WO2022118752A1 - 空間浮遊映像表示装置及び光源装置 - Google Patents

空間浮遊映像表示装置及び光源装置 Download PDF

Info

Publication number
WO2022118752A1
WO2022118752A1 PCT/JP2021/043392 JP2021043392W WO2022118752A1 WO 2022118752 A1 WO2022118752 A1 WO 2022118752A1 JP 2021043392 W JP2021043392 W JP 2021043392W WO 2022118752 A1 WO2022118752 A1 WO 2022118752A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
floating image
display device
light source
Prior art date
Application number
PCT/JP2021/043392
Other languages
English (en)
French (fr)
Inventor
浩二 平田
浩司 藤田
寿紀 杉山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021120807A external-priority patent/JP2022089750A/ja
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to CN202180081092.9A priority Critical patent/CN116710817A/zh
Priority to US18/039,983 priority patent/US20240004216A1/en
Publication of WO2022118752A1 publication Critical patent/WO2022118752A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/39Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material

Definitions

  • the present invention relates to a space floating image display device and a light source device.
  • Patent Document 1 states that "the CPU of the information processing device has an approach direction detecting unit that detects the approach direction of the user to an image formed in the air and the coordinates at which the input is detected.
  • the CPU includes an input coordinate detection unit for detecting, an operation reception unit for processing the reception of operations, and an operation screen update unit for updating the operation screen according to the received operation.
  • the CPU displays an image from a direction predetermined by the user. When approaching, the user's movement is accepted as an operation, and the process according to the operation is executed (summary excerpt).
  • the above-mentioned spatial floating image display device of Patent Document 1 can improve the operability of the spatial floating image, but does not consider the improvement of the apparent resolution and contrast of the spatial floating image, and further images. There is a fact that quality improvement is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spatial floating image display device capable of displaying a suitable and highly visible spatial floating image.
  • the present application includes a plurality of means for solving the above problems, and one example thereof is a spatial floating image display device for forming a spatial floating image, which is specific to a display panel as an image source and the display panel.
  • a light source device that supplies light in the polarization direction and a retroreflection member having a retardation plate on the retroreflection surface are provided, and a polarization separation member is provided in the space connecting the display panel and the retroreflection member.
  • the polarization separating member once transmits the image light of a specific polarization from the display panel toward the retroreflecting member, and the retroreflecting member converts the polarization into the other polarization to convert the polarization into the other polarization.
  • It is a spatial floating image display device that displays a spatial floating image which is a real image on the opposite side of the image source in a transparent member which is reflected by a separating member and through which the image light of the specific polarization passes.
  • FIG. 1 It is a figure which shows an example of the usage form of the space floating image display system which concerns on one Embodiment of this invention. It is a figure which shows an example of the main part structure and the retroreflection part structure of the space floating image display system which concerns on one Embodiment of this invention. It is a figure which shows the problem of the space floating image display system. It is a characteristic diagram which shows the relationship between the surface roughness of a retroreflection member and the amount of blurring of a retroreflection image. It is a figure which shows the problem of the space floating image display system. It is a figure which shows the other implementation of the main part composition of the space floating image display device which concerns on one Embodiment of this invention.
  • an image generated by an image light from a large-area image emitting source is transmitted through a transparent member that partitions a space such as a show window glass, and the space is inside or outside the store (space).
  • the present invention relates to a spatial floating image display system that can be displayed as a floating image. Further, the present invention relates to a large-scale digital signage system configured by using a plurality of such spatial floating image display systems.
  • high-resolution video information can be displayed in a spatially floating state on a glass surface of a show window or a light-transmitting plate material.
  • the divergence angle of the emitted image light small, that is, making it a sharp angle, and further aligning it with a specific polarization, only the normal reflected light is efficiently reflected to the retroreflective member, so that the light utilization efficiency is improved. It is expensive, and it is possible to suppress ghost images generated in addition to the main space floating image, which has been a problem in the conventional retroreflection method, and it is possible to obtain a clear space floating image.
  • the device including the light source of the present embodiment can provide a new and highly usable spatial floating image display system capable of significantly reducing power consumption.
  • a floating image display system for a vehicle capable of displaying a so-called one-way spatial floating image that can be visually recognized outside the vehicle via a shield glass including a windshield, a rear glass, and a side glass of the vehicle is provided. be able to.
  • an organic EL panel or a liquid crystal display panel is combined with a retroreflective member as a high-resolution color display image source. Since the image light is diffused at a wide angle in the spatial floating image display device according to the prior art, in addition to the reflected light that is normally reflected because the retroreflective part is a hexahedron, as shown in FIG. A ghost image was generated by the image light incident on the sheet) 2 from an angle, and the image quality of the spatial floating image was impaired.
  • the retroreflective member shown as the prior art is a hexahedron
  • a plurality of first ghost images G1 to sixth ghost images G6 are generated in addition to the normal image R1 of the spatial floating image as shown in FIG.
  • a ghost image which is a floating image in the same space, is monitored by other than the viewer, which poses a big problem in terms of security.
  • the spatial floating image obtained by reflecting the image light from the image display device having a narrow-angle directional characteristic, which will be described later, by the retroreflective member is the pixel of the liquid crystal display panel as shown in FIG. Blurring was visually recognized every time.
  • FIG. 1 is a diagram showing an example of a usage mode of a space floating image display system according to an embodiment of the present invention.
  • FIG. 1A is a diagram showing an overall configuration of a space floating image display system according to this embodiment.
  • a show window window 105 which is a translucent member such as glass.
  • the spatial floating information display system of the present embodiment it is possible to display the floating image in one direction to the outside of the store (space) through the transparent member.
  • FIG. 1B is a block diagram showing the configuration of the above-mentioned video display device 1.
  • the video display device 1 includes a video display unit 1a for displaying the original image of an aerial image, a video control unit 1b for converting the input video according to the resolution of the panel, and a video signal receiving unit 1c for receiving the video signal. , The receiving antenna 1d and the like are included.
  • the video signal receiving unit 1c supports wired input signals such as HDMI (High-Definition Multimedia Interface: registered trademark) input, and supports wireless input signals such as Wi-Fi (Wireless Fieldy: registered trademark). It also functions independently as a video receiving / displaying device, and can also display video information from tablets, smartphones, and the like. Furthermore, if a stick PC or the like is connected, it is possible to have capabilities such as calculation processing and video analysis processing.
  • FIG. 2 is a diagram showing an example of a main part configuration and a retroreflective part configuration of the spatial floating image display system according to the embodiment of the present invention.
  • the configuration of the spatial floating image display system will be described more specifically with reference to FIG.
  • an image display device 1 that emits image light having a specific polarization in a narrow angle is provided in an oblique direction of a transparent member 100 such as glass.
  • the image display device 1 includes a liquid crystal display panel 11 and a light source device 13 that generates light having a specific polarization having a narrow-angle diffusion characteristic.
  • the image light of the specific polarization from the image display device 1 has a polarization separation member 101 having a film provided on the transparent member 100 for selectively reflecting the image light of the specific polarization (in the figure, the polarization separation member 101 is in the form of a sheet). It is formed on the surface of the transparent member 100 and is reflected by the transparent member 100), and is incident on the retroreflective member 2.
  • a ⁇ / 4 plate 21 is provided on the image light incident surface of the retroreflective member. The image light is polarized and converted from the specific polarization to the other polarization by being passed through the ⁇ / 4 plate 21 twice, when it is incident on the retroreflective member 2 and when it is emitted.
  • the polarization separating member 101 that selectively reflects the image light of the specific polarization has the property of transmitting the polarization of the other polarization that has been polarized, the image light of the specific polarization after the polarization conversion can be obtained. It passes through the polarization separating member 101. The image light transmitted through the polarization separating member 101 forms a spatial floating image 3 which is a real image on the outside of the transparent member 100.
  • the light forming the spatial floating image 3 is a set of light rays that converge from the retroreflective member 2 to the optical image of the spatial floating image 3, and these rays travel straight even after passing through the optical image of the spatial floating image 3. .. Therefore, the spatial floating image 3 is an image having high directivity, unlike the diffused image light formed on the screen by a general projector or the like. Therefore, in the configuration of FIG. 2, when the user visually recognizes from the direction of arrow A, the spatial floating image 3 is visually recognized as a bright image, but when another person is visually recognized from the direction of arrow B, the spatial floating image 3 is visually recognized. 3 cannot be visually recognized as an image at all. This characteristic is very suitable for use in a system that displays a video that requires high security or a video that is highly confidential and that is desired to be kept secret from the person facing the user.
  • the polarization axes of the reflected video light may be uneven.
  • a part of the video light whose polarization axes are not aligned is reflected by the above-mentioned polarization separation member 101 and returns to the video display device 1.
  • This light may be re-reflected on the image display surface of the liquid crystal display panel 11 constituting the image display device 1, generate a ghost image, and deteriorate the image quality of the spatial floating image. Therefore, in this embodiment, the absorption type polarizing plate 12 is provided on the image display surface of the image display device 1.
  • the rereflection can be suppressed by transmitting the image light emitted from the image display device 1 through the absorption type polarizing plate 12 and absorbing the reflected light returned from the polarization separating member 101 by the absorption type polarizing plate 12. This makes it possible to prevent deterioration of image quality due to the ghost image of the spatial floating image.
  • the above-mentioned polarization separating member 101 may be formed of, for example, a reflective polarizing plate or a metal multilayer film that reflects a specific polarization.
  • FIG. 2B As a typical retroreflective member 2 in FIG. 2B, the surface shape of the retroreflective member 2 manufactured by Nippon Carbite Industries Co., Ltd. used in this study is shown.
  • the light rays incident on the inside of the retroreflective part 2a composed of regularly arranged hexagonal prisms are reflected by the wall surface and the bottom surface of the hexagonal prisms and emitted as retroreflected light in the direction corresponding to the incident light, which is normal as shown in FIG. Form image R1.
  • a ghost image G1 to G6 in FIG. 5
  • the normal image R1 depending on the image light obliquely incident on the retroreflective member 2 in the image light from the image display device 1. Is formed.
  • the spatial floating image 3 which is a real image is displayed without forming a ghost image.
  • the resolution of the spatial floating image 3 largely depends on the outer diameter D and the pitch P of the retroreflective portion 2a of the retroreflective member 2 shown in FIG. 2B in addition to the resolution of the liquid crystal display panel 11.
  • the resolution of the spatial floating image 3 largely depends on the outer diameter D and the pitch P of the retroreflective portion 2a of the retroreflective member 2 shown in FIG. 2B in addition to the resolution of the liquid crystal display panel 11.
  • the diameter D of the retroreflective portion 2a is 240 ⁇ m and the pitch is 300 ⁇ m. If so, one pixel of the spatial floating image 3 is equivalent to 300 ⁇ m.
  • the effective resolution of the spatial floating image 3 is reduced to about 1/3. Therefore, in order to make the resolution of the spatial floating image 3 equal to the resolution of the image display device 1, it is desired that the diameter and pitch of the retroreflective portion 2a be close to one pixel of the liquid crystal display panel. On the other hand, in order to suppress the occurrence of moire due to the pixels of the retroreflective member 2 and the liquid crystal display panel 11, it is preferable to design by removing the pitch ratio of each from the integral multiple of one pixel. Further, the shape may be arranged so that neither side of the retroreflective portion 2a overlaps with any one side of one pixel of the liquid crystal display panel 11.
  • the inventors have described the relationship between the amount of blurring of the image of the spatial floating image and the pixel size L, which is acceptable for improving the visibility, with the liquid crystal display panel having a pixel pitch of 40 ⁇ m and the narrow divergence angle (divergence angle of 15 °) of the present invention.
  • An image display device 1 combined with the light sources of the above was created and obtained by an experiment.
  • the experimental result of FIG. 4 is shown. It was found that the amount of blur l, which deteriorates visibility, is preferably 40% or less of the pixel size, and is hardly noticeable if it is 15% or less.
  • the surface roughness of the reflective surface at which the blur amount l at this time is an allowable amount has an average roughness of 160 nm or less in the range of a measurement distance of 40 ⁇ m, and the surface roughness of the reflective surface is 120 nm or less in order to make the blur amount l less noticeable. Turned out to be desirable. Therefore, it is desired to reduce the surface roughness of the retroreflective member described above and to reduce the surface roughness including the reflective film forming the reflective surface and the protective film thereof to the above-mentioned values or less.
  • the retroreflective member 2 in order to manufacture the retroreflective member 2 at a low price, it is preferable to mold it by using the roll press method. Specifically, it is a method of aligning the retroreflective portions 2a and shaping them on a film. A reverse shape of the shape to be shaped is formed on the roll surface, and an ultraviolet curable resin is applied on a base material for fixing to roll. By passing through the space, a required shape is formed and cured by irradiating with ultraviolet rays to obtain a retroreflective member 2 having a desired shape.
  • the image display device 1 of the present invention is an image from an oblique angle with respect to the retroreflection member 2 described above by the liquid crystal display panel 11 and the light source device 13 that generates light having a specific polarization having a narrow-angle diffusion characteristic described in detail later. It is a structurally excellent system in which the possibility of incident is small and the brightness is low even if ghosts occur.
  • FIG. 6A is a diagram showing another example (second example) of the main part configuration of the spatial floating image display system according to the embodiment of the present invention.
  • the image display device 1 includes a liquid crystal display panel 11 as an image display element and a light source device 13 that generates light having a specific polarization having a narrow-angle diffusion characteristic.
  • the liquid crystal display panel 11 is composed of a small one having a screen size of about 5 inches and a large liquid crystal display panel having a screen size of more than 80 inches.
  • the polarization separating member 101 such as a reflective polarizing plate reflects the image light from the liquid crystal display panel toward the retroreflective member 2.
  • a ⁇ / 4 plate 21 is provided on the light incident surface of the retroreflective member 2, and the polarization is converted by passing the video light twice, and the specific polarization is converted to the other polarization, so that the polarization separation member 101 is transmitted.
  • the space floating image 3 which is a real image is displayed on the outside of the transparent member 100.
  • An absorption-type polarizing plate is provided on the external light incident surface of the transparent member 100. In the polarization separating member 101 described above, the polarization axes become uneven due to retroreflection, so that a part of the image light is reflected and returns to the image display device 1.
  • This light is reflected again on the image display surface of the liquid crystal display panel 11 constituting the image display device 1, generates a ghost image, and significantly deteriorates the image quality of the spatial floating image 3. Therefore, in this embodiment, an absorbent polarizing plate 12 is provided on the image display surface of the image display device 1, the image light is transmitted, and the above-mentioned reflected light is absorbed to prevent deterioration of the image quality due to the ghost image of the spatial floating image 3. .
  • the polarization separating member 101 is formed of a reflective polarizing plate or a metal multilayer film that reflects a specific polarization.
  • a second light-shielding member 23 and a third light-shielding member 24 that block oblique image light other than the normal image light forming the spatial floating image are provided. Further, a first light-shielding member 22 that shields oblique image light other than the normal image light is also provided between the retroreflective member 2 and the polarization separating member 101 so that external light does not directly enter the retroreflective member 2 as described above. A fourth light-shielding member 25 is also installed in the same area to block oblique light that generates a ghost image. As a result, the generation of ghost images can be suppressed.
  • the inventors have confirmed through experiments that the light-shielding effect can be enhanced by installing the third light-shielding member 24 and the second light-shielding member 23 in the space between the liquid crystal display panel 11 and the polarization separating member 101.
  • the inner diameters of the second light-shielding member 23 and the third light-shielding member 24 are set to 110% in area with respect to the area through which the normal image luminous flux forming the spatial floating image passes, so that the component accuracy is within the range of the machine tolerance. Can be created and assembled with.
  • the first light-shielding member 22 provided between the retroreflective member 2 and the polarization separating member 101 sets the distance L1 between the first light-shielding member 22 and the retroreflective member 2 with respect to the distance between the retroreflective member 2 and the polarization separating member 101.
  • the generation of ghost images can be further reduced, and if it is 30% or less, it can be reduced to a level where there is no practical problem visually. Further, the ghost level could be further reduced by providing the fourth light-shielding member 25, the first light-shielding member 22, the second light-shielding member 23, and the third light-shielding member 24 provided so as to surround the retroreflective member 2.
  • the cross-sectional shape of the light-shielding member in FIG. 6A is the effective area of the light-shielding member with respect to the region through which the normal image light flux forming the spatially floating image passes (corresponding to the region through which the image light flux in the absorption-type polarizing plate 112 passes in the present embodiment). It is even better to make the size approximately the same as that of the beam and to absorb the abnormal light by providing a beam toward the inner surface and reflecting the abnormal light forming a ghost image multiple times on the surface of the beam.
  • the area through which the normal image luminous flux passes is made smaller than the outer frame of the light-shielding member so that the area is equivalent to the inscribed surface of the beam.
  • a ghost image is generated by the oblique image light reflected by the retroreflective member 2 as a concave surface or a convex surface having a radius of curvature of 200 mm or more from a planar shape facing the image display device 1 from the shape of the retroreflective member 2, after reflection.
  • the generated ghost image may be kept away from the viewer's view so that it cannot be monitored.
  • the light reflected around the retroreflective member 2 having a radius of curvature of 100 mm or less a new problem arises in which the amount of peripheral light of the spatially floating image 3 obtained by reducing the amount of normally reflected light is reduced. Therefore, in order to reduce the ghost image to a level where there is no practical problem, it is advisable to select and apply the above-mentioned technical means, or to use them together.
  • FIG. 6B is a diagram showing another example (third example) of the main part configuration of the space floating image display device according to the embodiment of the present invention.
  • the image display device 1 includes a liquid crystal display panel 11 as an image display element and a light source device 13 that generates light having a specific polarization having a narrow-angle diffusion characteristic.
  • the liquid crystal display panel 11 is composed of a small one having a screen size of about 5 inches and a large liquid crystal display panel 11 having a screen size of more than 80 inches.
  • a polarization separating member 101 such as a reflective polarizing plate temporarily transmits the image light from the liquid crystal display panel 11 toward the retroreflective member 2.
  • a ⁇ / 4 plate 21 is provided on the light incident surface of the retroreflective member 2, and the polarization separation member 101 reflects the specific polarization by converting the specific polarization into the other polarization by passing the video light twice.
  • the space floating image 3 which is a real image is displayed on the outside of the transparent member 100.
  • An absorption-type polarizing plate 112 is provided on the incident surface of the transparent member 100 against external light.
  • the transparent member 100 is a transparent body only in a portion through which the image light passes, and the other portion is composed of a light-shielding member 100b that blocks the light so that the outside light does not enter the set.
  • the polarization axes of the reflected image light may be uneven.
  • an absorption type polarizing plate 12 is further provided on the image display surface of the image display device 1.
  • an antireflection film (not shown) on the image emitting side surface of the absorption type polarizing plate 12 provided on the surface of the image display device 1
  • the light of the ghost image is transmitted and absorbed by the absorption type polarizing plate 12. Prevents deterioration of image quality due to the ghost image of the spatial floating image 3.
  • the retroreflective member 2 is tilted (tilt ⁇ ) to generate a strong ghost image, and the position away from the window portion 100a formed of a transparent body through which the retroreflective image light passes. It is configured to prevent the incident of external light.
  • the image display device 1 is arranged at a position away from the window portion 100a and the image display device 1 is provided at a position where the image light emitted from the image display device 1 cannot be visually recognized from the window portion 100a, the generation of ghost images is reduced.
  • the window portion 100a is a form of an opening.
  • the polarization separating member 101 is formed of a reflective polarizing plate or a metal multilayer film that reflects a specific polarization.
  • the spatial floating image 3 emitted from the window portion 100a is reflected by the reflection mirror 400.
  • the position and angle of the obtained spatial floating image 3 can be changed.
  • the reflection mirror 400 has a characteristic of having a high reflectance of a specific polarization, it can be used as a mirror having high transmittance. Further, if an optical system that obtains spatially floating image light by S polarization is used, high reflectance can be obtained even if a transparent mirror is used without forming a reflective film. As a result, a good spatial floating image with high visibility (denoted as a three-dimensional image in FIG.
  • the planar image shown in the figure can be obtained by the image light transmitted through the window portion 100a.
  • FIG. 6C is a diagram showing another example (fourth example) of the main part configuration of the space floating image display device according to the embodiment of the present invention.
  • the image display device 1 includes a liquid crystal display panel 11 as an image display element and a light source device 13 that generates light of a specific polarization having a narrow-angle diffusion characteristic. Will be done.
  • the liquid crystal display panel 11 is composed of a small one having a screen size of about 5 inches and a large liquid crystal display panel 11 having a screen size of more than 80 inches.
  • a polarization separating member 101 such as a reflective polarizing plate temporarily transmits the image light from the liquid crystal display panel 11 toward the retroreflective member 2, and the transmitted image light is reflected by the retroreflective member 2.
  • the polarization separating member 101 is also referred to as a beam splitter, and transmits video light with a specific polarization (P polarization or S polarization), but is different from the specific polarization (S polarization or P polarization). ) Has the characteristic of being reflected.
  • a ⁇ / 4 plate 21 is provided on the light incident surface of the retroreflective member 2, and the polarization separation member 101 reflects the specific polarization by converting the specific polarization into the other polarization by passing the video light twice.
  • the space floating image 3 which is a real image is displayed on the outside of the transparent member 100.
  • an absorption type polarizing plate 112 is provided on the external light incident surface of the transparent member 100.
  • the transparent member 100 may be surrounded by the light-shielding member 100b so that the external light does not enter the retroreflective member 2 or the image display device 1.
  • FIG. 6C when observing from the observation direction C indicating the arrow direction, the spatial floating image 3 having a two-dimensional planar shape can be observed.
  • the position where the space floating image 3 is formed is determined as follows.
  • the image display device 1 and the retroreflective member 2 are arranged so as to be parallel to each other, and specifically, the image display surface of the liquid crystal display panel 11 and the retroreflective member 2 constituting the image display device 1 are arranged. It is arranged facing the reflective surface. Therefore, it is possible to observe a suitable space floating image 3.
  • the image display surface of the liquid crystal display panel 11 constituting the image display device 1 and the reflection surface of the retroreflective member 2 may be arranged so as to be substantially parallel to each other, and the angle formed by each other is about 10 degrees.
  • the generated ghost image does not pose a problem in practice, that is, even if the ghost image is generated, it hardly affects the visibility of the spatial floating image 3.
  • Arbitrary point A on the liquid crystal display panel 11 constituting the image display device 1 (here, one point in the center on the liquid crystal display panel 11) and corresponding point A'on the retroreflective member 2 (similarly, retroreflective).
  • point B where the line segment AA'connecting the central point on the member 2) intersects the polarization splitting member (beam splitter) 101, and let the length of the line segment AB be L1.
  • the line segment AA' is the optical axis of the image light emitted from the image display surface of the liquid crystal display panel 11, and the emission direction of the light source is substantially perpendicular to the image display surface of the liquid crystal display panel 11 or a line segment.
  • AA' is substantially vertical or perpendicular to the image display surface of the liquid crystal display panel 11.
  • a point having a length L2 in the vertical direction (direction in which the transparent member 100 of FIG. 6C is arranged) from the point B on the polarization separating member 101 is set as a point C, and the length L1 of the line segment AB and the line segment BC The length is almost the same as the length L2.
  • the spatial floating image 3 is formed on the two-dimensional plane centered on the point C.
  • the liquid crystal display panel 11 emits video light of the same intensity
  • arranging the liquid crystal display panel 11 away from the polarization separating member 101 increases the distance between the liquid crystal display panel 11 and the retroreflective member 2.
  • the intensity (luminance) of the image light reaching the retroreflective member 2 from the liquid crystal display panel 11 is lowered, and as a result, the brightness of the spatial floating image 3 is also lowered. Therefore, since the distance from the spatial floating image 3 to be displayed to the transparent member 100 and the brightness of the spatial floating image 3 are in a trade-off relationship, the arrangement position of the liquid crystal display panel 11 and the polarization separating member 101 should be adjusted. Therefore, it is possible to display the spatial floating image 3 which is suitable and has high visibility.
  • the angle formed by the polarization separating member 101 and the line segment AA'(the optical axis of the image light emitted from the liquid crystal display panel 11) is 45 degrees
  • the size of the image generated by the image display device 1 and the space floating image 3 are the same.
  • the angle is larger than 45 degrees
  • the width of the spatial floating image 3 is smaller than that of the image generated by the image display device 1, and conversely, the angle is 45 degrees.
  • the width of the spatial floating image 3 becomes larger than the image generated by the image display device 1.
  • FIG. 6D and 6E are diagrams showing another example (fifth example) of the main part configuration of the space floating image display device according to the embodiment of the present invention.
  • the spatial floating image display device shown in FIG. 6D is composed of the same parts as those in FIG. 6C, that is, an image display device 1, a retroreflective member 2, a ⁇ / 4 plate 21, a polarization separating member 101, a transparent member 100, and the like. Further, the image display surface of the liquid crystal display panel 11 constituting the image display device 1 and the retroreflection surface of the retroreflection member 2 are arranged so as to face each other.
  • FIG. 6D and FIG. 6C are arranged so that the image display surface of the liquid crystal display panel 11 constituting the image display device 1 and the reflection surface of the retroreflective member 2 face each other, the retroreflective member 2 is used. Is different in that is located above the image display device 1. That is, the image display device 1 is arranged at a position away from the transparent member 100. Therefore, if the image display device 1 is provided at a position where the image light emitted from the image display device 1 cannot be visually recognized from the transparent member 100, the generation of ghost images is reduced. Further, the retroreflective member 2 is tilted and arranged at a position away from the transparent member 100 through which the retroreflective image light passes, so as to prevent the incident of external light.
  • the line segment AA'connecting the point A and the point A' is horizontal in FIG. 6C.
  • it is tilted diagonally upward to the left, and is different in that the angle formed by the line segment AA'and the polarization separating member 101 is larger than 45 degrees.
  • the spatial floating image 3 is formed horizontally as shown in FIG. 6C, whereas the spatial floating image 3 is inclined according to the inclination of the line segments AA'and the inclination angle of the polarization separating member 101. Formed with horns. That is, by changing the inclination of the line segment AA'and the inclination angle of the polarization separating member 101, it is possible to adjust the angle of the plane on which the spatial floating image 3 is formed, and the user's observation direction. It is possible to set S to an appropriate angle.
  • the spatial floating image display device shown in FIG. 6E is composed of the same parts as those in FIG. 6D, and the arrangement of the parts is the same, but the inclination of the polarization separating member 101 is larger (more horizontally) than in FIG. 6D. (Has a close tilt angle), so that the optical axis of the video light, i.e. the line segment AA', and the angle ⁇ formed by the polarization separating member 101 are smaller than the angle ⁇ in FIG. 6D. It has become. That is, the relationship is that angle ⁇ > angle ⁇ .
  • the angle formed by the line segment AA'and the polarization separating member 101 can be adjusted. Can be changed. Therefore, it is possible to obtain an observation direction suitable for the user.
  • the reflective polarizing plate having a grid structure of the present invention has reduced characteristics for light from a direction perpendicular to the polarization axis. Therefore, the specifications along the polarization axis are desirable, and the light source of the present embodiment capable of emitting the image light emitted from the liquid crystal display panel 11 at a narrow angle is an ideal light source. Similarly, the characteristics in the horizontal direction also deteriorate with respect to light from an angle.
  • a configuration example of the present embodiment in which a light source capable of emitting the image light emitted from the liquid crystal display panel 11 at a narrower angle is used as the backlight of the liquid crystal display panel 11 will be described below. This makes it possible to provide a high-contrast spatial floating image 3.
  • the video display device 1 of this embodiment includes a light source device 13 constituting the light source together with a video display element (liquid crystal display panel 11), and in FIG. 7, the light source device 13 is shown as a developed perspective view together with the liquid crystal display panel. ing.
  • the liquid crystal display panel (image display element) has a narrow-angle diffusion characteristic due to the light from the light source device 13 which is a backlight device, that is, the directivity (straightness) is high.
  • a wind glass that is strong and has a characteristic similar to that of a laser beam with its polarizing planes aligned in one direction, is obtained, and the image light modulated according to the input image signal is reflected by the retroreflecting member 2. It passes through 105 to form a spatial floating image that is a real image (see FIG. 1). Further, in FIG.
  • a protective cover 50 (see FIGS. 8 and 9) may be provided on the surface of the above-mentioned optical direction conversion panel 54.
  • an image including the light source device 13 and the liquid crystal display panel 11 is included.
  • the light from the light source device 13 (see the arrow 30 in FIG. 8) is projected toward the retroreflective member 2, reflected by the retroreflective member 2, and then a transparent sheet provided on the surface of the wind glass 105.
  • the directivity can be controlled so as to form the spatial floating image 3 at a desired position.
  • this transparent sheet controls the imaging position of a floating image while imparting high directivity by an optical component such as a Fresnel lens or a linear Fresnel lens.
  • an optical component such as a Fresnel lens or a linear Fresnel lens.
  • the image light from the image display device 1 efficiently reaches the observer outside the wind glass 105 (for example, a sidewalk) with high directivity (straightness) like a laser beam.
  • FIG. 7 is a diagram showing another example of the video display device 1.
  • FIG. 8 shows a state in which the liquid crystal display panel 11 and the optical direction conversion panel 54 are arranged on the light source device 13 of FIG.
  • the light source device 13 is formed of, for example, plastic, and has an LED element 201 and a light guide body 203 housed therein.
  • the end face of the light guide body 203 is shown in FIG. 8 and the like.
  • it In order to convert the divergent light from each LED element 201 into a substantially parallel luminous flux, it has a shape in which the cross-sectional area gradually increases toward the light receiving portion, and it propagates inside multiple times.
  • a lens shape is provided that has the effect of gradually reducing the divergence angle by total internal reflection.
  • a liquid crystal display panel 11 constituting the image display device 1 is attached to the upper surface thereof. Further, an LED element 201, which is a semiconductor light source, and an LED substrate 202 (see FIG. 8) on which the control circuit thereof is mounted are attached to one side surface (the left end surface in this example) of the case of the light source device 13.
  • a heat sink which is a member for cooling the heat generated by the LED element 201 and the control circuit, may be attached to the outer surface of the LED substrate 202.
  • the frame (not shown) of the liquid crystal display panel 11 attached to the upper surface of the case of the light source device 13 is electrically connected to the liquid crystal display panel 11 attached to the frame and further to the liquid crystal display panel 11.
  • FPC Flexible Printed Circuits: Flexible Wiring Board
  • a new video display device 1 that is close to a surface-emitting laser video source driven by a video signal can be obtained.
  • a laser luminous flux having the same size as the image obtained by the above-mentioned image display device 1 by using the laser device. Therefore, in this embodiment, for example, light close to the above-mentioned surface emission laser image light is obtained from a light flux from a general light source provided with the LED element 201.
  • FIGS. 8 and 9 are cross-sectional views, only one plurality of LED elements 201 constituting the light source are shown, and these are converted into substantially collimated light by the shape of the light receiving end surface 203a of the light guide body 203. .. Therefore, the light receiving portion on the end surface of the light guide body and the LED element 201 are attached while maintaining a predetermined positional relationship.
  • Each of the light guides 203 is made of a translucent resin such as acrylic.
  • the LED light receiving surface at the end of the light guide has, for example, a conical convex outer peripheral surface obtained by rotating a paraboloid cross section, and at the top thereof, a convex portion (that is, a convex lens surface) is formed at the center thereof. ) Is formed, and a convex lens surface protruding outward (or a concave lens surface recessed inward may be used) is provided in the central portion of the flat surface portion (not shown).
  • the outer shape of the light receiving portion of the light guide body 203 has a parabolic shape forming a conical outer peripheral surface, and is an angle at which light emitted from the LED element 201 in the peripheral direction can be totally reflected inside. It is set within the range of, or a reflective surface is formed.
  • the LED element 201 is arranged at a predetermined position on the surface of the LED substrate 202, which is the circuit board thereof.
  • the LED substrate 202 is fixed to the LED collimator (light receiving end surface 203a) by arranging and fixing the LED elements 201 on the surface thereof so as to be located at the center of the recess described above.
  • the shape of the light receiving end surface 203a of the light guide body 203 makes it possible to take out the light radiated from the LED element 201 as substantially parallel light, and it is possible to improve the utilization efficiency of the generated light. Become.
  • the light source device 13 is configured by attaching a light source unit in which a plurality of LED elements 201 as a light source are arranged on a light receiving end surface 203a which is a light receiving portion provided on the end surface of the light guide body 203, and is configured from the LED element 201.
  • the divergent light source is regarded as substantially parallel light by the lens shape of the light receiving end surface 203a of the light source end surface, and the inside of the light source 203 is guided (direction parallel to the drawing) as shown by an arrow, and the light source direction changing means 204. Therefore, the light is emitted toward the liquid crystal display panel 11 arranged substantially parallel to the light guide 203 (in the direction perpendicular to the front from the drawing).
  • the uniformity of the light flux incident on the liquid crystal display panel 11 can be controlled.
  • the above-mentioned luminous flux direction changing means 204 provides a portion having a different refractive index, for example, in the shape of the surface of the light guide body 203 and the inside of the light guide body 203, so that the light flux propagating in the light guide body 203 can be transferred to the light guide body 203. It emits light toward the liquid crystal display panel 11 arranged substantially parallel to the light (in the direction perpendicular to the front from the drawing).
  • the relative brightness ratio when comparing the brightness of the center of the screen and the peripheral portion of the screen with the liquid crystal display panel 11 facing the center of the screen and the viewpoint at the same position as the diagonal dimension of the screen is 20% or more. There is no problem, and if it exceeds 30%, the characteristics will be even better.
  • FIG. 8 is a cross-sectional layout diagram for explaining the configuration of the light source of the present embodiment for polarization conversion and its operation in the light source device 13 including the light guide body 203 and the LED element 201 described above.
  • the light source device 13 includes, for example, a light guide body 203 provided with a light beam direction changing means 204 on a surface or inside formed of plastic or the like, an LED element 201 as a light source, a reflection sheet 205, and a retardation plate 216. It is composed of a lenticular lens or the like, and a liquid crystal display panel 11 having a light source light incident surface and a video light emitting surface having a polarizing plate is attached to the upper surface thereof.
  • a film or sheet-shaped reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the figure) of the liquid crystal display panel 11 facing the light source device 13, and one side of the natural light beam 210 emitted from the LED element 201 is provided.
  • the polarized light (for example, P wave) 212 is selectively reflected and reflected by the reflection sheet 205 provided on one surface (lower part of the figure) of the light guide body 203 so as to be directed to the liquid crystal display panel 11 again. .. Therefore, a retardation plate 216 ( ⁇ / 4 plate) is provided between the reflective sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49, and the light is reflected by the reflective sheet 205 and passed twice.
  • the reflected light beam is converted from P-polarization to S-polarization, and the utilization efficiency of the light source light as the image light is improved.
  • the image luminous flux whose light intensity is modulated by the image signal on the liquid crystal display panel 11 (arrow 213 in FIG. 8) is incident on the retroreflective member 2 and passes through the wind glass 105 after reflection as shown in FIG. It is possible to obtain a spatial floating image 3 which is a real image inside or outside the store (space).
  • FIG. 9 is a cross-sectional layout diagram for explaining the configuration and operation of the light source of the present embodiment for polarization conversion in the light source device 13 including the light guide body 203 and the LED element 201, similarly to FIG.
  • the light source device 13 also has a light guide body 203 provided with a light beam direction changing means 204 on or inside a surface formed of, for example, plastic, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 216, and a lenticular lens.
  • a liquid crystal display panel 11 having a light source light incident surface and an image light emitting surface having a polarizing plate is attached to the upper surface thereof.
  • a film or sheet-shaped reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the figure) of the liquid crystal display panel 11 corresponding to the light source device 13, and one side of the natural light beam 210 emitted from the LED element 201 is biased.
  • the wave (for example, S wave) 211 is selectively reflected, reflected by the reflection sheet 205 provided on one surface (lower part of the figure) of the light guide body 203, and directed to the liquid crystal display panel 11 again.
  • a retardation plate 216 ⁇ / 4 plate
  • the reflected light beam is converted from S-polarization to P-polarization to improve the utilization efficiency of the light source as the image light.
  • the image luminous flux whose light intensity is modulated by the image signal on the liquid crystal display panel 11 (arrow 214 in FIG. 9) enters the retroreflective member 2 and, as shown in FIG. 1, passes through the wind glass 105 after reflection and is stored in the store.
  • a spatial floating image 3 which is a real image can be obtained inside or outside the (space).
  • the reflective polarizing plate 49 reflects the polarization component on one side together with the action of the reflective polarizing plate 49 provided on the light incident surface of the facing liquid crystal display panel 11.
  • the theoretically obtained contrast ratio is obtained by multiplying the inverse of the cross transmittance of the reflective polarizing plate 49 by the inverse of the cross transmittance obtained by the two polarizing plates attached to the liquid crystal display panel 11.
  • high contrast performance can be obtained.
  • a high-quality image comparable to that of the self-luminous organic EL was obtained.
  • FIG. 10 shows another example of a specific configuration of the video display device 1.
  • the light source device 13 of FIG. 10 is similar to the light source device of FIG. 12 and the like.
  • the light source device 13 is configured by accommodating an LED, a collimator, a synthetic diffusion block, a light guide, and the like in a case such as plastic, and a liquid crystal display panel 11 is attached to the upper surface thereof.
  • an LED (Light Emitting Diode) elements 14a and 14b which are semiconductor light sources shown in FIG. 12 and the like, and an LED substrate 102 on which the control circuit thereof is mounted are attached to one side surface of the case of the light source device 13, and an LED.
  • a heat sink 103 (see FIG. 10), which is a member for cooling the heat generated by the LED elements 14a and 14b and the control circuit, is attached to the outer surface of the substrate 102 (see also FIGS. 12 and 13). ..
  • the liquid crystal display panel frame attached to the upper surface of the case includes the liquid crystal display panel 11 attached to the frame, and the FPC (Flexible Printed Circuits: flexible wiring board) electrically connected to the liquid crystal display panel 11. ) 403 (see FIG. 10) and the like are attached and configured. That is, the liquid crystal display panel 11 which is an image display element, together with the LED elements 14a and 14b which are solid light sources, has the intensity of transmitted light based on the control signal from the control circuit (not shown here) constituting the electronic device. Is generated by modulating the display image.
  • the control circuit not shown here
  • the light source device of the image display device 1 converts the divergent light beam of the light from the LED (a mixture of P-polarized light and S-polarized light) into a substantially parallel light beam by the collimeter (colometer lens or LED collimator lens) 18, and is a reflective light guide.
  • the reflective surface of 304 reflects toward the liquid crystal display panel 11. The reflected light is incident on the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304.
  • the reflective polarizing plate 49 In the reflective polarizing plate 49, a specific polarization (for example, P polarization) is transmitted and incident on the liquid crystal display panel 11. The other polarization (for example, S polarization) is reflected by the reflection type polarizing plate and heads toward the reflection type light guide 304 again.
  • the reflective polarizing plate 49 is installed with an inclination so as not to be perpendicular to the main ray of light from the reflecting surface of the reflective light guide body 304, and the main ray of light reflected by the reflective polarizing plate 49 is , Incident on the transmissive surface of the reflective light guide 304.
  • the light incident on the transmission surface of the reflective light guide 304 passes through the back surface of the reflective light guide 304, passes through the retardation plate ⁇ / 4 plate 270, and is reflected by the reflector 271.
  • the light reflected by the reflector 271 passes through the ⁇ / 4 plate 270 again and passes through the transmission surface of the reflective light guide 304.
  • the light transmitted through the transmission surface of the reflective light guide 304 is incident on the reflective polarizing plate 49 again.
  • the polarization is converted into the polarization (for example, P polarization) transmitted through the reflective polarizing plate 49. ing.
  • the light whose polarization has been converted passes through the reflective polarizing plate 49 and is incident on the liquid crystal display panel 11.
  • the polarization may be reversed (the S polarization and the P polarization are reversed) from the above description.
  • the light from the LED is aligned with a specific polarization (for example, P polarization), is incident on the liquid crystal display panel 11, is brightly modulated according to the video signal, and displays the video on the panel surface.
  • a specific polarization for example, P polarization
  • a plurality of LEDs constituting the light source are shown (however, because of the vertical cross section, only one is shown in FIG. 16), and these are mounted in a predetermined position with respect to the collimator 18.
  • the collimator 18 is made of a translucent resin such as acrylic or glass, respectively.
  • the collimator 18 may have a conical convex outer peripheral surface obtained by rotating a parabolic cross section.
  • the top thereof may have a concave portion having a convex portion (that is, a convex lens surface) formed in the central portion thereof. Further, the central portion of the flat surface portion has a convex lens surface protruding outward (or a concave lens surface recessed inward).
  • the paraboloid surface forming the conical outer peripheral surface of the collimator 18 is set within an angle range at which the light emitted from the LED in the peripheral direction can be totally reflected inside the paraboloid surface, or the reflective surface is set. It is formed.
  • the LEDs are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board thereof.
  • the LED substrate 102 is arranged and fixed to the collimator 18 so that the LEDs on the surface thereof are located at the center of the top of the conical convex shape (if the top has a recess, the recess). LED.
  • the light radiated from the LED by the collimator 18 is collected by the convex lens surface forming the outer shape of the collimator 18 to become parallel light. Further, the light emitted from the other portion toward the peripheral direction is reflected by the paraboloid forming the conical outer peripheral surface of the collimator 18, and is similarly condensed into parallel light.
  • the collimator 18 in which a convex lens is formed in the central portion thereof and a paraboloid is formed in the peripheral portion thereof almost all the light generated by the LED can be taken out as parallel light. It is possible to improve the utilization efficiency of the light.
  • the above configuration is the same as that of the light source device of the image display device shown in FIGS. 12, 13, and the like. Further, the light converted into substantially parallel light by the collimator 18 shown in FIG. 11 is reflected by the reflective light guide 304. Of the light, the light of a specific polarization is transmitted through the reflection type polarizing plate 49 by the action of the reflection type polarizing plate 49, and the light of the other polarization reflected by the action of the reflection type polarizing plate 49 is again a light guide. It is transparent to 304. The light is reflected by the reflector 271 at a position opposite to that of the liquid crystal display panel 11 with respect to the reflective light guide 304.
  • the light is polarized by passing through the retardation plate ⁇ / 4 plate 270 twice.
  • the light reflected by the reflector 271 passes through the light guide 304 again and is incident on the reflective polarizing plate 49 provided on the opposite surface. Since the incident light has undergone polarization conversion, it passes through the reflective polarizing plate 49 and is incident on the liquid crystal display panel 11 with the polarization directions aligned. As a result, all the light from the light source can be used, so that the geometrical optics utilization efficiency of the light is doubled.
  • the degree of polarization (extinguishing ratio) of the reflective polarizing plate is also added to the extinguishing ratio of the entire system, the contrast ratio of the entire display device is significantly improved by using the light source device of this embodiment.
  • the reflection diffusion angle of light on each reflective surface can be adjusted.
  • the surface roughness of the reflective surface of the reflective light guide 304 and the surface roughness of the reflector 271 may be adjusted for each design so that the uniformity of the light incident on the liquid crystal display panel 11 becomes more suitable.
  • the ⁇ / 4 plate 270 which is the phase difference plate in FIG. 11, does not necessarily have a phase difference of ⁇ / 4 with respect to the polarization vertically incident on the ⁇ / 4 plate 270.
  • a phase difference plate whose phase changes by 90 ° ( ⁇ / 2) by passing the polarized light twice may be used.
  • the thickness of the retardation plate may be adjusted according to the incident angle distribution of the polarized light.
  • the light emitted from the liquid crystal display panel 11 has the same diffusion characteristics in the conventional TV set in both the horizontal direction of the screen (displayed on the X-axis in FIG. 16 (A)) and the vertical direction of the screen (displayed on the Y-axis in FIG. 16 (B)). have.
  • the diffusion characteristic of the luminous flux emitted from the liquid crystal display panel 11 of this embodiment has a viewing angle of 13 such that the brightness is 50% of the front view (angle 0 degree) as shown in Example 1 of FIG. By setting the degree, it becomes 1/5 of the conventional 62 degrees.
  • the viewing angle in the vertical direction is uneven up and down, and the reflection angle of the reflective light guide and the area of the reflecting surface are optimized so that the upper viewing angle is suppressed to about 1/3 of the lower viewing angle. do.
  • the amount of video light in the monitoring direction is significantly improved as compared with the conventional liquid crystal TV, and the brightness is 50 times or more.
  • the brightness becomes 50% of the front view (angle 0 degree).
  • the viewing angle in the vertical direction is set to be even in the vertical direction, and the reflection angle of the reflective light guide and the area of the reflecting surface are optimized so that the viewing angle is suppressed to about 1/12 of the conventional one.
  • the amount of image light in the monitoring direction is significantly improved as compared with the conventional liquid crystal TV, and the brightness is 100 times or more.
  • the amount of light flux toward the monitoring direction can be concentrated, so that the efficiency of light utilization is greatly improved.
  • the image display device 1 corresponding to the display system can be used.
  • a light beam having a narrow-angle directional characteristic is incident on the liquid crystal display panel 11 by a light source device, and the brightness is modulated according to a video signal so as to be on the screen of the liquid crystal display panel 11.
  • the spatial floating image 3 obtained by reflecting the displayed image information by the retroreflective member 2 is displayed outdoors or indoors via the wind glass 105.
  • FIG. 12 shows LED elements 14a and 14b constituting the light source, which are attached to the LED collimator 15 at a predetermined position.
  • Each of the LED collimators 15 is made of a translucent resin such as acrylic.
  • the LED collimator 15 has a conical convex outer peripheral surface 156 obtained by rotating a parabolic cross section, and at the top thereof, a convex portion (convex portion) at the center thereof. That is, it has a concave portion 153 forming a convex lens surface) 157. Further, the central portion of the flat surface portion has a convex lens surface protruding outward (or a concave lens surface recessed inward) 154.
  • the paraboloid surface forming the conical outer peripheral surface 156 of the LED collimator 15 is set within an angle range within which the light emitted from the LED elements 14a and 14b in the peripheral direction can be totally reflected inside. Or, a reflective surface is formed.
  • the LED elements 14a and 14b are arranged at predetermined positions on the surface of the LED substrate 102, which is the circuit board thereof.
  • the LED substrate 102 is arranged and fixed to the LED collimator 15 so that the LED elements 14a or 14b on the surface thereof are respectively located at the center of the recess 153.
  • the light radiated upward (to the right in FIG. 13B) from the central portion thereof. Is focused by the two convex lens surfaces 157 and 154 that form the outer shape of the LED collimator 15 to form parallel light.
  • the light emitted from the other portion toward the peripheral direction is reflected by the paraboloid forming the conical outer peripheral surface 156 of the LED collimator 15, and is similarly condensed into parallel light.
  • the LED collimator 15 in which a convex lens is formed in the central portion thereof and a paraboloid is formed in the peripheral portion thereof, almost all the light generated by the LED element 14a or 14b is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
  • a polarization conversion element 21 is provided on the light emitting side of the LED collimator 15.
  • the polarization conversion element 21 has a columnar (hereinafter, parallel quadrilateral column) translucent member having a parallel quadrilateral cross section and a columnar (hereinafter, triangular column) having a triangular cross section. ) Is combined with the translucent member, and a plurality of pieces are arranged in an array in parallel with the plane orthogonal to the optical axis of the parallel light from the LED collimator 15.
  • a polarizing beam splitter (hereinafter abbreviated as "PBS film”) 211 and a reflective film 212 are alternately provided. Further, a ⁇ / 2 phase plate 215 is provided on the exit surface where the light incident on the polarization conversion element 21 and transmitted through the PBS film 211 is emitted.
  • a rectangular synthetic diffusion block 16 shown in FIG. 13A is provided on the emission surface of the polarization conversion element 21. That is, the light emitted from the LED element 14a or 14b becomes parallel light by the action of the LED collimator 15 and enters the synthetic diffusion block 16, diffused by the texture 161 on the emitting side, and then reaches the light guide body 17. Ru.
  • the light guide body 17 is a member formed of a translucent resin such as acrylic into a rod shape having a substantially triangular cross section (see FIG. 13 (B)), and as is clear from FIG. 12, it is synthesized.
  • a light guide light emitting unit (plane) 173 facing the liquid crystal display panel 11 which is an image display element is provided.
  • FIG. 13 (B) which is a partially enlarged view thereof, a large number of reflecting surfaces 172a and connecting surfaces 172b are alternately arranged on the light reflecting portion (plane) 172 of the light guide body 17. It is formed in a serrated shape. Then, the reflecting surface 172a (a line segment rising to the right in the figure) forms ⁇ n (n: a natural number, for example, 1 to 130 in this example) with respect to the horizontal plane indicated by the alternate long and short dash line in the figure. As an example, here, ⁇ n is set to 43 degrees or less (however, 0 degrees or more).
  • the light guide body incident portion (plane) 171 is formed in a curved convex shape inclined toward the light source side. According to this, the parallel light from the emission surface of the synthetic diffusion block 16 is diffused and incident through the first diffusion plate 18a, and as is clear from FIG. 12, the light guide body incident portion (plane) 171 It reaches the light guide body light reflecting portion (plane) 172 while being slightly bent (deflected) upward, and is reflected here to reach the liquid crystal display panel 11 provided on the upper exit surface of FIG.
  • the image display device 1 it is possible to further improve the light utilization efficiency and its uniform lighting characteristics, and at the same time, to manufacture the image display device 1 in a small size and at low cost including a modularized S polarized wave light source device. It will be possible.
  • the polarization conversion element 21 is attached after the LED collimator 15, but the present invention is not limited thereto, and the same can be applied by providing the polarization conversion element 21 in the optical path leading to the liquid crystal display panel 11. Action / effect can be obtained.
  • a large number of reflecting surfaces 172a and connecting surfaces 172b are alternately formed in a sawtooth shape on the light guide body light reflecting portion (surface) 172, and the illumination light beam is totally reflected on each reflecting surface 172a.
  • a narrow-angle diffuser plate (not shown) is provided on the light emitting portion (plane) 173 of the light guide body, and is incident on the optical direction conversion panel 54 that controls the directivity characteristics as a substantially parallel diffused light beam. Then, the light is incident on the liquid crystal display panel 11 from an oblique direction.
  • the light direction conversion panel 54 is provided between the light guide body emission surface 173 and the liquid crystal display panel 11, but the same effect can be obtained by providing the light direction conversion panel 54 on the emission surface of the liquid crystal display panel 11.
  • FIG. 14 shows another example of the configuration of the optical system such as the light source device 13. Similar to the example shown in FIG. 13, a plurality of (two in this example) LED elements 14a and 14b constituting the light source are shown, and these are attached to the LED collimator 15 at a predetermined position. There is.
  • Each of the LED collimators 15 is made of a translucent resin such as acrylic. Then, as in the example shown in FIG. 13, this LED collimator 15 has a conical convex outer peripheral surface 156 obtained by rotating a parabolic cross section, and at the top thereof, a convex portion (that is, a convex portion) is formed at the center thereof.
  • Convex lens surface It has a recess 153 forming 157. Further, the central portion of the flat surface portion has a convex lens surface protruding outward (or a concave lens surface recessed inward) 154.
  • the paraboloid surface forming the conical outer peripheral surface 156 of the LED collimator 15 is set within an angle range at which the light emitted from the LED element 14a in the peripheral direction can be totally reflected inside the paraboloid surface. , A reflective surface is formed.
  • the LED elements 14a and 14b are arranged at predetermined positions on the surface of the LED substrate 102, which is the circuit board thereof.
  • the LED substrate 102 is arranged and fixed to the LED collimator 15 so that the LED elements 14a or 14b on the surface thereof are respectively located at the center of the recess 153.
  • the light radiated upward (to the right in the figure) from the central portion thereof is particularly the LED collimator.
  • the two convex lens surfaces 157 and 154 forming the outer shape of 15 are focused to form parallel light. Further, the light emitted from the other portion toward the peripheral direction is reflected by the paraboloid forming the conical outer peripheral surface 156 of the LED collimator 15, and is similarly condensed into parallel light.
  • the LED collimator 15 in which a convex lens is formed in the central portion thereof and a paraboloid is formed in the peripheral portion thereof, almost all the light generated by the LED element 14a or 14b is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
  • a light guide body 170 is provided on the light emitting side of the LED collimator 15 via the first diffuser plate 18a.
  • the light guide body 170 is a member formed of a translucent resin such as acrylic into a rod shape having a substantially triangular cross section (see FIG. 14 (A)), and as is clear from FIG. 14 (A).
  • the reflective polarizing plate 200 reflects P-polarized light among the natural light emitted from the LED elements 14a and 14b which are light sources. It passes through the ⁇ / 4 plate 172c provided in the light light reflecting unit 172 of the light guide body shown in 14 (B), is reflected by the reflecting surface 172d, and is converted into S polarization by passing through the ⁇ / 4 plate 172c again. All the light rays incident on the liquid crystal display panel 11 are unified to S polarization.
  • a reflective polarizing plate 200 having a characteristic of reflecting S-polarization (P-polarization is transmitted) is selected, S-polarization is reflected among the natural light emitted from the LED elements 14a and 14b which are light sources, and the figure shows. It passes through the ⁇ / 4 plate 172c provided in the light guide body light reflecting unit 172 shown in 14 (B), is reflected by the reflecting surface 172d, and is converted into P-polarized light by passing through the ⁇ / 4 plate 172c again. All the light rays incident on the liquid crystal display panel 52 are unified to P polarization. Polarization conversion can be realized even with the above-mentioned configuration.
  • Example of light source device 13 Another example of the configuration of an optical system such as a light source device will be described with reference to FIG.
  • the divergent luminous flux of natural light (a mixture of P-polarized light and S-polarized light) from the LED substrate 102 is converted into a substantially parallel luminous flux by the LED collimator lens 18, and the reflective light guide body 304 is used. It reflects toward the liquid crystal display panel 11. The reflected light is incident on the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304.
  • a reflective plate 271 is arranged so that a specific polarization (for example, S polarization) is reflected by the reflective polarizing plate 49, passes through a surface connecting the reflective surfaces of the light guide 304, and faces the opposite surface of the light guide 304. It is reflected by and transmitted through the phase plate ( ⁇ / 4 wavelength plate) 270 twice to be polarized, transmitted through the light guide and the reflective polarizing plate, incident on the liquid crystal display panel 11, and modulated by video light.
  • the phase plate ( ⁇ / 4 wavelength plate) 270 twice to be polarized, transmitted through the light guide and the reflective polarizing plate, incident on the liquid crystal display panel 11, and modulated by video light.
  • the efficiency of light utilization is doubled, and the degree of polarization (extinguishing ratio) of the reflective polarizing plate is also added to the extinguishing ratio of the entire system.
  • the contrast ratio of the information display system is significantly improved.
  • the natural light from the LED is aligned with a specific polarization (for example, P polarization).
  • a specific polarization for example, P polarization
  • a plurality of LEDs constituting the light source are provided (however, only one is shown in FIG. 12 because of the vertical cross section), and these are attached to the LED collimator lens 18 at a predetermined position.
  • the LED collimator lens 18 is made of a translucent resin such as acrylic or glass, respectively.
  • the LED collimator lens 18 has a conical convex outer peripheral surface obtained by rotating a parabolic cross section, and has a concave portion having a convex portion (that is, a convex lens surface) formed at the center thereof at the top thereof. ..
  • the central portion of the flat surface portion has a convex lens surface protruding outward (or a concave lens surface recessed inward).
  • the radial surface forming the conical outer peripheral surface of the LED collimator lens 18 is set within an angle range within which the light emitted from the LED collimator lens 18 in the peripheral direction can be totally reflected.
  • a reflective surface is formed.
  • the LEDs are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board thereof.
  • the LED substrate 102 is fixed to the LED collimator lens 18 by arranging and fixing LEDs on the surface thereof so as to be located at the center of the recess.
  • the light radiated from the central portion thereof is collected by the two convex lens surfaces forming the outer shape of the LED collimator lens 18. Becomes parallel light. Further, the light emitted from the other portion toward the peripheral direction is reflected by the paraboloid forming the conical outer peripheral surface of the LED collimator lens 18, and is similarly condensed to become parallel light.
  • the LED collimator lens 18 having a convex lens formed in the center thereof and a paraboloid formed in the peripheral portion thereof almost all the light generated by the LED can be taken out as parallel light. , It is possible to improve the utilization efficiency of the generated light.
  • Example 4 of the display device is a configuration example in which a diffusion sheet is used instead of the reflective light guide body 304 in the light source device of Example 3 of the display device.
  • a diffusion sheet is used instead of the reflective light guide body 304 in the light source device of Example 3 of the display device.
  • two optical sheets that convert the diffusion characteristics in the vertical direction and the horizontal direction (not shown in the front-back direction in the figure) in the drawing are used (optical sheet 207A and the optical sheet 207A and the optical sheet 207A.
  • the light from the optical sheet 207B) and the LED collimator lens 18 is incidented between the two optical sheets (diffusing sheets).
  • This optical sheet may be one sheet instead of two sheets.
  • the vertical and horizontal diffusion characteristics are adjusted by the fine shapes of the front and back surfaces of one optical sheet.
  • a plurality of diffusion sheets may be used to share the action.
  • the number of LEDs and the number of LEDs are set so that the surface density of the light flux emitted from the liquid crystal display panel 11 becomes uniform.
  • the divergence angle from the LED substrate (optical element) 102 and the optical specifications of the LED collimator lens 18 may be optimally designed as design parameters. That is, the diffusion characteristics are adjusted by the surface shapes of a plurality of diffusion sheets instead of the light guide.
  • the polarization conversion is performed in the same manner as in Example 3 of the display device described above. That is, in the example of FIG. 17, the reflective polarizing plate 49 may be configured to have a characteristic of reflecting S-polarized light (transmitting P-polarized light). In that case, of the light emitted from the LED as the light source, the P-polarized light is transmitted, and the transmitted light is incident on the liquid crystal display panel 11.
  • the S-polarized light is reflected, and the reflected light passes through the retardation plate 270 shown in FIG.
  • the light that has passed through the retardation plate 270 is reflected by the reflector plate 271.
  • the light reflected by the reflector 271 is converted into P-polarized light by passing through the retardation plate 270 again.
  • the polarization-converted light passes through the reflective polarizing plate 49 and is incident on the liquid crystal display panel 11.
  • the ⁇ / 4 plate 270 which is the retardation plate of FIG. 17, does not necessarily have a phase difference of ⁇ / 4 with respect to the polarization vertically incident on the ⁇ / 4 plate 270. In the configuration of FIG.
  • any phase difference plate may be used as long as the phase is changed by 90 ° ( ⁇ / 2) by passing the polarized light twice.
  • the thickness of the retardation plate may be adjusted according to the incident angle distribution of the polarized light. It should be noted that also in FIG. 17, regarding the polarization design related to the polarization conversion, the polarization may be reversed (the S polarization and the P polarization are reversed) from the above description.
  • a polarization conversion element 21 is arranged on the light emitting side of the LED collimator lens 18. Then, the natural light from the LED element 14c is aligned with a specific polarization to be incident on the optical element 81 that controls the diffusion characteristics, and the diffusion characteristics in the vertical direction and the horizontal direction (not shown in the front-back direction in the figure) are controlled. The light distribution characteristics toward the reflective surface of the reflective light guide 220 are optimized. As shown in FIG.
  • an uneven pattern 222 is provided on the surface of the reflective light guide 220, and is reflected toward an image display device (not shown) arranged on the facing surface of the reflective light guide 220. And obtain the desired diffusion characteristics. Since the placement accuracy of the LED element 14c and the LED collimator lens 18 of the light source greatly affects the efficiency of the light source, the accuracy of the optical axis usually needs to be about 50 ⁇ m. As a measure to reduce the mounting accuracy, the drop in mounting accuracy was reduced by using a plurality of or a single unit as the light source unit 223 structure in which several LED elements 14c and the LED collimator lens 18 are integrated in the light source device.
  • a plurality of light source units 223 in which the LED element 14c and the LED collimator lens 18 are integrated are incorporated at both ends of the reflective light guide body 220 in the long side direction. This (three on each side in the embodiment of FIG. 18) realizes uniform brightness of the light source device.
  • a plurality of concave-convex patterns 222 substantially parallel to the light source unit are formed on the reflective surface 220a of the reflective light guide body 220, and even in one concave-convex pattern 222, the surface thereof forms a polyhedron so that the amount of light incident on the image display device 1 Can be controlled with high precision.
  • the shape of the reflective surface is described as the uneven pattern 222, but even if the pattern has triangular surfaces, corrugated surfaces, etc. arranged regularly or irregularly, the reflective light guide body 220 is directed toward the image display device 1 depending on the surface shape. Needless to say, if the light distribution pattern is controlled, it conflicts with the present invention. Further, a light-shielding wall 224 is provided on the side surface of the reflective light guide 220 so that the light controlled by the LED collimator lens 18 does not leak to the outside from the light source device 13, and the LED element 14c has heat dissipation by the metal substrate 225. It is good to have an enhanced design.
  • ⁇ Lenticular sheet> the operation of the lenticular lens that controls the diffusion characteristic of the light emitted from the image display device 1 will be described.
  • the lens shape of the lenticular lens By optimizing the lens shape of the lenticular lens, it is possible to efficiently obtain the spatial floating image 3 emitted from the above-mentioned image display device 1 and transmitted or reflected through the wind glass 105. That is, for the image light from the image display device 1, two lenticular lenses are combined, or microlens arrays are arranged in a matrix to provide a sheet for controlling the diffusion characteristics, and in the X-axis and Y-axis directions.
  • the brightness (relative brightness) of the image light can be controlled according to the reflection angle (0 degrees in the vertical direction).
  • such a lenticular lens can make the luminance characteristic in the vertical direction steeper as shown in FIG. 16B as compared with the conventional case.
  • the brightness (relative brightness) of light due to reflection or diffusion can be increased by changing the balance of the directional characteristics in the vertical direction (positive / negative direction of the Y axis). Due to these effects, the image light has a narrow diffusion angle (high straightness) and only a specific polarization component, like the image light from a surface-emitting laser image source, and a conventional image display device was used.
  • the ghost image generated by the retroreflective member can be suppressed, and the space floating image due to retroreflective can be efficiently controlled to reach the viewer's eyes.
  • the X-axis direction and the Y-axis with respect to the emission light diffusion characteristics (denoted as conventional in the figure) from the general liquid crystal display panel 11 shown in FIGS. 16A and 16B. It is possible to realize a directional characteristic with a significantly narrow angle in both directions. This makes it possible to realize an image display device that emits light having a specific polarization that emits an image luminous flux that is almost parallel to a specific direction.
  • FIG. 15 shows an example of the characteristics of the lenticular lens used in this embodiment.
  • the characteristic in the X direction vertical direction
  • the peak in the light emission direction is at an angle of about 30 degrees upward from the vertical direction (0 degrees) and is vertically symmetrical. It shows the brightness characteristics.
  • the characteristics A and B in FIG. 15 further show an example of a characteristic in which the image light above the peak luminance is condensed at around 30 degrees to increase the luminance (relative luminance). Therefore, in these characteristics A and B, the brightness (relative brightness) of light is sharply reduced as compared with the characteristic O at an angle exceeding 30 degrees.
  • the emission angle of the image light aligned in a narrow angle by the light source devices 13 and 230 is The viewing angle can be controlled, and the degree of freedom in installing the retroreflective member 2 can be greatly improved.
  • the degree of freedom of the relationship between the image formation positions of the spatial floating image 3 that reflects or transmits the wind glass 105 and forms an image at a desired position can be greatly improved.
  • the viewer can accurately recognize the video light and obtain information.
  • the output of the video display device 1 it is possible to realize a spatial floating video display system with low power consumption.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment describes the entire system in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the user can operate the image without feeling anxiety about contact transmission of an infectious disease. to enable.
  • the technique according to this embodiment for a system used by an unspecified number of users, it is possible to reduce the risk of contact transmission of infectious diseases and provide a non-contact user interface that can be used without feeling anxiety. .. This will contribute to "3 Health and Welfare for All" of the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • the emission angle of the emitted image light is made small, and by aligning the emission angle with a specific polarization, only the normal reflected light is efficiently reflected by the retroreflective member. It is highly efficient and makes it possible to obtain bright and clear floating images in space. According to the technique according to the present embodiment, it is possible to provide a highly usable non-contact user interface capable of significantly reducing power consumption. This will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations, "Let's lay the foundation for 9 industries and technological innovation" and "11 Create a city where people can continue to live.”
  • SDGs Sustainable Development Goals
  • the technique according to this embodiment makes it possible to form a spatial floating image by image light having high directivity (straightness).
  • the technique according to this embodiment has high directionalness even when displaying images that require high security at bank ATMs, ticket vending machines at stations, etc., or images that are highly concealed and that the person facing the user wants to conceal.
  • By displaying the image light it is possible to provide a non-contact user interface with less risk of being peeped into the floating image in space other than the user. This will contribute to the "11 Sustainable Development Goals" (SDGs: Sustainable Development Goals) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and is a display panel as an image source and a light source that supplies light in a specific polarization direction to the display panel.
  • a device and a retroreflective member having a retardation plate on a retroreflective surface are provided, and a polarization separating member is provided in a space connecting the display panel and the retroreflective member, and the polarization separating member is the display.
  • the image light of the specific polarization from the panel is once transmitted toward the retroreflective member, polarized and converted by the retroreflective member and converted to the other polarization, and then reflected by the polarization separating member to be specified.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and has a display panel as an image source, a light source device that supplies light in a specific polarization direction to the display panel, and reflection.
  • a retroreflective member having a retardation plate on the reflective surface is provided, and a polarization separation member is provided in the space connecting the display panel and the retroreflection member, and the polarization separation member is from the display panel.
  • the image light of the specific polarization is once transmitted to the retroreflective member, polarized and converted by the retroreflective member and converted to the other polarization, and then reflected by the polarization separation member to be reflected by the specific polarization.
  • a spatial floating image which is a real image, is displayed on the side of the transparent member provided in the opening through which the image light passes, which is an actual image, and the retroreflective member is arranged at an angle with respect to the display panel to perform retroreflection. It is a spatial floating image display device that is arranged at a position away from the opening through which the image light passes and is configured to prevent the incident of external light.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and includes a display panel, a light source device that supplies light in a specific polarization direction to the display panel, a retroreflective member, and the like.
  • a light-shielding member is arranged to prevent an image light beam having a divergence angle exceeding a specific angle from the display panel from being incident on the retroreflective member.
  • the surface roughness of the reflective surface of the retroreflective member is set so that the ratio of the blur amount l of the spatially floating image and the pixel size L of the display panel is 40% or less, and the light source device is a point or surface.
  • a light guide body having a light source, an optical member that reduces the divergence angle of light from the light source, a polarization conversion member that aligns the light from the light source with polarization in a specific direction, and a reflective surface propagating to the display panel.
  • the light guide body adjusts the divergence angle of the reflected light according to the shape and surface roughness of the reflective surface provided on the light guide body, and has a narrow divergence angle from the display panel. It is a space floating image display device that reflects a light beam by the retroreflective member to form the space floating image in the air.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and includes a display panel, a light source device that supplies light in a specific polarization direction to the display panel, a retroreflective member, and the like.
  • a light-shielding member is arranged to prevent an image light beam having a divergence angle exceeding a specific angle from the display panel from being incident on the retroreflective member.
  • the surface roughness of the reflective surface of the retroreflective member is set so that the ratio of the blur amount l of the spatially floating image and the pixel size L of the display panel is 40% or less, and the light source device is a point or surface.
  • a light guide body having a shape-like light source, an optical member for reducing the emission angle of light from the light source, a polarization conversion member for aligning the light from the light source to polarization in a specific direction, and a reflecting surface propagating to the display panel.
  • the light guide body is arranged to face the display panel, and a reflective surface for reflecting light from the light source toward the display panel is provided inside or on the surface of the light guide body.
  • the light in the specific polarization direction reflected by the reflective polarizing plate is transmitted through the surface connecting the adjacent reflective surfaces of the light guide, and is opposite to the surface of the light guide that is in contact with the display panel.
  • the light guide body is converted into a polarization that passes through the reflective polarizing plate, and is converted into a polarization by being reflected by a reflecting plate provided in the above and passing through a retardation plate arranged on the upper surface of the reflecting plate twice.
  • the display panel modulates the light intensity according to the image signal
  • the light source device is one of the divergence angles of the image light beam incident on the display panel from the light source. A part or the whole is adjusted by the shape and surface roughness of the reflecting surface provided in the light source device, and the image light beam having a narrow divergence angle from the display panel is reflected by the retroreflective member and floats in the air. It is a spatial floating image display device that forms an image.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and includes a display panel, a light source device that supplies light in a specific polarization direction to the display panel, a retroreflection member, and the like.
  • a light-shielding member is arranged to prevent an image light beam having a divergence angle exceeding a specific angle from the display panel from being incident on the retroreflection member.
  • the surface roughness of the reflective surface of the retroreflective member is set so that the ratio of the blur amount l of the spatially floating image and the pixel size L of the display panel is 40% or less, and the light source device is a point-shaped or surface.
  • a reflective polarizing plate is arranged between the reflective surface of the light guide and the display panel so as to propagate to the display panel, and specific polarization reflected by the reflective polarizing plate is provided.
  • the light source device By reflecting the light in the direction on the reflecting surface arranged close to the other surface of the light guide and passing through the retardation plate arranged between the light guide and the reflecting surface twice. Polarization conversion is performed, light in a specific polarization direction is propagated to the display panel through the reflective polarizing plate, the display panel modulates the light intensity according to the video signal, and the light source device displays the light source device. Part or all of the divergence angle of the light beam incident on the display panel from the light source is controlled by the shape and surface roughness of the reflecting surface provided in the light source device, and the divergence angle from the liquid crystal display panel is narrow. It is a space floating image display device that forms the space floating image in the air by reflecting the image light beam having the above on the retroreflecting member.
  • one embodiment of the present embodiment is a light source device used for the space floating image display device, wherein the divergence angle is within ⁇ 30 degrees.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and includes a display panel, a light source device that supplies light in a specific polarization direction to the display panel, a retroreflection member, and the like.
  • the light source device comprises a point-shaped or planar light source, an optical member that reduces the divergence angle of light from the light source, a polarization conversion member that aligns the light from the light source with polarization in a specific direction, and the display.
  • a reflective surface is provided to reflect light toward the panel, and the light propagates to the display panel.
  • the light guide modulates the light intensity according to the video signal on the display panel, and the image light beam incident on the display panel from the light source. Part or all of the divergence angle of the light guide is adjusted by the shape and surface roughness of the reflecting surface provided on the light guide body, and the retroreflecting member obtains an image light beam having a narrow divergence angle from the display panel.
  • It is a spatial floating image display device that reflects and forms a floating image in the air, and the shape of the retroreflecting member is formed by a concave surface or a convex surface having a radius of curvature of 200 mm or more with respect to the display panel.
  • one embodiment of the present embodiment is a spatial floating image display device that forms a spatial floating image, and has a display panel, a light source device that supplies light in a specific polarization direction to the display panel, and a polarization separating member on the surface.
  • a transparent plate provided with a An outer frame to be connected is provided, and the image light of a specific polarization from the display panel is reflected by the polarization separation member, and the image light retroreflected by the retardation plate provided on the retroreflection member is polarized and converted into the polarization separation.
  • a spatial floating image is formed by transmitting the member and the transparent plate, and when the viewer of the spatial floating image observes the spatial floating image, a part or all of the spatial floating image is one of the outer frames. It is a spatial floating image display device in which the optical system is arranged in the housing so as to hang on a part or the whole.
  • Video display device 1a Video display unit 1b: Video control unit 1c: Video signal reception unit 1d: Receiving antenna 2: Retroreflective member 2a: Retroreflective unit 3: Spatial floating image 11: Liquid crystal display panel 12: Absorption-type polarization Plate 13: Light source device 13a: Light source device 14a to c: LED element 15: LED collimeter 16: Synthetic diffusion block 17: Light guide body 18: LED collimeter lens 18a: First diffusion plate 18b: Second diffusion plate 21: ⁇ / 4 plates (polarization conversion element) 22: 1st light-shielding member 23: 2nd light-shielding member 24: 3rd light-shielding member 25: 4th light-shielding member 30: Arrow 49: Reflective polarizing plate 50: Protective cover 52: Liquid crystal display panel 54: Optical direction conversion panel 81: Optical element 100: Transparent member 100a: Window portion 100b: Light-shielding member 101: Polarization separation member 102: LED substrate

Abstract

映像源として液晶表示パネルと、液晶表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射面に位相差板を設けた再帰反射部材と、を備え、液晶表示パネルと再帰反射部材とを結んだ空間には偏光分離部材を設け、偏光分離部材は、液晶表示パネルからの特定偏波の映像光を再帰反射部材に向けて一旦は透過させ、再帰反射部材で偏光変換し他方の偏波に変換することで、偏光分離部材で反射させ、特定偏波の映像光が通過する透明部材において、映像源とは反対側に実像である空間浮遊映像を表示する。

Description

空間浮遊映像表示装置及び光源装置
 本発明は、空間浮遊映像表示装置及び光源装置に関する。
 空間浮遊映像表示装置の一例として、特許文献1は「情報処理装置のCPUは、空気中に形成される像へのユーザの接近方向を検知する接近方向検知部と、入力が検知された座標を検知する入力座標検知部と、操作の受け付けを処理する操作受付部と、受け付けた操作に応じて操作画面を更新する操作画面更新部とを備える。CPUは、ユーザが予め定めた方向から像に接近する場合、ユーザの動きを操作として受け付け、操作に応じた処理を実行する(要約抜粋)。」とする記載を開示している。
特開2019-128722号公報
 上述した特許文献1の空間浮遊映像表示装置は、空間浮遊映像の操作性を向上させることはできても、空間浮遊映像の見た目の解像度やコントラストの向上については考慮されておらず、更なる映像品質の向上が求められているという実情がある。
 本発明は、上記実情に鑑みてなされたものであり、好適で視認性の高い空間浮遊映像を表示することができる空間浮遊映像表示装置を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、空間浮遊映像を形成する空間浮遊映像表示装置であって、映像源として表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射面に位相差板を設けた再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材とを結んだ空間には偏光分離部材を設け、前記偏光分離部材は、前記表示パネルからの特定偏波の映像光を前記再帰反射部材に向けて一旦は透過させ、前記再帰反射部材で偏光変換し他方の偏波に変換することで、前記偏光分離部材で反射させ、前記特定偏波の映像光が通過する透明部材において、前記映像源とは反対側に実像である空間浮遊映像を表示する、空間浮遊映像表示装置である。
 本発明によれば、好適で視認性の高い空間浮遊映像を表示することができる空間浮遊映像表示装置を実現できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る空間浮遊映像表示システムの使用形態の一例を示す図である。 本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の一例を示す図である。 空間浮遊映像表示システムの課題を示す図である。 再帰反射部材の表面粗さと再帰反射像のボケ量の関係を表す特性図である。 空間浮遊映像表示システムの課題を示す図である。 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施を示す図である。 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施を示す図である。 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施を示す図である。 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施を示す図である。 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施を示す図である。 光源装置の具体的な構成の一例を示す断面図である。 光源装置の具体的な構成の一例を示す断面図である。 光源装置の具体的な構成の一例を示す断面図である。 本発明の一実施例に係る空間浮遊映像表示システムの主要部を示す配置図である。 本発明の一実施例に係る空間浮遊映像表示システムを構成する映像表示装置の構成を示す断面図である。 光源装置の具体的な構成の一例を示す断面図である。 光源装置の具体的な構成の一例を示す断面図である。 光源装置の具体的な構成の一例を示す断面図である。 映像表示装置の拡散特性を説明するための説明図である。 映像表示装置の拡散特性を説明するための説明図である。 本発明の一実施例に係る空間浮遊映像表示システムを構成する映像表示装置の構成を示す断面図である。 本発明の一実施例に係る光源装置の具体的な構成の一例を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、本発明は実施例の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものには、同一の符号を付与し、その繰り返しの説明は省略する場合がある。なお、以下の実施例の説明において、空間に浮遊する映像を「空間浮遊映像」という用語で表現している。この用語の代わりに、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」と表現してもかまわない。実施例の説明で用いる「空間浮遊映像」との用語は、これらの用語の代表例として用いている。
 以下の実施例は、例えば、大面積な映像発光源からの映像光による映像を、ショーウィンドのガラス等の空間を仕切る透明部材を介して透過して、店舗(空間)の内部または外部に空間浮遊映像として表示することが可能な空間浮遊映像表示システムに関する。また、かかる空間浮遊映像表示システムを複数用いて構成される大規模なデジタルサイネージシステムに関する。
 以下の実施例によれば、例えば、ショーウィンドのガラス面や光透過性の板材上に高解像度な映像情報を空間浮遊した状態で表示可能となる。この時、出射する映像光の発散角を小さく、即ち鋭角とし、さらに特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、従来の再帰反射方式での課題となっていた主空間浮遊映像の他に発生するゴースト像を抑えることができ、鮮明な空間浮遊映像を得ることができる。また本実施例の光源を含む装置により、消費電力を大幅に低減することが可能な、新規で利用性に優れた空間浮遊映像表示システムを提供することができる。また、例えば、車両のフロントガラスやリアガラスやサイドガラスを含むシールドガラスを介して、車両外部において視認可能である、いわゆる、一方向性の空間浮遊映像表示が可能な車両用浮遊映像表示システムを提供することができる。
 一方、従来の空間浮遊映像表示システムでは、高解像度なカラー表示映像源として有機ELパネルや液晶表示パネルを再帰反射部材と組合せる。従来技術による空間浮遊映像表示装置では映像光が広角で拡散するため、再帰反射部が6面体であるために正規に反射する反射光の他に、図3に示すように再帰反射部材(再帰反射シート)2に斜めから入射する映像光よってゴースト像が発生し空間浮遊映像の画質を損ねていた。従来技術として示した再帰反射部材は6面体であるために、図5に示すように空間浮遊映像の正規像R1の他に第1ゴースト像G1からから第6ゴースト像G6まで複数発生する。このため観視者以外にも同一空間浮遊映像であるゴースト像を監視されてしまいセキュリティ上大きな課題があった。
 また後述する狭角な指向特性を有する映像表示装置からの映像光を再帰反射部材で反射させ得られた空間浮遊映像は上述したゴースト像の他に図4に示したように液晶表示パネルの画素ごとにボケが視認された。
 <空間浮遊映像表示システム(1)>
 図1は、本発明の一実施例に係る空間浮遊映像表示システムの使用形態の一例を示す図である。図1(A)は、本実施例に係る空間浮遊映像表示システムの全体構成を示す図である。例えば、店舗等においては、ガラス等の透光性の部材であるショーウィンド(ウィンドガラス105)により空間が仕切られている。本実施例の空間浮遊情報表示システムによれば、かかる透明部材を透過して、浮遊映像を店舗(空間)の外部に対して一方向に表示することが可能である。具体的には、映像表示装置1から狭角な指向特性でかつ特定偏波の光が、映像光束として出射し、再帰反射部材2に一旦入射し、再帰反射してウィンドガラス105を透過して、店舗の外側に、実像である空中像(空間浮遊映像3)を形成する。図1では、ウィンドガラス105の内側(店舗内)を奥行方向にしてその外側(例えば、歩道)が手前になるように示している。他方、ウィンドガラス105に特定偏波を反射する手段を設けることで反射させ、店内の所望の位置に空中像を形成することもできる。
 図1(B)は、上述した映像表示装置1の構成を示すブロック図である。映像表示装置1は、空中像の原画像を表示する映像表示部1aと、入力された映像をパネルの解像度に合わせて変換する映像制御部1bと、映像信号を受信する映像信号受信部1cと、受信アンテナ1dとを含んでいる。映像信号受信部1cは、HDMI(High-Definition Multimedia Interface:登録商標)入力など有線での入力信号への対応と、Wi-Fi(Wireless Fidelity:登録商標)などの無線入力信号への対応を行い、映像受信・表示装置として単独で機能するものでもあり、タブレット、スマートフォンなどからの映像情報を表示することもできる。更にステックPCなどを接続すれば計算処理や映像解析処理などの能力を持たせることもできる。
 図2は、本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の一例を示す図である。図2を用いて、空間浮遊映像表示システムの構成をより具体的に説明する。図2(A)に示すように、ガラス等の透明部材100の斜め方向には、特定偏波の映像光を狭角に発散させる映像表示装置1を備える。映像表示装置1は、液晶表示パネル11と狭角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えている。
 映像表示装置1からの特定偏波の映像光は、透明部材100に設けた特定偏波の映像光を選択的に反射する膜を有する偏光分離部材101(図中は偏光分離部材101をシート状に形成して透明部材100に粘着している)で反射され、再帰反射部材2に入射する。再帰反射部材の映像光入射面にはλ/4板21を設ける。映像光は、再帰反射部材2への入射のときと出射のときの2回、λ/4板21を通過させられることで特定偏波から他方の偏波へ偏光変換される。ここで、特定偏波の映像光を選択的に反射する偏光分離部材101は偏光変換された他方の偏波の偏光は透過する性質を有するので、偏光変換後の特定偏波の映像光は、偏光分離部材101を透過する。偏光分離部材101を透過した映像光が、透明部材100の外側に実像である空間浮遊映像3を形成する。
 なお、空間浮遊映像3を形成する光は再帰反射部材2から空間浮遊映像3の光学像へ収束する光線の集合であり、これらの光線は、空間浮遊映像3の光学像を通過後も直進する。よって、空間浮遊映像3は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像である。よって、図2の構成では、矢印Aの方向からユーザが視認する場合には空間浮遊映像3は明るい映像として視認されるが、矢印Bの方向から他の人物が視認する場合は、空間浮遊映像3は映像として一切視認することはできない。この特性は、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムに採用する場合非常に好適である。
 なお、再帰反射部材2の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は、上述した偏光分離部材101で反射され映像表示装置1に戻る。この光が、映像表示装置1を構成する液晶表示パネル11の映像表示面で再反射し、ゴースト像を発生させ空間浮遊映像の画質を低下させる可能性がある。そこで、本実施例では映像表示装置1の映像表示面に吸収型偏光板12を設ける。映像表示装置1から出射する映像光は吸収型偏光板12を透過させ、偏光分離部材101から戻ってくる反射光は吸収型偏光板12で吸収させることで、上記再反射を抑制できる。これにより、空間浮遊映像のゴースト像による画質低下を防止することができる。
 上述した偏光分離部材101は、例えば反射型偏光板や特定偏波を反射させる金属多層膜などで形成すればよい。
 次に、図2(B)に代表的な再帰反射部材2として、今回の検討に用いた日本カ-バイト工業株式会社製の再帰反射部材2の表面形状を示す。規則的に配列された6角柱からなる再帰反射部2aの内部に入射した光線は、6角柱の壁面と底面で反射され再帰反射光として入射光に対応した方向に出射して図5に示す正規像R1を形成する。一方、図3に示したように映像表示装置1からの映像光の内で再帰反射部材2に斜めに入射した映像光によっては正規像R1とは別にゴースト像(図5中のG1からG6)が形成される。
 そこで、本発明の映像表示装置1に表示した映像に基づき、ゴースト像を形成することなく、実像である空間浮遊映像3を表示する。この空間浮遊映像3の解像度は液晶表示パネル11の解像度の他に、図2(B)で示す再帰反射部材2の再帰反射部2aの外径DとピッチPに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)液晶表示パネル11を用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部2aの直径Dが240μmでピッチが300μmであれば空間浮遊映像3の1画素は300μm相当となる。このため、空間浮遊映像3の実効的な解像度は1/3程度に低下する。そこで空間浮遊映像3の解像度を映像表示装置1の解像度と同等にするためには、再帰反射部2aの直径とピッチを液晶表示パネルの1画素に近づけることが望まれる。他方、再帰反射部材2と液晶表示パネル11の画素によるモアレの発生を抑えるため、それぞれのピッチ比を1画素の整数倍から外して設計すると良い。また形状は再帰反射部2aのいずれの一辺も液晶表示パネル11の1画素のいずれの一辺と重ならないように配置すると良い。
 発明者らは視認性を向上するために許容できる空間浮遊映像の像のボケ量lと画素サイズLとの関係を画素ピッチ40μmの液晶表示パネルと本願発明の狭発散角(発散角15°)の光源を組み合わせた映像表示装置1を作成し実験により求めた。図4のその実験結果を示す。視認性が悪化するボケ量lは画素サイズの40%以下が望ましく15%以下であればほとんど目立たないことが分かった。この時のボケ量lが許容量となる反射面の面粗さは測定距離40μmの範囲において平均粗さが160nm以下であり、より目立たないボケ量lとなるには反射面の面粗さは120nm以下が望ましいことが分かった。このため、前述した再帰反射部材の表面粗さを軽減するとともに反射面を形成する反射膜とその保護膜を含めた面粗さを上述した値以下とすることは望まれる。
 一方、再帰反射部材2を低価格で製造するためには、ロールプレス法を用いて成形すると良い。具体的には再帰反射部2aを整列させフィルム上に賦形する方法であり、賦形する形状の逆形状をロール表面に形成し、固定用のベース材の上に紫外線硬化樹脂を塗布しロール間を通過させることで、必要な形状を賦形し紫外線を照射して硬化させ、所望形状の再帰反射部材2を得る。
 本発明の映像表示装置1は、液晶表示パネル11と後述詳細に説明する狭角な拡散特性を有する特定偏波の光を生成する光源装置13により上述した再帰反射部材2に対して斜めから映像が入射する可能性が小さくゴーストの発生と発生しても輝度が低いという構造的に優れたシステムとなる。
 <空間浮遊映像表示システム(2)>
 図6Aは、本発明の一実施例に係る空間浮遊映像表示システムの主要部構成の他の例(第二例)を示す図である。映像表示装置1は、映像表示素子としての液晶表示パネル11と、狭角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネルで構成される。例えば反射型偏光板のような偏光分離部材101で液晶表示パネルからの映像光を再帰反射部材2に向けて反射させる。
 再帰反射部材2の光入射面にはλ/4板21を設け、映像光を2度通過させることで偏光変換し特定偏波を他方の偏波に変換することで、偏光分離部材101を透過させ、透明部材100の外側に実像である空間浮遊映像3を表示する。透明部材100の外光入射面には吸収型の偏光板を設ける。上述した偏光分離部材101では再帰反射することで偏光軸が不揃いになるため一部の映像光は反射し映像表示装置1に戻る。この光が再度映像表示装置1を構成する液晶表示パネル11の映像表示面で反射し、ゴースト像を発生させ空間浮遊映像3の画質を著しく低下させる。そこで本実施例では映像表示装置1の映像表示面に吸収型偏光板12を設け、映像光は透過させ、上述した反射光を吸収させることで空間浮遊映像3のゴースト像による画質低下を防止する。
 更に、セット外部の太陽光や照明光による画質低下を軽減するため、透明部材100の表面に吸収型偏光板112を設けると良い。さらに再帰反射部材2に外光が入射すると強力なゴースト像を発生させるため第4遮光部材25で外光の入射を妨げる構成とする。偏光分離部材101は反射型偏光板や特定偏波を反射させる金属多層膜から形成される。
 偏光分離部材101と液晶表示パネル11の間に、空間浮遊映像を形成する正規映像光以外の斜め映像光を遮光する第2遮光部材23及び第3遮光部材24を併設している。また再帰反射部材2と偏光分離部材101の間にも正規映像光以外の斜め映像光を遮光する第1遮光部材22を設け、更に上述したように外光が直接再帰反射部材2に入射しないように第4遮光部材25も併設してゴースト像を発生させる斜め光を遮光する。この結果、ゴースト像の発生を抑えることができる。
 発明者らは実験により液晶表示パネル11と偏光分離部材101の空間に第3遮光部材24と第2遮光部材23を併設することで遮光の効果を高められることを確認した。この実験では、第2遮光部材23及び第3遮光部材24の内径は、空間浮遊映像を形成する正規映像光束が通過する領域に対して面積で110%とすることで部品精度を機械公差の範囲で作成し組み立てることができる。更に、ゴースト像発生をさらに軽減するには前述の遮光部材の正規映像光束が通過する領域に対して104%以下とすればゴースト像の発生を実用上問題のないレベルに抑えることができた。一方が再帰反射部材2と偏光分離部材101の間に設けた第1遮光部材22は、第1遮光部材22と再帰反射部材2の距離L1を再帰反射部材2と偏光分離部材101の距離に対して50%以下であればゴースト像の発生を更に軽減でき30%以下では目視では実用上問題のないレベルまで軽減できた。更に、再帰反射部材2を囲むように設けた第4遮光部材25と第1遮光部材22と第2遮光部材23及び第3遮光部材24を併設することで更にゴーストレベルを軽減できた。
 図6Aの遮光部材の断面形状は空間浮遊映像を形成する正規映像光束が通過する領域(本実施形態では吸収型偏光板112における映像光束が通過する領域に相当する。)に対する遮光部材の有効面積とほぼ同サイズとし内面に向かって梁を設けゴースト像を形成する異常光を梁の表面で複数回反射させ異常光を吸収させると更に良い。遮光部材外枠に対して正規映像光束が通過する領域を小さくし梁の内接する面と同等の面積としている。
 他方、再帰反射部材2の形状を映像表示装置1と正対した平面形状から曲率半径200mm以上の凹面又は凸面として再帰反射部材2で反射した斜め映像光によりゴースト像が発生しても、反射後に発生したゴースト像を観視者の視界から離してしまうことで監視できないようにしても良い。曲率半径が100mm以下とする再帰反射部材2の周辺で反射した光の内、正規で反射した光量が低下し得られる空間浮遊映像3の周辺光量が低下するという新たな課題が発生する。このため、ゴースト像を実用上問題のないレベルに軽減するためには上述した技術手段を選択し適用するか、併用すると良い。
 <空間浮遊映像表示システム(3)>
 図6Bは本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例(第三例)を示す図である。映像表示装置1は、映像表示素子としての液晶表示パネル11と、狭角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネル11で構成される。例えば反射型偏光板のような偏光分離部材101で液晶表示パネル11からの映像光を再帰反射部材2に向けて一旦は透過させる。
 再帰反射部材2の光入射面にはλ/4板21を設け、映像光を2度通過させることで偏光変換し特定偏波を他方の偏波に変換することで、偏光分離部材101で反射させ、透明部材100の外側に実像である空間浮遊映像3を表示する。透明部材100の外光入射面には吸収型偏光板112を設ける。この透明部材100は映像光が通過する部分だけ透明体でありそのほかの部分は外光がセット内に入射しないように光を遮る遮光部材100bで構成されている。再帰反射部材2の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は偏光分離部材101で反射され映像表示装置1に戻る。この光が再度映像表示装置1を構成する液晶表示パネル11の映像表示面で再反射し、ゴースト像を発生させ空間浮遊映像3の画質を著しく低下させる。そこで本実施例では映像表示装置1の映像表示面にさらに吸収型偏光板12を設ける。もしくは、映像表示装置1の表面に設けた吸収型偏光板12の映像出射側面に反射防止膜(不図示)を設けることでゴースト像の光を透過させ、吸収型偏光板12で吸収させることで空間浮遊映像3のゴースト像による画質低下を防止する。
 更に、映像表示装置1やその他の光学部品を収容する筐体106の外部の太陽光や照明光による画質低下を軽減するため、透明部材100の外表面に吸収型偏光板112を設けると良い。さらに再帰反射部材2に外光が入射すると強力なゴースト像を発生させるため再帰反射部材2を傾け(傾きθ)、再帰反射映像光が通過する透明体で形成された窓部100aから離れた位置に配置し外光の入射を妨げる構成とする。映像表示装置1も同様に窓部100aから離れた位置に配置し、映像表示装置1から出射する映像光が窓部100aから視認できない位置に映像表示装置1を設けるとゴースト像の発生が軽減される。(窓部100aは開口部の一形態である。)
 また、偏光分離部材101は反射型偏光板や特定偏波を反射させる金属多層膜から形成される。
 窓部100aから出射した空間浮遊映像3は反射ミラー400で反射される。この時、窓部100aの平面に対して反射ミラー400の角度を所望の角度に設定することで、得られる空間浮遊映像3の位置と角度を変更できる。反射ミラー400は特定偏波の反射率が高い特性のものを用いれば、透過度が高いミラーとして用いることができる。また空間浮遊映像光をS偏波で得る光学系とすれば反射膜を成膜することなく透明体ミラーを用いても高い反射率が得られる。この結果、視認性の高い良好な空間浮遊映像(図6B中は立体像と表記)を、透明体ミラーを用いても得ることができ、観視者が外景を監視する支障とならない。他方、反射ミラー400を除いた光学システムでは図6Bに示したように窓部100aを透過した映像光により図中に示す平面像を得ることができる。
 <空間浮遊映像表示システム(4)>
 図6Cは本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例(第四例)を示す図である。図6Cにおいて、図6Bと同様に、映像表示装置1は、映像表示素子としての液晶表示パネル11と、狭角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネル11で構成される。例えば反射型偏光板のような偏光分離部材101で液晶表示パネル11からの映像光を再帰反射部材2に向けて一旦は透過させ、透過した映像光は再帰反射部材2で反射される。ここで、上記偏光分離部材101は、ビームスプリッタとも称され、特定の偏光(P偏光またはS偏光)を伴う映像光を透過するが、上記特定の偏光とは別の偏光(S偏光またはP偏光)を伴う映像光は反射する特徴を有している。
 再帰反射部材2の光入射面にはλ/4板21を設け、映像光を2度通過させることで偏光変換し特定偏波を他方の偏波に変換することで、偏光分離部材101で反射させ、透明部材100の外側に実像である空間浮遊映像3を表示する。図6B同様、透明部材100の外光入射面には吸収型偏光板112を設ける。また、図示はしないが、図6B同様、外光が再帰反射部材2や映像表示装置1に入射しないように、透明部材100の周囲を遮光部材100bで囲む構成としてもよい。
 図6Cを用いて空間浮遊映像表示装置の主要構成の配置を説明する。図6Cにおいて、矢印方向を示す観察方向Cから観察する場合、2次元平面形状の空間浮遊映像3は観察することができる。空間浮遊映像3が形成される位置は以下のように定まる。図6Cでは、映像表示装置1と再帰反射部材2とが互いに平行となるように配置されており、具体的に映像表示装置1を構成する液晶表示パネル11の映像表示面と再帰反射部材2の反射面とは正対して配置されている。よって、好適な空間浮遊映像3を観察することが可能となる。一方、映像表示装置1を構成する液晶表示パネル11の映像表示面と再帰反射部材2の反射面とが互いに略平行となるように配置されてもよく、互いになす角が10度前後であれば、発生するゴースト像は実用上問題とならない、つまり、ゴースト像は発生しても空間浮遊映像3の視認性に影響を与えることがほぼない。
 映像表示装置1を構成する液晶表示パネル11上の任意の点A(ここでは、液晶表示パネル11上の中央の1点)と、再帰反射部材2上の対応点A’(同様に、再帰反射部材2上の中央の1点)とを結んだ線分A-A’が偏光分離部材(ビームスプリッタ)101と交差する点Bとし、線分ABの長さをL1とする。線分A-A’は液晶表示パネル11の映像表示面から出射される映像光の光軸であり、当該光源の出射方向が液晶表示パネル11の映像表示面とほぼ垂直であり、あるいは線分A-A’は液晶表示パネル11の映像表示面に略垂直または垂直である。次に、上記偏光分離部材101上の点Bから鉛直方向(図6Cの透明部材100を配置する方向)に長さL2の点を点Cとし、線分ABの長さL1と線分BCの長さL2とはほぼ同じ長さである。すると、上記点Cを中央とする2次元平面上に空間浮遊映像3が形成される。
 ここでは、液晶表示パネル11上の中央の1点Aで説明したが、液晶表示パネル11上の任意の点について、上記、L1=L2の関係が成り立つ。したがって、図6Cにおいて、液晶表示パネル11を偏光分離部材101の点Bから遠ざけて配置すれば、L1は長くなり、L1=L2の関係から、L2も長くなるので、空間浮遊映像3が形成される位置はより上方となる。すなわち、透明部材100で構成される窓部100aから空間浮遊映像3までの距離が長くなる。よって、空間浮遊映像3の表示位置は液晶表示パネル11と偏光分離部材101との間の距離に応じて変化する。つまり、空間浮遊映像3の表示位置は、液晶表示パネル11と偏光分離部材101との間の距離に応じて定まる位置である。
 ただし、液晶表示パネル11から同じ強度の映像光を出射する場合、液晶表示パネル11を偏光分離部材101から遠ざけて配置することは、液晶表示パネル11と再帰反射部材2との距離も長くなるため、液晶表示パネル11から再帰反射部材2に到達する映像光の強度(輝度)は低くなり、結果的に、空間浮遊映像3の明るさも低下することになる。したがって、表示する空間浮遊映像3から透明部材100までの距離と、空間浮遊映像3の明るさとはトレードオフの関係にあるため、液晶表示パネル11と偏光分離部材101との配置位置を調整することで、好適で視認性の高い空間浮遊映像3を表示することができる。
 また、図6Cより明らかなように、偏光分離部材101と、線分A‐A’(液晶表示パネル11から出射される映像光の光軸)とのなす角が45度である場合には、映像表示装置1で生成される映像と、空間浮遊映像3との大きさは同一となる。一方、図示はしないが、上記角度が45度よりも大きい場合には、空間浮遊映像3の幅は、映像表示装置1で生成される映像に比べて小さくなり、逆に、上記角度が45度よりも小さい場合には、空間浮遊映像3の幅は、映像表示装置1で生成される映像に比べて大きくなる。
 <空間浮遊映像表示システム(5)>
 図6D、および、図6Eは本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例(第五例)を示す図である。図6Dに示す空間浮遊映像表示装置は、図6Cと同じ部品、すなわち、映像表示装置1、再帰反射部材2、λ/4板21、偏光分離部材101、透明部材100等より構成されている。また、映像表示装置1を構成する液晶表示パネル11の映像表示面と再帰反射部材2の再帰反射面とは正対して配置されている。
 ただし、図6Dが図6Cとは、映像表示装置1を構成する液晶表示パネル11の映像表示面と再帰反射部材2の反射面とは正対して配置されているものの、再帰反射部材2の方が映像表示装置1よりも上部に位置している点で異なる。つまり、映像表示装置1が透明部材100から離れた位置に配置されている。よって、映像表示装置1から出射する映像光が透明部材100から視認できない位置に映像表示装置1を設けるとゴースト像の発生が軽減される。また、再帰反射部材2を傾け、再帰反射映像光が通過する透明部材100から離れた位置に配置し外光の入射を妨げる構成とする。すなわち、映像表示装置1を構成する液晶表示パネル11から発せられる映像光の向き、換言すれば、点Aと点A’とを結ぶ線分A-A’は図6Cでは水平であるが、図6Dにおいては、左斜め上方に傾いており、線分A-A’と偏光分離部材101とのなす角が45度よりも大きい点で異なっている。上記の結果、傾いた空間浮遊映像3を観察することが可能となる。
 さらに、図6Dでは、空間浮遊映像3は、図6Cのごとく水平に形成されるのに対して、上記線分A-A’の傾き、および、偏光分離部材101の傾き角度に応じて、傾き角を有して形成される。すなわち、線分A-A’の傾き、および、偏光分離部材101の傾き角度を変化させることで、空間浮遊映像3が形成される平面の角度を調整することが可能であり、ユーザの観察方向Sを、適切な角度とすることが可能となる。
 図6Eに示す空間浮遊映像表示装置では、図6Dと同じ部品より構成され、また、部品の配置も同じであるが、偏光分離部材101の傾きが、図6Dと比較して大きく(より水平に近い傾き角を有し)、そのため、映像光の光軸、すなわち、線分A-A’と、偏光分離部材101のなす角βは、図6Dにおける角αと比較して、より小さい角度となっている。つまり、角度α>角度βの関係となっている。
 上記の関係(角度α>角度β)から、図6Eに示すように、空間浮遊映像3の観察方向Sは、図6Dに比較して、より鉛直から遠ざかる向きとなる。さらに、観察した空間浮遊映像3は図6Dより傾いている。
 上記の通り、映像光の向き、すなわち、線分A-A’と、偏光分離部材101のなす角(αまたはβ)を調整することにより、空間浮遊映像3と透明部材100とのなす角を変化させることができる。よって、ユーザにとって好適な観察方向を得ることが可能となる。
 <反射型偏光板>
 本発明のグリッド構造の反射型偏光板は、偏光軸に対して垂直方向からの光についての特性は低下する。このため、偏光軸に沿った仕様が望ましく、液晶表示パネル11からの出射映像光を狭角で出射可能な本実施例の光源が理想的な光源となる。また、水平方向の特性も同様に斜めからの光については特性低下がある。以上の特性を考慮して、以下、液晶表示パネル11からの出射映像光をより狭角に出射可能な光源を液晶表示パネル11のバックライトとして使用する、本実施例の構成例について説明する。これにより、高コントラストな空間浮遊映像3が提供可能となる。
 <映像表示装置>
 次に、本実施例の映像表示装置1について図を用いて説明する。本実施例の映像表示装置1は映像表示素子(液晶表示パネル11)と共に、その光源を構成する光源装置13を備えており、図7では、光源装置13を液晶表示パネルと共に展開斜視図として示している。
 この液晶表示パネル(映像表示素子)は、図7に矢印30で示すように、バックライト装置である光源装置13からの光により狭角な拡散特性を有する、即ち、指向性(直進性)が強く、かつ、偏光面を一方向に揃えたレーザ光に似た特性の照明光束を得て、入力される映像信号に応じて変調をかけた映像光を、再帰反射部材2により反射しウィンドガラス105を透過して実像である空間浮遊映像を形成する(図1参照)。また、図7では、映像表示装置1を構成する液晶表示パネル11と、更に、光源装置13からの出射光束の指向特性を制御する光方向変換パネル54、および、必要に応じて狭角拡散板(図示せず)を備えて構成されている。即ち、液晶表示パネル11の両面には偏光板が設けられ、特定の偏波の映像光が映像信号により光の強度を変調して出射する(図7の矢印30を参照)構成となっている。これにより、所望の映像を指向性(直進性)の高い特定偏波の光として、光方向変換パネル54を介して、再帰反射部材2に向けて投写し、再帰反射部材2で反射後、店舗(空間)の外部の観視者の眼に向けて透過して空間浮遊映像3を形成する。なお、上述した光方向変換パネル54の表面には保護カバー50(図8、図9を参照)を設けてよい。
 本実施例では、光源装置13からの出射光束(矢印30で示す)の利用効率を向上させ、消費電力を大幅に低減するために、光源装置13と液晶表示パネル11を含んで構成される映像表示装置1において、光源装置13からの光(図8の矢印30を参照)を、再帰反射部材2に向けて投写し、再帰反射部材2で反射後、ウィンドガラス105の表面に設けた透明シート(図示せず)により、空間浮遊映像3を所望の位置に形成するよう指向性を制御することもできる。具体的には、この透明シートは、フレネルレンズやリニアフレネルレンズ等の光学部品によって高い指向性を付与したまま浮遊映像の結像位置を制御する。このことによれば、映像表示装置1からの映像光は、レーザ光のようにウィンドガラス105の外側(例えば、歩道)にいる観察者に対して高い指向性(直進性)で効率良く届くこととなり、その結果、高品位な浮遊映像を高解像度で表示すると共に、光源装置13のLED(Light Emitting Diode)素子201を含む映像表示装置1による消費電力を著しく低減することが可能となる。
 <映像表示装置の例(1)>
 図7は映像表示装置1の別例を示す図である。また図8は、図7の光源装置13の上に液晶表示パネル11と光方向変換パネル54を配置した状態を示す。この光源装置13は、例えば、プラスチックなどにより形成され、その内部にLED素子201、導光体203を収納して構成されており、導光体203の端面には、図8等にも示したようにそれぞれのLED素子201からの発散光を略平行光束に変換するために、受光部に対して対面に向かって徐々に断面積が大きくなる形状を有し、内部を伝搬する際に複数回全反射することで発散角が徐々に小さくなるような作用を有するレンズ形状を設けている。その上面には、映像表示装置1を構成する液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面(本例では左側の端面)には、半導体光源であるLED素子201や、その制御回路を実装したLED基板202(図8参照)が取り付けられると共に、LED基板202の外側面には、LED素子201および制御回路で発生する熱を冷却するための部材であるヒートシンクが取り付けられてもよい。
 また、光源装置13のケースの上面に取り付けられる液晶表示パネル11のフレーム(図示せず)には、当該フレームに取り付けられた液晶表示パネル11と、更に、当該液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)(図示せず)などが取り付けられて構成される。即ち、映像表示素子である液晶表示パネル11は、固体光源であるLED素子201と共に、電子装置を構成する制御回路(図示せず)からの制御信号に基づいて、透過光の強度を変調することによって表示映像を生成する。この時、生成される映像光は拡散角度が狭く特定の偏波成分のみとなるため、映像信号により駆動された面発光レーザ映像源に近い、従来にない新しい映像表示装置1が得られることとなる。なお、現状では、レーザ装置により、上述した映像表示装置1で得られる画像と同等のサイズのレーザ光束を得ることは、技術的にも安全上からも不可能である。そこで、本実施例では、例えば、LED素子201を備えた一般的な光源からの光束から、上述した面発光レーザ映像光に近い光を得る。
 続いて、光源装置13のケース内に収納されている光学系の構成について、図8と共に、図9を参照しながら詳細に説明する。図8および図9は断面図であるため、光源を構成する複数のLED素子201が1つだけ示されており、これらは導光体203の受光端面203aの形状により略コリメート光に変換される。このため導光体端面の受光部とLED素子201は所定の位置関係を保って取り付けられている。なお、この導光体203は、各々、例えば、アクリル等の透光性の樹脂により形成されている。そして、この導光体端部のLED受光面は、例えば、放物断面を回転して得られる円錐凸形状の外周面を有し、その頂部では、その中央部に凸部(即ち、凸レンズ面)を形成した凹部を有し、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)を有するものである(図示せず)。なお、導光体203の受光部外形形状は、円錐形状の外周面を形成する放物面形状をなし、LED素子201から周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 他方、LED素子201は、その回路基板であるLED基板202の表面上の所定の位置にそれぞれ配置されている。このLED基板202は、LEDコリメータ(受光端面203a)に対して、その表面上のLED素子201が、それぞれ、前述した凹部の中央部に位置するように配置されて固定される。
 かかる構成によれば、導光体203の受光端面203aの形状によって、LED素子201から放射される光は略平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 以上述べたように、光源装置13は、導光体203の端面に設けた受光部である受光端面203aに光源であるLED素子201を複数並べた光源ユニットを取り付けて構成され、LED素子201からの発散光束を導光体端面の受光端面203aのレンズ形状によって略平行光として、矢印で示すように、導光体203の内部を導光し(図面に平行な方向)、光束方向変換手段204によって、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。導光体203内部または表面の形状によってこの光束方向変換手段204の分布(密度)を最適化することで、液晶表示パネル11に入射する光束の均一性を制御することができる。上述した光束方向変換手段204は導光体203の表面の形状や導光体203の内部に例えば屈折率の異なる部分を設けることで、導光体203内を伝搬した光束を、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。この時、液晶表示パネル11を画面中央に正対し画面対角寸法と同じ位置に視点を置いた状態で画面中央と画面周辺部の輝度を比較した場合の相対輝度比が20%以上あれば実用上問題なく、30%を超えていれば更に優れた特性となる。
 なお、図8は上述した導光体203とLED素子201を含む光源装置13において、偏光変換する本実施例の光源の構成とその作用を説明するための断面配置図である。図8において、光源装置13は、例えば、プラスチックなどにより形成される表面または内部に光束方向変換手段204を設けた導光体203、光源としてのLED素子201、反射シート205、位相差板216、レンチキュラーレンズなどから構成されており、その上面には、光源光入射面と映像光出射面に偏光板を備える液晶表示パネル11が取り付けられている。
 光源装置13に対向した液晶表示パネル11の光源光入射面(図の下面)にはフィルムまたはシート状の反射型偏光板49を設けており、LED素子201から出射した自然光束210のうち片側の偏波(例えばP波)212を選択的に反射させ、導光体203の一方(図の下方)の面に設けた反射シート205で反射して、再度、液晶表示パネル11に向かうようにする。そこで、反射シート205と導光体203の間もしくは導光体203と反射型偏光板49の間に位相差板216(λ/4板)を設けて反射シート205で反射させ、2回通過させることで反射光束をP偏光からS偏光に変換し、映像光としての光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度を変調された映像光束は(図8の矢印213)、再帰反射部材2に入射して、図1に示したように、反射後にウィンドガラス105を透過して店舗(空間)の内部または外部に実像である空間浮遊映像3を得ることができる。
 図9は、図8と同様に、導光体203とLED素子201を含む光源装置13において、偏光変換する本実施例の光源の構成と作用を説明するための断面配置図である。光源装置13も、同様に、例えばプラスチックなどにより形成される表面または内部に光束方向変換手段204を設けた導光体203、光源としてのLED素子201、反射シート205、位相差板216、レンチキュラーレンズなどから構成されており、その上面には、映像表示素子として、光源光入射面と映像光出射面に偏光板を備える液晶表示パネル11が取り付けられている。
 また、光源装置13に対応した液晶表示パネル11の光源光入射面(図の下面)にはフィルムまたはシート状の反射型偏光板49を設け、LED素子201から出射した自然光束210うち片側の偏波(例えばS波)211を選択的に反射させ、導光体203の一方(図の下方)の面に設けた反射シート205で反射して、再度液晶表示パネル11に向かう。反射シート205と導光体203の間もしくは導光体203と反射型偏光板49の間に位相差板216(λ/4板)を設けて反射シート205で反射させ、2回通過させることで反射光束をS偏光からP偏光に変換し、映像光として光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度変調された映像光束は(図9の矢印214)、再帰反射部材2に入射して、図1に示すように、反射後にウィンドガラス105を透過して店舗(空間)の内部または外部に実像である空間浮遊映像3を得ることができる。
 図8および図9に示す光源装置13においては、対向する液晶表示パネル11の光入射面に設けた反射型偏光板49の作用とともに、反射型偏光板49で片側の偏光成分を反射するため、理論上得られるコントラスト比は、反射型偏光板49のクロス透過率の逆数と液晶表示パネル11に付帯した2枚の偏光板により得られるクロス透過率の逆数を乗じたものとなる。これにより、高いコントラスト性能が得られる。実際には、表示画像のコントラスト性能が10倍以上向上することを実験により確認した。この結果、自発光型の有機ELに比較しても遜色ない高品位な映像が得られた。
 <映像表示装置の例(2)>
 図10には、映像表示装置1の具体的な構成の他の一例を示す。図10の光源装置13は、図12等の光源装置と同様である。この光源装置13は、例えばプラスチックなどのケース内にLED、コリメータ、合成拡散ブロック、導光体等を収納して構成されており、その上面には液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面には、図12等に示す半導体光源であるLED(Light Emitting Diode)素子14a、14bや、その制御回路を実装したLED基板102が取り付けられると共に、LED基板102の外側面には、LED素子14a、14bおよび制御回路で発生する熱を冷却するための部材であるヒートシンク103(図10参照)が取り付けられている(図12、図13等も参照)。
 また、ケースの上面に取り付けられた液晶表示パネルフレームには、当該フレームに取り付けられた液晶表示パネル11と、更に、液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)403(図10参照)などが取り付けられて構成されている。即ち、映像表示素子である液晶表示パネル11は、固体光源であるLED素子14a,14bと共に、電子装置を構成する制御回路(ここでは図示せず)からの制御信号に基づいて、透過光の強度を変調することによって表示映像を生成する。
 <映像表示装置の例(3)>
 続いて、図11を用いて映像表示装置1の具体的な構成の他の例(表示装置の例3)を説明する。この映像表示装置1の光源装置は、LEDからの光(P偏光とS偏光が混在)の発散光束をコリメータ(コリメータレンズまたはLEDコリメータレンズ)18により略平行光束に変換し、反射型導光体304の反射面により液晶表示パネル11に向け反射する。反射光は液晶表示パネル11と反射型導光体304の間に配置された反射型偏光板49に入射する。反射型偏光板49では特定の偏波(例えばP偏光)は透過して液晶表示パネル11に入射する。反射型偏光板で他方の偏波(例えばS偏光)は反射され再び反射型導光体304へ向かう。反射型偏光板49は、反射型導光体304の反射面からの光の主光線に対して垂直とならないよう傾きを以て設置されており、反射型偏光板49で反射された光の主光線は、反射型導光体304の透過面に入射する。反射型導光体304の透過面に入射した光は、反射型導光体304の背面を透過し、位相差板であるλ/4板270を透過し、反射板271で反射される。反射板271で反射された光は、再びλ/4板270を透過し、反射型導光体304の透過面を透過する。反射型導光体304の透過面を透過した光は再び反射型偏光板49に入射する。このとき、反射型偏光板49に再度入射する光は、λ/4板270を2回通過しているため、反射型偏光板49を透過する偏波(例えば、P偏光)へ偏光が変換されている。よって、偏光が変換されている光は反射型偏光板49を透過し、液晶表示パネル11に入射する。なお、偏光変換に係る偏光設計について、上述の説明から偏波を逆に構成(S偏光とP偏光を逆にする)してもかまわない。
 この結果、LEDからの光は特定の偏波(例えばP偏光)に揃えられ、液晶表示パネル11に入射し、映像信号に合わせて輝度変調されパネル面に映像を表示する。上述の例と同様に光源を構成する複数のLEDが示されており(ただし、縦断面のため図16では1個のみ図示)、これらはコリメータ18に対して所定の位置に取り付けられている。なお、コリメータ18は、各々、例えばアクリル等の透光性の樹脂またはガラスにより形成されている。そして、このコリメータ18は、放物断面を回転して得られる円錐凸形状の外周面を有してもよい。その頂部では、その中央部に凸部(即ち、凸レンズ面)を形成した凹部を有してもよい。また、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)を有している。なお、コリメータ18の円錐形状の外周面を形成する放物面は、LEDから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 なお、LEDは、その回路基板である、LED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、コリメータ18に対して、その表面上のLEDが、それぞれ、円錐凸形状の頂部の中央部(頂部に凹部が有る場合はその凹部)に位置するように配置されて固定される。
 かかる構成によれば、コリメータ18によって、LEDから放射される光のうち、特に、その中央部分から放射される光は、コリメータ18の外形を形成する凸レンズ面 により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ18の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したコリメータ18によれば、LEDにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 以上の構成は図12、図13等に示した映像表示装置の光源装置と同様の構成である。さらに、図11に示したコリメータ18により略平行光に変換された光は、反射型導光体304で反射される。当該光のうち、反射型偏光板49の作用により特定の偏波の光は反射型偏光板49透過し、反射型偏光板49の作用により反射された他方の偏波の光は再度導光体304を透過する。当該光は、反射型導光体304に対して、液晶表示パネル11とは逆の位置にある反射板271で反射する。この時、当該光は位相差板であるλ/4板270を2度通過することで偏光変換される。反射板271で反射した光は、再び導光体304を透過して、反対面に設けた反射型偏光板49に入射する。当該入射光は、偏光変換がなされているので、反射型偏光板49を透過して、偏光方向を揃えて液晶表示パネル11に入射される。この結果、光源の光を全て利用できるので光の幾何光学的な利用効率が2倍になる。また、反射型偏光板の偏光度(消光比)もシステム全体の消光比に乗せられるので、本実施例の光源装置を用いることで表示装置全体としてのコントラスト比が大幅に向上する。なお、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整することで、それぞれの反射面での光の反射拡散角を調整することができる。液晶表示パネル11に入射する光の均一性がより好適になるように、設計毎に、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整すればよい。
 なお、図11の位相差板であるλ/4板270は、必ずしもλ/4板270へ垂直に入射した偏光に対する位相差がλ/4である必要はない。図11の構成において、偏光が2回通過することで、位相が90°(λ/2)変わる位相差板であればよい。位相差板の厚さは偏光の入射角度分布に応じて調整すればよい。
 液晶表示パネル11からの出射光は、従来のTVセットでは画面水平方向(図16(A)X軸で表示)と画面垂直方向(図16(B)Y軸で表示)ともに同様な拡散特性を持っている。これに対して、本実施例の液晶表示パネル11からの出射光束の拡散特性は、例えば図16の例1に示すように輝度が正面視(角度0度)の50%になる視野角が13度とすることで、従来の62度に対して1/5となる。同様に垂直方向の視野角は上下不均等として上側の視野角を下側の視野角に対して1/3程度に抑えるように反射型導光体の反射角度と反射面の面積等を最適化する。この結果、従来の液晶TVに比べ監視方向に向かう映像光量が大幅に向上し、輝度は50倍以上となる。
 更に、図16の例2に示す視野角特性とすれば輝度が正面視(角度0度)の50%になる視野角が5度とすることで従来の62度に対して1/12となる。同様に垂直方向の視野角は上下均等として視野角を従来に対して1/12程度に抑えるように反射型導光体の反射角度と反射面の面積等を最適化する。この結果、従来の液晶TVに比べ監視方向に向かう映像光量が大幅に向上し、輝度は100倍以上となる。以上述べたように視野角を狭角とすることで監視方向に向かう光束量を集中できるので光の利用効率が大幅に向上する。この結果、従来のTV用の液晶表示パネルを使用しても、光源装置の光拡散特性を制御することで同様な消費電力で大幅な輝度向上が実現可能で、屋外に向けての空間浮遊映像表示システムに対応した映像表示装置1とすることができる。
 図11に戻る。基本構成としては、図11に示すように光源装置により狭角な指向特性の光束を液晶表示パネル11に入射させ、映像信号に合わせて輝度を変調することで、液晶表示パネル11の画面上に表示した映像情報を、再帰反射部材2で反射させ得られた空間浮遊映像3を、ウィンドガラス105を介して室外または室内に表示する。
 <光源装置13の例(1)>
 続いて、筐体106(図6B参照)内に収納されている光源装置等の光学系の構成について、図12と共に、図13(A)および(B)を参照しながら、詳細に説明する。
 図12には、光源を構成するLED素子14a、14bが示されており、これらはLEDコリメータ15に対して所定の位置に取り付けられている。なお、このLEDコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、このLEDコリメータ15は、図13(B)にも示すように、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その頂部では、その中央部に凸部(即ち、凸レンズ面)157を形成した凹部153を有する。また、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)154を有している。なお、LEDコリメータ15の円錐形状の外周面156を形成する放物面は、LED素子14a、14bから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 また、LED素子14a、14bは、その回路基板であるLED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータ15に対して、その表面上のLED素子14aまたは14bが、それぞれ、その凹部153の中央部に位置するように配置されて固定される。
 かかる構成によれば、上述したLEDコリメータ15によって、LED素子14aまたは14bから放射される光のうち、特に、その中央部分から上方(図13(B)の右方向)に向かって放射される光は、LEDコリメータ15の外形を形成する2つの凸レンズ面157、154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータ15の円錐形状の外周面156を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータ15によれば、LED素子14aまたは14bにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 なお、図13に示すようにLEDコリメータ15の光の出射側には偏光変換素子21が設けられている。この偏光変換素子21は、図13からも明らかなように、断面が平行四辺形である柱状(以下、平行四辺形柱)の透光性部材と、断面が三角形である柱状(以下、三角形柱)の透光性部材とを組み合わせ、LEDコリメータ15からの平行光の光軸に対して直交する面に平行に、複数、アレイ状に配列して構成されている。更に、これらアレイ状に配列された隣接する透光性部材間の界面には、交互に、偏光ビームスプリッタ(以下、「PBS膜」と省略する)211と反射膜212とが設けられており、また、偏光変換素子21へ入射してPBS膜211を透過した光が出射する出射面には、λ/2位相板215が備えられている。
 この偏光変換素子21の出射面には、更に、図13(A)にも示す矩形状の合成拡散ブロック16が設けられている。即ち、LED素子14aまたは14bから出射された光は、LEDコリメータ15の働きにより平行光となって合成拡散ブロック16へ入射し、出射側のテクスチャー161により拡散された後、導光体17に到る。
 導光体17は、例えばアクリル等の透光性の樹脂により断面が略三角形(図13(B)参照)の棒状に形成された部材であり、そして、図12からも明らかなように、合成拡散ブロック16の出射面に第1拡散板18aを介して対向する導光体光入射部(面)171と、斜面を形成する導光体光反射部(面)172と、第2拡散板18bを介して、映像表示素子である液晶表示パネル11と対向する導光体光出射部(面)173とを備えている。
 この導光体17の導光体光反射部(面)172には、その一部拡大図である図13(B)にも示すように、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されている。そして、反射面172a(図では右上がりの線分)は、図において一点鎖線で示す水平面に対してαn(n:自然数であり、本例では、例えば、1~130である)を形成しており、その一例として、ここでは、αnを43度以下(ただし、0度以上)に設定している。
 導光体入射部(面)171は、光源側に傾斜した湾曲の凸形状に形成されている。これによれば、合成拡散ブロック16の出射面からの平行光は、第1拡散板18aを介して拡散されて入射し、図12からも明らかなように、導光体入射部(面)171により上方に僅かに屈曲(偏向)しながら導光体光反射部(面)172に達し、ここで反射して図12の上方の出射面に設けた液晶表示パネル11に到る。
 以上に詳述した映像表示装置1によれば、光利用効率やその均一な照明特性をより向上すると同時に、モジュール化されたS偏光波の光源装置を含め、小型かつ低コストで製造することが可能となる。なお、上記の説明では、偏光変換素子21をLEDコリメータ15の後に取り付けるものとして説明したが、本発明はそれに限定されることなく、液晶表示パネル11に到る光路中に設けることによっても同様の作用・効果が得られる。
 なお、導光体光反射部(面)172には、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されており、照明光束は、各々の反射面172a上で全反射されて上方に向かい、更には、導光体光出射部(面)173には狭角拡散板(図示せず)を設けて略平行な拡散光束として指向特性を制御する光方向変換パネル54に入射し、斜め方向から液晶表示パネル11へ入射する。本実施例では光方向変換パネル54を導光体出射面173と液晶表示パネル11の間に設けたが、液晶表示パネル11の出射面に設けても、同様の効果が得られる。
 <光源装置13の例(2)>
 光源装置13等の光学系の構成について、他の例を図14に示す。図13に示した例と同様に、光源を構成する複数(本例では、2個)のLED素子14a、14bが示されており、これらはLEDコリメータ15に対して所定の位置に取り付けられている。なお、このLEDコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、図13に示した例と同様に、このLEDコリメータ15は、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その頂部では、その中央部に凸部(即ち、凸レンズ面)157を形成した凹部153を有する。また、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)154を有している。なお、LEDコリメータ15の円錐形状の外周面156を形成する放物面は、LED素子14aから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 また、LED素子14a、14bは、その回路基板である、LED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータ15に対して、その表面上のLED素子14aまたは14bが、それぞれ、その凹部153の中央部に位置するように配置されて固定される。
 かかる構成によれば、上述したLEDコリメータ15によって、LED素子14aまたは14bから放射される光のうち、特に、その中央部分から上方(図の右方向)に向かって放射される光は、LEDコリメータ15の外形を形成する2つの凸レンズ面157、154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータ15の円錐形状の外周面156を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータ15によれば、LED素子14aまたは14bにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 なお、LEDコリメータ15の光の出射側には第1拡散板18aを介して導光体170が設けられている。導光体170は、例えばアクリル等の透光性の樹脂により断面が略三角形(図14(A)参照)の棒状に形成された部材であり、そして、図14(A)からも明らかなように、合成拡散ブロック16の出射面に第1拡散板18aを介して対向する導光体170の入射部(面)171と、斜面を形成する導光体光反射部(面)172と、反射型偏光板200を介して映像表示素子である液晶表示パネル11と対向する導光体光出射部(面)173とを備えている。
 この反射型偏光板200は、例えばP偏光を反射(S偏光は透過)させる特性を有する物を選択すれば、光源であるLED素子14a、14bから発した自然光のうちP偏光を反射し、図14(B)に示した導光体光反射部172に設けたλ/4板172cを通過して反射面172dで反射し、再びλ/4板172cを通過することでS偏光に変換され、液晶表示パネル11に入射する光束は全てS偏光に統一される。
 同様に、反射型偏光板200としてS偏光を反射(P偏光は透過)させる特性を有する物を選択すれば、光源であるLED素子14a、14bから発した自然光のうちS偏光を反射し、図14(B)に示した導光体光反射部172に設けたλ/4板172cを通過して反射面172dで反射し、再びλ/4板172cを通過することでP偏光に変換され、液晶表示パネル52に入射する光束は全てP偏光に統一される。以上述べた構成でも偏光変換が実現できる。
 <光源装置13の例(3)>
 光源装置等の光学系の構成についての他の例を、図11を用いて説明する。第3の例では、図11に示すようにLED基板102からの自然光(P偏光とS偏光が混在)の発散光束をLEDコリメータレンズ18により略平行光束に変換し、反射型導光体304により液晶表示パネル11に向け反射する。反射光は液晶表示パネル11と反射型導光体304の間に配置された反射型偏光板49に入射する。反射型偏光板49で特定の偏波(例えばS偏波)が反射され導光体304の反射面を繋ぐ面を透過し、導光体304の反対面に面して配置された反射板271で反射され位相板(λ/4波長板)270を2度透過することで偏光変換され、導光体と反射型偏光板を透過して液晶表示パネル11に入射し映像光に変調される。この時、特定偏波と偏光変換された偏波面を合わせることで光の利用効率が通常の2倍となり、反射型偏光板の偏光度(消光比)もシステム全体の消光比に乗せられるので、本実施例の光源装置を用いることで情報表示システムのコントラスト比が大幅に向上する。
 この結果、LEDからの自然光は特定の偏波(例えばP偏波)に揃えられる。上述の例と同様に光源を構成する複数のLEDが設けられており(ただし、縦断面のため図12では1個のみ図示)、これらはLEDコリメータレンズ18に対して所定の位置に取り付けられている。なお、このLEDコリメータレンズ18は、各々、例えばアクリル等の透光性の樹脂またはガラスにより形成されている。そして、このLEDコリメータレンズ18は、放物断面を回転して得られる円錐凸形状の外周面を有すると共に、その頂部では、その中央部に凸部(即ち、凸レンズ面)を形成した凹部を有する。また、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)を有している。なお、LEDコリメータレンズ18の円錐形状の外周面を形成する放物面は、LEDコリメータレンズ18から周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
 また、LEDは、その回路基板である、LED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータレンズ18に対して、その表面上のLEDが、それぞれ、その凹部の中央部に位置するように配置されて固定される。
 かかる構成によれば、LEDコリメータレンズ18によって、LEDから放射される光のうち、特に、その中央部分から放射される光は、LEDコリメータレンズ18の外形を形成する2つの凸レンズ面により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータレンズ18の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータレンズ18によれば、LEDにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 <映像表示装置の例(4)>
 さらに、表示装置の光源装置等の光学系の構成についての他の例(表示装置の例4)を、図17を用いて説明する。表示装置の例3の光源装置において、反射型導光体304の代わりに拡散シートを用いる場合の構成例である。具体的には、LEDコリメータレンズ18の光の出射側には図面の垂直方向と水平方向(図の前後方向で図示せず)の拡散特性を変換する光学シートを2枚用い(光学シート207Aおよび光学シート207B)、LEDコリメータレンズ18からの光を2枚の光学シート(拡散シート)の間に入射させる。この光学シートは、2枚構成ではなく1枚としても良い。1枚構成とする場合には1枚の光学シートの表面と裏面の微細形状で垂直と水平の拡散特性を調整する。また、拡散シートを複数枚使用して作用を分担しても良い。ここで、図17の例では、光学シート207Aと光学シート207Bの表面形状と裏面形状による反射拡散特性について、液晶表示パネル11から出射する光束の面密度が均一になるように、LEDの数量とLED基板(光学素子)102からの発散角およびLEDコリメータレンズ18の光学仕様を設計パラメータとして最適設計すると良い。つまり、導光体の代わりに複数の拡散シートの表面形状により拡散特性を調整する。図17の例では偏光変換は上述した表示装置の例3と同様の方法で行われる。すなわち、図17の例において、反射型偏光板49はS偏光を反射(P偏光は透過)させる特性を有するように構成すればよい。その場合、光源であるLEDから発した光のうちP偏光を透過して、透過した光は液晶表示パネル11に入射する。光源であるLEDから発した光のうちS偏光を反射し、反射した光は、図17に示した位相差板270を通過する。位相差板270を通過した光は、反射板271で反射される。反射板271で反射した光は、再び位相差板270を通過することでP偏光に変換される。偏光変換された光は、反射型偏光板49を透過し、液晶表示パネル11に入射する。なお、図17の位相差板であるλ/4板270は、必ずしもλ/4板270へ垂直に入射した偏光に対する位相差がλ/4である必要はない。図17の構成において、偏光が2回通過することで、位相が90°(λ/2)変わる位相差板であればよい。位相差板の厚さは偏光の入射角度分布に応じて調整すればよい。なお、図17においても、偏光変換に係る偏光設計について、上述の説明から偏波を逆に構成(S偏光とP偏光を逆にする)してもかまわない。
 <光源装置13の例(5)>
 光源装置13の光学系の構成についての他の例を、図18を用いて説明する。図18(C)に示すようにLEDコリメータレンズ18の光の出射側には偏光変換素子21を配置する。そしてLED素子14cからの自然光を特定の偏波に揃えて拡散特性を制御する光学素子81に入射し図面の垂直方向と水平方向(図の前後方向で図示せず)の拡散特性を制御することで反射型導光体220の反射面に向けての配光特性を最適なものとする。反射型導光体220の表面には図18(B)に示すように凹凸パターン222を設け、反射型導光体220の対向面に配置される映像表示装置(図示せず)に向けて反射し所望の拡散特性を得る。光源のLED素子14cとLEDコリメータレンズ18の配置精度は光源の効率に大きく影響するため通常光軸精度は50μm程度の精度が必要となるため発明者らはLEDの発熱によりLEDコリメータレンズ18の膨張により取り付け精度が低下する対策として、幾つかのLED素子14cとLEDコリメータレンズ18を一体とした光源ユニット223構造として複数又は単独のユニットを光源装置に用いることで取り付け精度の低下を軽減した。
 図18(A)(B)(C)に示した実施例では反射型導光体220の長辺方向の両端部にはLED素子14cとLEDコリメータレンズ18を一体化した光源ユニット223が複数組み込まれ(図18の実施例では片側3個ずつ)光源装置の輝度均一化を実現している。反射型導光体220の反射面220aには光源ユニットに略平行の凹凸パターン222が複数形成され、一つの凹凸パターン222においてもその表面は多面体を形成することで映像表示装置1に入射する光量を高精度に制御することができる。本実施例では反射面の形状を凹凸パターン222として説明したが三角面、波形面などが規則的または不規則に配列したパターンでも面形状により反射型導光体220から映像表示装置1に向けた配光パターンを制御すれば本願発明に抵触することは言うまでもない。また、反射型導光体220の側面にはLEDコリメータレンズ18で制御された光が光源装置13から外部に漏れないように遮光壁224を設けLED素子14cは金属製の基盤225により放熱性を高めた設計とするとよい。
 <レンチキュラーシート>
 以下、映像表示装置1からの出射光の拡散特性を制御するレンチキュラーレンズによる作用について説明する。レンチキュラーレンズのレンズ形状を最適化することで、上述した映像表示装置1から出射されてウィンドガラス105を透過又は反射して効率良く空間浮遊映像3を得ることが可能となる。即ち、映像表示装置1からの映像光に対し、2枚のレンチキュラーレンズを組み合わせ、またはマイクロレンズアレイをマトリックス状に配置して拡散特性を制御するシートを設けて、X軸およびY軸方向において、映像光の輝度(相対輝度)をその反射角度(垂直方向を0度)に応じて制御することができる。本実施例では、このようなレンチキュラーレンズにより、従来に比較し、図16(B)に示すように垂直方向の輝度特性を急峻にできる。更に上下(Y軸の正負方向)方向の指向特性のバランスを変化させることで反射や拡散による光の輝度(相対輝度)を高めることができる。これらの作用効果により、面発光レーザ映像源からの映像光のように、拡散角度が狭く(直進性が高く)かつ特定の偏波成分のみの映像光とし、従来技術による映像表示装置を用いた場合に再帰反射部材で発生していたゴースト像を抑え、効率良く観視者の眼に再帰反射による空間浮遊映像が届くように制御できる。
 また上述した各光源装置により、図16(A)、(B)に示した一般的な液晶表示パネル11からの出射光拡散特性(図中では従来と表記)に対してX軸方向およびY軸方向ともに大幅に狭角な指向特性を実現することができる。これにより、特定方向に対して平行に近い映像光束を出射する特定偏波の光を出射する映像表示装置が実現できる。
 図15には、本実施例で採用するレンチキュラーレンズの特性の一例を示している。この例では、特に、X方向(垂直方向)における特性を示しており、特性Oは、光の出射方向のピークが垂直方向(0度)から上方に30度付近の角度であり上下に対称な輝度特性を示している。また、図15の特性AやBは、更に、30度付近においてピーク輝度の上方の映像光を集光して輝度(相対輝度)を高めた特性の例を示している。このため、これらの特性AやBでは、30度を超えた角度において、特性Oに比較して、急激に光の輝度(相対輝度)が低減する。
 即ち、上述したレンチキュラーレンズを含んだ光学系によれば、映像表示装置1からの映像光束を再帰反射部材2に入射させる際、光源装置13,230で狭角に揃えられた映像光の出射角度や視野角を制御でき再帰反射部材2の設置の自由度を大幅に向上できる。その結果ウィンドガラス105を反射又は透過して所望の位置に結像する空間浮遊映像3の結像位置の関係の自由度を大幅に向上できる。この結果、拡散角度が狭く(直進性が高く)かつ特定の偏波成分のみの光として効率良く室外または室内の観視者の眼に届くようにすることが可能となる。このことによれば、映像表示装置1からの映像光の強度(輝度)が低減しても、観視者は映像光を正確に認識して情報を得ることができる。換言すれば、映像表示装置1の出力を小さくすることにより、消費電力の低い空間浮遊映像表示システムを実現することが可能となる。
 以上、種々の実施例について詳述したが、しかしながら、本発明は、上述した実施例のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本実施例に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像情報を空間浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作することを可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供することを可能にする。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。
 また、本実施例に係る技術では、出射する映像光の発散角を小さく、さらに特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることを可能にする。本実施例に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」および「11住み続けられるまちづくりを」に貢献する。
 さらに、本実施例に係る技術では、指向性(直進性)の高い映像光による空間浮遊映像を形成することを可能にする。本実施例に係る技術では、銀行のATMや駅の券売機等における高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示する場合でも、指向性の高い映像光を表示することで、ユーザ以外に空間浮遊映像を覗き込まれる危険性が少ない非接触ユーザインタフェースを提供することを可能にする。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「11住み続けられるまちづくりを」に貢献する。
 以上説明したように、本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、映像源として表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射面に位相差板を設けた再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材とを結んだ空間には偏光分離部材を設け、前記偏光分離部材は、前記表示パネルからの特定偏波の映像光を前記再帰反射部材に向けて一旦は透過させ、前記再帰反射部材で偏光変換し他方の偏波に変換することで、前記偏光分離部材で反射させ、前記特定偏波の映像光が通過する透明部材において、前記映像源とは反対側に実像である空間浮遊映像を表示する、空間浮遊映像表示装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、映像源としての表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射面に位相差板を設けた再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材とを結んだ空間には、偏光分離部材を設け、前記偏光分離部材は、前記表示パネルからの特定偏波の映像光を前記再帰反射部材に向けて一旦は透過させ、前記再帰反射部材で偏光変換し他方の偏波に変換することで、前記偏光分離部材で反射させ、前記特定偏波の映像光が通過する開口部に設けた透明部材における前記映像源とは反対側に、実像である空間浮遊映像を表示させ、前記再帰反射部材は前記表示パネルに対して傾けて配置し、再帰反射映像光が通過する前記開口部から離れた位置に配置され、外光の入射を妨げる構成とした、空間浮遊映像表示装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材を結んだ空間には、前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、前記光源装置は、点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、前記光源からの光を特定方向の偏光に揃える偏光変換部材と、前記表示パネルに伝搬する反射面を有する導光体と、を備え、前記導光体は、前記導光体に設けられた反射面の形状と面粗さによって反射光の発散角を調整し、前記表示パネルからの狭角な発散角を有する映像光束を前記再帰反射部材において反射させ、空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材とを結んだ空間には前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、前記光源装置は、点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、前記光源からの光を特定方向の偏光に揃える偏光変換部材と、前記表示パネルに伝搬する反射面を有する導光体と、を備え、前記導光体は、前記表示パネルと対向して配置され、前記導光体の内部又は表面には、前記光源からの光を前記表示パネルに向けて反射させる反射面が設けられ、反射型偏光板で反射した特定の偏光方向の光を、前記導光体の隣り合う前記反射面を繋ぐ面を透過して、前記導光体の前記表示パネルと接する面とは反対面に設けた反射板で反射させ、前記反射板の上面に配置した位相差板を2度通過させることで偏光変換し、前記反射型偏光板を通過する偏波に変換して前記導光体を通過させることで前記表示パネルに光を伝搬し、前記表示パネルは、映像信号に合わせて光強度を変調し、前記光源装置は、前記光源から前記表示パネルに入射する映像光束の発散角の一部又は全部を、前記光源装置に設けられた反射面の形状と面粗さによって調整し、前記表示パネルからの狭角な発散角を有する映像光束を再帰反射部材において反射させ空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、前記表示パネルと前記再帰反射部材とを結んだ空間には前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、前記光源装置は、点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、前記光源からの光を反射し前記表示パネルに伝搬する反射面を有する導光体と、前記導光体の他方の面に対向して導光体から順に配置される位相差板及び反射面を備え、前記導光体の前記反射面は、前記光源からの光を反射させ前記導光体に対向して配置された前記表示パネルに伝搬するように配置され、前記導光体の前記反射面と前記表示パネルとの間には反射型偏光板が配置されており、前記反射型偏光板で反射した特定の偏光方向の光を前記導光体の他方の面に対向して近接配置した反射面で反射させ、前記導光体と前記反射面の間に配置された前記位相差板を2度通過することで偏光変換が行われ、前記反射型偏光板を通過させて前記表示パネルに特定の偏光方向の光が伝搬され、前記表示パネルは、映像信号に合わせて光強度を変調し、前記光源装置は、前記光源から前記表示パネルに入射する光束の発散角の一部又は全部を、前記光源装置に設けられた反射面の形状と面粗さとによって制御し、前記液晶表示パネルからの狭角な発散角を有する映像光束を再帰反射部材において反射させ空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置である。
 また本実施形態の一形態は、上記空間浮遊映像表示装置に用いられる光源装置であって、前記発散角が±30度以内である、光源装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、前記光源装置は点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、前記光源からの光を特定方向の偏光に揃える偏光変換部材と、前記表示パネルに伝搬する反射面を有する導光体と、を備え、前記導光体は、前記表示パネルと対向して配置され、前記導光体の内部又は表面には前記光源からの光を前記表示パネルに向けて反射させる反射面を設け前記表示パネルに光を伝搬し、前記導光体は、前記表示パネルで映像信号に合わせて光強度を変調し前記光源から前記表示パネルに入射する映像光束の発散角の一部又は全部を、前記導光体に設けた反射面の形状と面粗さによって調整し、前記再帰反射部材は、前記表示パネルからの狭角な発散角を有する映像光束を反射させ空中に浮遊映像を形成し、前記再帰反射部材の形状を前記表示パネルに対して曲率半径200mm以上の凹面又は凸面で形成される、空間浮遊映像表示装置である。
 また本実施形態の一形態は、空間浮遊映像を形成する空間浮遊映像表示装置であって、表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、表面に偏光分離部材を設けた透過性プレートと、再帰反射部材を含む光学システムと、前記表示パネル、前記光源装置、前記透過性プレート及び前記光学システムを収納する筐体と、前記透過性プレートを保持し筐体に連結する外枠と、を備え、前記表示パネルからの特定偏波の映像光を前記偏光分離部材で反射させ再帰反射部材に設けた位相差板により再帰反射した映像光を偏光変換し前記偏光分離部材と前記透過性プレートを透過させて空間浮遊映像を形成し、前記空間浮遊映像の観視者が前記空間浮遊映像を観視する場合に空間浮遊映像の一部又は全部が前記外枠の一部又は全部に掛かるように前記光学システムを前記筐体内に配置した、空間浮遊映像表示装置である。
1       :映像表示装置
1a      :映像表示部
1b      :映像制御部
1c      :映像信号受信部
1d      :受信アンテナ
2       :再帰反射部材
2a      :再帰反射部
3       :空間浮遊映像
11      :液晶表示パネル
12      :吸収型偏光板
13      :光源装置
13a     :光源装置
14a~c   :LED素子
15      :LEDコリメータ
16      :合成拡散ブロック
17      :導光体
18      :LEDコリメータレンズ
18a     :第1拡散板
18b     :第2拡散板
21      :λ/4板(偏光変換素子)
22      :第1遮光部材
23      :第2遮光部材
24      :第3遮光部材
25      :第4遮光部材
30      :矢印
49      :反射型偏光板
50      :保護カバー
52      :液晶表示パネル
54      :光方向変換パネル
81      :光学素子
100     :透明部材
100a    :窓部
100b    :遮光部材
101     :偏光分離部材
102     :LED基板
103     :ヒートシンク
105     :ウィンドガラス
106     :筐体
107     :光学素子
112     :吸収型偏光板
153     :凹部
154     :凸レンズ面
156     :外周面
157     :凸レンズ面
161     :テクスチャー
170     :導光体
172     :導光体光反射部
172a    :反射面
172b    :連接面
172c    :λ/4板
172d    :反射面
173     :導光体出射面
200     :反射型偏光板
201     :LED素子
202     :LED基板
203     :導光体
203a    :受光端面
204     :光束方向変換手段
205     :反射シート
206     :反射型偏光板
207     :光学シート
210     :自然光束
211     :PBS膜
212     :反射膜
215     :λ/2位相板
216     :位相差板
220     :反射型導光体
220a    :反射面
222     :凹凸パターン
223     :光源ユニット
224     :遮光壁
225     :基盤
230     :光源装置
270     :位相差板
271     :反射板
272     :反射面
304     :反射型導光体
400     :反射ミラー
1027    :光学素子偏光変換素子
2135    :2位相板
G1~G6   :第1ゴースト像~第6ゴースト像
R1      :正規像
 

Claims (36)

  1.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     映像源として表示パネルと、
     前記表示パネルに特定の偏光方向の光を供給する光源装置と、
     再帰反射面に位相差板を設けた再帰反射部材と、を備え、
     前記表示パネルと前記再帰反射部材とを結んだ空間には偏光分離部材を設け、
     前記偏光分離部材は、前記表示パネルからの特定偏波の映像光を前記再帰反射部材に向けて一旦は透過させ、前記再帰反射部材で偏光変換し他方の偏波に変換することで、前記偏光分離部材で反射させ、前記特定偏波の映像光が通過する透明部材において、前記映像源とは反対側に実像である空間浮遊映像を表示する、空間浮遊映像表示装置。
  2.  請求項1に記載の空間浮遊映像表示装置であって、
     前記表示パネルの映像表示面と前記再帰反射部材の再帰反射面とは平行となるように配置されている、空間浮遊映像表示装置。
  3.  請求項2に記載の空間浮遊映像表示装置であって、
     前記空間浮遊映像の表示位置は、前記表示パネルと前記偏光分離部材との間の距離に応じて定まる位置である、空間浮遊映像表示装置。
  4.  請求項1に記載の空間浮遊映像表示装置であって、
     前記偏光分離部材は反射型偏光板あるいは特定偏波を反射させる金属多層膜から形成される、空間浮遊映像表示装置。
  5.  請求項1に記載の空間浮遊映像表示装置であって、
     前記透明部材の少なくとも一面に吸収型偏光板が設けられた、空間浮遊映像表示装置。
  6.  請求項1に記載の空間浮遊映像表示装置であって、
     前記透明部材は前記映像光が通過する部分を透明体で形成し、前記映像光が通過しない部分は遮光部材からなる、空間浮遊映像表示装置。
  7.  請求項1に記載の空間浮遊映像表示装置であって、
     前記映像源としての前記表示パネルの映像表示面には反射防止膜を設け、前記表示パネルに設けた吸収型偏光板により反射光を吸収させる、空間浮遊映像表示装置。
  8.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     映像源としての表示パネルと、
     前記表示パネルに特定の偏光方向の光を供給する光源装置と、
     再帰反射面に位相差板を設けた再帰反射部材と、を備え、
     前記表示パネルと前記再帰反射部材とを結んだ空間には、偏光分離部材を設け、
     前記偏光分離部材は、前記表示パネルからの特定偏波の映像光を前記再帰反射部材に向けて一旦は透過させ、前記再帰反射部材で偏光変換し他方の偏波に変換することで、前記偏光分離部材で反射させ、前記特定偏波の映像光が通過する開口部に設けた透明部材における前記映像源とは反対側に、実像である空間浮遊映像を表示させ、
     前記再帰反射部材は前記表示パネルに対して傾けて配置し、再帰反射映像光が通過する前記開口部から離れた位置に配置され、外光の入射を妨げる構成とした、空間浮遊映像表示装置。
  9.  請求項8に記載の空間浮遊映像表示装置であって、
     前記再帰反射映像光が通過する前記開口部から離れた位置、または、前記表示パネルから出射する映像光が前記開口部から視認できない位置に前記光源装置を設ける構成とした、空間浮遊映像表示装置。
  10.  請求項8に記載の空間浮遊映像表示装置であって、
     前記開口部から出射した空間浮遊映像は反射ミラーで一旦反射する構成とし、前記開口部の平面に対して反射ミラーの角度を所望の角度に設定することで、得られる空間浮遊映像の位置と角度が変更できる、空間浮遊映像表示装置。
  11.  請求項8に記載の空間浮遊映像表示装置であって、
     前記開口部から出射した空間浮遊映像を反射する反射ミラーは特定偏波の反射率が高い特性を有する、空間浮遊映像表示装置。
  12.  請求項1から請求項11のいずれか1項に記載の空間浮遊映像表示装置であって、
     前記映像源としての前記表示パネルに表示した映像は、前記空間浮遊映像を形成する光学系で発生する像の歪を補正する、空間浮遊映像表示装置。
  13.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     表示パネルと、
     前記表示パネルに特定の偏光方向の光を供給する光源装置と、
     再帰反射部材と、を備え、
     前記表示パネルと前記再帰反射部材を結んだ空間には、前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、
     前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、
     前記光源装置は、点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、
     前記光源からの光を特定方向の偏光に揃える偏光変換部材と、
     前記表示パネルに伝搬する反射面を有する導光体と、を備え、
     前記導光体は、前記導光体に設けられた反射面の形状と面粗さによって反射光の発散角を調整し、
     前記表示パネルからの狭角な発散角を有する映像光束を前記再帰反射部材において反射させ、空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置。
  14.  請求項13に記載の空間浮遊映像表示装置であって、
     前記再帰反射部材の反射面の面粗さは160nm以下となるように設定され、
     前記導光体は、前記表示パネルと対向して配置され、前記導光体の内部又は表面には前記光源からの光を前記表示パネルに向けて反射させる反射面が設けられ、前記表示パネルに光を伝搬し、
     前記表示パネルは、映像信号に合わせて光強度を変調し、
     前記表示パネルからの狭角な発散角を有する映像光束を前記再帰反射部材において反射させ、空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置。
  15.  請求項13に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が±30度以内となる様に、映像光束の発散角の一部又は全部を、前記光源装置の前記反射面の形状と面粗さによって調整する、空間浮遊映像表示装置。
  16.  請求項13に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が±15度以内となる様に映像光束の発散角の一部又は全部を、前記光源装置の前記反射面の形状と面粗さによって調整する、空間浮遊映像表示装置。
  17.  請求項13に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が水平発散角と垂直発散角が異なる様に映像光束の発散角の一部又は全部を、前記導光体の前記反射面の形状と面粗さによって調整する、空間浮遊映像表示装置。
  18.  請求項13に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光入射面と光出射面とに設けた偏光板の特性により得られるコントラストに前記偏光変換部材における偏光変換の効率の逆数を乗じたコントラスト性能を備えている、空間浮遊映像表示装置。
  19.  請求項13に記載の空間浮遊映像表示装置において、
     前記表示パネルからの映像光が一旦反射型偏光板で反射して前記再帰反射部材に入射するように配置され、
     前記再帰反射部材の映像光入射面には位相差板が設けられ、
     前記位相差板を映像光が2度通過することで映像光の偏波を他方の偏波に変換されて前記反射型偏光板を通過させる、空間浮遊映像表示装置。
  20.  請求項19に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光入射面及び光出射面に設けられた偏光板の特性により得られるコントラストに前記偏光変換部材における偏光変換の効率の逆数と前記反射型偏光板のクロス透過率の逆数とを各々乗じたコントラスト性能を備えている、空間浮遊映像表示装置。
  21.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、
     前記表示パネルと前記再帰反射部材とを結んだ空間には前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、
     前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、
     前記光源装置は、点状又は面状の光源と、前記光源からの光の発散角を低減する光学部材と、前記光源からの光を特定方向の偏光に揃える偏光変換部材と、前記表示パネルに伝搬する反射面を有する導光体と、を備え、
     前記導光体は、前記表示パネルと対向して配置され、
     前記導光体の内部又は表面には、前記光源からの光を前記表示パネルに向けて反射させる反射面が設けられ、反射型偏光板で反射した特定の偏光方向の光を、前記導光体の隣り合う前記反射面を繋ぐ面を透過して、前記導光体の前記表示パネルと接する面とは反対面に設けた反射板で反射させ、前記反射板の上面に配置した位相差板を2度通過させることで偏光変換し、前記反射型偏光板を通過する偏波に変換して前記導光体を通過させることで前記表示パネルに光を伝搬し、
     前記表示パネルは、映像信号に合わせて光強度を変調し、
     前記光源装置は、前記光源から前記表示パネルに入射する映像光束の発散角の一部又は全部を、前記光源装置に設けられた反射面の形状と面粗さによって調整し、
     前記表示パネルからの狭角な発散角を有する映像光束を再帰反射部材において反射させ空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置。
  22.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、
     前記表示パネルと前記再帰反射部材とを結んだ空間には前記表示パネルからの特定角度を超える発散角を有した映像光束が前記再帰反射部材に入射することを遮る遮光部材が配置され、
     前記再帰反射部材の反射面の面粗さは空間浮遊映像のボケ量lと前記表示パネルの画素サイズLの比率が40%以下となるように設定され、
     前記光源装置は、点状又は面状の光源と、
     前記光源からの光の発散角を低減する光学部材と、
     前記光源からの光を反射し前記表示パネルに伝搬する反射面を有する導光体と、
     前記導光体の他方の面に対向して導光体から順に配置される位相差板及び反射面を備え、
     前記導光体の前記反射面は、前記光源からの光を反射させ前記導光体に対向して配置された前記表示パネルに伝搬するように配置され、前記導光体の前記反射面と前記表示パネルとの間には反射型偏光板が配置されており、
     前記反射型偏光板で反射した特定の偏光方向の光を前記導光体の他方の面に対向して近接配置した反射面で反射させ、前記導光体と前記反射面の間に配置された前記位相差板を2度通過することで偏光変換が行われ、前記反射型偏光板を通過させて前記表示パネルに特定の偏光方向の光が伝搬され、
     前記表示パネルは、映像信号に合わせて光強度を変調し、
     前記光源装置は、前記光源から前記表示パネルに入射する光束の発散角の一部又は全部を、前記光源装置に設けられた反射面の形状と面粗さとによって制御し、
     前記表示パネルからの狭角な発散角を有する映像光束を再帰反射部材において反射させ空中に前記空間浮遊映像を形成する、空間浮遊映像表示装置。
  23.  請求項22に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が±30度以内となる様に光束の発散角の一部又は全部を、前記光源装置に設けられた前記反射面の形状と面粗さとによってする、空間浮遊映像表示装置。
  24.  請求項22に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が±10度以内となる様に映像光束の発散角の一部又は全部を、前記光源装置に設けられた前記反射面の形状と面粗さとによって調整する、空間浮遊映像表示装置。
  25.  請求項22に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光線発散角が水平発散角と垂直発散角とは異なる様に映像光束の発散角の一部又は全部を、前記光源装置に設けた反射面の形状と面粗さによって調整する、空間浮遊映像表示装置。
  26.  請求項22に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光入射面と光出射面とに設けた偏光板の特性により得られるコントラストに前記反射型偏光板のクロス透過率の逆数を乗じたコントラスト性能を備えている、空間浮遊映像表示装置。
  27.  請求項22に記載の空間浮遊映像表示装置において、
     2枚の反射型偏光板を備え、
     前記表示パネルからの映像光束が一旦反射型偏光板で反射して前記再帰反射部材に入射するように配置され、前記再帰反射部材の映像光入射面には位相差板が設けられ、前記位相差板を映像光が2度通過することで映像光の偏波を他方の偏波に変換することで前記反射型偏光板を通過させる、空間浮遊映像表示装置。
  28.  請求項27に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記表示パネルの光入射面と光出射面とに設けられた偏光板の特性により得られるコントラストに前記2枚の反射型偏光板のクロス透過率の逆数を各々乗じたコントラスト性能を備えている、空間浮遊映像表示装置。
  29.  請求項23から請求項28のいずれか1項に記載の空間浮遊映像表示装置において、
     前記光源装置は、1つの映像表示素子に対して複数の前記光源を備えている、空間浮遊映像表示装置。
  30.  請求項23から請求項29のいずれか1項に記載の空間浮遊映像表示装置において、
     前記光源装置は、1つの映像表示素子に対して光の出射方向が異なる複数の面発光光源を備えている、空間浮遊映像表示装置。
  31.  請求項28から請求項30のいずれか1項に記載の空間浮遊映像表示装置に用いられる光源装置であって、
     前記発散角が±30度以内である、光源装置。
  32.  請求項31に記載の光源装置において、前記発散角が、±10度以内である、光源装置。
  33.  請求項32に記載の光源装置において、水平拡散角と垂直拡散角とが異なる、光源装置。
  34.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     表示パネルと、前記表示パネルに特定の偏光方向の光を供給する光源装置と、再帰反射部材と、を備え、
     前記光源装置は点状又は面状の光源と、
     前記光源からの光の発散角を低減する光学部材と、
     前記光源からの光を特定方向の偏光に揃える偏光変換部材と、
     前記表示パネルに伝搬する反射面を有する導光体と、を備え、
     前記導光体は、前記表示パネルと対向して配置され、
     前記導光体の内部又は表面には前記光源からの光を前記表示パネルに向けて反射させる反射面を設け前記表示パネルに光を伝搬し、
     前記導光体は、前記表示パネルで映像信号に合わせて光強度を変調し前記光源から前記表示パネルに入射する映像光束の発散角の一部又は全部を、前記導光体に設けた反射面の形状と面粗さによって調整し、
     前記再帰反射部材は、前記表示パネルからの狭角な発散角を有する映像光束を反射させ空中に浮遊映像を形成し、
     前記再帰反射部材の形状を前記表示パネルに対して曲率半径200mm以上の凹面又は凸面で形成される、空間浮遊映像表示装置。
  35.  請求項24に記載の空間浮遊映像を形成する空間浮遊映像表示装置であって、
     前記再帰反射部材の形状は前記表示パネルに対して凹面又は凸面形状をなしその曲率半径が200mm以下とした、空間浮遊映像表示装置。
  36.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     表示パネルと、
     前記表示パネルに特定の偏光方向の光を供給する光源装置と、
     表面に偏光分離部材を設けた透過性プレートと、
     再帰反射部材を含む光学システムと、
     前記表示パネル、前記光源装置、前記透過性プレート及び前記光学システムを収納する筐体と、前記透過性プレートを保持し筐体に連結する外枠と、を備え、
     前記表示パネルからの特定偏波の映像光を前記偏光分離部材で反射させ再帰反射部材に設けた位相差板により再帰反射した映像光を偏光変換し前記偏光分離部材と前記透過性プレートを透過させて空間浮遊映像を形成し、
     前記空間浮遊映像の観視者が前記空間浮遊映像を観視する場合に空間浮遊映像の一部又は全部が前記外枠の一部又は全部に掛かるように前記光学システムを前記筐体内に配置した、空間浮遊映像表示装置。
     
PCT/JP2021/043392 2020-12-04 2021-11-26 空間浮遊映像表示装置及び光源装置 WO2022118752A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180081092.9A CN116710817A (zh) 2020-12-04 2021-11-26 空间悬浮影像显示装置和光源装置
US18/039,983 US20240004216A1 (en) 2020-12-04 2021-11-26 Air floating video display apparatus and light source apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020202251 2020-12-04
JP2020-202251 2020-12-04
JP2021-120807 2021-07-21
JP2021120807A JP2022089750A (ja) 2020-12-04 2021-07-21 空間浮遊映像表示装置及び光源装置

Publications (1)

Publication Number Publication Date
WO2022118752A1 true WO2022118752A1 (ja) 2022-06-09

Family

ID=81853885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043392 WO2022118752A1 (ja) 2020-12-04 2021-11-26 空間浮遊映像表示装置及び光源装置

Country Status (2)

Country Link
US (1) US20240004216A1 (ja)
WO (1) WO2022118752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042761A1 (ja) * 2022-08-23 2024-02-29 マクセル株式会社 空間浮遊映像表示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199902A1 (ja) * 2015-06-12 2016-12-15 日本カーバイド工業株式会社 画像表示装置
US20180024373A1 (en) * 2016-07-25 2018-01-25 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
JP2018018003A (ja) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ 表示装置
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
WO2018139035A1 (ja) * 2017-01-27 2018-08-02 株式会社アスカネット 再帰性反射体及びその製造方法
WO2018169018A1 (ja) * 2017-03-17 2018-09-20 富士フイルム株式会社 画像表示システム
JP2019101055A (ja) * 2017-11-28 2019-06-24 コニカミノルタ株式会社 空中映像表示装置
JP2020095101A (ja) * 2018-12-11 2020-06-18 豊田合成株式会社 車両用表示装置
JP2020112717A (ja) * 2019-01-15 2020-07-27 日立オムロンターミナルソリューションズ株式会社 画像撮影装置
JP2020134843A (ja) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 空中像表示装置、取引装置、および空中像表示装置における空中像結像制御方法
WO2020241075A1 (ja) * 2019-05-31 2020-12-03 マクセル株式会社 情報表示システムとそれを利用した車両用情報表示システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199902A1 (ja) * 2015-06-12 2016-12-15 日本カーバイド工業株式会社 画像表示装置
US20180024373A1 (en) * 2016-07-25 2018-01-25 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
JP2018018003A (ja) * 2016-07-29 2018-02-01 株式会社ジャパンディスプレイ 表示装置
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
WO2018139035A1 (ja) * 2017-01-27 2018-08-02 株式会社アスカネット 再帰性反射体及びその製造方法
WO2018169018A1 (ja) * 2017-03-17 2018-09-20 富士フイルム株式会社 画像表示システム
JP2019101055A (ja) * 2017-11-28 2019-06-24 コニカミノルタ株式会社 空中映像表示装置
JP2020095101A (ja) * 2018-12-11 2020-06-18 豊田合成株式会社 車両用表示装置
JP2020112717A (ja) * 2019-01-15 2020-07-27 日立オムロンターミナルソリューションズ株式会社 画像撮影装置
JP2020134843A (ja) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 空中像表示装置、取引装置、および空中像表示装置における空中像結像制御方法
WO2020241075A1 (ja) * 2019-05-31 2020-12-03 マクセル株式会社 情報表示システムとそれを利用した車両用情報表示システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042761A1 (ja) * 2022-08-23 2024-02-29 マクセル株式会社 空間浮遊映像表示装置

Also Published As

Publication number Publication date
US20240004216A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US9753361B2 (en) Transparent display including a screen with patterned light deflective elements
WO2022030538A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
WO2016081101A2 (en) Rear projection screen with pin-hole concentrator array
WO2022118752A1 (ja) 空間浮遊映像表示装置及び光源装置
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
WO2023112617A1 (ja) 空間浮遊映像表示システム
JP7177946B2 (ja) 光源装置とそれを利用した情報表示システム
JP2022089750A (ja) 空間浮遊映像表示装置及び光源装置
JP7370433B2 (ja) 空間浮遊映像情報表示システムに用いられる光源装置
JP7367148B2 (ja) 空間浮遊映像表示装置
CN116710817A (zh) 空间悬浮影像显示装置和光源装置
WO2022249800A1 (ja) 空間浮遊映像表示装置および光源装置
WO2022185927A1 (ja) 空間浮遊映像表示装置
JP2022029901A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
WO2022138036A1 (ja) 空間浮遊映像表示装置および光源装置
WO2024042761A1 (ja) 空間浮遊映像表示装置
WO2022209722A1 (ja) 空間浮遊映像表示装置
WO2024004557A1 (ja) 空間浮遊映像表示システム
JP7481289B2 (ja) 空間浮遊映像表示装置
WO2023199685A1 (ja) 空間浮遊映像表示システムおよび空間浮遊映像処理システム
WO2023037813A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる立体センシング装置
WO2023228530A1 (ja) 空間浮遊映像情報表示システム
CN117377901A (zh) 空间悬浮影像显示装置和光源装置
JP2023122179A (ja) 空間浮遊映像表示システム
JP2023087963A (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081092.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18039983

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900506

Country of ref document: EP

Kind code of ref document: A1