WO2021027175A1 - 一种产酪醇的重组大肠杆菌及其构建方法和应用 - Google Patents
一种产酪醇的重组大肠杆菌及其构建方法和应用 Download PDFInfo
- Publication number
- WO2021027175A1 WO2021027175A1 PCT/CN2019/120142 CN2019120142W WO2021027175A1 WO 2021027175 A1 WO2021027175 A1 WO 2021027175A1 CN 2019120142 W CN2019120142 W CN 2019120142W WO 2021027175 A1 WO2021027175 A1 WO 2021027175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aro10
- site
- gene
- coli
- escherichia coli
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01001—Pyruvate decarboxylase (4.1.1.1)
Definitions
- the invention relates to a tyrosol-producing recombinant Escherichia coli, a construction method and application thereof, and belongs to the technical field of bioengineering.
- Hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol) is an antioxidant that is beneficial to human health. Compared with tyrosol, its antioxidant properties It is stronger, and at the same time, it can also synthesize many polymers. Studies have shown that it has many biological properties and can prevent cardiovascular, osteopenia and other diseases. Therefore, tyrosol, as a fine chemical in the chemical industry and a biologically active compound in the pharmaceutical industry, has always attracted the attention of researchers.
- the first objective of the present invention is to provide a recombinant Escherichia coli, which is deleted at five sites of the lacI site, trpE site, pabB site, pabA site, and pykF site of the E. coli MG1655 genome
- Saccharomyces cerevisiae pyruvate decarboxylase gene ARO10* gene was integrated at each of the five sites to obtain Escherichia coli YMGR5A.
- nucleotide sequence of the ARO10* gene is shown in SEQ ID NO.1.
- the Escherichia coli YMGR6A was deposited in the China Type Culture Collection on May 24, 2019, with the deposit number CCTCC NO: M2019391, and the deposit address is Wuhan, China, Wuhan University.
- the above-mentioned gene editing is performed by using CRISPR-cas9 technology or Red homologous recombination.
- the second object of the present invention is to provide a method for producing tyrosol, using the above-mentioned recombinant E. coli for fermentation.
- M9Y medium is used for fermentation to produce tyrosol.
- the strains are streaked and cultured on a non-resistant LB plate; a single colony is picked and inoculated into a liquid LB medium, and the seed solution is cultured for 8-10 hours.
- the seed solution is inoculated into liquid LB medium at a volume ratio of 1-5% inoculation volume, and cultured in a shaker at 35-39°C and 200-220 rpm for 8-12 hours; collect all bacteria After the bacterial cells are collected, the supernatant is removed, and the bacterial cells are washed once with physiological saline; the washed bacterial cells are transferred to M9Y medium, and then placed in a 28-30°C, 200-220rpm shaker for 40-60h fermentation. Take samples every 12h.
- the seed liquid is inoculated into liquid LB medium at a volume ratio of 1-5% inoculation volume, the initial OD600 is controlled to be 0.05-0.06, and the seed solution is cultured in a shaker at 35-39°C and 200-220 rpm When the OD 600 reaches 0.25-0.30, inoculate the fermentation tank with M9Y medium with a liquid volume of 40-45%, and add glucose and yeast powder during the fermentation process.
- the formula of the M9Y medium is Na 2 HPO 4 ⁇ 12H 2 O 17.1g/L, KH 2 PO 4 3g/L, NaCl 0.5g/L, NH 4 Cl 1g/L L, glucose 20g/L, yeast powder 0.25g/L, supplemented with a final concentration of MgSO 4 5mM.
- the third objective of the present invention is to provide a method for constructing the aforementioned recombinant Escherichia coli, which is based on five of the lacI site, trpE site, pabB site, pabA site, and pykF site of the E.coli MG1655 genome. While the sites were deleted, the Saccharomyces cerevisiae pyruvate decarboxylase gene ARO10* gene was integrated at each of the five sites. The nucleotide sequence of the ARO10* gene is shown in SEQ ID NO.1.
- the recombinant E. coli also deletes the yccX site, and at the same time integrates the ARO10* gene at this site.
- CRISPR-cas9 technology or Red homologous recombination is used for site deletion or gene integration.
- the fourth objective of the present invention is to provide the application of the above-mentioned recombinant E. coli in the food, chemical or pharmaceutical fields.
- the fifth objective of the present invention is to provide the application of the above-mentioned method for producing tyrosol in the food, chemical or pharmaceutical fields.
- the present invention constructs a strain with high tyrosol production, which is integrated with ARO10* at the five sites of lacI site, trpE site, pabB site, pabA site, and pykF site in the E. coli genome.
- Gene a strain containing multiple copies of the ARO10* gene was obtained.
- the ARO10* gene was randomly integrated at multiple sites, and it was found that inserting the ARO10* gene at the yccX site can obtain a strain with high tyrosol production. Fermentation using this strain does not require inducers and antibiotics. After 48 hours of fermentation, the yield of tyrosol can reach 32.3mM.
- FIG. 1 Fermented tyrosol yield results of 9 strains (YMGRA; YMGEA, YMGR2A; YMGB2A, YMGR3A; YMGA3A, YMGR4A; YMGF4A, YMGR5A) constructed by the present invention.
- Figure 2 The YMGR5A fermentor constructed by the present invention fermented tyrosol production results.
- Figure 3 The YMGR6A fermentor constructed by the present invention fermented tyrosol production results.
- the specific chromatographic detection conditions are as follows: Agela Innoval C18 column (4.6 ⁇ 250mm, pore size 5 ⁇ m); mobile phase: 80% 0.1% formic acid and water 20% methanol; flow rate 1mL ⁇ min -1 ; sample volume 10 ⁇ L; The detector has a detection wavelength of 276nm; the column temperature is 30°C.
- M9Y medium Na 2 HPO 4 ⁇ 12H 2 O 17.1g/L, KH 2 PO 4 3g/L, NaCl 0.5g/L, NH 4 Cl 1g/L, glucose 20g/L, yeast powder 0.25g/L, Supplement the final concentration of MgSO 4 5mM.
- LB medium tryptone 10g/L, yeast extract 5g/L, NaCl 10g/L.
- Example 1 Heterologous expression of Saccharomyces cerevisiae pyruvate decarboxylase gene in Escherichia coli MG1655 to produce tyrosol
- the ARO10* gene sequence was chemically synthesized by Suzhou Hongxun Biological Company, and inserted into the EcoR I and Hind III sites of plasmid pKK223-3 to obtain the recombinant plasmid pKK223-3-ARO10*.
- the primers ARO10-L and LacIR were designed according to the sequence of the pKK223-3 plasmid to obtain the expression fragment of tac-ARO10*-rrnB with promoter and terminator, and inserted into the pMD19-T simple plasmid to obtain the recombinant plasmid 19Ts- tac-ARO10*-rrnB.
- the primers LacIL and PKDR were designed according to pKD13 as templates to amplify the Kana resistant fragment.
- the plasmid 19Ts-tac-ARO10*-rrnB and Kana resistant fragment were digested and ligated with Xho I to obtain the recombinant plasmid 19Ts-Kana-tac-ARO10*-rrnB.
- the lacIL and lacIR primers were used for PCR amplification to obtain the deletion expression cassette of lacI::ARO10*.
- YMGR/pKD46 E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR/pKD46
- YMGR/pKD46 E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR/pKD46
- the above-mentioned deletion expression cassette of lacI::ARO10* was added to the competent and transformed.
- Pick the transformants use the primers YLACIL, YLACIR for colony PCR verification, strain YMGR/pKD46 as a control.
- the plasmid pCP20 was used to transform into the strain to eliminate kanamycin resistance. Use high temperature (42°C) to eliminate plasmid pKD46 and pCP20. Obtain the strain YMGRA.
- YMGEA E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR ⁇ trpE lacI:ARO10*trpE
- YMGR2A E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR lacI:ARO10*trpE::ARO10*
- trpE deletion cassette and trpE::ARO10* deletion expression cassette According to the gene sequence of trpE, primers 700trpE-U-L, ⁇ trpE-U-R; ⁇ trpE-D-L, 700trpE-D-R were designed. Using the E.coli MG1655 genome as a template, the fragments DtrpEUP and DtrpEDown were respectively amplified by PCR. Using 500trpE-U-L and 500trpE-D-R as primers, the trpE deletion cassette was amplified by nested PCR.
- primers 700trpE-U-L, 700trpE-U-R; trpE-ARO10-L, trpE-ARO10-R; 700trpE-D-L, 700trpE-D-R were designed.
- E. coli MG1655 and plasmid pKK223-ARO10* genome were used as templates to amplify, respectively, to obtain fragments trpEUP, trpEDown, and ARO10.
- the pTarget plasmid was digested with Xba I, and the fragment was recovered.
- YMGEA E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR ⁇ trpE lacI::ARO10*trpE
- YMGR2A E.coli::MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR lacI:ARO10*trpECasAROYM*)/pECas9 was constructed using the method of CRISPR-cas9Rfeacoli ⁇ RCasAROYM*) /pCas) was prepared to be electrotransformation competent, and the plasmid sg-pTarget-trpE with sgRNA and the above trpE deletion cassette or trpE::ARO10* deletion expression cassette were added to the competent and transformed.
- the construction of the pabB deletion cassette and the pabB::ARO10* deletion expression cassette is similar to the construction of the trpE deletion cassette and the trpE::ARO10* deletion expression cassette.
- the YMGR2A/pCas was prepared into electroporation competent and transformed, and the method was similar to that in Example 2. Obtain strains YMGB2A and YMGR3A.
- Example 5 YMGF4A (E.coli MG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR ⁇ pykF lacI ⁇ ARO10*trpE ⁇ ARO10: ⁇ pabB ⁇ ARO10*pabA:ARO10*), YMGR5A(E.coliMG1655 ⁇ feaB ⁇ pheA ⁇ tyrB ⁇ tyrR ⁇ pykF ⁇ ARO10*) strain construction
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
提供一种产酪醇的重组大肠杆菌及其构建方法和应用,属于生物工程技术领域。所述的大肠杆菌异源表达了密码子优化后的酿酒酵母丙酮酸脱羧酶基因ARO10*。该重组大肠杆菌是在大肠杆菌基因组的lacI位点,trpE位点,pabB位点,pabA位点,pykF位点的五个位点进行删除的同时整合上ARO10*基因,得到了含多个拷贝的ARO10*基因的菌株。在上述重组菌的基础上,随机在多个位点进行了ARO10*基因的整合,发现在yccX位点插入ARO10*基因,能获得高产酪醇的菌株。利用该菌株发酵不需要诱导剂和抗生素。发酵48h,酪醇产量可达到32.3mM。
Description
本发明涉及一种产酪醇的重组大肠杆菌及其构建方法和应用,属于生物工程技术领域。
酪醇(tyrosol)是一种具有药理活性的酚类化合物,是苯乙醇的一种衍生物,是一种单酚类抗氧化剂,有多种天然来源,如橄榄油和绿茶等。酪醇具有很多生理活性功能,如抗氧化、抗疲劳、抗缺氧、抗应激、抗寒冷、镇静、心血管疾病、高血压等。酪醇还可以作为酒类的调味剂,在提升酒类饮料的口感中起着重要的作用,尤其是在清酒、啤酒和葡萄酒中。此外,酪醇是羟基酪醇的前体物质,羟基酪醇(2-(3,4-dihydroxyphenyl)ethanol)是一种对于人类健康有益的抗氧化剂,对比酪醇而言,它的抗氧化性更强,同时,它也可以合成很多聚合物。研究表明,它具有很多生物性能,可预防心血管、骨质缺乏等疾病的发生。所以酪醇作为化学工业的精细化学品和制药工业中的生物活性化合物,一直备受研究者的关注。
酪醇合成的方法主要包括植物提取、化学合成以及生物合成。目前,工业制备酪醇,主要是通过化学合成的方法。这种工艺方法在后续提取酪醇的过程中,存在很多弊端,很难获得高纯度酪醇。已有报道中,酪醇的产量最高为10.6mM。因此,提供一种高产酪醇的方法,对其进一步应用有重要价值。
发明内容
本发明的第一个目的是提供一种重组大肠杆菌,是在E.coli MG1655基因组的lacI位点、trpE位点、pabB位点、pabA位点、pykF位点的五个位点进行删除的同时在五个位点的每一个位点上整合上酿酒酵母丙酮酸脱羧酶基因ARO10*基因,得到Escherichia coli YMGR5A。
所述Escherichia coli YMGR5A,已于2019年5月24日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M2019390,保藏地址为中国武汉,武汉大学。
在本发明的一种实施方式中,ARO10*基因的核苷酸序列如SEQ ID NO.1所示。
在本发明的一种实施方式中,所述重组大肠杆菌还删除了yccX位点,同时在该位点上整合上ARO10*基因,得到Escherichia coli YMGR6A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*pabA∷ARO10*pykF∷ARO10*yccx∷ARO10*)。
所述Escherichia coli YMGR6A,已于2019年5月24日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M2019391,保藏地址为中国武汉,武汉大学。
在本发明的一种实施方式中,上述基因编辑是利用CRISPR-cas9技术或者Red同源重组进行的。
本发明的第二个目的是提供一种生产酪醇的方法,应用了上述重组大肠杆菌进行发酵。
在本发明的一种实施方式中,用M9Y培养基进行发酵生产酪醇。
在本发明的一种实施方式中,将菌株在无抗性的LB平板上划线,培养;挑取单菌落接种于液体LB培养基中,进行种子液培养,培养8-10h。
在本发明的一种实施方式中,将种子液以1-5%接种体积比接种于液体LB培养基中,置于35-39℃,200-220rpm摇床培养8-12h;收集所有菌体,菌体收集完毕后去上清,并有生理盐水清洗菌体一次;将清洗过后的菌体转移至M9Y培养基中,然后置于28-30℃,200-220rpm摇床发酵40-60h。每隔12h取样一次。
在本发明的一种实施方式中,取种子液以1-5%接种体积比接种于液体LB培养基中,控制初始OD600为0.05-0.06,置于35-39℃,200-220rpm摇床培养,当OD
600达到0.25-0.30时,接种于装液量为40-45%的装有M9Y培养基的发酵罐,发酵过程中补加葡萄糖和酵母粉。
在本发明的一种实施方式中,所述M9Y培养基的配方为Na
2HPO
4·12H
2O 17.1g/L,KH
2PO
4 3g/L,NaCl 0.5g/L,NH
4Cl 1g/L,葡萄糖20g/L,酵母粉0.25g/L,补加终浓度MgSO
45mM。
本发明的第三个目的是提供一种构建上述的重组大肠杆菌的方法,是在E.coli MG1655基因组的lacI位点、trpE位点、pabB位点、pabA位点、pykF位点的五个位点进行删除的同时在五个位点的每一个位点上整合上酿酒酵母丙酮酸脱羧酶基因ARO10*基因,ARO10*基因的核苷酸序列如SEQ ID NO.1所示。
在本发明的一种实施方式中,所述重组大肠杆菌还删除了yccX位点,同时在该位点上整合上ARO10*基因。
在本发明的一种实施方式中,利用CRISPR-cas9技术或者Red同源重组进行位点删除或基因整合。
本发明的第四个目的是提供上述的重组大肠杆菌在食品、化工或制药领域的应用。
本发明的第五个目的是提供上述的一种生产酪醇的方法在食品、化工或制药领域的应用。
本发明的有益效果:
本发明构建了一株高产酪醇的菌株,是在大肠杆菌基因组的lacI位点,trpE位点,pabB位点,pabA位点,pykF位点的五个位点进行删除的同时整合上ARO10*基因,得到了含多个拷贝的ARO10*基因的菌株。在上述重组菌的基础上,随机在多个位点进行了ARO10*基因的 整合,发现在yccX位点插入ARO10*基因,能获得高产酪醇的菌株。利用该菌株发酵不需要诱导剂和抗生素。发酵48h,酪醇产量可达到32.3mM。
生物材料保藏
一株大肠杆菌(Escherichia coli),分类命名为Escherichia coli YMGR5A,已于2019年5月24日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M2019390,保藏地址为中国武汉,武汉大学。
一株大肠杆菌(Escherichia coli),分类命名为Escherichia coli YMGR6A,已于2019年5月24日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M2019391,保藏地址为中国武汉,武汉大学。
图1:本发明所构建的9株菌株(YMGRA;YMGEA,YMGR2A;YMGB2A,YMGR3A;YMGA3A,YMGR4A;YMGF4A,YMGR5A)的发酵酪醇产量结果。
图2:本发明所构建的YMGR5A发酵罐发酵酪醇产量结果。
图3:本发明所构建的YMGR6A发酵罐发酵酪醇产量结果。
(一)利用高效液相色谱法(HPLC)检测酪醇的产量
色谱检测条件具体如下:Agela Innoval C18色谱柱(4.6×250mm,孔径为5μm);流动相为80%的0.1%甲酸与水20%的甲醇;流速1mL·min
-1;进样量10μL;紫外检测器,检测波长276nm;柱温为30℃。
(二)培养基
M9Y培养基:Na
2HPO
4·12H
2O 17.1g/L,KH
2PO
4 3g/L,NaCl 0.5g/L,NH
4Cl 1g/L,葡萄糖20g/L,酵母粉0.25g/L,补加终浓度MgSO
4 5mM。
LB培养基:胰蛋白胨10g/L,酵母提取物5g/L,NaCl 10g/L。
实施例1在大肠杆菌MG1655中异源表达酿酒酵母丙酮酸脱羧酶基因生产酪醇
(一)质粒pKK223-3-ARO10*构建
经密码子优化后得ARO10*基因序列由苏州鸿讯生物公司化学合成,并插入到质粒pKK223-3的EcoR I与Hind III位点,获得重组质粒pKK223-3-ARO10*。
(二)lacI∷ARO10*删除表达框构建
根据pKK223-3质粒的序列设计引物ARO10-L、LacIR(表1),获得连带启动子和终止子的tac-ARO10*-rrnB的表达片段,插入pMD19-T simple质粒中,获得重组质粒 19Ts-tac-ARO10*-rrnB。根据pKD13设计引物LacIL、PKDR为模板扩增的到Kana抗性片段。用Xho I对质粒19Ts-tac-ARO10*-rrnB与Kana抗性片段进行酶切连接,获得重组质粒19Ts-Kana-tac-ARO10*-rrnB。以构建好的质粒19Ts-Kana-tac-ARO10*-rrnB为模板,以为lacIL、lacIR引物用进行PCR扩增得到lacI∷ARO10*的删除表达盒。
表1引物
(三)YMGRA(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*)菌株构建
利用Red同源重组的方法,将YMGR/pKD46(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR/pKD46)制备成电转感受态,将上述的lacI∷ARO10*的删除表达盒加入感受态,转化。挑取转化子,用引物YLACIL、YLACIR进行菌落PCR验证,菌株YMGR/pKD46作为对照。利用质粒pCP20转入菌株,消除卡那霉素抗性。利用高温(42℃)消除质粒pKD46及pCP20。获得菌株YMGRA。
实施例2 YMGEA(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrRΔtrpE lacI∷ARO10*trpE),YMGR2A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*)菌株构建
trpE删除盒及trpE∷ARO10*删除表达盒的构建根据trpE的基因序列设计引物700trpE-U-L、ΔtrpE-U-R;ΔtrpE-D-L、700trpE-D-R。以大肠杆菌E.coli MG1655基因组为模 板分别PCR扩增得到片段DtrpEUP、DtrpEDown,以500trpE-U-L,500trpE-D-R为引物,利用巢式PCR的方法扩增得到基因trpE删除盒。根据trpE的基因序列以及质粒pKK223-ARO10*设计引物700trpE-U-L、700trpE-U-R;trpE-ARO10-L、trpE-ARO10-R;700trpE-D-L、700trpE-D-R。以大肠杆菌E.coli MG1655以及质粒pKK223-ARO10*基因组为模板分别扩增,得到片段trpEUP、trpEDown、ARO10。将pTarget质粒用Xba I进行酶切,回收获得片段。用Vazyme的一步克隆试剂盒,将四个片段进行连接,转化,获得正确的质粒,以500trpE-U-L,500trpE-D-R为引物,进行PCR,获得trpE∷ARO10*删除表达盒。
YMGEA(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrRΔtrpE lacI∷ARO10*trpE),YMGR2A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*)菌株构建利用CRISPR-cas9的方法,将YMGRA/pCas(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*/pCas)制备成电转感受态,将带有sgRNA的质粒sg-pTarget-trpE及上述的trpE删除盒或者trpE∷ARO10*的删除表达盒加入感受态,转化。挑取转化子,用引物700trpE-U-L、700trpE-D-R进行菌落PCR验证,菌株YMGRA/pCas作为对照。利用IPTG进行诱导,消除sg-pTarget-trpE质粒,利用高温(42℃)消除pCas质粒。获得菌株YMGEA和YMGR2A。
实施例3 YMGB2A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrRΔpabB lacI∷ARO10*trpE∷ARO10*),YMGR3A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*)菌株构建
pabB删除盒及pabB∷ARO10*删除表达盒的构建与trpE删除盒及trpE∷ARO10*删除表达盒的构建相似,将YMGR2A/pCas制备成电转感受态,进行转化,方法与实施例2相似。获得菌株YMGB2A和YMGR3A。
实施例4 YMGA3A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrRΔpabA lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*),YMGR4A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*pabA∷ARO10*)菌株构建
pabA删除盒及pabA∷ARO10*删除表达盒的构建与trpE删除盒及trpE∷ARO10*删除表达盒的构建相似,将YMGR3A/pCas制备成电转感受态,进行转化,方法与实施例2相似。获得菌株YMGA3A和YMGR4A。
实施例5 YMGF4A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrRΔpykF lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*pabA∷ARO10*),YMGR5A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*pabA∷ARO10*pykF∷ARO10*)菌株构建
pykF删除盒及pykF∷ARO10*删除表达盒的构建与trpE删除盒及trpE∷ARO10*删除表达盒的构建相似,将YMGR4A/pCas制备成电转感受态,进行转化,方法与实施例2相似。获得菌株YMGF4A和YMGR5A。
实施例6合成酪醇微生物的摇瓶发酵
将菌株在无抗性的LB平板上划线培养,挑取单菌落接种于20mL液体LB中,进行种子液培养,培养8-10h。取种子液500μL接种于50mL液体LB中扩大培养,置于37℃,200r·min
-1摇床培养10h。收集所有菌体,菌体收集后去上清,并有生理盐水清洗菌体一次。将清洗过后的菌体转移至50mL M9Y发酵培养基中,然后置于30℃,200r·min
-1摇床发酵48h。每隔12h取样。利用高效液相色谱法(HPLC)检测酪醇的产量。酪醇的产量结果如图1和表2所示,敲除竞争途径的相关基因以及适量增加ARO10*基因的拷贝数酪醇的产量逐级递增,当敲除pykF基因时酪醇的产量达到10.84mM,敲除pykF基因并整合ARO10*基因时酪醇的产量达到10.92mM,可见,继续增加ARO10*基因对酪醇产量影响不大。
表2发酵不同菌株获得的酪醇产量
实施例7发酵罐培养YMGR5A生产酪醇
发酵罐培养生产酪醇,将YMGR5A在LB平板上划线,培养;挑取单菌落接种于20mL液体LB中,进行种子液培养,培养8-10h。取种子液接种于50mL液体LB中控制初始OD
600为0.05,置于37℃,200r·min
-1摇床培养5h扩大培养,当OD
600达到0.25时,接种于5L装有2L M9Y培养基的发酵罐,每隔4h取样,补加适量葡萄糖和酵母粉。利用高效液相色谱法(HPLC)检测酪醇的产量。酪醇的产量结果如图2所示,当发酵48h时,酪醇在发酵罐中的产量达到27.96mM。
实施例8 YMGR6A(E.coli MG1655ΔfeaBΔpheAΔtyrBΔtyrR lacI∷ARO10*trpE∷ARO10*pabB∷ARO10*pabA∷ARO10*pykF∷ARO10*yccx∷ARO10*)菌株构建
yccx∷ARO10*删除表达盒的构建与trpE∷ARO10*删除表达盒的构建相似,将YMGR5A/pCas制备成电转感受态,进行转化,方法与实施例2相似。获得菌株YMGR6A,酪醇摇瓶发酵产量达到11.74mM,发酵方法同实施例6。
发酵罐培养生产酪醇,将YMGR6A在LB平板上划线,培养;挑取单菌落接种于20mL液体LB中,进行种子液培养,培养8~10h。取种子液接种于50mL液体LB中控制初始OD
600 为0.05,置于37℃,200r·min
-1摇床培养5h扩大培养,当OD
600达到0.25时,接种于5L装有2L M9Y培养基的发酵罐,每隔4h取样,补加适量葡萄糖和酵母粉。利用高效液相色谱法(HPLC)检测酪醇的产量。酪醇的产量结果如图3所示,当发酵48h时,酪醇的产量达到32.3mM。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Claims (14)
- 一种重组大肠杆菌,其特征在于,是在E.coli MG1655基因组的lacI位点、trpE位点、pabB位点、pabA位点、pykF位点的五个位点进行删除的同时在五个位点的每一个位点上整合上酿酒酵母丙酮酸脱羧酶基因ARO10*基因,ARO10*基因的核苷酸序列如SEQ ID NO.1所示。
- 如权利要求1所述的重组大肠杆菌,其特征在于,所述重组大肠杆菌还删除了yccX位点,同时在该位点上整合上ARO10*基因。
- 如权利要求1或2所述的重组大肠杆菌,其特征在于,利用CRISPR-cas9技术或者Red同源重组进行位点删除或基因整合。
- 一种生产酪醇的方法,其特征在于,应用了权利要求1-3任一所述的重组大肠杆菌进行发酵。
- 如权利要求4所述的方法,其特征在于,以M9Y培养基为发酵培养基。
- 如权利要求4所述的方法,其特征在于,将菌株在LB平板上划线培养;挑取单菌落接种于液体LB培养基中,进行种子液培养,培养8-10h。
- 如权利要求6所述的方法,其特征在于,将种子液以1-5%接种体积比接种于液体LB培养基中,置于35-39℃,200-220rpm摇床培养8-12h;收集所有菌体,菌体收集完毕后去上清,清洗菌体;将清洗过后的菌体转移至M9Y培养基中,然后置于28-30℃,200-220rpm摇床发酵40-60h。
- 如权利要求6所述的方法,其特征在于,取种子液以1-5%接种体积比接种于液体LB培养基中,控制初始OD 600为0.05-0.06,置于35-39℃,200-220rpm摇床培养,当OD 600达到0.25-0.30时,接种于装液量为40-45%的装有M9Y培养基的发酵罐发酵40-60h。
- 如权利要求5-8任一所述的方法,其特征在于,所述M9Y培养基的配方为Na 2HPO 4·12H 2O 17.1g/L,KH 2PO 4 3g/L,NaCl 0.5g/L,NH 4Cl 1g/L,葡萄糖20g/L,酵母粉0.25g/L,补加终浓度MgSO 45mM。
- 构建权利要求1-3任一所述的重组大肠杆菌的方法,其特征在于,是在E.coli MG1655基因组的lacI位点、trpE位点、pabB位点、pabA位点、pykF位点的五个位点进行删除的同时在五个位点的每一个位点上整合上酿酒酵母丙酮酸脱羧酶基因ARO10*基因,ARO10*基因的核苷酸序列如SEQ ID NO.1所示。
- 如权利要求10所述的方法,其特征在于,所述重组大肠杆菌还删除了yccX位点,同时在该位点上整合上ARO10*基因。
- 如权利要求10或11所述的方法,其特征在于,利用CRISPR-cas9技术或者Red同源重组进行位点删除或基因整合。
- 权利要求1-3任一所述的重组大肠杆菌在食品、化工或制药领域的应用。
- 权利要求4-8任一所述的方法在食品、化工或制药领域的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910754497.9 | 2019-08-15 | ||
CN201910754497.9A CN110452865B (zh) | 2019-08-15 | 2019-08-15 | 一种产酪醇的重组大肠杆菌及其构建方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021027175A1 true WO2021027175A1 (zh) | 2021-02-18 |
Family
ID=68486880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120142 WO2021027175A1 (zh) | 2019-08-15 | 2019-11-22 | 一种产酪醇的重组大肠杆菌及其构建方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110452865B (zh) |
WO (1) | WO2021027175A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022130128A (ja) * | 2021-02-25 | 2022-09-06 | マイクロバイオファクトリー株式会社 | ヒドロキシチロソールの製造 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017101060A1 (en) * | 2015-12-17 | 2017-06-22 | Evonik Degussa (China) Co., Ltd. | Gene cassette for homologous recombination knock-out in yeast cells |
US11286475B2 (en) | 2019-08-15 | 2022-03-29 | Jiangnan University | Tyrosol-producing recombinant Escherichia coli and construction method and application thereof |
CN110452865B (zh) * | 2019-08-15 | 2021-05-28 | 江南大学 | 一种产酪醇的重组大肠杆菌及其构建方法和应用 |
CN112094829B (zh) * | 2020-09-22 | 2022-02-22 | 江南大学 | 一种酶活性改变的氨基脱氧分支酸合成酶突变体t426i及其应用 |
CN112813013B (zh) * | 2021-02-06 | 2023-04-28 | 江南大学 | 一种生产羟基酪醇的重组大肠杆菌及其应用 |
CN113493758B (zh) * | 2021-05-31 | 2022-08-02 | 江南大学 | 一株缩短发酵周期的产酪醇重组大肠杆菌及其应用 |
CN113897325B (zh) * | 2021-11-05 | 2023-06-02 | 江南大学 | 一种生产红景天苷的重组大肠杆菌及其构建方法和应用 |
CN114736918B (zh) * | 2022-03-23 | 2023-08-25 | 江南大学 | 一种整合表达生产红景天苷的重组大肠杆菌及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011088425A2 (en) * | 2010-01-15 | 2011-07-21 | The Regents Of The University Of California | Electro-autotrophic synthesis of higher alcohols |
CN104099379A (zh) * | 2013-04-08 | 2014-10-15 | 中国科学院天津工业生物技术研究所 | 一种在大肠杆菌中生物合成酪醇的方法及应用 |
CN104946575A (zh) * | 2014-03-26 | 2015-09-30 | 中国科学院天津工业生物技术研究所 | 一种高产酪醇和/或红景天苷和淫羊藿次苷d2的大肠杆菌表达菌株及其应用 |
CN106566794A (zh) * | 2015-10-09 | 2017-04-19 | 中国科学院微生物研究所 | 产2-苯乙醇的基因工程菌及其应用方法 |
CN106754607A (zh) * | 2017-02-21 | 2017-05-31 | 江南大学 | 一种产酪醇的重组菌株及其构建方法 |
CN107435049A (zh) * | 2016-05-26 | 2017-12-05 | 中国科学院天津工业生物技术研究所 | 一种生产红景天苷的重组大肠杆菌及构建方法及应用 |
CN110452865A (zh) * | 2019-08-15 | 2019-11-15 | 江南大学 | 一种产酪醇的重组大肠杆菌及其构建方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109370967B (zh) * | 2018-10-23 | 2021-11-23 | 江南大学 | 一种工程菌及其在酪醇生产中的应用 |
-
2019
- 2019-08-15 CN CN201910754497.9A patent/CN110452865B/zh active Active
- 2019-11-22 WO PCT/CN2019/120142 patent/WO2021027175A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011088425A2 (en) * | 2010-01-15 | 2011-07-21 | The Regents Of The University Of California | Electro-autotrophic synthesis of higher alcohols |
CN104099379A (zh) * | 2013-04-08 | 2014-10-15 | 中国科学院天津工业生物技术研究所 | 一种在大肠杆菌中生物合成酪醇的方法及应用 |
CN104946575A (zh) * | 2014-03-26 | 2015-09-30 | 中国科学院天津工业生物技术研究所 | 一种高产酪醇和/或红景天苷和淫羊藿次苷d2的大肠杆菌表达菌株及其应用 |
CN106566794A (zh) * | 2015-10-09 | 2017-04-19 | 中国科学院微生物研究所 | 产2-苯乙醇的基因工程菌及其应用方法 |
CN107435049A (zh) * | 2016-05-26 | 2017-12-05 | 中国科学院天津工业生物技术研究所 | 一种生产红景天苷的重组大肠杆菌及构建方法及应用 |
CN106754607A (zh) * | 2017-02-21 | 2017-05-31 | 江南大学 | 一种产酪醇的重组菌株及其构建方法 |
CN110452865A (zh) * | 2019-08-15 | 2019-11-15 | 江南大学 | 一种产酪醇的重组大肠杆菌及其构建方法和应用 |
Non-Patent Citations (1)
Title |
---|
BAI YANFEN, BI HUIPING, ZHUANG YIBIN, LIU CHANG, CAI TAO, LIU XIAONAN, ZHANG XUELI, LIU TAO, MA YANHE: "Production of salidroside in metabolically engineered Escherichia coli", SCIENTIFIC REPORTS, vol. 4, no. 1, 6640, 1 May 2015 (2015-05-01), pages 1 - 8, XP055780609, DOI: 10.1038/srep06640 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022130128A (ja) * | 2021-02-25 | 2022-09-06 | マイクロバイオファクトリー株式会社 | ヒドロキシチロソールの製造 |
JP7194950B2 (ja) | 2021-02-25 | 2022-12-23 | マイクロバイオファクトリー株式会社 | ヒドロキシチロソールの製造 |
Also Published As
Publication number | Publication date |
---|---|
CN110452865A (zh) | 2019-11-15 |
CN110452865B (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021027175A1 (zh) | 一种产酪醇的重组大肠杆菌及其构建方法和应用 | |
JP7130284B2 (ja) | チロソール及びヒドロキシチロソールを生産する酵母及びその作製方法 | |
CN112813013B (zh) | 一种生产羟基酪醇的重组大肠杆菌及其应用 | |
CN107129959B (zh) | 生产(r)-乙偶姻基因工程菌株的构建方法及其应用 | |
US20210115429A1 (en) | Tyrosol-producing Recombinant Escherichia coli and Construction Method and Application Thereof | |
WO2008049299A1 (fr) | Souche de streptomyces et procédé de conversion d'acide férulique en vanilline utilisant celle-ci | |
WO2020199571A1 (zh) | 重组酵母、构建方法和其在制备酪醇及衍生物中的应用 | |
CN113897325B (zh) | 一种生产红景天苷的重组大肠杆菌及其构建方法和应用 | |
CN106754607A (zh) | 一种产酪醇的重组菌株及其构建方法 | |
WO2023143136A1 (zh) | 一种发酵生产α-檀香烯的酵母工程菌及其应用 | |
CN109628420B (zh) | 一种葡萄糖基转移酶及其生产香兰素-α-D-葡萄糖苷的应用 | |
WO2018036479A1 (zh) | 高产吩嗪-1-甲酰胺的基因工程菌株及其构建方法和用途 | |
US11377670B2 (en) | Method for preparing vanillin by fermentation with eugenol as substrate | |
CN114606152B (zh) | 一株贝莱斯芽孢杆菌、微生物菌剂及其应用 | |
CN116622688A (zh) | 一种转化合成酪醇的苯丙酮酸脱羧酶突变体及其应用 | |
CN110713964B (zh) | 一株cspA基因加倍的须糖多孢菌工程菌株及其应用 | |
JPH06504436A (ja) | 染色体に組込まれた異種遺伝子を高度に発現する組換え細胞 | |
CN107034252B (zh) | 一种诱导白木香愈伤细胞产生2-(2-苯乙基)色酮类成分的方法 | |
CN105647958B (zh) | 一种产2-苯乙醇的酿酒酵母工程菌及其制备方法与应用 | |
CN110004099B (zh) | 一种红景天苷的发酵生产方法 | |
CN110551643A (zh) | 通过调控脯氨酸代谢途径构建的低产高级醇酿酒酵母菌株 | |
CN110218691A (zh) | 一株合成l-天冬酰胺的基因工程菌及其构建方法与应用 | |
CN114736918A (zh) | 一种整合表达生产红景天苷的重组大肠杆菌及其应用 | |
CN113025541B (zh) | 合成水杨苷的工程菌及其构建方法和应用 | |
CN113817757A (zh) | 一种生产樱桃苷的重组酵母工程菌株及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19941426 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19941426 Country of ref document: EP Kind code of ref document: A1 |