  • the region used as the reflective surface may be a plurality of surfaces, a polysurface, or a curved surface.
  • the diffusion effect of the diffusion plate 206 realizes a more uniform light amount distribution. The light incident on the diffuser plate on the side closer to the LED achieves a uniform light intensity distribution by changing the inclination of the reflecting surface. As a result, the amount of light and the direction of emission of the light beam directed toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be adjusted with high precision, so spatial video information can be displayed using a video display device using this light source.
  • the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.
  • the base material of the reflective surface 307 is made of a plastic material such as heat-resistant polycarbonate. Further, the angle of the reflecting surface 307 immediately after the light is emitted from the ⁇ /2 plate 213 changes depending on the distance between the ⁇ /2 plate and the reflecting surface.
  • the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, thereby reducing the temperature rise of the LED.
  • the substrate 102 and the reflector 300 may be arranged upside down as shown in FIGS. 7A, 7B, and 7C.
  • the substrate 102 if the substrate 102 is placed on top, the substrate 102 will be close to the liquid crystal display panel 11, which may make layout difficult. Therefore, as shown in the figure, if the substrate 102 is placed below the reflector 300 (on the side far from the liquid crystal display panel 11), the internal structure of the device will be simpler.
  • a light shielding plate 410 may be provided on the light incidence surface of the polarization conversion element 21 to prevent unnecessary light from entering the optical system in the subsequent stage.
  • the polarizing plate provided on the light incident surface of the liquid crystal display panel 11 reduces the temperature rise due to absorption of the uniformly polarized light beam of the present invention, but when reflected by the reflective light guide, the polarization direction rotates and some The light is absorbed by the polarizing plate on the incident side.
  • the temperature of the liquid crystal display panel 11 also rises due to absorption by the liquid crystal itself and temperature rise due to light incident on the electrode pattern, but if there is sufficient space between the reflective surface of the reflective light guide 306 and the liquid crystal display panel 11. Yes, natural cooling is possible.
  • FIG. 7D is a modification of the light source device in FIGS. 7B(1) and 7C.
  • FIG. 7D(1) shows a modified example of a part of the light source device of FIG. 7B(1).
  • the other configurations are the same as those of the light source device described above in FIG. 7B(1), so illustration and repeated description will be omitted.
  • the height of the recess 319 of the sub-reflector 310 is such that the principal ray of fluorescence output from the phosphor 114 laterally (in the X-axis direction) (see a straight line extending in a direction parallel to the axis) is adjusted to be at a position lower than the phosphor 114 so that it passes through the recess 319 of the sub-reflector 310. Furthermore, in the Z-axis direction with respect to the position of the phosphor 114, so that the principal ray of fluorescence outputted laterally from the phosphor 114 enters the effective area of the polarization conversion element 21 without being blocked by the light shielding plate 410. The height of the light shielding plate 410 is adjusted to be low.
  • the reflective surface of the uneven convex portion on the top of the sub-reflector 310 reflects the light reflected by the sub-reflector 308 in order to guide the light reflected by the sub-reflector 308 to the light guide 306. Therefore, the height of the convex portion 318 of the sub-reflector 310 is adjusted so that the light reflected by the sub-reflector 308 is reflected and enters the effective area of the polarization conversion element 21 in the subsequent stage, thereby further improving the light utilization efficiency. can be improved.
  • the sub-reflector 310 is arranged extending in one direction, and has an uneven shape. Further, on the top of the sub-reflector 310, irregularities having one or more recesses are periodically arranged in one direction. By forming such an uneven shape, it is possible to configure such that the chief ray of fluorescence outputted laterally from the phosphor 114 enters the effective area of the polarization conversion element 21.
  • the uneven shape of the sub-reflector 310 is arranged periodically at a pitch such that the recesses 319 are located at the positions where the LEDs 14 are located. That is, each of the phosphors 114 is arranged periodically along one direction corresponding to the pitch of the arrangement of the concave and convex portions of the sub-reflector 310. In addition, when the phosphor 114 is included in the LED 14, the phosphor 114 may be expressed as a light emitting part of a light source.
  • FIG. 7D(2) illustrates a modified example of a part of the light source device of FIG. 7C.
  • the other configurations are the same as those of the light source device in FIG. 7C, so illustration and repeated description will be omitted.
  • the sub-reflector 310 may not be provided, but as in FIG. 7D (1), the principal ray of fluorescence output sideways from the phosphor 114 is not blocked by the light shield 410.
  • the height of the light shielding plate 410 is adjusted to be lower in the Z-axis direction with respect to the position of the phosphor 114 so that the light enters the effective area of the polarization conversion element 21.
  • a side wall 400 may be provided to prevent stray light from entering the light source, to prevent stray light from occurring outside the light source device, and to prevent stray light from entering from outside the light source device.
  • the side wall 400 is arranged so as to sandwich the space between the light guide 306 and the diffusion plate 206.
  • the light exit surface of the polarization conversion element 21 that emits the light polarization-converted by the polarization conversion element 21 faces the space surrounded by the side wall 400, the light guide 306, the diffuser plate 206, and the polarization conversion element 21. Also, of the inner surface of the side wall 400, a portion that covers from the side the space where light is output from the output surface of the polarization conversion element 21 (the space on the right side from the output surface of the polarization conversion element 21 in FIG. 7B (1)). A reflective surface having a reflective film or the like is used as the surface. That is, the surface of the side wall 400 facing the space includes a reflective region having a reflective film.
  • the surface that covers the polarization conversion element 21 from the side is a surface with low light reflectance (such as a black surface without a reflective film). This is because when reflected light occurs on the side surface of the polarization conversion element 21, light with an unexpected polarization state is generated, causing stray light.
  • the cooling effect may be improved by forming a hole in a part of the side wall 400 through which air passes.
  • the light source devices in FIGS. 7A, 7B, 7C, and 7D have been described on the premise that the polarization conversion element 21 is used. However, the polarization conversion element 21 may be omitted from these light source devices. In this case, the light source device can be provided at a lower cost.
  • FIGS. 8A (1), (2), (3), and FIG. This will be explained in detail with reference to 8B.
  • FIG. 8A shows a state in which the LED 14 constituting the light source is mounted on the substrate 102, and the collimator 18 and the LED 14 form a pair of blocks, and the unit 328 has a plurality of blocks. Since the collimator 18 of this embodiment is close to the LED 14, a glass material is used in consideration of heat resistance. The shape of the collimator 18 is similar to the shape described for the collimator 15 in FIG. Furthermore, by providing a light shielding plate 317 before entering the polarization conversion element 21, unnecessary light is prevented or suppressed from entering the optical system at the subsequent stage, and temperature rise due to the unnecessary light is reduced. .
  • FIG. 8A The other configurations and effects of the light source shown in FIG. 8A are the same as those in FIGS. 7A, 7B, 7C, and 7D, so repeated explanations will be omitted.
  • the light source device in FIG. 8A may be provided with a side wall in the same manner as described in FIGS. 7A, 7B, and 7C. The configuration and effects of the side walls have already been explained, so repeated explanations will be omitted.
  • FIG. 8B is a cross-sectional view of FIG. 8A(2).
  • the structure of the light source shown in FIG. 8B is common to a part of the structure of the light source shown in FIG. 7, and has already been explained in FIG. 18, so repeated explanation will be omitted.
  • the light source device of FIG. 12 is constituted by a unit 328 having a plurality of blocks in which the collimator 18 and the LED 14 used in the light source device shown in FIG. 8 form a pair of blocks.
  • the configuration of the optical system related to the light source device using the LED and reflective light guide 504 arranged at both ends of the back surface of the liquid crystal display panel 11 will be explained in detail with reference to FIGS. 12(a), (b), and (c). explain.
  • FIG. 12 shows a state in which the LEDs 14 constituting the light source are mounted on a substrate 505, and these are constituted by a unit 503 having a plurality of blocks each including a collimator 18 and an LED 14 as a pair of blocks.
  • the units 503 are arranged at both ends of the back surface of the liquid crystal display panel 11 (in this embodiment, three units are arranged side by side in the short side direction).
  • the light output from the unit 503 is reflected by a reflective light guide 504 arranged opposite to each other, and enters the liquid crystal display panel 11 (shown in FIG. 12(c)).
  • the reflective light guide 504 is divided into two blocks corresponding to the units arranged at each end, and arranged so that the central part is the highest. Since the collimator 18 is close to the LED 14, a glass material is used in consideration of heat resistance to the heat emitted from the LED 14. The shape of the collimator 18 is the same as that described for the collimator 15 in FIG.
  • the light from the LED 14 enters the polarization conversion element 501 via the collimator 18.
  • the configuration is such that the shape of the optical element 81 adjusts the distribution of light incident on the reflective light guide 504 at the subsequent stage. That is, the light intensity distribution of the luminous flux incident on the liquid crystal display panel 11 depends on the shape and arrangement of the collimator 18 mentioned above, the shape and diffusion characteristics of the optical element 81, the shape of the reflective surface (cross-sectional shape) of the reflective light guide, and the shape of the reflective light guide.
  • Optimal design is achieved by adjusting the surface inclination and the surface roughness of the reflective surface.
  • the shape of the reflective surface provided on the surface of the reflective light guide 504 is as shown in FIG. Optimize the tilt, area, height, and pitch of the reflective surface according to the distance.
  • the light intensity distribution of the light beam incident on the liquid crystal display panel 11 can be set to a desired value (optimal can be converted into Therefore, the amount of light and the direction of emission of the light beam toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be adjusted with high precision, so spatial video information can be displayed using a video display device using this light source.
  • the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.
  • the reflective surface provided on the reflective light guide has a configuration in which one surface (the area where light is reflected) has a shape with multiple inclinations (see FIG. In the example of No. 12, by dividing the XY plane into 14 parts and configuring them with different inclined surfaces, it is possible to adjust the reflected light with higher precision.
  • a light shielding wall 507 is provided to prevent light from leaking in a direction other than the desired direction (direction toward the liquid crystal display panel 11). can be prevented from occurring.
  • the units 503 placed on the left and right sides of the reflective light guide 504 in FIG. 12 may be replaced with the light source device in FIG. 7. That is, a plurality of light source devices (substrate 102, reflector 300, LED 14, etc.) shown in FIG. 7 are prepared, and the plurality of light source devices are connected to each other as shown in FIGS. It is also possible to have a configuration in which they are placed at opposing positions.
  • FIG. 13(B) shows a light source device configured by arranging six units 503 shown in FIG. 13(A) in the upper part and six units in the lower part.
  • the light source device shown in FIG. 13B has a configuration in which a unit 503 in which five LEDs are arranged side by side is arranged as described above, and the desired brightness is obtained by controlling the current with a single power supply. Therefore, as a light source device for illuminating a liquid crystal panel, the light source brightness can be controlled for each area illuminated by each unit 503.
  • the configuration shown in FIG. 13 includes a reflective surface 222 and a reflective surface 502 different from the reflective surface 222. Of these, the reflective surface 222 has a horizontal lattice-like shape or a band shape with a predetermined width.
  • the reflective surface 502 has a shape like a vertical and horizontal lattice.
  • a desired output light distribution (the output direction and diffusion characteristics of the output light) is obtained. Therefore, the amount of light and the direction of emission of the light beam toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and the light emitted from the liquid crystal display panel 11 can be controlled with high precision.
  • the direction and angle of diffusion of video light of a spatially floating video can be set to desired values.
  • FIG. 9 is a cross-sectional view showing an example of the shape of the diffusion plate 206.
  • the diverging light output from the LED is converted into substantially parallel light by the reflector 300 or the collimator 18, converted into a specific polarized light by the polarization conversion element 21, and then reflected by the light guide. Then, the light beam reflected by the light guide passes through the flat part of the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 (two lines showing "reflected light from the light guide" in FIG. (see solid arrow).
  • a diverging luminous flux is totally reflected on the slope of a protrusion having an inclined surface provided on the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 .
  • the angle of the slope of the projection is changed based on the distance from the polarization conversion element 21.
  • a lenticular lens is provided between the light source device 13 and the liquid crystal display panel 11, or on the surface of the liquid crystal display panel 11, and the shape of the lens is optimized.
  • One example is to become That is, by optimizing the shape of the lenticular lens, the emission characteristics of the image light (hereinafter also referred to as "image light flux") emitted from the liquid crystal display panel 11 in one direction can be adjusted.
  • microlens arrays may be arranged in a matrix on the surface of the liquid crystal display panel 11 (or between the light source device 13 and the liquid crystal display panel 11), and the mode of arrangement may be adjusted. That is, by adjusting the arrangement of the microlens array, the emission characteristics of the image light flux emitted from the image display device 1 in the X-axis and Y-axis directions can be adjusted, and as a result, desired diffusion characteristics can be obtained. It is possible to obtain a video display device having the following.
  • a combination of two lenticular lenses may be arranged at a position through which the image light emitted from the image display device 1 passes, or a microlens array may be arranged in a matrix to adjust the diffusion characteristics.
  • a sheet may also be provided.
  • the image light has a narrow diffusion angle (high straightness) and has only a specific polarization component, like image light from a surface-emitting laser image source, and the image display device according to the prior art It is possible to suppress the ghost image that would occur in the retroreflective member when using the retroreflection member, and to make adjustments so that the spatially floating image due to retroreflection can be efficiently delivered to the viewer's eyes.
  • the above-described light source device allows the emitted light diffusion characteristics (denoted as "conventional characteristics" in the figures) from the general liquid crystal display panel shown in FIGS. 17(A) and 17(B) to be It is possible to provide a directional characteristic with a significantly narrow angle in both the Y-axis direction and the Y-axis direction. In this embodiment, by providing such a narrow-angle directivity characteristic, it is possible to realize an image display device that emits a nearly parallel image light beam in a specific direction and emits light of a specific polarization. .
  • FIG. 17 shows an example of the characteristics of the lenticular lens employed in this example.
  • This example particularly shows the characteristics in the X direction (vertical direction) with respect to the Z axis, and the characteristic O is that the peak of the light emission direction is at an angle of around 30 degrees upward from the vertical direction (0 degrees). , and exhibits vertically symmetrical brightness characteristics.
  • the plot curves of characteristic A and characteristic B shown in the graph of FIG. 17 further show an example of a characteristic in which the brightness (relative brightness) is increased by focusing the image light above the peak brightness around 30 degrees. There is.
  • the optical system including the above-mentioned lenticular lens when the image light flux from the image display device 1 is made to enter the retroreflective member, the output angle and viewing angle of the image light aligned at an included angle by the light source device 13 are adjusted. can be adjusted, greatly increasing the degree of freedom in installing retroreflective sheets. As a result, the degree of freedom regarding the image formation position of the spatially floating image that is reflected or transmitted through the window glass and formed at a desired position can be greatly improved. As a result, it becomes possible to efficiently reach the eyes of a viewer outdoors or indoors as light with a narrow diffusion angle (high straightness) and only a specific polarization component.
  • the present invention is not limited only to the embodiment (specific example) described above, and includes various modifications.
  • the entire system is described in detail in order to explain the present invention in an easy-to-understand manner, and the system is not necessarily limited to having all the configurations described.
  • the light source device described above is not limited to a floating video display device, but can also be applied to information display devices such as a HUD, a tablet, a digital signage, etc.
  • the user can, for example, operate the image without feeling anxious about contact infection of an infectious disease. enable. If the technology according to this embodiment is used in a system used by an unspecified number of users, it will be possible to reduce the risk of contact transmission of infectious diseases and provide a contactless user interface that can be used without anxiety. . According to the present invention, which provides such technology, it contributes to "3 health and welfare for all" of the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • the technology according to the embodiment described above makes it possible to form a spatially floating image using highly directional (straight-progressing) image light.
  • the technology according to this embodiment even when displaying images that require high security such as at bank ATMs or ticket vending machines at stations, or when displaying highly confidential images that should be kept secret from the person directly facing the user, the technology can be used to display highly directional images.
  • the image light By displaying the image light, it is possible to provide a non-contact user interface in which there is little risk that the floating image will be looked into by anyone other than the user.
  • the present invention contributes to the Sustainable Development Goals (SDGs) advocated by the United Nations, "11: Creating livable cities.”
  • SYMBOLS 1 Image display device, 2... First retroreflection member, A1, A2, 3, 220A, 220B, 204... Spatial image (space floating image), 110... First transmissive plate, 111... Reflective polarizing sheet , (Reflection type polarizing plate) 13... Light source device, 54... Light direction conversion panel, 105... Linear Fresnel sheet, 107... Rotation mechanism, 102... Absorption type polarizing sheet (absorption type polarizing plate), 200... Flat display, 201... Housing, 203... Sensing system, 226... Sensing area, 102... Substrate, 11, 335... Liquid crystal display panel, 206... Diffusion plate, 21... Polarization conversion element, 300...
  • Reflector 213... ⁇ /2 plate, 306... Reflection Type light guide, 307... Reflective surface, 308, 310... Sub-reflector, 204... Space floating image, 334... Image light control sheet, 336... Transmissive section, 337... Light absorbing section, 81... Optical element, 501... Polarization conversion Element, 503... Unit, 507... Light blocking wall, 401, 402... Light blocking plate, 320... Base material, 511... Housing, 512... Support arm, 513... Hinge, 514... Back cover, 515... Housing cover, 516... Housing base, 517, 518... Inclined linear Fresnel sheet, 519... Eccentric Fresnel sheet

Abstract

本発明の空間浮遊映像情報表示システムは、映像を表示する表示パネル(11)と、前記表示パネル(11)のための光源装置(13)と、前記表示パネル(11)からの映像光を反射させ、反射した光により空中に実像の空間浮遊映像(220A,220B)を表示せしめる再帰反射部材(2)と、前記映像光の光路を変換する反射型偏光板(111)を表面に設けた透過性プレート(110)と、を備え、前記透過性プレート(110)は前記再帰反射部材(2)と前記表示パネル(11)の間に配置し、前記空間浮遊映像(220A,220B)を形成する位置を調整するため、光学部材の取り付け角度と表示パネル(11)の位置を調整する。

Description

空間浮遊映像情報表示システム
 本発明は、空間浮遊映像情報表示システムおよびそれに用いられる光学系に関する。
 空間浮遊情報表示システムとして、直接外部に向かって映像を表示する映像表示装置と空間画面として表示される表示法は既に知られている。また、表示された空間像の操作面における操作に対する誤検知を低減する検知システムについても、例えば、特許文献1に開示されている。
特開2019-128722号公報
 空間浮遊情報表示システムとして、直接外部に向かって映像を表示する映像表示装置と空間画面として表示される表示法は既に知られている。
 しかしながら、上述した従来技術の空間浮遊映像情報表示システムにおいて空間浮遊映像を発生させる再帰反射部材に外光が入射した場合に発生する不具合の防止手段や、空間浮遊情報表示システムとして、空間浮遊映像の表示位置を顧客要望に応じて設定可能な空間映像情報表示ユニットおよび表示された映像を空間上で操作する検知システムとして、空間浮遊映像の映像源となる映像表示装置の光源を含む設計の最適化技術については考慮されていない。
 本発明の目的は、空間浮遊情報表示システムまたは空間浮遊映像表示装置において、視認性(見た目の解像度やコントラスト)が高く、外光の影響を低減した空間浮遊映像表示が可能で空間浮遊映像の表示位置を顧客の要望に応じて変更可能なユニット構造を成し、表示像を高精度に操作する方法と好適な映像を表示することが可能な技術を提供することにある。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例としての空間浮遊映像表示装置を以下に挙げる。本願の一例としての空間浮遊映像情報表示システムは、空間浮遊映像情報表示システムは、映像を表示する表示パネルと、前記表示パネルのための光源装置と、映像光を反射して空中に実像の空間浮遊映像を表示せしめる再帰反射部材と、前記表示パネルからの映像光を一旦透過させ、表面にλ/4板を設けた再帰反射部材で反射した映像光を反射させる光学部材とを備えたユニットにおいて、前記表示パネルと光学部材の間隔を可変可能な構造として前記空間浮遊映像を前後方向の所望の位置に表示させ、更に、前記ユニットの一旦に回転可能な構造を設けることで、前記空間浮遊映像を上下方向の所望の位置に表示させる。
 本発明によれば、外光が入射しても空間浮遊映像の画質低下がなく、好適に空間浮遊映像情報を表示する。また、空間浮遊映像の表示位置を任意設定することができる。更に、空間浮遊映像表示装置により表示画面に直接触れることなく操作入力を行うことができる。
本発明の空間浮遊映像情報表示システムの空間浮遊映像形成の原理と課題を説明するための原理図である。 本発明の一実施例に係る空間浮遊映像情報表示ユニットの実施例の外観と主要部構成および空間浮遊像の発生位置を示す図である。 本発明の一実施例に係る空間浮遊映像情報システムの外観と空間浮遊像の発生位置と水平および垂直の観視範囲を説明するための説明図である。 本発明の一実施例に係る他の空間浮遊映像情報表示システムの第二実施例の外観と主要部構成を示す図である。 本発明の実施例に係る空間浮遊映像情報表示システムに設けたセンシング手段を説明するための説明図である。 本発明の一実施例の光源装置の具体的な構成の別の例を示す図である。 別方式の光源装置の具体的な構成の別の例を示す構造図である。 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。 別方式の光源装置の具体的な構成の別の例を示す構造図である。 別方式の光源装置の具体的な構成の別の例を示す図である。 光源装置の具体的な構成の別の例の導光体拡散部の表面形状を示す拡大図である。 光源装置の具体的な構成の例を示す断面図である。 光源装置の具体的な構成の例を示す構造図である。 光源装置の具体的な構成の例を示す斜視、上面および断面図である。 光源装置の具体的な構成の例を示す斜視および上面図である。 映像表示装置の光源拡散特性を説明するための説明図である。 映像表示装置の光源拡散特性を説明するための説明図である。 映像表示装置の拡散特性を説明するための説明図である。 映像表示装置の拡散特性を説明するための説明図である。 液晶パネルの視覚特性を測定する座標系を示す図である。 一般的な液晶パネルの輝度角度特性(長手方向)を示す図である。 一般的な液晶パネルの輝度角度特性(短手方向)を示す図である。 一般的な液晶パネルのコントラストの角度特性(長手方向)を示す図である。 一般的な液晶パネルのコントラストの角度特性(短手方向)を示す図である。
 以下、本発明の実施の形態を、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施形態(以下、「本開示」とも言う)の内容に限定されるものではない。本発明は、発明の精神ないし特許請求の範囲に記載された技術的思想の範囲またはその均等範囲物にも及ぶ。また、以下に説明する実施形態(実施例)の構成は、あくまで例示に過ぎないのであって、本明細書に開示される技術的思想の範囲において、当業者による様々な変更および修正が可能である。
 また、本発明を説明するための図面において、同一または類似の機能を有するものには、同一の符号を付与し、適宜、異なる名称を使用する一方で、機能等の繰り返しの説明を省略する場合がある。なお、以下の実施形態の説明において、空間に浮遊する映像を「空間浮遊映像」という用語で表現している。この用語の代わりに、「空中像」、「空間像」、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」などと表現してもかまわない。実施形態の説明で主として用いる「空間浮遊映像」の用語は、これらの用語の代表例として用いている。
 本開示は、例えば、大面積な映像発光源からの映像光による映像を、ショーウィンドのガラス等の空間を仕切る透明な部材を介して透過して、店舗(空間)の内部または外部に空間浮遊映像として表示することが可能な情報表示システムに関する。また、本開示は、かかる情報表示システムを複数用いて構成される大規模なデジタルサイネージシステムに関する。
 以下の実施形態によれば、例えば、ショーウィンドのガラス面や光透過性の板材上に高解像度な映像情報を空間浮遊した状態で表示可能となる。この時、出射する映像光の発散角を小さく、すなわち鋭角とし、更に、特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させることができる。このため、光の利用効率が高く、従来の再帰反射方式での課題となっていた主空間浮遊像の他に発生するゴースト像と再帰反射部材に入射した外光により生じる色付いた反射光を抑えることができ、鮮明な空間浮遊映像を得ることができる。
 また、本開示の光源を含む装置により、消費電力を大幅に低減することが可能な、新規で利用性に優れた空間浮遊映像情報表示システムを提供することができる。また、本開示の技術によれば、例えば、車両のフロントガラスやリアガラスやサイドガラスを含むシールドガラスを介して、車両外部において視認可能である、いわゆる、一方向性の空間浮遊映像の表示が可能な車両用浮遊映像情報表示システムを提供することができる。
 一方、従来の空間浮遊映像情報表示システムでは、高解像度なカラー表示映像源として有機ELパネルや液晶表示パネル(液晶パネルまたは表示パネル)を、再帰反射部材と組み合わせる。従来技術による空間浮遊映像表示装置において使用される第一の再帰反射部材2では、映像光が広角で拡散するため、図1(B)に示す多面体で構成した第一の実施例である再帰反射部材で正規に反射する反射光の他に、図1(B)に示すように、再帰反射部2aに用いられる形状は6面体であるために、斜めから入射する映像光によって、複数のゴースト像が発生し、空間浮遊映像の画質を損ねていた。また、観視者以外にもゴースト像である同一空間浮遊映像を観視されてしまい、セキュリティ上の観点からも、大きな課題があった。
 続いて、空間浮遊映像表示装置において使用される再帰反射部材の作用と具体的な空間浮遊映像表示装置の実施例について説明する。図1(A)に示すように、映像表示装置1に対して略45度の角度で配置された第二の透過性プレート100に設けた特定偏波の光を反射する反射型偏光板101で反射させ、前記第二の透過性プレート100または反射型偏光板101に対して略45度に配置された再帰反射部材2により空間浮遊像を得る。再帰反射部材2の表面にはλ/4板21を設け、映像光が再帰反射部材2に入射し反射するまでに位相差板で他方の偏波に変換されたのち第二の透過性プレート100に設けた反射型偏光板101および吸収型偏光板102を通過し第二の透過性プレート100により隔てられた空間に空間浮遊像を得る。
 再帰反射部材2は図1(B)に示すように多面体の反射面を整列配置した構造を成し映像光は多面体2a(図中は6面体)で2度反射して再帰反射光となり空間浮遊像を形成する。この時、空中浮遊像の解像度は再帰反射部材2に設けた多面体2aの単位面積当たりのピッチで決まるのが一般的である。再帰反射部材2で反射した映像光により形成される空間像220は、第二の透過性プレート100により隔てられた空間に形成され、再帰反射部材2から空間像220との距離は、映像表示装置1から再帰反射部材2までの光学距離と同じとなる。この時、映像光の拡散角が大きいと再帰反射部材2の反射面に設けた多面体で正規で反射する映像光以外の異常光が発生するため、正規の空間像220の周辺にゴースト像g1,g2(反射面の数に応じて発生するが図1では2個のみ記載)が発生する。このゴースト像を軽減するため映像表示装置1に設けた光源13の拡散角を後述するように狭角な拡散角とするとよい。
 <空間浮遊映像情報表示システムを形成する第1の再帰反射光学系または再帰反射光学ユニットの構成例>
 図2(A)は、本開示の空間浮遊映像情報表示システムを実現するために使用する再帰光学系(以下「ユニット」とも言う)の形態の一例を示す図である。また、図2(B)は、本実施形態における空間浮遊映像情報表示システムの全体構成を説明する図である。光源装置13と表示パネル11と再帰反射部材2と第一の透過性プレート110を有する空間浮遊映像表示システムまたは空間浮遊映像表示装置を筐体に組み込み、筐体の一部に空間浮遊映像表示システムまたは空間浮遊映像表示装置と連結する部材を備えている。
 図2(A)を参照すると、例えば、本開示の空間浮遊情報表示システム(以下、「本システム」とも言う)によれば、空間浮遊映像の観視者に対して空間浮遊映像情報表示システムを机上に配置した場合には空間浮遊映像を観下げることになる。図2(A)では、映像表示装置1と再帰反射部材2とが互いに略平行または平行となるように配置されており、具体的に映像表示装置1を構成する表示パネル11の映像表示面または映像光出射面と再帰反射部材2の反射面とは正対して配置されている。この時、空間浮遊像の結像位置(図2(A)の220A,220Bに示す)は、映像表示装置1を第二の透過性プレート100に沿って図中の左右方向に移動させればこの移動量に応じて上下する。ここでの映像表示装置1の左右方向の移動とは、図2(A)に示すように、再帰反射部材2にある方向へ移動する、および、再帰反射部材2から離れる方向へ移動する。すなわち、同一形態のシステムでも映像表示装置1の位置を変更することで、任意に空間浮遊像の結像位置を変更することができる。
 上述した再帰反射光学系を構成する光学部材の作用について以下説明する。映像表示装置1は狭角な拡散特性を有する光源装置13と液晶表示パネル11から構成される。この結果、本願発明の空間情報表示システムにおいては狭角な拡散特性を有する特定偏波の映像光が得られ、第一の透過性プレート110に向かう。第一の透過性プレート110の片側面には偏光ビームスプリッタとしての作用を有する反射型偏光板シート111を設けているが、映像表示装置1からの特定偏波の光は透過する。この時、第一の透過性プレート110の光入射面には反射防止膜または反射率が光線の入射角度や波長に対して変化しない特性を有するモスアイ構造を表面に有するシート113を設けてもよい。
 第一の透過性プレート110を透過した映像光は再帰反射部材2により再帰反射される。第一の透過性プレート110は映像表示装置1と再帰反射部材2を結んだ光軸に対してθ1傾けて(略45度)配置する。この傾斜角θ1を45度より大きくすると、図2(A)に示した空中浮遊像220Aの結像位置を図面左側に移動させることができる。同様に、図2(A)に示した空間浮遊像220Aの結像位置を図面右側移動させることができる。以上述べたように本願発明のユニット構成であればユニットを構成する光学部材の配置を変更することで、空間浮遊映像の結像位置を所望の位置の調整することができるためユニットの基本構成を共通化でき量産効率を高めることができる。
 再帰反射部材2は再帰反射光を形成するだけでなく、表面に設けたλ/4板により前記特定偏波の映像光を他方の偏波に変換することで、前述の第一の透過性プレート110の片側面に設けた反射型偏光板シート111で反射し上面に設けた第一の透過性プレート110を透過させ空間浮遊像220Aが形成される。再帰反射部材2の表面に設けたλ/4板21の空気側界面に反射防止膜または反射率が光線の入射角度や波長に対して変化しない特性を有するモスアイ構造を表面に有するシート104を設けてもよい。
 前述した映像表示装置1の設置位置を図面の左右方向に移動させて任意の位置に設けることで、空間浮遊映像220Aの発生位置を例えば220Bの位置に設定できる。図2(A)に示すように、映像表示装置1と再帰反射部材2とが互いに略平行または平行となるように配置されている。この時、空間浮遊像の浮遊量(第一の透過性プレート110からの距離)を大きくしたい場合には映像表示装置1から再帰反射部材2までの距離を大きくすれば良く、図2(A)に示す実施例においては映像表示装置1を右側に移動させて設定するとよい。ここでの浮遊量は、第一の透過性プレート110から空間浮遊像までの距離となる。
 本実施例の空間浮遊映像表示システムまたは空間浮遊映像表示装置は、映像表示装置1または表示パネル11を移動させる構造を有してもよい、具体的には、映像表示装置1は筐体に弾性部材を介して固定されている。また、空間浮遊映像表示システムまたは空間浮遊映像表示装置装置は、第一の透過性プレート110の配置角度を調整させる構造を有してもよい、具体的には、第一の透過性プレート110は筐体に弾性部材を介して固定されている。
 よって、空間浮遊映像の結像位置は、映像表示装置1(または表示パネル11)と第一の透過性プレート110との間の距離に応じて変化する。つまり、第一の透過性プレート110の配置角度が一定である場合、空間浮遊映像の結像位置は、映像表示装置1または表示パネル11と第一の透過性プレート110との間の距離に応じて定まる位置である。または、空間浮遊像の結像位置は、第一の透過性プレート110の配置角度に応じて変化する。つまり、映像表示装置1と第一の透過性プレート110との間の距離が一定である場合、空間浮遊像の結像位置は、第一の透過性プレート110の配置角度に応じて定まる位置である。
 このユニットでは、映像表示装置1または表示パネル11の任意の点と第一の透過性プレート110の対応点とを結んだ距離と、空間浮遊像220Aの任意の点と第一の透過性プレート110の対応点とを結んだ距離とが空間浮遊像220Aの左右方向すべての位置で等しいため、形成された空間像のフォーカス感は全画面領域で等しく良好な空間浮遊映像を得ることができる。具体的には、表示パネル11の映像光出射面の任意の点と第一の透過性プレート110の対応点とを結んだ距離と、空間浮遊像220Aの任意の点と第一の透過性プレート110の対応点とを結んだ距離とが空間浮遊像220Aの左右方向すべての位置で等しい。
 更に、筐体外部から開口部である第二の透過性プレート100を透過してユニット内部に入射する外光は、第一の透過性プレート110に対して略直交しかつ、開口部から離れた位置に配置された再帰反射部材2や映像表示装置1の表面に直接入射しない。更に、筐体内部に侵入した外光のうち映像表示装置1からの特定偏波の映像光と同じ偏波の光は第一の透過性プレート110の片側面に設けた偏光ビームスプリッタとしての作用を有する反射型偏光板シート111を通過して光吸収体106に吸収されるため空間浮遊像の画質に影響を与えることはない。
 更に、この空間浮遊像に観視者が触れることで、インターラクションして、例えばキー入力装置として使用するためには後述するセンシングシステム203を空間浮遊映像の端部に配置し検知領域を空間浮遊像より大きくとることで、良好な性能を得ることができる。
 <空間浮遊映像情報表示システムの構成例>
 図2(B)は、本開示の空間浮遊映像情報表示システムの構成を示す図である。図2(A)に示したユニットを構成する光学部材の作用については上述したのでここでは省略する。光源装置13と表示パネル11と再帰反射部材2と第一の透過性プレート110を有する空間浮遊映像表示システムまたは空間浮遊映像表示装置を筐体に組み込み、筐体の一部に空間浮遊映像表示システムまたは空間浮遊映像表示装置と連結する部材を備えている。
 具体的には、このユニットを支持する本体107および回転構造108に固定することで、空間浮遊像204(結像位置はA1、A2に示す)を参照すると、例えば、本開示の本システムによれば、空間浮遊映像の観視者に対して本システムを対向配置した場合には空間浮遊映像を斜め下に観下げることになる。この時、空間浮遊像204の結像位置を本システムに対して前後方向に最適配置するためには同図に示すユニットの映像表示装置1の位置を図中の上下方向に移動させればこの移動量に応じて前後(同図中の左右方向)する。すなわち、同一形態のシステムでも映像表示装置1の位置を変更することで、任意に空間浮遊像の結像位置を顧客の要望に応じて最適化できる。
 図2(A)同様に再帰反射部材2は再帰反射光を形成するだけでなく、表面に設けたλ/4板により前記特定偏波の映像光を他方の偏波に変換することで、前述の第一の透過性プレート110の片側面に設けた反射型偏光板シート111で反射し上面に設けた第二の透過性プレート100を透過させ空間浮遊像220Aが形成される。再帰反射部材2の表面に設けたλ/4板21の空気側界面に反射防止膜または反射率が光線の入射角度や波長に対して変化しない特性を有するモスアイ構造を表面に有するシート113を設けてもよい。
 前述した映像表示装置1の設置位置を図面の上下方向に移動させて設定することで、空間浮遊映像204の発生位置を例えば観視者に向けて前後方向に結像位置を任意に設定できる。この時、空間浮遊映像の浮遊量(第二の透過性プレート100からの距離)を大きくしたい場合には映像表示装置1から再帰反射部材2までの距離を大きくすれば良く図2(B)に示す実施例においては映像表示装置1を上側に移動させて設定するとよい。図2(B)に示すように、ここでの映像表示装置1の設置位置を上下方向に移動させるとは、映像表示装置1を第二の透過性プレート100に沿って上下方向に移動させる、または映像表示装置1は第二の透過性プレート100に対して上下方向に移動する。
 このユニットにおいても、映像表示装置1または表示パネル11の中心点と第一の透過性プレート110の対応点とを結んだ距離と、空間浮遊像204の中心点と第一の透過性プレート110の対応点とを結んだ距離とが空間浮遊像の上下方向すべての位置で等しいため、形成された空間像のフォーカス感は全画面領域で等しく良好な空間浮遊映像を得ることができる。ここでの映像表示装置1または表示パネル11の中心点とは映像表示装置1または表示パネル11の映像光出射面の中心点となる。
 また、筐体外部から開口部である第二の透過性プレート100を透過してユニット内部に入射する外光は、第二の透過性プレート100に対して略直交しかつ、開口部から離れた位置に配置された再帰反射部材2や映像表示装置1の表面に直接入射しないため空間浮遊像の画質に影響を与えることはない。
 また、この空間浮遊像に観視者が触れることで、インターラクションして、例えばキー入力装置として使用するためには後述するセンシングシステム203を筐体内部に配置することで、使用環境の影響を軽減したセンシングシステムが実現できる。この時、センシングのために用いる近赤外光は第一の透過性プレート110を通過するためセンシング性能に影響を与えることはない。更に、このセンシングシステムの検知領域を空間浮遊像204より大きくとることで、良好な性能を得ることができる。
  <空間浮遊映像情報表示システムの例>
 図3(A)は、本開示の空間浮遊映像情報表示システムの外観を示す図である。図2(B)に示したユニットを内蔵したもので、ユニットを支持する本体107および回転構造108(図示せず)に固定することで、空間浮遊映像A1を所望の位置に発生させる。システム内部に配置したユニットの設定角度θ3を変更して空間浮遊映像の形成位置を変更できる。例えば基準設定位置をA1とした場合、空間浮遊映像の形成位置を上部のA2とするにはユニット全体の角度θ3を基準角度より大きくする。または再帰反射部材2の取り付け角θ4を映像表示装置1に対して開いた角度となるように設定してもよい。更に、反射型偏光板シート101を設けた第二の透過性プレート100の設定角度θ5を筐体の開口部に対してより大きく傾けても同様な効果が得られる。この時、前述したセンシングシステムの検知領域205はユニットを構成する光学部材の配置により形成位置が変化する空間浮遊像をすべて包含するように決定するとよい。
 <映像表示装置の拡散特性制御技術>
 本願発明の実施例では、映像表示装置1の映像源である液晶表示パネル11からの映像光の拡散分布を光源装置13の拡散特性を導光体の表面の形状と面粗さによって調整する。更に、再帰反射部材2と液晶表示パネル11との間、あるいは、液晶表示パネル11の表面に、レンチキュラーレンズを設け、当該レンズの形状を最適化することで、映像光の出射方向を制御する。すなわち、レンチキュラーレンズ形状の最適化を行うことによって、液晶表示パネル11から一方向に出射される映像光(以下、「映像光束」とも称する)の出射特性を調整することができる。
 代替的または追加的に、液晶表示パネル11の表面(または光源装置13と液晶表示パネル11との間)に、マイクロレンズアレイをマトリックス状に配置し、当該配置の態様を調整してもよい。すなわち、マイクロレンズアレイの配置を調整することによって、映像表示装置1から出射される映像光束について、X軸およびY軸方向への出射特性を調整することができ、この結果、所望の拡散特性を有する映像表示装置を得ることができる。
 更なる構成例として、映像表示装置1から出射される映像光が通過する位置に、2枚のレンチキュラーレンズを組み合わせて配置する、または、マイクロレンズアレイをマトリックス状に配置して拡散特性を調整するシートを設けてもよい。このような光学系の構成とすることにより、X軸およびY軸方向において、映像光の輝度(相対輝度)を、映像光の反射角度(垂直方向に反射した場合を基準(0度)とした反射角度)に応じて調整することができる。
 本実施例では、このようなレンチキュラーレンズを使用することにより、図3(B)中に「例1(ZY方向)」および図3(C)「例2(ZX方向)」のグラフ(プロット曲線)に示すように、それぞれの平面で異なる拡散特性を得ることもできる。具体的には、図3(B)中に「例1(ZY方向)」および図3(C)「例2(ZX方向)」のグラフに示したように空間浮遊映像情報装置の水平方向の視野角特性をZX平面では特性Oのごとく設定し、他方垂直方向の拡散特性を図3(B)に示す特性Aとすることで、個別に拡散特性制御することが可能となる。この結果、空間浮遊映像表示装置の用途に応じて最適な視野角特性が得られ併せて従来の拡散特性を有した光源装置を用いた映像表示装置に比べて高輝度な空間浮遊像を得ることができる。
 <空間浮遊映像情報表示システムの第2の構成例>
 空間浮遊映像情報表示システムの第2の実施例について図4を用いて説明する。図4は、図2(B)に示したユニットを筐体121の内部に配置したもので第一の透過性プレート110の内部にセンシングユニット(図示せず)を設け空間浮遊映像A1に対して十分なサイズのセンシング領域205を確保している。図5に示したセンシングユニット203は筐体121の内部に配置され第一の透過性プレート110の筐体側にOリングなどを設けて外部の湿気の侵入を防ぐ。空間浮遊映像表示装置の結像エリアA1をカバーするセンシングエリア(センシング領域)205をセンシングするセンシングユニット203は筐体121の内部に設けられ第一の透過性プレート110を透過してセンシングエリアを形成する。
 以上述べた映像情報表示システムの第2の実施例においても、使用者が表示されている空間浮遊映像A1に対して空間操作入力を行うことができる。更に、試作品にて指の接触について実機を用いて評価した結果、空間浮遊映像A1の結像位置を第一の透過性プレート110に対して50mm以上離すことで、操作者は画面に触れることなく、映像情報表示システムに対して空間操作入力を行うことができた。
 なお、上述と同様に、図4で説明した構成は、ATM、自動券売機、キオスク端末、据置き型表示装置等の各種表示装置に組み込んでもよい。
 <空間映像をセンシングする技術手段>
 空間浮遊映像表示装置を介して観視(操作)者が情報システムに双方向で接続されるために、空間浮遊映像を疑似的に操作するためのセンシング技術について、以下に説明する。
 空間浮遊映像情報システムにおいては、空間浮遊映像と併せてセンシング情報を後述する2次元センサにより読み取ることで、表示映像に対する画像操作を可能にする。
 空間浮映像表示装置を介して観視(操作)者が情報システムに双方向で接続されるために、空間浮遊映像を疑似的に操作するためのセンシング技術について、以下に説明する。図5は、センシング技術を説明するための原理図である。空間浮遊映像に対応したTOF(Time of Flight)システムを内蔵した測距装置203を設ける。システムの信号に同期させ光源である近赤外線発光のLED(Light Emitting Diode)を発光させる。LEDの光線出射側には発散角を調整するための光学素子を設け受光素子としてピコ秒の時間分解能を持つ高感度なアバランシェダイオードを一対とし、エリアに対応するように横方向に整列配置する。
 システムからの信号に同期させて光源であるLEDが発光し、かかる光が測距すべき対象物(観視者の指の先端)に反射して受光部に戻るまでの時間だけ位相Δtがずれる。この時間差Δtから対象物の距離を算出し、並列配置された複数のセンサの位置情報と合わせて2次元情報として操作者の指の位置、動きを感知する。この結果、空間浮遊映像に対して誤検知が少ないセンシング機能を有する空間浮遊情報表示システムまたは空間浮遊映像表示装置を実現できる。
 <ゴースト像の低減技術>
 映像表示装置1に用いる液晶パネル11として7インチのWUXGA(1920×1200画素)液晶表示パネルを用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部の透過部d2が400μmと光吸収部d1が20μmからなるピッチBが420μmであれば十分な透過特性と再帰反射部材での異常光の発生原因となる映像表示装置からの映像光の拡散特性を制御し空間浮遊像の両側に発生するゴースト像を軽減する。
 液晶パネル11の表面に映像光制御シートを設ける。この映像光制御シートにより外界からの外光が空間浮遊映像表示装置内部に侵入し液晶パネル11に入射するのを妨ぐことにもなるため、構成部品の信頼性向上にも繋がる。この映像光制御シートとして、例えば信越ポリマー(株)の視野角制御フィルム(VCF)が適しており、その構造は透明シリコンと黒色シリコンを交互に配置し光入出射面に合成樹脂を配置してサンドウィッチ構造としているため、外光制御が可能となる。
 <液晶パネルの性能>
 ところで、一般的なTFT(Thin Film Transister)液晶パネルは、光の出射方向によって液晶と偏光板相互の特性により輝度、コントラスト性能が異なる。図18に示した測定環境での評価では、パネル短手(上下)方向での輝度と視野角の特性は図20に示すようにパネル面に垂直(出射角度0度)な出射角より少しずれた角度での特性(本実施例では+5度)が優れている。この理由は、液晶パネルの短手(上下)方向では、光をねじる特性が印加電圧最大の時に0度とならないためである。
 他方、パネル短手(上下)方向のコントラスト性能は、図22に示すように、-15度から+15度の範囲が優れており、輝度特性と合わせると、5度を中心にして±10度の範囲での使用が最も優れた特性を得ることとなる。
 また、パネル長手(左右)方向での輝度と視野角の特性は、図19に示すように、パネル面に垂直(出射角度0度)な出射角での特性が優れている。この理由は、液晶パネルの長手(左右方向)では光をねじる特性が印加電圧最大の時に0度となるためである。
 同様に、パネル長手(左右)方向のコントラスト性能は図21に示すように、-5度から-10度の範囲が優れており、輝度特性と合わせると-5度を中心にして±5度の範囲での使用が最も優れた特性を得ることとなる。このため、液晶パネルから出射する映像光の出射角度は、前述した光源装置13の導光体に設けた光束方向変換手段(反射面307、314等)により最も優れた特性が得られる方向から液晶パネルに光を入射させ、映像信号により光変調することが、映像表示装置1の画質と性能を向上させることになる。
 映像表示素子としての液晶パネルの輝度、コントラスト特性を最大限に生かすためには、光源からの液晶パネルへの入射光を上述した範囲に設定することで、空間浮遊映像の映像品位を向上することができる。
 <光源光の制御方法>
 本実施例では、図6に示すように、光源装置13からの出射光束の利用効率を向上させ、消費電力を大幅に低減するために、光源装置13と液晶表示パネル11を含んで構成される映像表示装置1において、光源装置13からは液晶パネル11の特性が最大となるような入射角度で液晶パネル11に入射後、映像信号に合わせて輝度変調された映像光線を再帰反射部材に向けて出射させる。この時、空間浮遊映像情報表示システムのセット容積を小型化するために、液晶パネル11と再帰反射部材の配置の自由度を高めることが要望される。更に、再帰反射後、浮遊映像を所望の位置に形成し最適な指向性を確保するため、以下の技術手段を用いる。
 液晶パネル11の映像表示面には、光方向変換パネルの前面に示すリニアフレネルレンズ等の光学部品からなる透明シートを設け、高い指向性を付与したまま再帰反射光学部材への入射光束の出射方向を制御して空間浮遊映像の結像位置を決定する。この構成によれば、映像表示装置1からの映像光は、レーザ光のように観察者に対して高い指向性(直進性)で効率良く届くこととなり、その結果、高品位な浮遊映像を高解像度で表示すると共に、光源装置13を含む映像表示装置1による消費電力を大幅に低減することが可能となる。
 <映像表示装置の例1>
 図11には、映像表示装置1の具体的な構成の他の一例を示す。図11の光源装置は、図12等の光源装置と同様である。この光源装置13は、例えばプラスチックなどのケース内にLED、コリメータ、合成拡散ブロック、導光体等を収納して構成されており、その上面には液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面には、半導体光源であるLED(Light Emitting Diode)素子14a、14bや、その制御回路を実装したLED基板が取り付けられると共に、LED基板の外側面には、LED素子および制御回路で発生する熱を冷却するための部材であるヒートシンクが取り付けられる(図示せず)。
 また、ケースの上面に取り付けられた液晶表示パネルフレームには、当該フレームに取り付けられた液晶表示パネル11と、更に、液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)(図示せず)などが取り付けられて構成されている。すなわち、液晶表示素子である液晶表示パネル11は、固体光源であるLED素子14a,14bと共に、電子装置を構成する制御回路(ここでは図示せず)からの制御信号に基づいて、透過光の強度を変調することによって、表示映像を生成する。
 <映像表示装置の例1の光源装置の例1>
 続いて、ケース内に収納されている光源装置等の光学系の構成について、図10と共に、図12(a)および(b)を参照しながら、詳細に説明する。図10および図11には、光源を構成するLED14a、14bが示されており、これらはコリメータ15に対して所定の位置に取り付けられている。なお、このコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、このコリメータ15は、図11(b)にも示すように、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その頂部(LED基板に接する側)におけるその中央部に、凸部(すなわち、凸レンズ面)157を形成した凹部153を有する。
 また、コリメータ15の平面部(上記の頂部とは逆の側)の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)154を有している。なお、コリメータ15の円錐形状の外周面を形成する放物面156は、LED14a、14bから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 また、LED14a、14bは、その回路基板である、基板102の表面上の所定の位置にそれぞれ配置されている。この基板102は、コリメータ15に対して、その表面上のLED14aまたは14bが、それぞれ、その凹部153の中央部に位置するように配置されて固定される。
 かかる構成によれば、上述したコリメータ15によって、LED14aまたは14bから放射される光のうち、特に、その中央部分から上方(図の右方向)に向かって放射される光は、コリメータ15の外形を形成する2つの凸レンズ面157、154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ15の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したコリメータ15によれば、LED14aまたは14bにより発生された光のほぼすべてを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 なお、コリメータ15の光の出射側には、偏光変換素子21が設けられている。偏光変換素子21は、偏光変換部材と称してもよい。この偏光変換素子21は、図11(a)からも明らかなように、断面が平行四辺形である柱状(以下、平行四辺形柱)の透光性部材と、断面が三角形である柱状(以下、三角形柱)の透光性部材とを組み合わせ、コリメータ15からの平行光の光軸に対して直交する面に平行に、複数、アレイ状に配列して構成されている。更に、これらアレイ状に配列された隣接する透光性部材間の界面には、交互に、偏光ビームスプリッタ(以下、「PBS膜」と省略する)211と反射膜212とが設けられており、また、偏光変換素子21へ入射してPBS膜211を透過した光が出射する出射面には、λ/2板213が備えられている。
 この偏光変換素子21の出射面には、更に、図11(a)にも示す、矩形状の合成拡散ブロック16が設けられている。すなわち、LED14aまたは14bから出射された光は、コリメータ15の働きにより平行光となって合成拡散ブロック16へ入射し、出射側のテクスチャー161により拡散された後、導光体17に到る。
 導光体17は、例えばアクリル等の透光性の樹脂により断面が略三角形(図11(b)参照)の棒状に形成された部材であり、そして、図25からも明らかなように、合成拡散ブロック16の出射面に第1の拡散板18aを介して対向する導光体光入射部(面)171と、斜面を形成する導光体光反射部(面)172と、第2の拡散板18bを介して、液晶表示素子である液晶表示パネル11と対向する導光体光出射部(面)173と、を備えている。
 導光体17の導光体光反射部(面)172には、その一部拡大図である図10にも示すように、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されている。そして、反射面172a(図では右上がりの線分)は、図において一点鎖線で示す水平面に対してαn(n:自然数であり、本例では、例えば、1~130である)を形成しており、その一例として、ここでは、αnを43度以下(ただし、0度以上)に設定している。
 導光体入射部(面)171は、光源側に傾斜した湾曲の凸形状に形成されている。これによれば、合成拡散ブロック16の出射面からの平行光は、第1の拡散板18aを介して拡散されて入射し、図10からも明らかなように、導光体入射部(面)171により上方に僅かに屈曲(偏向)しながら導光体光反射部(面)172に達し、ここで反射して図の上方の出射面に設けた液晶表示パネル11に到る。
 以上に詳述した映像表示装置1によれば、光利用効率やその均一な照明特性をより向上すると同時に、モジュール化されたS偏光波の光源装置を含め、小型かつ低コストで製造することが可能となる。なお、上記の説明では、偏光変換素子21をコリメータ15の後に取り付けるものとして説明したが、本発明はそれに限定されることなく、液晶表示パネル11に到る光路中に設けることによっても同様の作用・効果が得られる。
 なお、導光体光反射部(面)172には、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されており、照明光束は、各々の反射面172a上で全反射されて上方に向かい、更には、導光体光出射部(面)173には挟角拡散板を設けて略平行な拡散光束として指向特性を調整する光方向変換パネル54に入射し、斜め方向から液晶表示パネル11へ入射する。この映像表示装置1の出射光は光源装置13の上面に設けた光方向変換パネル54により出射方向を調整される。その結果、液晶表示パネル11からの出射光も制御され、この映像表示装置1を用いた空間浮遊映像情報システムにより得られる空間浮遊映像の光拡散方向が制御される。本実施例では光方向変換パネル54を導光体出射面173と液晶表示パネル11の間に設けたが、液晶表示パネル11の出射面に設けても、同様の効果が得られる。
 液晶表示パネル11からの出射光は、一般的なTV用途の装置では、例えば図17(A)中の「従来特性(X方向)」および図17(B)中の「従来特性(Y方向)」のプロット曲線に示すように、画面水平方向(図30(A)のグラフのX軸に対応した表示方向)と画面垂直方向(図17(B)のグラフのY軸に対応した表示方向)とで、互いに同様な拡散特性を有する。
 これに対して、本実施例の液晶表示パネルからの出射光束の拡散特性は、例えば図17(A)中の「例1(X方向)」および図17(B)中の「例1(Y方向)」のプロット曲線に示すような拡散特性となる。
 一具体例では、正面視(角度0度)の輝度に対して50%の輝度(約半分に低下する輝度)になる視野角が13度となるように設定した場合、一般的な家庭用のTV用途の装置の拡散特性(角度62度)に対して約1/5の角度となる。同様に、垂直方向の視野角を上側と下側とで不均等に設定する場合の一例では、上側の視野角を下側の視野角に対して1/3程度に抑える(狭くする)ように、反射型導光体の反射角度や反射面の面積等を最適化する。
 上記のような視野角等の設定が行われることにより、従来の液晶TVに比べ、ユーザの観視方向に向かう映像の光量が格段に増加(映像の明るさの点で大幅に向上)し、かかる映像の輝度は50倍以上となる。
 更に、図17の「例2」に示す視野角特性とした場合、正面視(角度0度)で得られる映像の輝度に対して50%の輝度(約半分に低下する輝度)になる視野角が5度となるように設定した場合、一般的な家庭用のTV用途の装置の拡散特性(角度62度)に対して約1/12の角度(狭い視野角)となる。同様に、垂直方向の視野角を上側と下側とで均等に設定する場合の一例では、かかる垂直方向の視野角を従来に対して1/12程度に抑える(狭くする)ように、反射型導光体の反射角度と反射面の面積等を最適化する。
 このような設定が行われることにより、従来の液晶TVに比べ、観視方向(ユーザの視線方向)に向かう映像の輝度(光量)が大幅に向上し、かかる映像の輝度は100倍以上となる。
 以上述べたように、視野角を挟角とすることで、観視方向に向かう光束量を集中できるので、光の利用効率が大幅に向上する。この結果、一般的なTV用途の液晶表示パネルを使用しても、光源装置の光拡散特性を調整することで、同様な消費電力で大幅な輝度向上が実現可能で、明るい屋外に向けての情報表示システムに対応した映像表示装置とすることができる。
 大型の液晶表示パネルを使用する場合には、画面周辺の光は画面中央を観視者が正対した場合に観視者の方向に向かうように内側に向けることで、画面明るさの全面性が向上する。図14は、液晶表示パネルから観視者までの距離Lと、映像表示装置のパネルサイズ(画面比16:10)と、をパラメータとした時の液晶表示パネル長辺と液晶表示パネル短辺との収斂角度を求めたもので上側に示す図では、液晶表示パネルの画面を縦長(以下、「縦使い」とも称する)として映像を観視する場合を前提としている。この場合には、液晶表示パネルの短辺(適宜、図14中の矢印V方向を参照)に合わせて収斂角度を設定すればよい。
 より具体的な例としては、図14中のプロットグラフに参照されるように、例えば、22”パネルの縦使いで観視距離が0.8mの場合には、収斂角度を10度に設定することにより、画面の各隅(4コーナー)からの映像光を、観視者に向けて効果的に投射ないし出力することができる。
 同様に、15”パネルの縦使いで観視する場合には観視距離が0.8mの場合には収斂角度を7度とすれば画面4コーナーからの映像光を有効に観視者に向けることができる。以上述べたように、液晶表示パネルのサイズおよび縦使いか横使いかによって画面周辺の映像光を、画面中央を観視するのに最適な位置にいる観視者に向けることで、画面明るさの全面性を向上できる。
 基本構成としては、上述の図17などに示すように、光源装置により挟角な指向特性の光束を液晶表示パネル11に入射させ、映像信号に合わせて輝度変調することで、液晶表示パネル11の画面上に表示した映像情報を、再帰反射部材で反射させ得られた空間浮遊映像を、透明な部材100を介して室外または室内に表示する。
 以下、光源装置の他の例について複数の例を説明する。これらの光源装置の他の例は、いずれも上述した映像表示装置の例の光源装置に変えて採用してもよい。
 大型の液晶表示パネルを使用する場合には上述したように、画面周辺の光は画面中央を観視者が正対した場合に観視者の方向に向かうように内側に向けることで、画面明るさの全面性が向上するが、他方、観視者の左右の目のどちらで視認するかにより両眼視差が発生する。図15は、液晶表示パネルから観視者までの距離Lと、映像表示装置のパネルサイズ(画面比16:10)をパラメータとした時の液晶表示パネル長辺と液晶表示パネル短辺との収斂角度を左右の目の位置を基準として求めたものである。
 パネルサイズが小型な程、観視距離が近いほど左右の目による両眼視での収斂角は大きくなる。特に7インチ以下の小型パネルを使用する場合には、両眼視差による収斂角度は重要な要件となるため、例えば7インチ以下の場合、図17に示した光源の光拡散特性を拡大するか指向特性を持たせて、システムの最適観視範囲に映像光が向くように設計する。
 更に、システムの要求仕様によっては、水平と垂直の指向特性、拡散特性を得るために、前述した光源装置13の導光体の反射面の形状、面粗さ、傾きなどを最適設計する必要がある。
 <光源装置の例1>
 次に、図6を参照して、光源装置の別の例について説明する。図6(a)および図6(b)は、導光体311を説明するために、液晶表示パネル11と拡散板206の一部を省略した図である。
 図6は、光源を構成するLED14が基板102に備え付けられた状態を示している。これらLED14および基板102は、リフレクタ300に対して所定の位置に取り付けられている。
 図6(a)に示すように、LED14は、リフレクタ300が配置される側の液晶表示パネル11の辺(この例では短辺)と平行な方向に、一列に配置される。図示の例では、かかるLEDの配置と対応して、リフレクタ300が配置されている。なお、リフレクタ300は複数配置されてもよい。
 一具体例では、リフレクタ300は、各々、プラスチック材料により形成されている。他の例として、リフレクタ300は、金属材料やガラス材料で形成してもよいが、プラスチック材料の方が成型しやすいため、本実施例ではプラスチック材料のものを用いる。
 図6(b)に示すように、リフレクタ300の内側(同図中の右側)の面は、放物面を子午面で切り取った形状の反射面(以下は「放物面」と称する場合がある)305を備える。リフレクタ300は、LED14から出射される発散光を、上記の反射面305(放物面)で反射させることにより、略平行な光に変換し、変換された光を導光体311の端面に入射させる。一具体例では、導光体311は、透過型導光体である。
 リフレクタ300の反射面は、LED14の出射光の光軸に対して非対称な形状である。また、リフレクタ300の反射面305は、上述のように放物面であり、かかる放物面の焦点にLEDを配置することで、反射後の光束を略平行光に変換する。
 LED14は面光源であるため放物面の焦点に配置してもLEDからの発散光を完全な平行光に変換することはできないが、本願発明の光源の性能を左右することはない。LED14とリフレクタ300は一対のペアである。また、LED14の基板102への取り付け精度±40μmにおいて所定の性能を確保するためには、LEDの基板の取り付けは最大10個以下とすべきであり、量産性を考慮すれば5個程度に抑えるとよい。
 LED14とリフレクタ300は一部において近接されるがリフレクタ300の開口側の空間へ放熱できるためLEDの温度上昇が低減できる。このため、プラスチック成型品のリフレクタ300が使用可能となる。その結果、このリフレクタ300によれば、反射面の形状精度をガラス素材のリフレクタに比べ10倍以上向上できるので、光利用効率を向上させることができる。
 一方、導光体311の底面303には反射面が設けられ、LED14からの光はリフレクタ300により平行光束に変換された後、当該反射面で反射し、導光体311に対向して配置された液晶表示パネル11に向け出射する。底面303に設けられた反射面には、図6(a)に示したように、リフレクタ300からの平行光束の進行方向において、傾きの異なる複数の面があってもよい。傾きの異なる複数の面のそれぞれの面はリフレクタ300からの平行光束の進行方向に垂直な方向に延伸する形状を有してもよい。
 また、底面303に設けられた反射面の形状は平面形状でもよい。この時、液晶表示パネル11に対向した導光体311の面に設けた屈折面314により、導光体311の底面303に設けられた反射面で反射された光を屈折させて液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間映像情報表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。
 屈折面314は、図6(a)、(b)に示したように、リフレクタ300からの平行光束の進行方向において、傾きの異なる複数の面があってもよい。傾きの異なる複数の面のそれぞれの面はリフレクタ300からの平行光束の進行方向に垂直な方向に延伸する形状を有してもよい。当該複数の面の傾きは、導光体311の底面303に設けられた反射面で反射された光を液晶表示パネル11に向かって屈折させる。また、屈折面314は、透過面としてもよい。
 なお、液晶表示パネル11の前に拡散板206がある場合は、前記反射面で反射された光は、屈折面314の前記複数の傾きにより拡散板206に向かって屈折される。すなわち、屈折面314が有する傾きが異なる複数の面の延伸方向と、底面303に設けられた反射面が有する傾きが異なる複数の面の延伸方向は平行である。両者の延伸方向を平行にすることにより、より好適に光の角度を調整することができる。他方、LED14は、金属性の基板102に半田付けする。このためLEDの発熱を、基板を介して空気中に放熱することができる。
 また、基板102にリフレクタ300が接していてもよいが、空間を開けておいてもよい。空間を開ける場合、リフレクタ300は筐体に接着させて配置される。空間を開けておくことで、LEDの発熱を空気中に放熱でき、冷却効果が上がる。この結果、LEDの動作温度が低減できるので、発光効率の維持と長寿命化を実現することができる。
 <光源装置の別の例2>
 続いて、図6に示した光源装置に対して、偏光変換を用いて光利用効率を1.8倍向上した光源装置に関する光学系の構成について、図7Aおよび図7Bおよび図7Cおよび図7Dを参照しながら詳細に説明する。なお、図7Aにおいてサブリフレクタ308の図示は省略している。
 図7A、図7Bおよび図7Cは、光源を構成するLED14が基板102に備え付けられた状態を示しており、これらはリフレクタ300とLED14を一対のブロックとし、複数のブロックを有するユニット312で構成する。
 このうち、図7A(2)に示した基材320は、基板102の基材である。一般に、金属性の基板102は熱を持っているため、かかる基板102の熱を絶縁(断熱)するために、基材320は、プラスチック材料などを用いるとよい。リフレクタ300の材質と反射面の形状は、図6の光源装置の例と同じ材質および形状でよい。
 また、リフレクタ300の反射面は、LED14の出射光の光軸に対して非対称な形状でもよい。この理由を、図7A(2)により説明する。本実施例では、図6の例と同様にリフレクタ300の反射面は放物面であり、放物面の焦点位置に面光源であるLEDの発光面の中心を配置する。
 また、放物面の特性上、発光面の4隅からの発光も略平行光束となり、出射方向が異なるだけである。そのため、発光部が面積を持っていても、後段に配置された偏光変換素子21とリフレクタ300の間隔が短ければ偏光変換素子21へ入射する光量と変換効率は、ほとんど影響を受けない。
 また、LED14の取り付け位置が、対応するリフレクタ300の焦点に対してXY平面内でずれても上述した理由により光変換効率の低下を軽減できる光学系が実現できる。更に、LED14の取り付け位置がZ軸方向にばらついた場合であっても、変換された平行光束がZX平面内で移動するだけであり、面光源であるLEDの取り付け精度を大幅に軽減できる。本実施例においても放物面の一部を子午的に切り欠いた反射面を有するリフレクタ300について記載したが、放物面全面を反射面として切り欠いた一部分にLEDを配置してもよい。
 一方、本実施例では、図7B(1)、図7Cに示したように、LED14からの発散光を放物面321で反射させ略平行な光に変換した後、後段の偏光変換素子21の端面に入射させ、偏光変換素子21により特定の偏波に揃えることを特徴的な構成としている。この特徴的な構成により、本実施例では、光の利用効率が前述した図6の例に対して1.8倍となり、高効率な光源が実現できる。
 なお、この時、LED14からの発散光を放物面321で反射させた略平行な光は、すべて均一というわけではない。よって、複数の傾きを持った反射面307により反射光の角度分布を調整することで、液晶表示パネル11に向けて、液晶表示パネル11に対して垂直方向に入射可能としている。
 ここで、本図の例では、LEDからリフレクタに入る光(主光線)の向きと液晶表示パネルに入る光の向きが略平行になるように配置している。この配置は、設計上配置がしやすく、また、熱源を光源装置の下に配置する方が、空気が上に抜けるのでLEDの温度上昇を低減できるので好適である。
 また、図70B(1)示したように、LED14からの発散光の捕捉率を向上させるために、リフレクタ300で捕捉できない光束をリフレクタ上部に配置した遮光板309に設けたサブリフレクタ308で反射させ、下部のサブリフレクタ310の斜面で反射させ後段の偏光変換素子21の有効領域に入射させ光の利用効率を更に向上させる。すなわち、本実施例では、リフレクタ300で反射した光の一部をサブリフレクタ308で反射し、サブリフレクタ308で反射された光をサブリフレクタ310で導光体306に向かう方向に反射させる。
 偏光変換素子21により特定の偏波に揃えた略平行光束を反射型導光体306の表面に設けた反射形状によって導光体306に対向して配置された液晶表示パネル11に向けて反射される。この時、液晶表示パネル11に入射する光束の光量分布は、前述したリフレクタ300の形状と配置および反射型導光体の反射面形状(断面形状)と反射面の傾き、面粗さによって最適設計される。
 導光体306の表面に設けた反射面形状としては、偏光変換素子21の出射面に対向して複数の反射面を配置し、偏光変換素子21からの距離に応じて、反射面の傾き、面積、高さ、ピッチを最適化することで、前述したように、液晶表示パネル11に入射する光束の光量分布を所望の値とする。
 反射型導光体に設けた反射面307は、図7B(2)に示すように、1面に複数の傾きを持つような構成とすることで、より高精度に反射光の調整を実現できる。なお、反射面において、1面に複数の傾きを持つような構成としては、反射面として使用する領域が、複数面または多面または曲面でもよい。更に、拡散板206の拡散作用により、より均一な光量分布を実現する。LEDに近い側の拡散板に入射する光は、反射面の傾きを変化させることで、均一な光量分布を実現する。この結果、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に調整できるため、この光源を用いた映像表示装置を用いた空間映像情報表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。
 本実施例では、反射面307の基材は、耐熱性ポリカーボネイトなどのプラスチック材料を用いる。また、λ/2板213の出射直後の反射面307の角度は、λ/2板と反射面の距離によって変化する。
 本実施例においても、LED14とリフレクタ300は、一部において近接されるが、リフレクタ300の開口側の空間へ放熱できLEDの温度上昇を低減できる。また、基板102とリフレクタ300を図7A、図7B、図7Cと上下逆に配置してもよい。
 ただし、基板102を上に配置すると基板102が液晶表示パネル11と近くなるので、レイアウトが困難になる場合がある。よって、図示した通り、基板102をリフレクタ300の下側(液晶表示パネル11から遠い側)に配置する方が、装置内の構成がより簡素になる。
 図7Cに示すように、偏光変換素子21の光入射面には、後段の光学系に不要な光が入射しないように、遮光板410を設けるとよい。このような構成とすることで、温度上昇を抑えた光源装置が実現できる。液晶表示パネル11の光入射面に設けた偏光板では本願発明の偏光が揃った光束では吸収により温度上昇が低減させるが、反射型導光体で反射した際に偏光方向が回転し一部の光は入射側偏光板で吸収される。更に、液晶そのものでの吸収や電極パターンに入射した光による温度上昇で液晶表示パネル11の温度も上昇するが、反射型導光体306の反射面と液晶表示パネル11の間に十分な空間があり自然冷却が可能となる。
 図7Dは、図7B(1)および図7Cの光源装置の変形例である。図7D(1)は、図7B(1)の光源装置の一部を抜粋してその変形例を図示している。その他の構成については、図7B(1)で上述した光源装置と同じ構成であるため、図示および繰り返しの説明を省略する。
 まず、図7D(1)に示す例では、サブリフレクタ310の凹部319の高さは、蛍光体114から横向き(X軸方向)に出力される蛍光の主光線(図7D(1)中、X軸と平行な方向に伸びる直線を参照)が、サブリフレクタ310の凹部319から抜けるように、蛍光体114よりも低い位置となるように調整されている。更に、蛍光体114から横向きに出力される蛍光の主光線が遮光板410により遮られずに偏光変換素子21の有効領域に入射するように、蛍光体114の位置に対して、Z軸方向において遮光板410の高さが低くなるように調整されている。
 また、サブリフレクタ310の頂部の凹凸の凸部が有する反射面は、サブリフレクタ308で反射した光を導光体306に導くために、サブリフレクタ308で反射した光を反射する。よって、サブリフレクタ310の凸部318の高さは、サブリフレクタ308で反射した光を反射させ後段の偏光変換素子21の有効領域に入射するように調整されることで、光の利用効率を更に向上させることができる。
 なお、サブリフレクタ310は図7A(2)に示すように一方方向に延伸して配置され、凹凸形状となっている。更に、サブリフレクタ310の頂部には、1つ以上の凹部を有する凹凸が周期的に一方向に沿って並んでいる。このような凹凸形状とすることにより、蛍光体114から横向きに出力される蛍光の主光線が偏光変換素子21の有効領域に入射するように構成できる。
 また、サブリフレクタ310の凹凸形状は、LED14がある位置に凹部319がくるピッチで周期的に配置されている。すなわち、蛍光体114のそれぞれは、サブリフレクタ310の凹凸の凹部の配置のピッチに対応して一方向に沿って周期的に配置される。なお、蛍光体114がLED14に備えられている場合は、蛍光体114を光源の発光部と表現してもよい。
 また、図7D(2)は、図7Cの光源装置の一部を抜粋してその変形例を図示している。その他の構成については、図7Cの光源装置と同じ構成であるため、図示および繰り返しの説明を省略する。図7D(2)に示すように、サブリフレクタ310はなくてもよいが、図7D(1)と同様に、蛍光体114から横向きに出力される蛍光の主光線が遮光体410により遮られずに偏光変換素子21の有効領域に入射するように、蛍光体114の位置に対して、Z軸方向において遮光板410の高さが低くなるように調整されている。
 なお、図7A、図7B、図7C、図7Dの光源装置について、図7A(1)に示したように、反射型導光体306の反射面と液晶表示パネル11の間の空間へのごみ入り込み防止、光源装置外部への迷光発生防止、および光源装置外部からの迷光侵入防止のために、側壁400を設けてもよい。側壁400を設ける場合は、導光体306と拡散板206との空間を挟むように配置される。
 当該偏光変換素子21によって偏光変換された光を出射する偏光変換素子21の光出射面は、側壁400と導光体306と拡散板206と偏光変換素子21とで囲まれた空間に面する。また、側壁400の内側の面のうち、偏光変換素子21の出射面から光が出力される空間(図7B(1)の偏光変換素子21の出射面から右側の空間)を側面から覆う部分の面は、反射膜などを有する反射面を用いる。すなわち、上記空間に面する側壁400の面は、反射膜を有する反射領域を備える。側壁400の内側の面のうち当該部分を反射面とすることで、当該反射面で反射した光を光源光として再利用でき、光源装置の輝度を向上することができる。
 側壁400の内側の面のうち、偏光変換素子21を側面から覆う部分の面は、光反射率の低い面(反射膜のない黒色面など)とする。これは、偏光変換素子21の側面で反射光が生じると、想定外の偏光状態の光が生じ、迷光の原因となるためである。言い換えると、上記の面を光反射率の低い面とすることにより、映像の迷光および想定外の偏光状態の光の発生を防止ないし抑制することができる。また、側壁400の一部に空気が通る穴をあけておくことで、冷却効果を向上させるように構成してもよい。
 なお、図7A、図7B、図7C、図7Dの光源装置は、偏光変換素子21を用いる構成を前提として説明した。しかしながら、これらの光源装置から偏光変換素子21を省略して構成してもよい。この場合、より安価に光源装置を提供することができる。
 <光源装置の別の例3>
 続いて、光源装置の例1に示した光源装置を基に反射型導光体304を用いた光源装置に関する光学系の構成について、図8A(1)、(2)、(3) 、および図8Bを参照しながら詳細に説明する。
 図8Aは、光源を構成するLED14が基板102に備え付けられた状態を示しており、これらはコリメータ18とLED14が一対のブロックとし、複数のブロックを有するユニット328で構成する。本実施例のコリメータ18は、LED14と近接しているため、耐熱性を考慮してガラス材料を採用している。コリメータ18の形状は、図7のコリメータ15で説明した形状と同様である。また、偏光変換素子21へ入射する前段に遮光板317を設けることにより、不要な光が後段の光学系に入射するのを防止ないし抑制し、当該不要な光による温度の上昇を軽減している。
 図8Aに示す光源のその他の構成および効果については、図7A、図7B、図7C、図7Dと同様であるため、繰り返しの説明を省略する。図8Aの光源装置は、図7A、図7B、図7Cで説明したのと同様に、側壁を設けてもよい。側壁の構成および効果については、既に説明した通りであることから、繰り返しの説明を省略する。
 図8Bは、図8A(2)の断面図である。図8Bに示す光源の構成については、図7の光源の構造の一部と共通であり、図18においてすでに説明済みであるため、繰り返しの説明を省略する。
 <光源装置の別の例4>
 続いて、図12の光源装置は、図8に示した光源装置に用いたコリメータ18とLED14が一対のブロックとして複数のブロックを有するユニット328で構成する。液晶表示パネル11の背面の両端部に配置したLEDと反射型導光体504を用いた光源装置に関する光学系の構成について、図12(a)(b)および(c)を参照しながら詳細に説明する。
 図12は光源を構成するLED14が基板505に備え付けられた状態を示しており、これらはコリメータ18とLED14が一対のブロックとした複数のブロックを有するユニット503で構成する。ユニット503は液晶表示パネル11の背面の両端部に配置される(本実施例では短辺方向に3ユニットが並んで配置される)。ユニット503から出力された光は対向配置された反射型導光体504で反射され、液晶表示パネル11(図12(c)に図示)に入射する構成としている。
 反射型導光体504は、図12(c)に示すように、それぞれの端部に配置されたユニットに対応して2つのブロックに分割され中央部が最も高くなるように配置されている。コリメータ18は、LED14と近接しているため、LED14から発せられる熱への耐熱性を考慮して、ガラス材料を採用している。コリメータ18の形状は、図10のコリメータ15で説明した形状である。
 LED14からの光はコリメータ18を介して偏光変換素子501へ入射する。光学素子81の形状により後段の反射型導光体504に入射する光の分布を調整する構成としている。すなわち、液晶表示パネル11に入射する光束の光量分布は、前述したコリメータ18の形状と配置、および光学素子81の形状と拡散特性および反射型導光体の反射面形状(断面形状)と、反射面の傾き、反射面の面粗さと、を調整することによって最適設計される。
 反射型導光体504の表面に設けた反射面形状としては、図12(b)に示すように、偏光変換素子の出射面に対向して複数の反射面を配置し、偏光変換素子21からの距離に応じて、反射面の傾き、面積、高さ、ピッチを最適化する。また、同一反射面となる領域(すなわち、偏光変換素子に対向する面)を多面体に分割することで、前述したように液晶表示パネル11に入射する光束の光量分布を所望の値とする(最適化する)ことができる。このため、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に調整できるため、この光源を用いた映像表示装置を用いた空間映像情報表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。
 反射型導光体に設けた反射面は、図7Bで説明した反射型導光体と同様に、1面(光の反射させる領域)を、複数の傾きを持った形状を持たせる構成(図12の例ではXY平面内で14分割して異なった傾斜面で構成)とすることで、より高精度に反射光の調整を行うことができる。また、反射型導光体からの反射光が光源装置13の側面から漏れないようにするため、遮光壁507を設けることにより、所望の方向(液晶表示パネル11へ向かう方向)以外への漏れ光の発生を防止することができる。
 また、図12の反射型導光体504の左右に配置されるユニット503を、図7の光源装置に置き換えてもよい。すなわち、図7の光源装置(基板102、リフレクタ300、LED14等)を複数用意し、かかる複数の光源装置を、図12(a)、(b)、(c)に参照されるように、互いに対向する位置に配置した構成としてもよい。
 図13(B)は、図13(A)に示したユニット503を、上部に6個、下部に6個配置して構成した光源装置である。図13(B)に示す光源装置は、5個のLEDを横に並べたユニット503を上記のように配置した構成であり、単一電源で電流制御して所望の輝度を得る。このため、液晶パネルを照明する光源装置としては、それぞれのユニット503が照射する領域ごとに光源輝度を制御することができる。図13に示す構成では、反射面222と、かかる反射面222とは異なる反射面502と、を備える。このうち、反射面222は、横格子のような形状、あるいは所定の幅を有する帯状である。
 一方、反射面502は、縦横の格子のような形状である。これらの微細な格子の形状および分割面の傾きを最適設計することで、所望の出射光分布(出射光の出射方向と拡散特性)を得る。このため、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、上述した2つの実施例と同様に、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向を同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間映像情報表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。
 図9は、拡散板206の形状の一例を示す断面図である。上述のように、LEDから出力された発散光は、リフレクタ300またはコリメータ18で略平行光に変換され、偏光変換素子21で特定偏波に変換された後に、導光体で反射させられる。そして、導光体で反射した光束は、拡散板206の入射面の平面部分を通過して、液晶表示パネル11に入射する(図9中の「導光体からの反射光」を示す2本の実線矢印を参照)。
 また、偏光変換素子21から出射した光のうち、発散光束は、拡散板206の入射面に設けた傾斜面を有する突起部の斜面で全反射して、液晶表示パネル11に入射する。偏光変換素子21から出射した光を拡散板206の突起部の斜面で全反射させるために、突起部の斜面の角度を、偏光変換素子21からの距離に基づいて変化させる。偏光変換素子21から遠い側またはLEDから遠い側の突起部の斜面の角度をαとし、偏光変換素子21から近い側またはLEDから近い側の突起部の斜面の角度をα’とする場合、αはα’より小さい(α<α’)。このような設定とすることにより、偏光変換された光束を有効利用することが可能となる。
 <映像表示装置の拡散特性制御技術>
 液晶表示パネル11からの映像光の拡散分布を調整する方法として、光源装置13と液晶表示パネル11との間、あるいは、液晶表示パネル11の表面に、レンチキュラーレンズを設け、当該レンズの形状を最適化することが挙げられる。すなわち、レンチキュラーレンズ形状の最適化を行うことによって、液晶表示パネル11から一方向に出射される映像光(以下、「映像光束」とも称する)の出射特性を調整することができる。
 代替的または追加的に、液晶表示パネル11の表面(または光源装置13と液晶表示パネル11との間)に、マイクロレンズアレイをマトリックス状に配置し、当該配置の態様を調整してもよい。すなわち、マイクロレンズアレイの配置を調整することによって、映像表示装置1から出射される映像光束についての、X軸およびY軸方向への出射特性を調整することができ、この結果、所望の拡散特性を有する映像表示装置を得ることができる。
 更なる構成例として、映像表示装置1から出射される映像光が通過する位置に、2枚のレンチキュラーレンズを組み合わせて配置する、または、マイクロレンズアレイをマトリックス状に配置して拡散特性を調整するシートを設けてもよい。このような光学系の構成とすることにより、X軸およびY軸方向において、映像光の輝度(相対輝度)を、映像光の反射角度(垂直方向に反射した場合を基準(0度)とした反射角度)に応じて調整することができる。
 本実施例では、このようなレンチキュラーレンズを使用することにより、図16(b)中に「例1(Y方向)」および「例2(Y方向)」のグラフ(プロット曲線)に示すように、従来特性のグラフ(プロット曲線)とは明らかに異なった、優れた光学的特性を獲得することができる。具体的には、例1(Y方向)および例2(Y方向)のプロット曲線では、垂直方向の輝度特性を急峻にし、更に、上下方向(Y軸の正負方向)の指向特性のバランスを変化させることで、反射や拡散による光の輝度(相対輝度)を高めることができる。
 このため、本実施例によれば、面発光レーザ映像源からの映像光のように、拡散角度が狭く(高い直進性)かつ特定の偏波成分のみの映像光とし、従来技術による映像表示装置を用いた場合に再帰反射部材で発生していたゴースト像を抑え、再帰反射による空間浮遊像を効率良く観視者の眼に届けるように、調整することができる。
 また、上述した光源装置により、図17(A)、(B)に示した一般的な液晶表示パネルからの出射光拡散特性(図中では「従来特性」と表記)に対して、X軸方向およびY軸方向ともに大幅に挟角な指向特性を持たせることができる。本実施例では、このような狭角な指向特性を持たせることで、特定方向に向けて平行に近い映像光束を出射する、特定偏波の光を出射する映像表示装置を実現することができる。
 図17には、本実施例で採用するレンチキュラーレンズの特性の一例を示している。この例では、特に、Z軸を基準としたX方向(垂直方向)における特性を示しており、特性Oは、光の出射方向のピークが垂直方向(0度)から上方に30度付近の角度であり上下に対称な輝度特性を示している。また、図17のグラフに示す特性Aや特性Bのプロット曲線は、更に、30度付近においてピーク輝度の上方の映像光を集光して輝度(相対輝度)を高めた特性の例を示している。このため、これらの特性Aや特性Bでは、特性Oのプロット曲線と比較して分かるように、Z軸からX方向への傾き(角度θ)が30度を超えた角度(θ>30°)の領域において、急激に光の輝度(相対輝度)が低減する。
 すなわち、上述したレンチキュラーレンズを含んだ光学系によれば、映像表示装置1からの映像光束を再帰反射部材に入射させる際、光源装置13で挟角に揃えられた映像光の出射角度や視野角を調整でき、再帰反射シートの設置の自由度を大幅に向上できる。その結果、ウィンドガラスを反射または透過して所望の位置に結像する空間浮遊像の結像位置の関係の自由度を大幅に向上できる。この結果、拡散角度が狭く(高い直進性)かつ特定の偏波成分のみの光として効率良く室外または室内の観視者の眼に届くようにすることが可能となる。このことによれば、映像表示装置1からの映像光の強度(輝度)が低減しても、観視者は映像光を正確に認識して情報を得ることができる。換言すれば、映像表示装置1の出力を小さくすることにより、消費電力の低い情報表示システムを実現することが可能となる。
 以上、本発明を適用した種々の実施の形態ないし実施例(すなわち具体例)について詳述した。一方で、本発明は、上述した実施形態(具体例)のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 上記で説明した光源装置は、空間浮遊映像表示装置に限られず、HUD、タブレット、デジタルサイネージ等のような情報表示装置に適用することも可能である。
 本実施の形態に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像情報を空間浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作することを可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供することを可能にする。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。
 また、上述した実施の形態に係る技術では、出射する映像光の発散角を小さくし、更に、特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることが可能になる。本実施の形態に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」および「11住み続けられるまちづくりを」に貢献する。
 更に、上述した実施の形態に係る技術では、指向性(直進性)の高い映像光による空間浮遊映像を形成することを可能にする。本実施例に係る技術では、銀行のATMや駅の券売機等における高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示する場合でも、指向性の高い映像光を表示することで、ユーザ以外に空間浮遊映像を覗き込まれる危険性が少ない非接触ユーザインタフェースを提供することを可能にする。本発明は、以上のような技術を提供することにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「11住み続けられるまちづくりを」に貢献する。
1…映像表示装置、2…第一の再帰反射部材、A1、A2、3、220A、220B、204…空間像(空間浮遊像)、110…第一の透過性プレート、111…反射型偏光シート、(反射型偏光板)13…光源装置、54…光方向変換パネル、105…リニアフレネルシート、107…回転機構、102…吸収型偏光シート(吸収型偏光板)、200…平面ディスプレイ、201…筐体、203…センシングシステム、226…センシングエリア、102…基板、11、335…液晶表示パネル、206…拡散板、21…偏光変換素子、300…リフレクタ、213…λ/2板、306…反射型導光体、307…反射面、308、310…サブリフレクタ、204…空間浮遊映像、334…映像光制御シート、336…透過部、337…光吸収部、81…光学素子、501…偏光変換素子、503…ユニット、507…遮光壁、401、402…遮光板、320…基材、511…筐体、512…サポートアーム、513…ヒンジ、514…バックカバー、515…筐体カバー、516…筐体ベース、517、518…傾斜リニアフレネルシート、519…偏心フレネルシート

Claims (15)

  1.  空間浮遊映像情報表示システムであって、
     映像光を出射する表示パネルと、
     前記表示パネルへ光を供給する光源装置と、
     前記表示パネルからの特定偏波の映像光を空中に実像の空間浮遊映像を表示せしめる再帰反射部材と、
     前記再帰反射部材の表面には特定偏波の映像光を他方の偏波に変換する偏光変換部材を設け、
     前記表示パネルと前記再帰反射部材の間には特定偏波の映像光を透過させ、前記再帰反射部材で反射した後に他方の偏波に変換された映像光を反射させる偏向ビームスプリッタを設けた第一の透過性プレートを備え、
     前記再帰反射部材で反射した後に他方の偏波に変換された映像光は、前記表示パネルと対向して配置した前記再帰反射部材とを結ぶ光軸とは略直交する方向に反射させ、
     反射した映像光が前記空間浮遊映像情報表示システムの筐体の開口部に配置された第二の透過性プレートを透過後に空間に実像の空間浮遊映像を表示する、
     空間浮遊映像情報表示システム。
  2.  請求項1に記載の空間浮遊映像情報表示システムにおいて、
     前記表示パネルと前記光源装置と前記再帰反射部材と前記第一の透過性プレートを前記筐体に組み込み、前記筐体の一部に前記空間浮遊映像情報表示システムと結合する部材により連結する構造を有する、
     空間浮遊映像情報表示システム。
  3.  請求項1に記載の空間浮遊映像情報表示システムにおいて、
     前記表示パネルと前記第一の透過性プレートまでの距離を変更する構造を有する、
     空間浮遊映像情報表示システム。
  4.  請求項1に記載の空間浮遊映像情報表示システムにおいて、
     前記第一の透過性プレートは前記筐体に弾性部材を介して固定された、
     空間浮遊映像情報表示システム。
  5.  請求項4に記載の空間浮遊映像情報表示システムにおいて
    空間浮遊映像に操作して相互作用を行うためのセンシングシステムの発光部と受光部が前記筐体内部に設けられた、
     空間浮遊映像情報表示システム。
  6.  請求項1に記載の空間浮遊映像情報表示システムにおいて、
     前記光源装置は、
     点状または面状の光源と、
     前記光源からの光を反射させるリフレクタと、
     前記リフレクタからの光を前記表示パネルに向けて導光する導光体と、を備え、
     前記リフレクタの反射面は、前記光源の出射光の光軸に対して非対称な形状である、
     空間浮遊映像情報表示システム。
  7.  請求項6に記載の空間浮遊映像情報表示システムにおいて、
     前記導光体は、反射型導光体である、
     空間浮遊映像情報表示システム。
  8.  請求項6または請求項7に記載の空間浮遊映像情報表示システムにおいて、
     前記導光体からの光を拡散する拡散板と、
     前記導光体と前記拡散板との空間を挟むように配置される側壁と、を備える、
     空間浮遊映像情報表示システム。
  9.  請求項6に記載の空間浮遊映像情報表示システムにおいて、
     前記リフレクタは、プラスチック材料またはガラス材料または金属材料を用いる、
     空間浮遊映像情報表示システム。
  10.  空間浮遊映像情報表示システムであって、
     映像を表示する表示パネルと、
     光源装置と、
     前記表示パネルからの映像光を反射させ、反射した光により空中に実像の空間浮遊映像を表示せしめる再帰反射部材と、を備え、
     前記光源装置は、
     点状または面状の光源と、
     前記光源からの光を反射させるリフレクタと、
     前記リフレクタからの光を前記表示パネルに向けて導光する導光体と、を備え、
     前記導光体の光源光反射面は、光源光が伝搬する光軸に対して垂直な方向に複数の反射面が配列された構成を成し、それぞれの前記反射面の傾斜角度により前記表示パネルに入射する光源光の出射方向と拡散角を調整し、
     前記表示パネルからの出射光の出射方向と拡散角を制御する映像表示装置を備え、
     空間浮遊映像の映像光の出射方向と拡散角を調整する、
     空間浮遊映像情報表示システム。
  11.  空間浮遊映像情報表示システムであって、
     映像を表示する表示パネルと、
     前記表示パネルのための光源装置と、
     前記表示パネルからの映像光を反射させ、反射した光により空中に実像の空間浮遊映像を表示せしめる再帰反射部材を同一の筐体に組み込み、
     前記筐体にはサポート部材を備え、
     前記サポート部材と前記空間浮遊映像情報表示システムの筐体ベースに固定するヒンジを備え、前記筐体は、前記筐体ベースに設けたヒンジにより空間浮遊像の映像光出射方向を可変できる構造を備えた、
     空間浮遊映像情報表示システム。
  12.  請求項11に記載の空間浮遊映像情報表示システムにおいて、
     前記光源装置は、
     点状または面状の光源と、
     前記光源からの光を反射させるリフレクタと、
     前記リフレクタからの光を前記表示パネルに向けて導光する導光体と、を有し、
     前記リフレクタの反射面は、前記光源の出射光の光軸に対して非対称な形状である、
     空間浮遊映像情報表示システム。
  13.  請求項12に記載の空間浮遊映像情報表示システムにおいて、
     前記導光体は、反射型導光体である、
     空間浮遊映像情報表示システム。
  14.  請求項12に記載の空間浮遊映像情報表示システムにおいて、
     前記導光体からの光を拡散する拡散板と、
     前記導光体と前記拡散板との空間を挟むように配置される側壁と、を備える、
     空間浮遊映像情報表示システム。
  15.  請求項12に記載の空間浮遊映像情報表示システムにおいて、
     前記リフレクタは、プラスチック材料またはガラス材料または金属材料を用いる、
     空間浮遊映像情報表示システム。
PCT/JP2023/011013 2022-05-25 2023-03-20 空間浮遊映像情報表示システム WO2023228530A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022085273A JP2023173192A (ja) 2022-05-25 2022-05-25 空間浮遊映像情報表示システム
JP2022-085273 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023228530A1 true WO2023228530A1 (ja) 2023-11-30

Family

ID=88918970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011013 WO2023228530A1 (ja) 2022-05-25 2023-03-20 空間浮遊映像情報表示システム

Country Status (2)

Country Link
JP (1) JP2023173192A (ja)
WO (1) WO2023228530A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078571A (ja) * 2010-10-01 2012-04-19 Pioneer Electronic Corp 画像表示装置
JP2022007868A (ja) * 2020-06-24 2022-01-13 日立チャネルソリューションズ株式会社 空中像表示入力装置及び空中像表示入力方法
JP2022511261A (ja) * 2018-09-28 2022-01-31 ライト フィールド ラボ、インコーポレイテッド ライトフィールドディスプレイ用ホログラフィック対象物中継部
WO2022030538A1 (ja) * 2020-08-06 2022-02-10 マクセル株式会社 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP2023007106A (ja) * 2021-07-01 2023-01-18 マクセル株式会社 空中浮遊映像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078571A (ja) * 2010-10-01 2012-04-19 Pioneer Electronic Corp 画像表示装置
JP2022511261A (ja) * 2018-09-28 2022-01-31 ライト フィールド ラボ、インコーポレイテッド ライトフィールドディスプレイ用ホログラフィック対象物中継部
JP2022007868A (ja) * 2020-06-24 2022-01-13 日立チャネルソリューションズ株式会社 空中像表示入力装置及び空中像表示入力方法
WO2022030538A1 (ja) * 2020-08-06 2022-02-10 マクセル株式会社 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP2023007106A (ja) * 2021-07-01 2023-01-18 マクセル株式会社 空中浮遊映像表示装置

Also Published As

Publication number Publication date
JP2023173192A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022030538A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
US20240019715A1 (en) Air floating video display apparatus
WO2023112617A1 (ja) 空間浮遊映像表示システム
JP4149493B2 (ja) フレネル光学素子、表示スクリーン及び投写型表示装置
WO2023228530A1 (ja) 空間浮遊映像情報表示システム
WO2022113745A1 (ja) 空間浮遊映像表示装置
WO2022118752A1 (ja) 空間浮遊映像表示装置及び光源装置
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
WO2023199685A1 (ja) 空間浮遊映像表示システムおよび空間浮遊映像処理システム
JP7367148B2 (ja) 空間浮遊映像表示装置
JP7370433B2 (ja) 空間浮遊映像情報表示システムに用いられる光源装置
WO2023136077A1 (ja) 空間浮遊映像表示システムおよびそれに用いられる光源装置、再帰反射部材、光学系
WO2024004557A1 (ja) 空間浮遊映像表示システム
WO2023037813A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる立体センシング装置
JP2023102461A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系
JP2023122179A (ja) 空間浮遊映像表示システム
JP2023117741A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系
WO2024024275A1 (ja) 携帯可能な空間浮遊映像表示システム
JP2023087963A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系
JP2023115747A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP2023113009A (ja) 空間浮遊映像情報表示システム及びそれに用いる再帰反射部材
WO2024018929A1 (ja) 空中表示装置
WO2023176159A1 (ja) 空間浮遊映像表示装置
JP2022089750A (ja) 空間浮遊映像表示装置及び光源装置
JP2023137232A (ja) 空間浮遊映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811411

Country of ref document: EP

Kind code of ref document: A1