WO2021024929A1 - ポリウレタン樹脂組成物および成形品 - Google Patents

ポリウレタン樹脂組成物および成形品 Download PDF

Info

Publication number
WO2021024929A1
WO2021024929A1 PCT/JP2020/029379 JP2020029379W WO2021024929A1 WO 2021024929 A1 WO2021024929 A1 WO 2021024929A1 JP 2020029379 W JP2020029379 W JP 2020029379W WO 2021024929 A1 WO2021024929 A1 WO 2021024929A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
wax
polyurethane resin
resin composition
mass
Prior art date
Application number
PCT/JP2020/029379
Other languages
English (en)
French (fr)
Inventor
浩明 田子
巧 黒岩
剛史 小林
宏 金山
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2021537284A priority Critical patent/JP7280954B2/ja
Priority to US17/628,623 priority patent/US20220251379A1/en
Priority to CN202080053014.3A priority patent/CN114144446B/zh
Publication of WO2021024929A1 publication Critical patent/WO2021024929A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a polyurethane resin composition and a molded product, and more particularly to a polyurethane resin composition and a molded product obtained by molding the polyurethane resin composition.
  • Thermoplastic polyurethane resin is generally a rubber elastic body obtained by the reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and is composed of a hard segment formed by the reaction of polyisocyanate and low molecular weight polyol and poly. It includes a soft segment formed by the reaction of isocyanate and high molecular weight polyol.
  • polyurethane resin 1,4-bis (isocyanatomethyl) cyclohexane, polybutylene adipate having a number average molecular weight of 1000 and a polycarbonate diol having a number average molecular weight of 1000 are used, and polybutylene adipate is used with respect to the polycarbonate diol.
  • polyurethane elastomers and their molded products are required to have further improved physical properties depending on the application. For example, in fields such as covers for smart devices, improved bloom resistance in a moist heat environment is required. Further, from the viewpoint of production efficiency, the polyurethane elastomer and its molded product are required to have improved moldability.
  • the present invention is a polyurethane resin composition having excellent bloom resistance and demoldability in a moist heat environment, and a molded product obtained from the polyurethane resin composition.
  • the present invention contains a reaction product of a polyisocyanate component and a polyol component and a wax, the polyisocyanate component contains a highly symmetric polyisocyanate, and the polyol component has a number average molecular weight of 600 or more.
  • the polycarbonate polyol contains 1200 or less and a polyester polyol having a number average molecular weight of 600 or more and 1200 or less, and the polycarbonate polyol is 3 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the total amount of the polycarbonate polyol and the polyester polyol.
  • it contains a polyurethane resin composition in which the polyester polyol is 60 parts by mass or more and 97 parts by mass or less.
  • the present invention [2] includes the polyurethane resin composition according to the above [1], wherein the temperature at which the viscosity of the polyurethane resin composition is 2000 Pa ⁇ s is 185 ° C. or higher and 225 ° C. or lower.
  • the present invention [4] comprises the polyurethane resin composition according to any one of [1] to [3] above, wherein the highly symmetric polyisocyanate contains 1,4-bis (isocyanatomethyl) cyclohexane. Includes.
  • the polyurethane resin composition according to any one of the above [1] to [4], wherein the polyester polyol contains a polycaprolactone polyol.
  • the content ratio of the wax is 0.005 part by mass or more and 0.15 part by mass or less with respect to 100 parts by mass of the total amount of the polyisocyanate component and the polyol component.
  • the wax contains at least one selected from the group consisting of a polyolefin wax, a fatty acid ester wax and a fatty acid amide wax.
  • the polyurethane resin composition according to the above [8], wherein the wax contains a polyolefin wax and the melt viscosity of the polyolefin wax at 150 ° C. is 10 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the wax contains a fatty acid ester wax and / or a fatty acid amide wax, and the melt viscosity of the fatty acid ester wax and the fatty acid amide wax at 190 ° C. is 10 mPa ⁇ s or more and 100 mPa ⁇ s. It contains the following polyurethane resin composition according to [8].
  • the present invention [11] is any one of the above [8] to [10], wherein the wax contains two or more kinds selected from the group consisting of a polyolefin wax, a fatty acid ester wax and a fatty acid amide wax.
  • the wax contains two or more kinds selected from the group consisting of a polyolefin wax, a fatty acid ester wax and a fatty acid amide wax.
  • the present invention [12] includes a molded product containing the polyurethane resin composition according to any one of the above [1] to [11].
  • the present invention [13] includes the molded product according to the above [12], which is a cover for a smart device.
  • the polyurethane resin composition of the present invention and a molded product thereof contain a reaction product of a polyisocyanate component and a polyol component and a wax, the polyisocyanate component contains a highly symmetric polyisocyanate, and the polyol component has a predetermined molecular weight.
  • Polycarbonate polyol and polyester polyol having a predetermined molecular weight. Further, in the polyurethane resin composition of the present invention and its molded article, the proportion of the polyester polyol is adjusted to be excessive with respect to the proportion of the polycarbonate polyol.
  • the polyurethane resin composition and its molded product are excellent in bloom resistance and mold removal property in a moist heat environment.
  • the polyurethane resin composition of the present invention is a thermoplastic polyurethane resin composition or a thermosetting polyurethane resin composition, and is preferably a thermoplastic polyurethane resin composition.
  • thermoplastic polyurethane resin composition contains a thermoplastic polyurethane resin which is a reaction product of a polyisocyanate component and a polyol component, and a wax described later.
  • thermoplastic polyurethane resin is obtained as a reaction product by reacting the polyisocyanate component with the polyol component.
  • the polyisocyanate component contains a highly symmetric polyisocyanate as an essential component.
  • the highly symmetric polyisocyanate is a polyisocyanate compound having symmetry in the three-dimensional structure of the molecule, and the chemical structural formula can be shown so as to be X-axis symmetric and Y-axis symmetric on the XY plane. It is a compound.
  • Examples of the highly symmetric polyisocyanate include 1,4-bis (isocyanatomethyl) cyclohexane (1,4-H 6 XDI) and 4,4'-diphenylmethane diisocyanate (4,4'-MDI). .. In addition, these can be used alone or in combination of two or more.
  • the polyisocyanate component contains 1,4-bis (isocyanatomethyl) cyclohexane and / or 4,4'-diphenylmethane diisocyanate.
  • the polyisocyanate component more preferably contains 1,4-bis (isocyanatomethyl) cyclohexane from the viewpoint of discoloration resistance.
  • the 1,4-bis (isocyanatomethyl) cyclohexane includes cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis 1,4) and trans-1,4-bis (hereinafter referred to as cis 1,4).
  • cis 1,4 cis-1,4-bis (isocyanatomethyl) cyclohexane
  • trans 1,4 There is a steric isomer of isocyanatomethyl) cyclohexane
  • the content ratio of 1,4 transs is, for example, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably.
  • 1,4-bis (isocyanatomethyl) cyclohexane has a total amount of 100 mol% of 1,4 trans and 1,4 cis, so that the content of 1,4 cis is, for example, 0. .2 mol% or more, preferably 1 mol% or more, more preferably 4 mol% or more, still more preferably 10 mol% or more, for example 40 mol% or less, preferably 30 mol% or less, more preferably , 20 mol% or less, more preferably 15 mol% or less.
  • the content ratio of the transformers 1 and 4 is equal to or higher than the above lower limit, the molding stability, mechanical properties, stain resistance and discoloration resistance can be improved. Further, when the content ratio of the transformers 1 and 4 is not more than the above upper limit, the mechanical properties, transparency, bloom resistance and discoloration resistance can be improved.
  • 1,4-Bis (isocyanatomethyl) cyclohexane can be produced, for example, by the method described in International Publication WO2019 / 069802.
  • polyisocyanate component can contain other polyisocyanates (polyisocyanates excluding highly symmetric polyisocyanates) as optional components as long as the excellent effects of the present invention are not impaired.
  • polyisocyanates examples include aliphatic polyisocyanates, aromatic polyisocyanates, and aromatic aliphatic polyisocyanates.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, and 2,2'-dimethylpentane diisocyanate.
  • 2,2,4-trimethylhexane diisocyanate decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanatomethyloctane, bis ( Isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, 1,4-butylene glycol dipropyl ether- ⁇ , ⁇ '-diisocyanate, lysine isocyanatomethyl ester, lysine triisocyanate, 2-isocyanatoethyl-2,6 Chain aliphatic diisocyanate,
  • the aliphatic polyisocyanate includes an alicyclic polyisocyanate (excluding 1,4-bis (isocyanatomethyl) cyclohexane).
  • Examples of the alicyclic polyisocyanate include 1,3-bis (isocyanatomethyl) cyclohexane (1,3-H 6 XDI) and isophorone diisocyanate (excluding 1,4-bis (isocyanatomethyl) cyclohexane).
  • Aromatic polyisocyanates include, for example, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures (TDI) of these tolylene diisocyanates.
  • 2,4'-Diphenylmethane diisocyanate (2,4'-MDI) and 2,2'-diphenylmethane diisocyanate (2,2'-MDI) 2,4'-Diphenylmethane diisocyanate
  • 2,2'-diphenylmethane diisocyanate 2,2'-MDI
  • any isomer mixture of these diphenylmethane diisocyanates toluidine diisocyanate (TODI).
  • Paraphenylenediocyanate, aromatic diisocyanates such as naphthalenediocyanate (NDI) and the like.
  • aromatic aliphatic polyisocyanate examples include 1,3- or 1,4-xylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylene diisocyanate or a mixture thereof (TMXDI), and the like.
  • These other polyisocyanates can be used alone or in combination of two or more.
  • the content ratio is, for example, 50% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less, based on the total amount of the polyisocyanate components.
  • the polyisocyanate component preferably contains no other polyisocyanate and is composed of highly symmetric polyisocyanate, and more preferably 1,4-bis (isocyanatomethyl) cyclohexane and / or. It consists of 4,4'-diphenylmethane diisocyanate, more preferably 1,4-bis (isocyanatomethyl) cyclohexane or 4,4'-diphenylmethane diisocyanate.
  • polyisocyanate component more preferably, 1,4-bis (isocyanatomethyl) cyclohexane alone or 4,4'-diphenylmethane diisocyanate alone can be mentioned from the viewpoint of demoldability.
  • 1,4-bis (isocyanatomethyl) cyclohexane alone is mentioned.
  • the polyol component is a component composed of a compound containing two or more hydroxyl groups in the molecule (hereinafter, may be referred to as a polyol).
  • a polyol having a number average molecular weight of 400 or more is referred to as a high molecular weight polyol. Further, a polyol having a number average molecular weight of less than 400 is referred to as a low molecular weight polyol.
  • the number average molecular weight is calculated by, for example, measurement by the GPC method, hydroxyl value and formulation (average number of functional groups). Preferably, it is calculated by the hydroxyl value and the formulation (average number of functional groups) (the same applies hereinafter).
  • the hydroxyl value is measured according to the description of JIS K 1557-1 (2007).
  • the polyol component contains a high molecular weight polyol as an essential component, and more specifically, it contains a polycarbonate polyol having a number average molecular weight of 600 or more and 1200 or less, and a polyester polyol having a number average molecular weight of 600 or more and 1200 or less.
  • polycarbonate polyol examples include a crystalline polycarbonate polyol such as a ring-opening polymer of ethylene carbonate or phenyl carbonate using a low molecular weight polyol as an initiator.
  • crystallinity means that it is solid at 25 ° C.
  • Examples of the low molecular weight polyol include compounds (monomers) having two or more hydroxyl groups in the molecule and having a molecular weight of 50 or more and less than 400.
  • 1,4-dihydroxy-2-butene, 2,6-dimethyl-1-octene-3,8-diol, bisphenol A and its hydrogenated products diethylene glycol, triethylene glycol, dipropylene glycol, 1,2- Dihydric alcohols such as benzenediols, 1,3-benzenediols, 1,4-benzenediols, eg trivalent alcohols such as glycerin, trimethylolpropane, triisopropanolamine, eg tetramethylolmethane (pentaerythritol), di Tetravalent alcohols such as glycerin, for example pentahydric alcohols such as xylitol, for example hexahydric alcohols such as sorbitol, mannitol, aitol, iditol, darsitol, altritor, inositol, dipentaerythritol, for example,
  • a polyoxyalkylene polyol obtained by addition-reacting alkylene oxides (ethylene oxide, propylene oxide) having 2 to 3 carbon atoms with the above polyhydric alcohol as an initiator so as to have the above molecular weight.
  • alkylene oxides ethylene oxide, propylene oxide
  • the above polyhydric alcohol as an initiator so as to have the above molecular weight.
  • random and / or block copolymers random and / or block copolymers
  • These low molecular weight polyols can be used alone or in combination of two or more.
  • a dihydric alcohol is preferably used in the above-mentioned use of the ring-opening polymerization initiator.
  • the molecular weight of the low molecular weight polyol is, for example, 50 or more, preferably 70 or more, and less than 400, preferably 300 or less.
  • examples of the polycarbonate polyol include an amorphous polycarbonate polyol obtained by copolymerizing the ring-opening polymer with a low molecular weight polyol.
  • Amorphous means that it is liquid at 25 ° C.
  • polycarbonate polyols can be used alone or in combination of two or more.
  • the number average molecular weight of the polycarbonate polyol is 600 or more, preferably 700 or more, more preferably 800 or more, still more preferably 900 or more from the viewpoint of demoldability, and 1200 or less from the viewpoint of wet heat resistance and bloom resistance. It is preferably 1100 or less, more preferably 1000 or less.
  • the overall number average molecular weight of those polycarbonate polyols can be adjusted within the above range.
  • the polycarbonate polyols used in combination are each a polycarbonate polyol having a number average molecular weight less than the above lower limit (600). It may be a polycarbonate polyol whose number average molecular weight exceeds the above upper limit (1200).
  • the overall number average molecular weight of the polycarbonate polyols is the value obtained by multiplying the molar ratio (%) of each polycarbonate polyol used in combination by the number average molecular weight of each polycarbonate polyol. It is the sum total and is calculated by a known method.
  • the average number of hydroxyl groups of the polycarbonate polyol is, for example, 2 or more, for example, 4 or less, preferably 3 or less, and particularly preferably 2.
  • the average number of hydroxyl groups as a whole of those polycarbonate polyols can be adjusted within the above range.
  • the polycarbonate polyol used in combination may be a polycarbonate polyol having an average number of hydroxyl groups less than the above lower limit, and the average number of hydroxyl groups is It may be a polycarbonate polyol that exceeds the above upper limit.
  • the average number of hydroxyl groups of the polycarbonate polyol as a whole is the value obtained by multiplying the molar ratio (%) of each polycarbonate polyol used in combination by the average number of hydroxyl groups of each polycarbonate polyol. It is the sum and is calculated by a known method.
  • polyester polyol examples include a polycondensate obtained by reacting a low molecular weight polyol with a polybasic acid under known conditions.
  • low molecular weight polyol examples include the above-mentioned low molecular weight polyol (for example, 2- to octahydric alcohol). These can be used alone or in combination of two or more.
  • low molecular weight polyol examples include a dihydric alcohol, and more preferably 1,4-butylene glycol (1,4-butanediol, 1,4-BD).
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, and 3-methyl-3-ethylglutaric acid.
  • Saturated aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, for example, unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, for example, orthophthalic acid, isophthalic acid, terephthalic acid, toluenedicarboxylic acid, naphthalenedicarboxylic acid.
  • Acid anhydrides such as oxalic acid anhydride, succinic acid anhydride, maleic anhydride, phthalic acid anhydride, 2-alkyl anhydride (C12 to C18) succinic acid, tetrahydrophthalic acid anhydride, trimellitic acid anhydride, and carboxylic acids thereof.
  • acid halides derived from acids and the like such as oxalic acid dichloride, adipic acid dichloride, and sebacic acid dichloride. These can be used alone or in combination of two or more.
  • polybasic acid examples include saturated aliphatic dicarboxylic acid, and more preferably adipic acid.
  • polyester polyol for example, a plant-derived polyester polyol, specifically, the above-mentioned low molecular weight polyol as an initiator, a hydroxyl group-containing vegetable oil fatty acid (for example, lysinoleic acid-containing castor oil fatty acid, 12-hydroxystearic acid)
  • a hydroxyl group-containing vegetable oil fatty acid for example, lysinoleic acid-containing castor oil fatty acid, 12-hydroxystearic acid
  • examples thereof include a vegetable oil-based polyester polyol obtained by subjecting a hydroxycarboxylic acid such as (hydrogenated castor oil fatty acid, etc.) containing the above to a condensation reaction under known conditions.
  • polyester polyol for example, a lactone-based polyester polyol can also be mentioned.
  • the lactone-based polyester polyol uses, for example, the above-mentioned low molecular weight polyol (preferably dihydric alcohol) as an initiator, for example, lactones such as ⁇ -caprolactone and ⁇ -valerolactone, and for example, L-lactide and D-. It can be obtained by ring-opening polymerization of lactides such as lactide.
  • a polycaprolactone polyol obtained by ring-opening polymerization of ⁇ -caprolactone using the above-mentioned low-molecular-weight polyol (preferably divalent alcohol) as an initiator for example, the above-mentioned low-molecular-weight polyol (
  • polycaprolactone polyol obtained by ring-opening polymerization of ⁇ -valerolactone using divalent alcohol) as an initiator and further, those obtained by copolymerizing the above divalent alcohol with them can also be mentioned.
  • polyester polyols can be used alone or in combination of two or more.
  • polyester polyol preferably, a polycondensate of a low molecular weight polyol and a polybasic acid is used alone, or a lactone-based polyester polyol is used alone. Further, as the polycondensate of the low molecular weight polyol and the polybasic acid, a polycondensate of 1,4-butylene glycol and adipic acid (that is, polybutylene adipate) is preferable. Moreover, as a lactone-based polyester polyol, a polycaprolactone polyol is preferable. The polyester polyol is particularly preferably polycaprolactone polyol.
  • the number average molecular weight of the polyester polyol is 600 or more, preferably 800 or more, more preferably 900 or more, still more preferably 1000 or more from the viewpoint of demoldability, and 1200 or less from the viewpoint of wet heat resistance and bloom resistance. , Preferably 1100 or less.
  • each polyester polyol used in combination is a polyester polyol having a number average molecular weight less than the above lower limit (600). It may be a polyester polyol having a number average molecular weight exceeding the above upper limit (1200).
  • the overall number average molecular weight of the polyester polyols is the value obtained by multiplying the molar ratio (%) of each polyester polyol used in combination by the number average molecular weight of each polyester polyol. It is the total and is calculated by a known method.
  • the average number of hydroxyl groups of the polyester polyol is, for example, 2 or more, for example, 4 or less, preferably 3 or less, and particularly preferably 2.
  • the average number of hydroxyl groups of the polyester polyols as a whole can be adjusted within the above range.
  • the polyester polyol used in combination may be a polyester polyol having an average number of hydroxyl groups less than the above lower limit, and the average number of hydroxyl groups is It may be a polyester polyol that exceeds the above upper limit.
  • the average number of hydroxyl groups of the polyester polyol as a whole is the value obtained by multiplying the molar ratio (%) of each polyester polyol used in combination by the average number of hydroxyl groups of each polyester polyol. It is the sum and is calculated by a known method.
  • the mass ratio of the polycarbonate polyol and the polyester polyol is 3 parts by mass or more with respect to 100 parts by mass of the total amount of the polycarbonate polyol and the polyester polyol from the viewpoint of achieving both wet heat resistance and bloom resistance. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, further preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 25 parts by mass or more, and 40 parts by mass or less. It is preferably 35 parts by mass or less, and more preferably 30 parts by mass or less.
  • the polyester polyol is 60 parts by mass or more, preferably 65 parts by mass or more, more preferably 70 parts by mass or more, and 97 parts by mass or less, preferably 95 parts by mass or less, more preferably 90 parts by mass.
  • it is more preferably 85 parts by mass or less, further preferably 80 parts by mass or less, still more preferably 75 parts by mass or less.
  • the polyol component can include, if necessary, a low molecular weight polyol and, for example, a high molecular weight polyol excluding polycarbonate polyol and polyester polyol (hereinafter, other high molecular weight polyol).
  • the polyol component preferably contains a low molecular weight polyol.
  • low molecular weight polyol examples include the above-mentioned low molecular weight polyol. These can be used alone or in combination of two or more.
  • the low molecular weight polyol is preferably a dihydric alcohol, more preferably a C2-4 alkanediol, and even more preferably 1,4-butylene glycol.
  • the content ratio of the low molecular weight polyol is, for example, 0% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, based on the total amount of the polyol components. For example, it is 30% by mass or less, preferably 25% by mass or less, and more preferably 20% by mass or less.
  • polystyrene resins are organic compounds (polymers) having two or more hydroxyl groups and having a number average molecular weight of 400 or more, preferably 500 or more, and are, for example, polyether polyols (polyoxyalkylenes (2 carbon atoms).
  • polyether polyols polyoxyalkylenes (2 carbon atoms).
  • polyurethane polyols polyurethane polyols
  • epoxy polyols epoxy polyols
  • vegetable oil polyols polyolefin polyols
  • acrylic polyols acrylic polyols
  • vinyl monomer-modified polyols and the like.
  • the content ratio of the other high molecular weight polyol is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, based on the total amount of the polyol components. It is particularly preferable that it is 0% by mass.
  • the polyol component preferably does not contain other high molecular weight polyols.
  • the polyol component is preferably composed of a polycarbonate polyol having a number average molecular weight of 600 or more and 1200 or less, a polyester polyol having a number average molecular weight of 600 or more and 1200 or less, and a low molecular weight polyol.
  • thermoplastic polyurethane resin obtained as a reaction product thereof.
  • wax is an additive contained in a thermoplastic polyurethane resin composition in order to improve bloom resistance in a moist heat environment and to improve mold removal property.
  • wax examples include olefin wax, fatty acid ester wax, fatty acid amide wax and the like.
  • olefin wax examples include polyethylene wax, polypropylene wax, polyethylene-polypropylene copolymer wax, paraffin wax, microcrystalline wax, carnauba wax, and acid-modified products (acid-modified) of these olefin waxes (non-modifying waxes). Olefin wax) and the like. These can be used alone or in combination of two or more.
  • fatty acid ester wax examples include higher aliphatic carboxylic acids (for example, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, and montanic acid. ) And a fatty acid ester which is an esterification reaction product of the above-mentioned low molecular weight polyol (for example, 2 to octavalent alcohol). These can be used alone or in combination of two or more.
  • higher aliphatic carboxylic acids for example, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, and montanic acid.
  • fatty acid amide waxes include fatty acid amides such as stearyl amide, palmityl amide, oleyl amide, methylene bisstearic acid amide, and ethylene bisstearic acid amide. These can be used alone or in combination of two or more.
  • waxes can be used alone or in combination of two or more.
  • the wax preferably includes a polyolefin wax, a fatty acid ester wax, and a fatty acid amide wax, more preferably a polyethylene wax, and a fatty acid ester wax, and further preferably a polyolefin wax. More preferably, non-modified polyolefin wax is mentioned, and particularly preferably, polyethylene / polypropylene copolymer is mentioned.
  • thermoplastic polyurethane resin composition preferably contains at least one selected from the group consisting of polyolefin waxes, fatty acid ester waxes and fatty acid amide waxes.
  • the wax preferably contains a polyolefin-based wax.
  • the melt viscosity of the polyolefin wax at 150 ° C. is, for example, 1 mPa ⁇ s or more, preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, from the viewpoint of improving the wet heat resistance to bloom. , 500 mPa ⁇ s or less, preferably 300 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or less, still more preferably 50 mPa ⁇ s or less, and particularly preferably 30 mPa ⁇ s or less.
  • the wax preferably contains a fatty acid ester wax and / or a fatty acid amide wax.
  • the melt viscosities of the fatty acid ester wax and the fatty acid amide wax at 190 ° C. are, for example, 1 mPa ⁇ s or more, preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s, from the viewpoint of improving the wet heat resistance to bloom.
  • the above for example, 500 mPa ⁇ s or less, preferably 300 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or less, still more preferably 50 mPa ⁇ s or less, and particularly preferably 30 mPa ⁇ s or less.
  • the melt viscosity of the wax is measured by a cone plate viscometer in accordance with the examples described later.
  • the content ratio of the wax is, for example, 0.001 part by mass (that is, 0.001 part by mass) with respect to 100 parts by mass of the total amount of the polyisocyanate component and the polyol component (that is, the thermoplastic polyurethane resin) from the viewpoint of wet heat bloom resistance and mold removal property.
  • phr or more, preferably 0.005 parts by mass (phr) or more, more preferably 0.01 parts by mass (phr) or more, still more preferably 0.02 parts by mass (phr) or more, still more preferably 0.
  • the wax particularly preferably contains two or more kinds selected from the group consisting of polyolefin wax, fatty acid ester wax and fatty acid amide wax. That is, particularly preferably, two or more kinds of waxes are used in combination.
  • the polyolefin wax is preferably used in combination with the fatty acid ester wax and / or the fatty acid amide wax, more preferably the polyolefin wax and the fatty acid amide wax are used in combination, and particularly preferably.
  • a non-modified polyolefin wax and a fatty acid amide wax are used in combination.
  • the amount of the polyolefin wax is, for example, 50 parts by mass or more, preferably 55 parts by mass, based on 100 parts by mass of the total amount thereof. More than parts, more preferably 60 parts by mass or more, still more preferably 70 parts by mass or more, for example, 95 parts by mass or less, preferably 90 parts by mass or less, more preferably 85 parts by mass or less, still more preferably. , 80 parts by mass or less.
  • the fatty acid ester wax and / or fatty acid amide wax is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and further preferably 20 parts by mass or more. For example, it is 50 parts by mass or less, preferably 45 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
  • waxes are added at an appropriate timing, for example, during the production of the thermoplastic polyurethane resin composition described later (that is, the reaction between the polyisocyanate component and the polyol component).
  • the wax may be added in advance to, for example, the polyisocyanate component and / or the polyol component before the reaction, or the polyisocyanate component and the polyol. It may be added at the same time as mixing with the component, or may be further added to the mixture of the polyisocyanate component and the polyol component.
  • the wax is added to the polyol component before the reaction.
  • thermoplastic polyurethane resin composition containing the thermoplastic polyurethane resin and the wax can be obtained by adding the wax at an appropriate timing.
  • the polyisocyanate component and the polyol component are mixed in a predetermined ratio.
  • the blending ratio is, for example, 0.750 or more, preferably 0.900 or more, and more preferably 0. as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the polyol component. It is 950 or more, more preferably 0.960 or more, particularly preferably 0.970 or more, for example, 1.30 or less, preferably 1.10 or less, more preferably 1.00 or less, still more preferably. , Less than 1.00, more preferably 0.999 or less, still more preferably 0.995 or less, and particularly preferably 0.990 or less.
  • the polyisocyanate component and the polyol component are reacted by a polymerization method such as bulk polymerization or solution polymerization.
  • the reaction temperature of the polyisocyanate component and the polyol component is, for example, 50 ° C. or higher, for example 250 ° C. or lower, preferably 200 ° C. or lower, for example, 0.5 hour or longer.
  • the reaction is carried out for 22 hours or less.
  • reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower, for example, 0.5 hour or longer. For example, react for 15 hours or less.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, n-.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • nitriles such as acetonitrile
  • alkyl esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, n-.
  • Aliphatic hydrocarbons such as hexane, n-heptane and octane, eg alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, eg methyl cellosolve acetate.
  • Ethyl cellosolve acetate methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybutyl acetate, ethyl-3-ethoxypropionate and other glycol ether esters.
  • ethers such as diethyl ether, tetrahydrofuran, dioxane, for example, halogenated aliphatic hydrocarbons such as methyl chloride, methylene chloride, chloroform, carbon tetrachloride, methyl bromide, methylene iodide, dichloroethane, for example.
  • polar aprotons such as N-methylpyrrolidone, dimethylformamide, N, N'-dimethylacetamide, dimethylsulfoxide and hexamethylphosphonylamide.
  • a known urethanization catalyst such as amines or an organometallic compound can be added, if necessary.
  • amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether and N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, for example, imidazole.
  • quaternary ammonium salts such as tetraethylhydroxylammonium, for example, imidazole.
  • imidazoles such as 2-ethyl-4-methylimidazole.
  • organic metal compound examples include tin acetate, tin octylate (tin octylate), tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, and dibutyl.
  • Organic tin compounds such as tin dineodecanoate, dioctyl tin dimercaptide, dioctyl tin dilaurylate, dibutyl tin dichloride, eg organic lead compounds such as lead octanoate, lead naphthenate, eg organic nickel compounds such as nickel naphthenate,
  • organic cobalt compound such as cobalt naphthenate
  • an organic copper compound such as copper octate
  • an organic bismuth compound such as bismuth octanate (bismuth octylate), bismuth neodecanoate, and the like, preferably octyl.
  • Examples include tin acid acid and bismuth octylate.
  • examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
  • urethanization catalysts can be used alone or in combination of two or more.
  • the addition ratio of the urethanization catalyst is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, and for example, 1 part by mass with respect to 10000 parts by mass of the total amount of the polyisocyanate component and the polyol component. Hereinafter, it is preferably 0.5 parts by mass or less.
  • the unreacted polyisocyanate component and, when an organic solvent is used, the organic solvent can be removed by a known removing means such as distillation or extraction.
  • the polyisocyanate component and the high molecular weight polyol are reacted by a polymerization method such as bulk polymerization or solution polymerization described above to synthesize an isocyanate group-terminated polyurethane prepolymer.
  • the blending ratio is, for example, 2.0 or more, preferably 2.5 or more, for example, 20 or more as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the high molecular weight polyol. Below, it is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the reaction temperature of the polyisocyanate component and the high molecular weight polyol is, for example, 50 ° C. or higher, for example 250 ° C. or lower, preferably 200 ° C. or lower, for example, 0.5 hours. Above, for example, react for 15 hours or less.
  • a polyisocyanate component and a high molecular weight polyol are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower, for example, 0.5 hour or longer.
  • the reaction is carried out for 15 hours or less.
  • the isocyanate group-terminated polyurethane prepolymer obtained above is reacted with a low molecular weight polyol as a chain extender to obtain a reaction product of a polyisocyanate component and a polyol component (chain extension step). ).
  • the blending ratio is, for example, 0.750 or more, preferably 0.900 or more, more preferably, as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the isocyanate group-terminated polyurethane prepolymer to the hydroxyl group in the low molecular weight polyol.
  • the reaction temperature is, for example, room temperature or higher, preferably 50 ° C. or higher, for example, 200 ° C. or lower, preferably 150 ° C. or lower, and the reaction time is, for example, 5 minutes or longer, preferably 1 hour or longer, for example. 72 hours or less, preferably 48 hours or less.
  • the above-mentioned urethanization catalyst can be added, if necessary.
  • the unreacted polyisocyanate component and, when an organic solvent is used, the organic solvent can be removed by a known removing means such as distillation or extraction.
  • thermoplastic polyurethane resin obtained as a reaction product.
  • thermoplastic polyurethane resin composition containing the thermoplastic polyurethane resin and the wax can be obtained.
  • thermoplastic polyurethane resin composition is heat-treated, if necessary.
  • thermoplastic polyurethane resin composition obtained by the above reaction is heat-treated by allowing it to stand at a predetermined heat treatment temperature for a predetermined heat treatment period, and then dried if necessary.
  • the heat treatment temperature is, for example, 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower.
  • the heat treatment temperature is within the above range, it can have molding stability (demolding property), wet heat bloom resistance and discoloration resistance.
  • the heat treatment period is, for example, 3 days or more, preferably 4 days or more, more preferably 5 days or more, still more preferably 6 days or more, for example, 10 days or less, preferably 9 days or less. Preferably, it is 8 days or less.
  • the heat treatment period is within the above range, it can have molding stability (demolding property), wet heat bloom resistance and discoloration resistance.
  • thermoplastic polyurethane resin composition can be obtained.
  • an additive other than wax can be added to the thermoplastic polyurethane resin composition.
  • Other additives include, for example, antioxidants, heat-resistant stabilizers, UV absorbers, light-resistant stabilizers, hydrolysis inhibitors (carbodiimide compounds, etc.), and further, plasticizing agents, blocking inhibitors, mold release agents, pigments. , Dyes (brewing agents, etc.), lubricants (fatty acid amide-based lubricants, etc.), fillers, rust preventives, fillers, etc.
  • additives may be added in advance to the polyisocyanate component and / or the polyol component which are the raw materials of the thermoplastic polyurethane resin composition, and may be added at the time of mixing these polyisocyanate component and the polyol component, and further. , May be added to the mixture of polyisocyanate component and polyol component.
  • the antioxidant is not particularly limited, and examples thereof include known antioxidants (for example, described in the catalog manufactured by BASF Japan), and more specifically, for example, phenolic antioxidants and hindered phenolic antioxidants. Examples include agents.
  • the heat-resistant stabilizer is not particularly limited, and examples thereof include known heat-resistant stabilizers (for example, described in the catalog manufactured by BASF Japan). More specifically, for example, a phosphorus-based processing heat stabilizer and a lactone-based processing heat stabilizer. Examples include agents and sulfur-based processing heat stabilizers.
  • the ultraviolet absorber is not particularly limited, and examples thereof include known ultraviolet absorbers (for example, described in the catalog manufactured by BASF Japan). More specifically, for example, benzotriazole-based ultraviolet absorbers and triazine-based ultraviolet absorbers. , Benzophenone-based ultraviolet absorbers and the like.
  • the light-resistant stabilizer is not particularly limited, and examples thereof include known light-resistant stabilizers (for example, described in the ADEKA catalog), and more specifically, for example, benzoate-based light stabilizers and hindered amine-based light stabilizers. Can be mentioned.
  • Each of these additives is, for example, 0.001% by mass or more, preferably 0.01% by mass or more, for example, 3.0% by mass or less, preferably 2.0, based on the thermoplastic polyurethane resin composition. It is added in a proportion of mass% or less.
  • thermoplastic polyurethane resin composition contains a reaction product (thermoplastic polyurethane resin) of a polyisocyanate component and a polyol component and a wax, and the polyisocyanate component contains a highly contrasting polyisocyanate.
  • the polyol component contains a polycarbonate polyol having a predetermined molecular weight and a polyester polyol having a predetermined molecular weight.
  • the proportion of the polyester polyol is adjusted to be excessive with respect to the proportion of the polycarbonate polyol. Therefore, the thermoplastic polyurethane resin composition is excellent in bloom resistance and mold removal property in a moist heat environment.
  • thermoplastic polyurethane resin is increased because the polyisocyanate component contains the highly symmetric polyisocyanate. Therefore, for example, the productivity in injection molding of the thermoplastic polyurethane resin composition tends to be improved.
  • the polyisocyanate component contains the polyisocyanate having the above-mentioned specific structure
  • the above-mentioned specific ratio of the polycarbonate polyol having a predetermined molecular weight and the polyester polyol having a predetermined molecular weight as the polyol component It was found that the generation of bloom can be suppressed by containing in and adding wax.
  • the mechanical properties of the thermoplastic polyurethane resin composition can be improved.
  • the reaction product (thermoplastic polyurethane resin) of the polyisocyanate component and the polyol component is a hard segment formed by the reaction of the polyisocyanate component and the low molecular weight polyol. It contains a polyisocyanate component and a soft segment formed by the reaction of a high molecular weight polyol.
  • thermoplastic polyurethane resin By adjusting the content ratio of such hard segments (hard segment concentration), it is possible to improve the mechanical properties of the thermoplastic polyurethane resin.
  • the hard segment concentration of the thermoplastic polyurethane resin is, for example, 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, and for example, 55% by mass or less, preferably 55% by mass or less. Is 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less.
  • the hard segment concentration can be calculated by a known method. For example, when the prepolymer method is adopted, the hard segment concentration is calculated by the following formula from the compounding formulation (preparation) of each component. [Chain extender (g) + (chain extender (g) / molecular weight of chain extender (g / mol)) x average molecular weight of polyisocyanate component (g / mol)] ⁇ (polyisocyanate component (g) + polyol Ingredient (g)) x 100
  • the urethane group concentration of the thermoplastic polyurethane resin is, for example, 0.1 mmol / g or more, preferably 1 mmol / g or more, and for example, 20 mmol / g or less, preferably 10 mmol / g or less.
  • the urethane group concentration can be calculated by a known method from the charging ratio of the raw material components.
  • the temperature at which the viscosity of the thermoplastic polyurethane resin composition is 2000 Pa ⁇ s is, for example, 170 ° C. or higher, preferably 180 ° C. or higher, more preferably 185 ° C. or higher. More preferably 190 ° C. or higher, particularly preferably 195 ° C. or higher, for example, 250 ° C. or lower, preferably 230 ° C. or lower, more preferably 225 ° C. or lower, still more preferably 220 ° C. or lower, particularly preferably. Is 210 ° C. or lower.
  • thermoplastic polyurethane resin composition The viscosity of the thermoplastic polyurethane resin composition is measured by an enhanced flow tester in accordance with the examples described later.
  • the present invention also includes a molded product containing the above-mentioned thermoplastic polyurethane resin composition.
  • the molded product is molded from a thermoplastic polyurethane resin composition.
  • thermoplastic polyurethane resin composition is subjected to heat compression molding and injection molding using a known molding method, for example, a specific mold, or extrusion molding using a sheet winding device, for example. Obtained by forming into various shapes such as pellet shape, plate shape, fibrous shape, strand shape, film shape, sheet shape, pipe shape, hollow shape, box shape, etc. by a thermoforming processing method such as melt spinning molding. be able to.
  • thermoplastic polyurethane resin composition can be molded into, for example, pellets, and further, the pellet-shaped thermoplastic polyurethane resin composition can be molded, for example, by extrusion molding, injection molding, or the like.
  • the pellet-shaped thermoplastic polyurethane resin composition can be molded, for example, by extrusion molding, injection molding, or the like.
  • the obtained molded product can be heat-treated (annealed).
  • the heat treatment temperature is, for example, 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and for example, 100 ° C. or lower, preferably 90 ° C. or lower.
  • the heat treatment time is, for example, 1 hour or more, preferably 12 hours or more, and for example, 7 days or less, preferably 3 days or less.
  • the obtained molded product can be cured at room temperature for 1 to 10 days, if necessary.
  • the obtained molded product contains the above-mentioned thermoplastic polyurethane resin composition, it is excellent in bloom resistance and mold removal property in a moist heat environment.
  • thermoplastic polyurethane resin composition and its molded product have been exemplified, but the polyurethane resin composition and its molded product of the present invention are, for example, a thermosetting polyurethane resin composition and its molded product. You may.
  • thermosetting polyurethane resin composition for example, the above-mentioned polyisocyanate component and polyol component are reacted with a known crosslinkable polyol (low molecular weight polyol having a trivalent or higher molecular weight), an aromatic diamine, or the like, and for example, Note. Mold and heat if necessary. As a result, a thermosetting polyurethane resin can be obtained.
  • a known crosslinkable polyol low molecular weight polyol having a trivalent or higher molecular weight
  • an aromatic diamine or the like
  • thermosetting polyurethane resin by adding wax at an appropriate timing, a thermosetting polyurethane resin composition containing the thermosetting polyurethane resin and the wax can be obtained.
  • thermosetting polyurethane resin composition When the polyurethane resin composition of the present invention is a thermosetting polyurethane resin composition, the thermoplastic polyurethane resin in the above description is paraphrased as a thermosetting polyurethane resin, and the thermoplastic polyurethane resin composition is , Paraphrased as a thermosetting polyurethane resin composition.
  • thermosetting polyurethane resin composition and a molded product made of the thermosetting polyurethane resin composition also have excellent wet heat bloom resistance and mold removal property.
  • thermosetting polyurethane resin composition can also be suitably used in the above-mentioned fields where various physical characteristics are required, and in particular, can be suitably used as a cover for a smart device.
  • the smart device is a multifunctional information processing terminal, and examples thereof include a smartphone, a tablet computer (tablet PC), and a slate computer (slate PC).
  • Such smart devices are typically formed with a removable resin cover, which is also molded stable (demoldable) and wet and heat resistant (and optionally resistant). Discoloration) is required. Therefore, the molded product of the above polyurethane resin composition is preferably used as a cover for a smart device.
  • molded products can be widely used industrially. Specifically, for example, transparent hard plastics, coating materials, adhesives, adhesives, cushioning materials, potting agents, and inks. , Binders, films (for example, paint protection films, films such as chipping films), sheets, bands (for example, bands such as watch bands, for example, transmission belts for automobiles, belts for various industrial transport belts (conveyor belts)) , Tubes (for example, parts such as medical tubes and catheters, as well as tubes such as air tubes, hydraulic tubes and electric wire tubes, for example, hoses such as fire hose), blades, speakers, sensors, LED sealing for high brightness Agents, organic EL parts, solar power generation parts, robot parts, android parts, wearable parts, clothing parts, sanitary goods, cosmetics, food packaging parts, sports goods, leisure goods, medical goods, nursing goods, housing parts, acoustics Members, lighting members, chandeliers, outdoor lights, sealing materials, sealing materials, corks, packings, anti-vibration
  • Shoe supplies body pressure distribution products such as pad and cushion for vehicles, hand-touchable materials such as door trims, instrument panels, gear knobs, heat insulating materials for electric refrigerators and buildings, shock absorbers such as shock absorbers , Cushioning materials, vehicle handles, automobile interior parts, automobile exterior parts, etc. It is suitably used in vehicle supplies, semiconductor manufacturing supplies such as chemical mechanical polishing (CMP) pads, and the like.
  • CMP chemical mechanical polishing
  • the above-mentioned molded products include covering materials (coating materials for films, sheets, belts, wires, electric wires, metal rotating equipment, wheels, drills, etc.), threads and fibers (tubes, tights, spats, sportswear, etc.). Threads and composite fibers used for swimwear, etc.), extrusion molding applications (extrusion molding applications such as goggles such as tennis and badminton and their convergence materials), slush molded products in powder form by micropelletization, artificial leather, skin, etc.
  • covering materials coating materials for films, sheets, belts, wires, electric wires, metal rotating equipment, wheels, drills, etc.
  • threads and fibers tubes, tights, spats, sportswear, etc.
  • Threads and composite fibers used for swimwear, etc. include extrusion molding applications (extrusion molding applications such as goggles such as tennis and badminton and their convergence materials), slush molded products in powder form by micropelletization, artificial leather, skin, etc.
  • Covers or core materials for seats coated rolls (coated rolls such as steel), sealants, rollers, gears, balls, bats (goggles, basketball, tennis balls, volleyball, soft balls, bats, etc.) It may be in the form of foam molded polyurethane resin composition.)), Mats, ski equipment, boots, tennis equipment, grips (grips for golf clubs, motorcycles, etc.), rack boots, wipers, seat cushion members, nursing care products.
  • Fiber reinforcement materials such as carbon fiber, lignin, kenaf, nanocellulose fiber, glass fiber
  • safety goggles sunglasses, eyeglass frames, ski goggles, swimming goggles, contact lenses
  • Gas-assisted foam molded products shock absorbers, CMP polishing pads, dampers, bearings, dust covers, cutting valves, chipping rolls, high-speed rotating rollers, tires, watches, wearable bands, etc., recoverability due to repeated expansion and contraction, compression deformation, etc. It is preferably used in applications that require abrasion resistance.
  • Olefin wax 3 Polyethylene / polypropylene copolymer wax synthesized by the method described in Synthesis Example 3 described later, melt viscosity (150 ° C.) 285 mPa ⁇ s.
  • Acid-modified olefin wax Maleic anhydride-modified product of polyethylene-polypropylene copolymer wax synthesized by the method described in Synthesis Example 4 described later, melt viscosity (150 ° C.) 86 mPa ⁇ s.
  • Fatty acid ester Fatty acid ester wax, trade name Recolve WE4 (montanic acid ester), manufactured by Clariant Japan, melt viscosity (190 ° C) 16 mPa ⁇ s
  • C-6 Fatty acid amide 1: Fatty acid amide wax, trade name Light Amide WH510K, manufactured by Kyoeisha Chemical Co., Ltd., melt viscosity (190 ° C.) 14 mPa ⁇ s
  • Fatty acid amide 2 Fatty acid amide wax, trade name Kao wax EB-P (ethylene / bisstearic acid amide), manufactured by Kao Chemical Corporation, melt viscosity (190 ° C.) 3 mPa ⁇ s
  • C-8 Fatty acid amide 3: Fatty acid amide wax, trade name AMX-6091, manufactured by Kyoeisha Chemical Co., Ltd., melt viscosity (190 ° C.) 55 mPa ⁇ s ⁇ Urethane
  • melt viscosity at 150 ° C. or 190 ° C. was measured using a cone plate viscometer (model number CV-1S) manufactured by Toa Kogyo Co., Ltd.
  • Hard segment concentration was calculated by the following formula from the compounding formulation (preparation) of each component. [Chain extender (g) + (chain extender (g) / molecular weight of chain extender (g / mol)) x average molecular weight of polyisocyanate component (g / mol)] ⁇ (polyisocyanate component (g) + polyol Ingredient (g)) x 100 3) Production of polybutylene adipate Production example 1 2992 g (20.5 mol) of adipic acid and 2815 g (31.2 mol) of 1,4-butanediol were placed in a four-necked flask equipped with a thermometer, a stirrer and a Liebig condenser, and the temperature was raised to 180 ° C.
  • the temperature was raised to 220 ° C. while advancing the polycondensation reaction under a nitrogen stream.
  • stannoct was added as a catalyst, and the polycondensation reaction was continued at the same temperature until the acid value reached less than 1 mgKOH / g. Then, it cooled and obtained polybutylene adipate having a number average molecular weight of 500.
  • Polybutylene adipate having a number average molecular weight of 600 was obtained by the same method as in Production Example 1 except that 3101 g (21.2 mol) of adipic acid and 2743 g (30.4 mol) of 1,4-butanediol were reacted for 12 hours. It was.
  • Polybutylene adipate having a number average molecular weight of 1200 was obtained by the same method as in Production Example 1 except that 3375 g (23.1 mol) of adipic acid and 2567 g (28.5 mol) of 1,4-butanediol were reacted for 16 hours. It was.
  • Polybutylene adipate having a number average molecular weight of 1500 was obtained by the same method as in Production Example 1 except that 3430 g (23.5 mol) of adipic acid and 2536 g (28.1 mol) of 1,4-butanediol were reacted for 18 hours. It was.
  • Wax synthesis Synthesis example 1 (synthesis of olefin wax 1) An ethylene / propylene copolymer was obtained by the method described in Production Example 1 of JP-A-2017-78100. This was designated as olefin wax 1.
  • Synthesis Example 2 (Synthesis of Olefin Wax 2) In the same manner as in Production Example 1 of JP-A-2017-78100, except that the hydrogen charge amount was changed to 18 kg / cm 2 (gauge pressure) in Production Example 1 of JP-A-2017-78100. An ethylene / propylene copolymer was obtained. This was designated as olefin wax 2.
  • Synthesis Example 3 (Synthesis of Olefin Wax 3) In Production Example 1 of JP-A-2017-78100, except that the amount of hexane inserted was changed to 885 ml, the amount of propylene inserted was changed to 115 ml, and the amount of hydrogen charged was changed to 15 kg / cm 2 (gauge pressure). An ethylene / propylene copolymer was obtained in the same manner as in Production Example 1 of JP-A-2017-78100. This was designated as olefin wax 3.
  • Synthesis Example 4 (Synthesis of Acid-Modified Olefin Wax) 500 g of the ethylene / propylene copolymer of Production Example 1 of JP-A-2017-78100 was charged into a glass reactor and melted at 160 ° C. under a nitrogen atmosphere.
  • Example 1 Production of polyurethane resin composition and molded product
  • Example 1 Production of Polyurethane Resin Composition High molecular weight polyols (polycarbonate polyol and polyester polyol) whose temperature was adjusted to 80 ° C. in advance were weighed at the ratio shown in Table 1.
  • Stavaxol I-LF (trade name, antioxidant, manufactured by LANXESS) was added to the high molecular weight polyol at a ratio of 0.1 part by mass with respect to 100 parts by mass of the polyester polyol.
  • wax and additives were added to the high molecular weight polyol.
  • the high molecular weight polyol is such that the olefin wax 1 is 0.05 parts by mass (phr) with respect to 100 parts by mass of the total amount of the polyisocyanate component and the polyol component (high molecular weight polyol and low molecular weight polyol). Olefin wax 1 was added to the mixture.
  • tin octylate (catalyst, trade name: Stanoct, manufactured by IP Corporation) diluted to 4% by mass with DINA (manufactured by Daihachi Chemical Co., Ltd.) in advance so that the amount of catalyst for the polyurethane resin composition is 5 ppm. , Added.
  • 1,4-BD low molecular weight polyol
  • the mixed solution was poured into a Teflon (registered trademark) vat whose temperature was adjusted to 150 ° C. in advance, and the mixture was reacted at 150 ° C. for 2 hours, then lowered to 100 ° C. and the reaction was continued for 20 hours.
  • a polyurethane resin composition (primary product) containing wax was obtained.
  • Table 1 shows the urethane group concentration of the polyurethane resin calculated from the charging ratio.
  • the primary product of the polyurethane resin composition was removed from the vat, cut into dice with a bale cutter, and the dice-shaped resin was crushed with a crusher to obtain crushed pellets.
  • the pulverized pellets were then heat treated (cured and aged) in an oven at 80 ° C. for 7 days and dried under vacuum under reduced pressure at 23 ° C. for 12 hours.
  • the obtained pulverized pellets are extruded and cut by using a single-screw extruder (model: SZW40-28MG, manufactured by Technobel Co., Ltd.) in a screw rotation speed of 30 rpm and a cylinder temperature of 170 to 270 ° C. , Polyurethane resin composition pellets were obtained.
  • a single-screw extruder model: SZW40-28MG, manufactured by Technobel Co., Ltd.
  • the obtained 1 mm thick sheet was annealed in an oven at 80 ° C. for 24 hours.
  • the sheet was cured under constant temperature and humidity conditions of room temperature of 23 ° C. and relative humidity of 55% for 7 days.
  • Examples 2-44 and Comparative Examples 1-25 Polyurethane resin compositions, pellets and sheets were produced in the same manner as in Example 1 except that the formulations were changed to those shown in Tables 1-16.
  • Example 2 In addition, in Example 2 and Example 20, tin octylate (catalyst) was not added.
  • Stavaxol I-LF (trade name, antioxidant, manufactured by LANXESS) was added only when polyester polyol was used as the high molecular weight polyol.
  • Evaluation ⁇ Bloom resistance in a moist heat environment> A sheet having a thickness of 1 mm obtained by injection molding is allowed to stand in a constant temperature and humidity oven at 70 ° C. and 98% RH, and the number of days until the powder blowing phenomenon generated on the sheet surface is evaluated as 5 to 1 of the following evaluations 5-1. Evaluated in stages. Evaluation 5: The powder blowing phenomenon does not occur within 10 days of the test. Evaluation 4: A powder blowing phenomenon occurred within 10 days of the test. Evaluation 3: A powder blowing phenomenon occurred within 5 days of the test. Evaluation 2: A powder blowing phenomenon occurred within 2 days of the test. Evaluation 1: A powder blowing phenomenon occurred within 1 day of the test.
  • a test piece having a size of 20 x 60 mm is cut out from a sheet having a thickness of 1 mm, and using a QUV weathering tester (made by Suga Test Instruments Co., Ltd., UV fluorescent lamp weather meter FUV) to which an ultraviolet fluorescent lamp is attached, 60 ° C., relative The conditions of humidity 10%, ultraviolet (wavelength 270 to 720 nm) irradiation intensity 28 W / m 2 and 50 ° C., relative humidity 95%, and no ultraviolet irradiation were repeated every 4 hours for 48 hours for 6 cycles.
  • the ⁇ b (change amount of b value) of the sheet before and after the test was measured using a color difference meter (Color Ace MODEL TC-1 manufactured by Tokyo Denshoku Co., Ltd.).
  • pellets of the polyurethane resin composition are charged into a cylinder equipped with a die having a die diameter of 1.0 mm and a die length of 10 mm, and the temperature rise rate is 25.
  • the viscosity was measured at ° C./min and a load of 20 kg / cm 2 .
  • the polyurethane resin composition and molded product of the present invention are suitably used as, for example, a cover for a smart device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

ポリウレタン樹脂組成物が、ポリイソシアネート成分およびポリオール成分の反応生成物と、ワックスとを含有し、ポリイソシアネート成分は、高対称性ポリイソシアネートを含有し、ポリオール成分は、数平均分子量600以上1200以下のポリカーボネートポリオールと、数平均分子量600以上1200以下のポリエステルポリオールとを含み、ポリカーボネートポリオールおよびポリエステルポリオールの総量100質量部に対して、ポリカーボネートポリオールが3質量部以上40質量部以下であり、ポリエステルポリオールが60質量部以上97質量部以下である。

Description

ポリウレタン樹脂組成物および成形品
 本発明は、ポリウレタン樹脂組成物および成形品に関し、詳しくは、ポリウレタン樹脂組成物と、そのポリウレタン樹脂組成物を成形して得られる成形品に関する。
 熱可塑性ポリウレタン樹脂(TPU)は、一般に、ポリイソシアネート、高分子量ポリオールおよび低分子量ポリオールの反応により得られるゴム弾性体であって、ポリイソシアネートおよび低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。このような熱可塑性ポリウレタン樹脂を溶融成形することにより、ポリウレタン樹脂からなる成形品を得ることができる。
 ポリウレタン樹脂として、具体的には、1,4-ビス(イソシアナトメチル)シクロヘキサンと、数平均分子量1000のポリブチレンアジペートおよび数平均分子量1000のポリカーボネートジオールとを、ポリブチレンアジペートがポリカーボネートジオールに対して少ない割合(ポリブチレンアジペート:ポリカーボネートジオール=25:75(質量比))で反応させて得られるイソシアネート基末端プレポリマーと、1,4-ブタンジオールとを反応させて得られるポリウレタン樹脂が、提案されている(例えば、特許文献1(合成例26~27、実施例22~23)参照。)。
国際公開WO2019/069802号
 一方、ポリウレタンエラストマーおよびその成形品は、用途に応じて、さらなる物性の向上が要求され、例えば、スマートデバイスのカバーなどの分野においては、湿熱環境における耐ブルーム性の向上が要求される。さらに、製造効率の観点から、ポリウレタンエラストマーおよびその成形品には、脱型性の向上が要求される。
 本発明は、湿熱環境における耐ブルーム性、および、脱型性に優れるポリウレタン樹脂組成物、および、そのポリウレタン樹脂組成物から得られる成形品である。
 本発明[1]は、ポリイソシアネート成分およびポリオール成分の反応生成物と、ワックスとを含有し、前記ポリイソシアネート成分は、高対称性ポリイソシアネートを含有し、前記ポリオール成分は、数平均分子量600以上1200以下のポリカーボネートポリオールと、数平均分子量600以上1200以下のポリエステルポリオールとを含み、前記ポリカーボネートポリオールおよび前記ポリエステルポリオールの総量100質量部に対して、前記ポリカーボネートポリオールが3質量部以上40質量部以下であり、前記ポリエステルポリオールが60質量部以上97質量部以下である、ポリウレタン樹脂組成物を含んでいる。
 本発明[2]は、前記ポリウレタン樹脂組成物の粘度が2000Pa・sとなる温度が、185℃以上225℃以下である、上記[1]に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[3]は、前記高対称性ポリイソシアネートが、1,4-ビス(イソシアナトメチル)シクロヘキサンまたは4,4’-ジフェニルメタンジイソシアネートを含む、上記[1]または[2]に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[4]は、前記高対称性ポリイソシアネートが、1,4-ビス(イソシアナトメチル)シクロヘキサンを含む、上記[1]~[3]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[5]は、前記ポリエステルポリオールが、ポリカプロラクトンポリオールを含む、上記[1]~[4]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[6]は、前記ポリカーボネートポリオールの数平均分子量が、600以上1000以下であり、前記ポリエステルポリオールの数平均分子量が、1000以上1200以下である、上記[1]~[5]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[7]は、前記ワックスの含有割合が、ポリイソシアネート成分とポリオール成分との総量100質量部に対して、0.005質量部以上0.15質量部以下である、上記[1]~[6]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[8]は、前記ワックスが、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される少なくとも1種を含む、上記[1]~[7]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[9]は、前記ワックスが、ポリオレフィン系ワックスを含み、前記ポリオレフィン系ワックスの150℃における溶融粘度が10mPa・s以上100mPa・s以下である、上記[8]に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[10]は、前記ワックスが、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスを含み、前記脂肪酸エステル系ワックスおよび前記脂肪酸アミド系ワックスの190℃における溶融粘度が10mPa・s以上100mPa・s以下である、上記[8]に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[11]は、前記ワックスが、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される2種以上を含む、請求項上記[8]~[10]のいずれか一項に記載のポリウレタン樹脂組成物を含んでいる。
 本発明[12]は、上記[1]~[11]のいずれか一項に記載のポリウレタン樹脂組成物を含む、成形品を含んでいる。
 本発明[13]は、スマートデバイスのカバーである、上記[12]に記載の成形品を含んでいる。
 本発明のポリウレタン樹脂組成物およびその成形品は、ポリイソシアネート成分およびポリオール成分の反応生成物と、ワックスとを含有し、ポリイソシアネート成分が、高対称性ポリイソシアネートを含み、ポリオール成分が、所定分子量のポリカーボネートポリオールと、所定分子量のポリエステルポリオールとを含んでいる。さらに、本発明のポリウレタン樹脂組成物およびその成形品では、ポリエステルポリオールの割合が、ポリカーボネートポリオールの割合に対して過剰となるように調整されている。
 そのため、ポリウレタン樹脂組成物およびその成形品は、湿熱環境における耐ブルーム性、および、脱型性に優れる。
 本発明のポリウレタン樹脂組成物は、熱可塑性ポリウレタン樹脂組成物または熱硬化性ポリウレタン樹脂組成物であり、好ましくは、熱可塑性ポリウレタン樹脂組成物である。
 熱可塑性ポリウレタン樹脂組成物は、ポリイソシアネート成分およびポリオール成分の反応生成物である熱可塑性ポリウレタン樹脂と、後述するワックスとを含んでいる。
 熱可塑性ポリウレタン樹脂は、ポリイソシアネート成分とポリオール成分とを反応させることにより、反応生成物として得られる。
 ポリイソシアネート成分は、必須成分として、高対称性ポリイソシアネートを含有する。
 高対称性ポリイソシアネートは、分子の立体構造における対称性を有するポリイソシアネート化合物であり、X-Y平面上において、X軸対称かつY軸対称となるように化学構造式を示すことができるポリイソシアネート化合物である。高対称性ポリイソシアネートとしては、例えば、1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)などが挙げられる。また、これらを単独使用または2種類以上併用することができる。
 すなわち、ポリイソシアネート成分は、1,4-ビス(イソシアナトメチル)シクロヘキサンおよび/または4,4’-ジフェニルメタンジイソシアネートを含有する。
 1,4-ビス(イソシアナトメチル)シクロヘキサンおよび4,4’-ジフェニルメタンジイソシアネートは、いずれも立体的に対称性が高い分子構造を有するため、ポリイソシアネート成分がこれらを含有すれば、優れた脱型性を得ることができ、加えて、機械物性の向上を図ることもできる。
 ポリイソシアネート成分は、さらに好ましくは、耐変色性の観点から、1,4-ビス(イソシアナトメチル)シクロヘキサンを含有する。
 1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス1,4体とする。)、および、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス1,4体とする。)の立体異性体がある。1,4-ビス(イソシアナトメチル)シクロヘキサンにおいて、トランス1,4体の含有割合は、例えば、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上、例えば、99.8モル%以下、好ましくは、99モル%以下、より好ましくは、96モル%以下、さらに好ましくは、90モル%以下である。換言すると、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体およびシス1,4体の総量が100モル%であるため、シス1,4体の含有割合は、例えば、0.2モル%以上、好ましくは、1モル%以上、より好ましくは、4モル%以上、さらに好ましくは、10モル%以上、例えば、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下である。
 トランス1,4体の含有割合が上記下限以上であれば、成形安定性、機械物性、耐汚染性および耐変色性の向上を図ることができる。また、トランス1,4体の含有割合が上記上限以下であれば、機械物性、透明性、耐ブルーム性および耐変色性の向上を図ることができる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンは、例えば、国際公開WO2019/069802号公報に記載の方法などにより、製造することができる。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、その他のポリイソシアネート(高対称性ポリイソシアネートを除くポリイソシアネート)を、任意成分として含有することができる。
 その他のポリイソシアネートとしては、例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどが挙げられる。
 脂肪族ポリイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカメチレントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω、ω’-ジイソシアネート、リジンイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアナトプロピル-2,6-ジイソシアネートヘキサノエート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、2,6-ジイソシアネートメチルカプロエートなどの鎖状脂肪族ジイソシアネートなどが挙げられる。
 また、脂肪族ポリイソシアネートには、脂環族ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサンを除く。)が含まれる。
 脂環族ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサンを除く。)としては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン(1,3-HXDI)、イソホロンジイソシアネート(IPDI)、トランス,トランス-、トランス,シス-、およびシス,シス-ジシクロヘキシルメタンジイソシアネートおよびこれらの混合物(水添MDI)、1,3-または1,4-シクロヘキサンジイソシアネートおよびこれらの混合物、1,3-または1,4-ビス(イソシアナトエチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ダイマー酸ジイソシアネート、2,5-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、その異性体である2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタンなどの脂環族ジイソシアネートなどが挙げられる。
 芳香族ポリイソシアネート(4,4’-ジフェニルメタンジイソシアネートを除く。)としては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)および2,2’-ジフェニルメタンジイソシアネート(2,2’-MDI)、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート、ナフタレンジイソシアネート(NDI)などの芳香族ジイソシアネートなどが挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などの芳香脂肪族ジイソシアネートなどが挙げられる。
 これらその他のポリイソシアネートは、単独使用または2種類以上併用することができる。
 その他のポリイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、20質量%以下である。
 ポリイソシアネート成分は、脱型性の観点から、好ましくは、その他のポリイソシアネートを含有せず、高対称性ポリイソシアネートからなり、より好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンおよび/または4,4’-ジフェニルメタンジイソシアネートからなり、さらに好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンまたは4,4’-ジフェニルメタンジイソシアネートからなる。
 すなわち、ポリイソシアネート成分として、脱型性の観点から、さらに好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンの単独使用、または、4,4’-ジフェニルメタンジイソシアネートの単独使用が挙げられ、とりわけ好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンの単独使用が挙げられる。
 ポリオール成分は、分子中に水酸基を2つ以上含有する化合物(以下、ポリオールと称する場合がある。)からなる成分である。
 なお、以下において、数平均分子量400以上のポリオールを、高分子量ポリオールと称する。また、数平均分子量400未満のポリオールを、低分子量ポリオールと称する。
 数平均分子量は、例えば、GPC法による測定や、水酸基価および処方(平均官能基数)により算出される。好ましくは、水酸基価および処方(平均官能基数)により算出される(以下同様)。
 なお、水酸基価は、JIS K 1557-1(2007年)の記載に準拠して測定される。
 ポリオール成分は、必須成分として、高分子量ポリオールを含んでおり、より具体的には、数平均分子量600以上1200以下のポリカーボネートポリオールと、数平均分子量600以上1200以下のポリエステルポリオールとを含んでいる。
 ポリカーボネートポリオールとしては、例えば、低分子量ポリオールを開始剤とするエチレンカーボネートまたはフェニルカーボネートの開環重合物などの結晶性ポリカーボネートポリオールなどが挙げられる。なお、結晶性とは、25℃で固状であることを示す。
 低分子量ポリオールとしては、例えば、分子中に水酸基を2つ以上有し、分子量50以上400未満の化合物(単量体)が挙げられる。具体的には、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール(1,4-ブタンジオール、1,4-BD)、1,3-ブチレングリコール、1,2-ブチレングリコールなどのC2~4アルカンジオール、例えば、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールAおよびその水添物、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ベンゼンジオール、1,3-ベンゼンジオール、1,4-ベンゼンジオールなどの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどの多価アルコールなどが挙げられる。
 また、低分子量ポリオールとしては、上記の多価アルコールを開始剤として、炭素数2~3のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド)を、上記分子量となるように付加反応させたポリオキシアルキレンポリオール(ランダムおよび/またはブロック共重合体を含む。)なども挙げられる。
 これら低分子量ポリオールは、単独使用または2種類以上併用することができる。
 低分子量ポリオールとして、上記した開環重合の開始剤の用途において好ましくは、2価アルコールが挙げられる。
 なお、低分子量ポリオールの分子量は、例えば、50以上、好ましくは、70以上であり、400未満、好ましくは、300以下である。
 また、ポリカーボネートポリオールとしては、上記の開環重合物の他、例えば、その開環重合物と低分子量ポリオールとを共重合した非晶性ポリカーボネートポリオールも挙げられる。なお、非晶性とは、25℃で液状であることを示す。
 これらポリカーボネートポリオールは、単独使用または2種類以上併用することができる。
 ポリカーボネートポリオールの数平均分子量は、脱型性の観点から、600以上、好ましくは、700以上、より好ましくは、800以上、さらに好ましくは、900以上であり、湿熱耐ブルーム性の観点から、1200以下、好ましくは、1100以下、より好ましくは、1000以下である。
 なお、2種類以上のポリカーボネートポリオールを併用することにより、それらポリカーボネートポリオールの全体としての数平均分子量を、上記の範囲に調整することもできる。このような場合、ポリカーボネートポリオールの全体としての数平均分子量が上記範囲(600~1200)であれば、併用されるポリカーボネートポリオールは、それぞれ、数平均分子量が上記下限(600)未満のポリカーボネートポリオールであってもよく、数平均分子量が上記上限(1200)を超過するポリカーボネートポリオールであってもよい。
 2種類以上のポリカーボネートポリオールが併用される場合、ポリカーボネートポリオールの全体としての数平均分子量は、併用される各ポリカーボネートポリオールのモル割合(%)に対して各ポリカーボネートポリオールの数平均分子量を乗じた値の総和であり、公知の方法で算出される。
 また、ポリカーボネートポリオールの平均水酸基数は、例えば、2以上であり、例えば、4以下、好ましくは、3以下であり、とりわけ好ましくは、2である。
 なお、2種類以上のポリカーボネートポリオールを併用することにより、それらポリカーボネートポリオールの全体としての平均水酸基数を、上記の範囲に調整することもできる。このような場合、ポリカーボネートポリオールの全体としての平均水酸基数が上記範囲であれば、併用されるポリカーボネートポリオールは、それぞれ、平均水酸基数が上記下限未満のポリカーボネートポリオールであってもよく、平均水酸基数が上記上限を超過するポリカーボネートポリオールであってもよい。
 2種類以上のポリカーボネートポリオールが併用される場合、ポリカーボネートポリオールの全体としての平均水酸基数は、併用される各ポリカーボネートポリオールのモル割合(%)に対して各ポリカーボネートポリオールの平均水酸基数を乗じた値の総和であり、公知の方法で算出される。
 ポリエステルポリオールとしては、例えば、低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
 低分子量ポリオールとしては、上記した低分子量ポリオール(例えば、2~8価アルコール)が挙げられる。これらは、単独使用または2種類以上併用することができる。
 低分子量ポリオールとして、好ましくは、2価アルコール、より好ましくは、1,4-ブチレングリコール(1,4-ブタンジオール、1,4-BD)が挙げられる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸などの飽和脂肪族ジカルボン酸、例えば、マレイン酸、フマル酸、イタコン酸などの不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸などの脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。これらは、単独使用または2種類以上併用することができる。
 多塩基酸として、好ましくは、飽和脂肪族ジカルボン酸、より好ましくは、アジピン酸が挙げられる。
 また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油ベースポリエステルポリオールなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、ラクトンベースポリエステルポリオールも挙げられる。ラクトンベースポリエステルポリオールは、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類や、例えば、L-ラクチド、D-ラクチドなどのラクチド類などを開環重合することにより得ることができる。
 ラクトンベースポリエステルポリオールとして、より具体的には、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、ε-カプロラクトンを開環重合したポリカプロラクトンポリオール、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、γ-バレロラクトンを開環重合したポリバレロラクトンポリオールなどが挙げられ、さらには、それらに上記2価アルコールを共重合したものなども挙げられる。
 これらポリエステルポリオールは、単独使用または2種類以上併用することができる。
 ポリエステルポリオールとして、好ましくは、低分子量ポリオールと多塩基酸との重縮合物の単独使用、または、ラクトンベースポリエステルポリオールの単独使用が挙げられる。また、低分子量ポリオールと多塩基酸との重縮合物として、好ましくは、1,4-ブチレングリコールとアジピン酸との重縮合物(すなわち、ポリブチレンアジペート)が挙げられる。また、ラクトンベースポリエステルポリオールとして、好ましくは、ポリカプロラクトンポリオールが挙げられる。ポリエステルポリオールとして、とりわけ好ましくは、ポリカプロラクトンポリオールが挙げられる。
 ポリエステルポリオールの数平均分子量は、脱型性の観点から、600以上、好ましくは、800以上、より好ましくは、900以上、さらに好ましくは、1000以上であり、湿熱耐ブルーム性の観点から、1200以下、好ましくは、1100以下である。
 なお、2種類以上のポリエステルポリオールを併用することにより、それらポリエステルポリオールの全体としての数平均分子量を、上記の範囲に調整することもできる。このような場合、ポリエステルポリオールの全体としての数平均分子量が上記範囲(600~1200)であれば、併用される各ポリエステルポリオールは、数平均分子量が上記下限(600)未満のポリエステルポリオールであってもよく、数平均分子量が上記上限(1200)を超過するポリエステルポリオールであってもよい。
 2種類以上のポリエステルポリオールが併用される場合、ポリエステルポリオールの全体としての数平均分子量は、併用される各ポリエステルポリオールのモル割合(%)に対して各ポリエステルポリオールの数平均分子量を乗じた値の総和であり、公知の方法で算出される。
 また、ポリエステルポリオールの平均水酸基数は、例えば、2以上であり、例えば、4以下、好ましくは、3以下であり、とりわけ好ましくは、2である。
 なお、2種類以上のポリエステルポリオールを併用することにより、それらポリエステルポリオールの全体としての平均水酸基数を、上記の範囲に調整することもできる。このような場合、ポリエステルポリオールの全体としての平均水酸基数が上記範囲であれば、併用されるポリエステルポリオールは、それぞれ、平均水酸基数が上記下限未満のポリエステルポリオールであってもよく、平均水酸基数が上記上限を超過するポリエステルポリオールであってもよい。
 2種類以上のポリエステルポリオールが併用される場合、ポリエステルポリオールの全体としての平均水酸基数は、併用される各ポリエステルポリオールのモル割合(%)に対して各ポリエステルポリオールの平均水酸基数を乗じた値の総和であり、公知の方法で算出される。
 そして、ポリカーボネートポリオールおよびポリエステルポリオールの質量割合は、湿熱耐ブルーム性および脱型性の両立を図る観点から、ポリカーボネートポリオールおよびポリエステルポリオールの総量100質量部に対して、ポリカーボネートポリオールが、3質量部以上、好ましくは、5質量部以上、より好ましくは、10質量部以上、さらに好ましくは、15質量部以上、さらに好ましくは、20質量部以上、さらに好ましくは、25質量部以上であり、40質量部以下、好ましくは、35質量部以下、より好ましくは、30質量部以下である。また、ポリエステルポリオールが、60質量部以上、好ましくは、65質量部以上、より好ましくは、70質量部以上であり、97質量部以下、好ましくは、95質量部以下、より好ましくは、90質量部以下、さらに好ましくは、85質量部以下、さらに好ましくは、80質量部以下、さらに好ましくは、75質量部以下である。
 また、ポリオール成分は、必要に応じて、低分子量ポリオールや、例えば、ポリカーボネートポリオールおよびポリエステルポリオールを除く高分子量ポリオール(以下、その他の高分子量ポリオール)を含むことができる。ポリオール成分は、好ましくは、低分子量ポリオールを含有する。
 低分子量ポリオールとしては、上記した低分子量ポリオールが挙げられる。これらは、単独使用または2種類以上併用することができる。低分子量ポリオールとして、好ましくは、2価アルコールが挙げられ、より好ましくは、C2~4アルカンジオールが挙げられ、さらに好ましくは、1,4-ブチレングリコールが挙げられる。
 低分子量ポリオールの含有割合は、ポリオール成分の総量に対して、例えば、0質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上、さらに好ましくは、15質量%以上であり、例えば、30質量%以下、好ましくは、25質量%以下、より好ましくは、20質量%以下である。
 その他の高分子量ポリオールは、水酸基を2つ以上有し、数平均分子量400以上、好ましくは、500以上の有機化合物(重合物)であって、例えば、ポリエーテルポリオール(ポリオキシアルキレン(炭素数2~3)ポリオール、テトラメチレンエーテルポリオールなど)、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、ビニルモノマー変性ポリオールなどが挙げられる。これらは、単独使用または2種類以上併用することができる。
 その他の高分子量ポリオールの含有割合は、ポリオール成分の総量に対して、例えば、30質量%以下、好ましくは、20質量%以下、より好ましくは、10質量%以下、さらに好ましくは、5質量%以下であり、とりわけ好ましくは、0質量%である。
 ポリオール成分は、好ましくは、その他の高分子量ポリオールを含有しない。
 つまり、ポリオール成分は、好ましくは、数平均分子量600以上1200以下のポリカーボネートポリオールと、数平均分子量600以上1200以下のポリエステルポリオールと、低分子量ポリオールとからなる。
 そして、詳しくは後述するように、上記のポリイソシアネート成分と上記のポリオール成分とを反応させることにより、これらの反応生成物として、熱可塑性ポリウレタン樹脂を得ることができる。
 ワックスは、本発明においては、湿熱環境における耐ブルーム性を向上させ、また、脱型性を向上させるために、熱可塑性ポリウレタン樹脂組成物に含有される添加剤である。
 ワックスとしては、例えば、オレフィン系ワックス、脂肪酸エステル系ワックス、脂肪酸アミド系ワックスなどが挙げられる。
 オレフィン系ワックスとしては、例えば、ポリエチレンワックス、ポリプロピレンワックス、ポリエチレン・ポリプロピレン共重合体ワックス、パラフィンワックス、マイクロクリスタリンワックス、カルナバワックス、および、これらオレフィン系ワックス(無変性ワックス)の酸変性物(酸変性オレフィンワックス)などが挙げられる。これらは、単独使用または2種類以上併用することができる。
 脂肪酸エステル系ワックスとしては、例えば、高級脂肪族カルボン酸(例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸、モンタン酸など)と、上記の低分子量ポリオール(例えば、2~8価アルコール)とのエステル化反応物である脂肪酸エステルなどが挙げられる。これらは、単独使用または2種類以上併用することができる。
 脂肪酸アミド系ワックスとしては、例えば、ステアリルアミド、パルミチルアミド、オレイルアミド、メチレン・ビスステアリン酸アミド、エチレン・ビスステアリン酸アミドなど脂肪酸アマイドが挙げられる。これらは、単独使用または2種類以上併用することができる。
 これらワックスは、単独使用または2種類以上併用することができる。
 ワックスとして、好ましくは、ポリオレフィン系ワックス、脂肪酸エステル系ワックス、脂肪酸アミド系ワックスが挙げられ、より好ましくは、ポリオレフィン系ワックス、脂肪酸エステル系ワックスが挙げられ、さらに好ましくは、ポリオレフィン系ワックスが挙げられ、さらに好ましくは、無変性ポリオレフィンワックスが挙げられ、とりわけ好ましくは、ポリエチレン・ポリプロピレン共重合体が挙げられる。
 換言すれば、熱可塑性ポリウレタン樹脂組成物は、好ましくは、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される少なくとも1種を含む。
 また、ワックスは、好ましくは、ポリオレフィン系ワックスを含む。
 ポリオレフィン系ワックスの150℃における溶融粘度は、湿熱耐ブルーム性の向上を図る観点から、例えば、1mPa・s以上、好ましくは、5mPa・s以上、より好ましくは、10mPa・s以上、であり、例えば、500mPa・s以下、好ましくは、300mPa・s以上、より好ましくは、100mPa・s以下、さらに好ましくは、50mPa・s以下、とりわけ好ましくは、30mPa・s以下である。
 また、ワックスは、好ましくは、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスを含む。
 脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスの190℃における溶融粘度は、湿熱耐ブルーム性の向上を図る観点から、例えば、1mPa・s以上、好ましくは、5mPa・s以上、より好ましくは、10mPa・s以上、であり、例えば、500mPa・s以下、好ましくは、300mPa・s以上、より好ましくは、100mPa・s以下、さらに好ましくは、50mPa・s以下、とりわけ好ましくは、30mPa・s以下である。
 なお、ワックスの溶融粘度は、後述する実施例に準拠して、コーンプレート粘度計により測定される。
 ワックスの含有割合は、湿熱耐ブルーム性および脱型性の観点から、ポリイソシアネート成分とポリオール成分との総量(つまり、熱可塑性ポリウレタン樹脂)100質量部に対して、例えば、0.001質量部(phr)以上、好ましくは、0.005質量部(phr)以上、より好ましくは、0.01質量部(phr)以上、さらに好ましくは、0.02質量部(phr)以上、さらに好ましくは、0.03質量部(phr)以上、とりわけ好ましくは、0.05質量部(phr)以上であり、例えば、0.5質量部(phr)以下、好ましくは、0.15質量部(phr)以下、より好ましくは、0.10質量部(phr)以下、さらに好ましくは、0.08質量部(phr)以下、とりわけ好ましくは、0.07質量部(phr)以下である。
 湿熱耐ブルーム性と、脱型性との両立を図る観点から、ワックスは、とりわけ好ましくは、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される2種以上を含む。すなわち、とりわけ好ましくは、2種類以上のワックスが、併用される。
 このような場合、好ましくは、ポリオレフィン系ワックスと、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスとが併用され、より好ましくは、ポリオレフィン系ワックスと脂肪酸アミド系ワックスとが併用され、とりわけ好ましくは、無変性のポリオレフィン系ワックスと、脂肪酸アミド系ワックスとが併用される。
 ポリオレフィン系ワックスと、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスとが併用される場合、それらの総量100質量部に対して、ポリオレフィン系ワックスが、例えば、50質量部以上、好ましくは、55質量部以上、より好ましくは、60質量部以上、さらに好ましくは、70質量部以上であり、例えば、95質量部以下、好ましくは、90質量部以下、より好ましくは、85質量部以下、さらに好ましくは、80質量部以下である。また、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスが、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、15質量部以上、さらに好ましくは、20質量部以上であり、例えば、50質量部以下、好ましくは、45質量部以下、より好ましくは、40質量部以下、さらに好ましくは、30質量部以下である。
 これらワックスは、例えば、後述する熱可塑性ポリウレタン樹脂組成物の製造時(すなわち、ポリイソシアネート成分とポリオール成分との反応)において、適宜のタイミングで添加される。
 より具体的には、ワックスは、後述する熱可塑性ポリウレタン樹脂組成物の製造において、例えば、反応前のポリイソシアネート成分および/またはポリオール成分に予め添加されていてもよく、また、ポリイソシアネート成分とポリオール成分との混合の際に同時に添加されてもよく、さらに、ポリイソシアネート成分とポリオール成分との混合物に添加されてもよい。
 好ましくは、ワックスは、反応前のポリオール成分に添加される。
 そして、ポリイソシアネート成分とポリオール成分との反応において、適宜のタイミングでワックスを添加することにより、熱可塑性ポリウレタン樹脂とワックスとを含む熱可塑性ポリウレタン樹脂組成物が得られる。
 上記のポリイソシアネート成分と上記のポリオール成分とを反応させるには、例えば、ワンショット法やプレポリマー法などの公知の方法が採用される。
 具体的には、ワンショット法では、ポリイソシアネート成分とポリオール成分とを、所定割合で配合する。
 配合割合は、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、0.750以上、好ましくは、0.900以上、より好ましくは、0.950以上、さらに好ましくは、0.960以上、とりわけ好ましくは、0.970以上であり、例えば、1.30以下、好ましくは、1.10以下、より好ましくは、1.00以下、さらに好ましくは、1.00未満、さらに好ましくは、0.999以下、さらに好ましくは、0.995以下、とりわけ好ましくは、0.990以下である。
 そして、この方法では、ポリイソシアネート成分とポリオール成分(好ましくは、高分子量ポリオールおよび低分子量ポリオールを含む。)とを、例えば、バルク重合や溶液重合などの重合方法により反応させる。
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分およびポリオール成分を、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、22時間以下反応させる。
 溶液重合では、有機溶剤に、ポリイソシアネート成分およびポリオール成分を加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 また、上記の重合反応では、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加することができる。
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫(オクチル酸スズ)、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクタン酸ビスマス(オクチル酸ビスマス)、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられ、好ましくは、オクチル酸スズ、オクチル酸ビスマスが挙げられる。
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。
 ウレタン化触媒の添加割合は、ポリイソシアネート成分およびポリオール成分との総量10000質量部に対して、例えば、0.001質量部以上、好ましくは、0.01質量部以上であり、例えば、1質量部以下、好ましくは、0.5質量部以下である。
 なお、上記重合反応においては、未反応のポリイソシアネート成分や、有機溶剤を用いた場合には有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
 また、プレポリマー法では、まず、ポリイソシアネート成分と高分子量ポリオールとを、上記したバルク重合や溶液重合などの重合方法により反応させて、イソシアネート基末端ポリウレタンプレポリマーを合成する。
 配合割合は、高分子量ポリオール中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、2.0以上、好ましくは、2.5以上であり、例えば、20以下、好ましくは、15以下、より好ましくは、10以下、さらに好ましくは、8以下である。
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分および高分子量ポリオールを、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 溶液重合では、有機溶剤に、ポリイソシアネート成分および高分子量ポリオールを加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 次いで、この方法では、上記により得られたイソシアネート基末端ポリウレタンプレポリマーと、鎖伸長剤としての低分子量ポリオールとを反応させて、ポリイソシアネート成分とポリオール成分との反応生成物を得る(鎖伸長工程)。
 配合割合は、低分子量ポリオール中の水酸基に対する、イソシアネート基末端ポリウレタンプレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、0.750以上、好ましくは、0.900以上、より好ましくは、0.950以上、さらに好ましくは、0.960以上、とりわけ好ましくは、0.970以上であり、例えば、1.30以下、好ましくは、1.10以下、より好ましくは、1.00以下、さらに好ましくは、1.00未満、さらに好ましくは、0.999以下、さらに好ましくは、0.995以下、とりわけ好ましくは、0.990以下である。
 反応温度は、例えば、室温以上、好ましくは、50℃以上、例えば、200℃以下、好ましくは、150℃以下であり、反応時間が、例えば、5分以上、好ましくは、1時間以上、例えば、72時間以下、好ましくは、48時間以下である。
 また、上記の重合反応(プレポリマー工程および/または鎖伸長工程)では、必要に応じて、例えば、上記したウレタン化触媒を添加することができる。
 また、上記重合反応においては、未反応のポリイソシアネート成分や、有機溶剤を用いた場合には有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
 そして、上記のようにポリイソシアネート成分およびポリオール成分を反応させることにより、反応生成物として、熱可塑性ポリウレタン樹脂が得られる。
 さらに、ポリイソシアネート成分およびポリオール成分を、ワックスの存在下で反応させることにより、熱可塑性ポリウレタン樹脂とワックスとを含む熱可塑性ポリウレタン樹脂組成物が得られる。
 得られた熱可塑性ポリウレタン樹脂組成物は、必要に応じて、熱処理される。
 熱処理では、上記の反応で得られた熱可塑性ポリウレタン樹脂組成物を、所定の熱処理温度で、所定の熱処理期間静置することにより熱処理した後、必要により乾燥させる。
 熱処理温度としては、例えば、50℃以上、好ましくは、60℃以上、より好ましくは、70℃以上であり、例えば、100℃以下、好ましくは、90℃以下である。
 熱処理温度が上記範囲であれば、成形安定性(脱型性)、湿熱耐ブルーム性および耐変色性を兼ね備えることができる。
 熱処理期間としては、例えば、3日以上、好ましくは、4日以上、より好ましくは、5日以上、さらに好ましくは、6日以上であり、例えば、10日以下、好ましくは、9日以下、より好ましくは、8日以下である。
 熱処理期間が上記範囲であれば、成形安定性(脱型性)、湿熱耐ブルーム性および耐変色性を兼ね備えることができる。
 これにより、熱処理された熱可塑性ポリウレタン樹脂組成物を得ることができる。
 なお、熱可塑性ポリウレタン樹脂組成物には、必要に応じて、ワックスを除く添加剤(以下、その他の添加剤)を添加することができる。その他の添加剤としては、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、耐光安定剤、加水分解防止剤(カルボジイミド化合物など)、さらには、可塑剤、ブロッキング防止剤、離型剤、顔料、染料(ブルーイング剤など)、滑剤(脂肪酸アマイド系滑剤など)、フィラー、防錆剤、充填剤などが挙げられる。これら添加剤は、熱可塑性ポリウレタン樹脂組成物の原料であるポリイソシアネート成分および/またはポリオール成分に予め添加してもよく、また、これらポリイソシアネート成分およびポリオール成分の混合時に添加してもよく、さらに、ポリイソシアネート成分およびポリオール成分の混合物に添加してもよい。
 酸化防止剤としては、特に制限されず、公知の酸化防止剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、フェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤などが挙げられる。
 耐熱安定剤としては、特に制限されず、公知の耐熱安定剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、リン系加工熱安定剤、ラクトン系加工熱安定剤、イオウ系加工熱安定剤などが挙げられる。
 紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられる。
 耐光安定剤としては、特に制限されず、公知の耐光安定剤(例えば、ADEKA製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤などが挙げられる。
 これら添加剤は、それぞれ熱可塑性ポリウレタン樹脂組成物に対して、例えば、0.001質量%以上、好ましくは、0.01質量%以上、例えば、3.0質量%以下、好ましくは、2.0質量%以下となる割合で、添加される。
 そして、このような熱可塑性ポリウレタン樹脂組成物は、ポリイソシアネート成分およびポリオール成分の反応生成物(熱可塑性ポリウレタン樹脂)と、ワックスとを含有し、ポリイソシアネート成分が、高対照性ポリイソシアネートを含み、ポリオール成分が、所定分子量のポリカーボネートポリオールと、所定分子量のポリエステルポリオールとを含んでいる。さらに、上記の熱可塑性ポリウレタン樹脂組成物では、ポリエステルポリオールの割合が、ポリカーボネートポリオールの割合に対して過剰となるように調整されている。そのため、熱可塑性ポリウレタン樹脂組成物は、湿熱環境における耐ブルーム性、および、脱型性に優れる。
 すなわち、ポリイソシアネート成分が高対称性ポリイソシアネートを含有することにより、熱可塑性ポリウレタン樹脂の結晶性が高くなる。そのため、例えば、熱可塑性ポリウレタン樹脂組成物の射出成型における生産性が向上する傾向がある。
 しかし、このような場合には、結晶性が高くなることによって、得られる成形品にブルームが発生しやすいことが見出された。また、ブルームは、従来、成形品に含まれるワックスによっても、惹起されていた。
 これに対して、本発明では、ポリイソシアネート成分が上記の特定構造のポリイソシアネートを含有している場合において、ポリオール成分が所定分子量のポリカーボネートポリオールと、所定分子量のポリエステルポリオールとを上記の特定の割合で含み、かつ、ワックスが添加されることによって、ブルームの発生を抑制できることが、見出された。
 さらに、本発明において、ポリオール成分が低分子量ポリオールを含有していれば、熱可塑性ポリウレタン樹脂組成物の機械物性の向上を図ることができる。
 すなわち、ポリオール成分が低分子量ポリオールを含有していれば、ポリイソシアネート成分およびポリオール成分の反応生成物(熱可塑性ポリウレタン樹脂)は、ポリイソシアネート成分および低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネート成分および高分子量ポリオールの反応により形成されるソフトセグメントとを含有する。
 このようなハードセグメントの含有割合(ハードセグメント濃度)を調整することにより、熱可塑性ポリウレタン樹脂の機械物性の向上を図ることができる。
 熱可塑性ポリウレタン樹脂のハードセグメント濃度は、機械物性の観点から、例えば、3質量%以上、好ましくは、5質量%以上、より好ましくは、8質量%以上であり、例えば、55質量%以下、好ましくは、50質量%以下、より好ましくは、45質量%以下、さらに好ましくは、40質量%以下である。
 なお、ハードセグメント濃度は、公知の方法で算出することができる。例えば、プレポリマー法が採用される場合には、ハードセグメント濃度は、各成分の配合処方(仕込)から次式により算出される。
[鎖伸長剤(g)+(鎖伸長剤(g)/鎖伸長剤の分子量(g/mol))×ポリイソシアネート成分の平均分子量(g/mol)]÷(ポリイソシアネート成分(g)+ポリオール成分(g))×100
 また、熱可塑性ポリウレタン樹脂のウレタン基濃度は、例えば、0.1mmol/g以上、好ましくは、1mmol/g以上であり、例えば、20mmol/g以下、好ましくは、10mmol/g以下である。
 なお、ウレタン基濃度は、原料成分の仕込み比から、公知の方法で算出することができる。
 また、耐ブルーム性および脱型性の観点から、熱可塑性ポリウレタン樹脂組成物の粘度が2000Pa・sとなる温度は、例えば、170℃以上、好ましくは、180℃以上、より好ましくは、185℃以上、さらに好ましくは、190℃以上、とりわけ好ましくは、195℃以上であり、例えば、250℃以下、好ましくは、230℃以下、より好ましくは、225℃以下、さらに好ましくは、220℃以下、とりわけ好ましくは、210℃以下である。
 なお、熱可塑性ポリウレタン樹脂組成物の粘度は、後述する実施例に準拠して、高化式フローテスターにより測定される。
 また、本発明は、上記した熱可塑性ポリウレタン樹脂組成物を含む成形品を含んでいる。成形品は、熱可塑性ポリウレタン樹脂組成物から成形される。
 成形品は、例えば、上記の熱可塑性ポリウレタン樹脂組成物を、公知の成形方法、例えば、特定の金型を用いた熱圧縮成形および射出成形や、シート巻き取り装置を用いた押出成形、例えば、溶融紡糸成形などの熱成形加工方法により、例えば、ペレット状、板状、繊維状、ストランド状、フィルム状、シート状、パイプ状、中空状、箱状などの各種形状に成形することにより、得ることができる。
 より具体的には、例えば、上記の熱可塑性ポリウレタン樹脂組成物を、例えば、ペレット状に成形することができ、さらに、ペレット状の熱可塑性ポリウレタン樹脂組成物を、例えば、押出成形、射出成形などの公知の成形方法で成形することにより、任意の形状の成形品を得ることができる。
 また、必要に応じて、得られた成形品を、熱処理(アニール)することもできる。
 熱処理温度は、例えば、50℃以上、好ましくは、60℃以上、より好ましくは、70℃以上であり、例えば、100℃以下、好ましくは、90℃以下である。
 熱処理時間は、例えば、1時間以上、好ましくは、12時間以上であり、例えば、7日以下、好ましくは、3日以下である。
 また、得られる成形品を、必要により、室温で1~10日養生することもできる。
 そして、得られる成形品は、上記した熱可塑性ポリウレタン樹脂組成物を含むため、湿熱環境における耐ブルーム性、および、脱型性に優れる。
 なお、上記した説明では、熱可塑性ポリウレタン樹脂組成物およびその成形品を例示したが、本発明のポリウレタン樹脂組成物およびその成形品は、例えば、熱硬化性ポリウレタン樹脂組成物およびその成形品であってもよい。
 熱硬化性ポリウレタン樹脂組成物の製造では、例えば、上記のポリイソシアネート成分およびポリオール成分と、公知の架橋性ポリオール(3価以上の低分子量ポリオール)や芳香族ジアミンなどとを反応させ、例えば、注型成形し、必要により熱処理する。これにより、熱硬化性ポリウレタン樹脂が得られる。
 また、熱硬化性ポリウレタン樹脂の製造において、適宜のタイミングでワックスを添加することにより、熱硬化性ポリウレタン樹脂とワックスとを含む熱硬化性ポリウレタン樹脂組成物が得られる。
 なお、本発明のポリウレタン樹脂組成物が、熱硬化性ポリウレタン樹脂組成物である場合、上記した説明における熱可塑性ポリウレタン樹脂は、熱硬化性ポリウレタン樹脂として言い換えられ、また、熱可塑性ポリウレタン樹脂組成物は、熱硬化性ポリウレタン樹脂組成物として言い換えられる。
 そして、このような熱硬化性ポリウレタン樹脂組成物、および、熱硬化性ポリウレタン樹脂組成物からなる成形品も、優れた湿熱耐ブルーム性および脱型性を兼ね備える。
 そのため、熱硬化性ポリウレタン樹脂組成物からなる成形品も、上記の各種物性が要求される分野において好適に用いることができ、とりわけ、スマートデバイスのカバーとして、好適に用いることができる。
 より具体的には、スマートデバイスは、多機能型の情報処理端末であり、例えば、スマートフォン、タブレットコンピュータ(タブレットPC)、スレートコンピュータ(スレートPC)などが挙げられる。
 このようなスマートデバイスは、通常、樹脂製のカバーを着脱可能に形成されており、また、そのようなカバーには、成形安定性(脱型性)および湿熱耐ブルーム性(さらに、必要により耐変色性)が要求される。そのため、上記のポリウレタン樹脂組成物の成形品が、スマートデバイスのカバーとして、好適に用いられる。
 また、成形品は、上記の用途の他、工業的に広範に使用可能であり、具体的には、例えば、透明性硬質プラスチック、コーティング材料、粘着剤、接着剤、防水材、ポッティング剤、インク、バインダー、フィルム(例えば、ペイントプロテクションフィルム、チッピングフィルムなどのフィルム)、シート、バンド(例えば、時計バンドなどのバンド、例えば、自動車用伝動ベルト、各種産業用搬送ベルト(コンベアベルト)などのベルト)、チューブ(例えば、医療用チューブ、カテーテルなどの部品の他、エアーチューブ、油圧チューブ、電線チューブなどのチューブ、例えば、消防ホースなどのホース)、ブレード、スピーカー、センサー類、高輝度用LED封止剤、有機EL部材、太陽光発電部材、ロボット部材、アンドロイド部材、ウェアラブル部材、衣料用品、衛生用品、化粧用品、食品包装部材、スポーツ用品、レジャー用品、医療用品、介護用品、住宅用部材、音響部材、照明部材、シャンデリア、外灯、シール材、封止材、コルク、パッキン、防振・制震・免震部材、防音部材、日用品、雑貨、クッション、寝具、応力吸収材、応力緩和材、自動車の内外装部品、鉄道部材、航空機部材、光学部材、OA機器用部材、雑貨表面保護部材、半導体封止材、自己修復材料、健康器具、メガネレンズ、玩具、ケーブルシース、ワイヤーハーネス、電気通信ケーブル、自動車配線、コンピューター配線、カールコードなど工業用品、シート、フィルムなどの介護用品、スポーツ用品、レジャー用品、各種雑貨、防振・免振材料、衝撃吸収材、光学材料、導光フィルムなどのフィルム、自動車部品、表面保護シート、化粧シート、転写シート、半導体保護テープなどのテープ部材、ゴルフボール部材、テニスラケット用ストリング、農業用フィルム、壁紙、防曇付与剤、不織布、マットレスやソファーなどの家具用品、ブラジャーや肩パッドなどの衣料用品、紙おむつ、ナプキン、メディカルテープの緩衝材などの医療用品、化粧品、洗顔パフや枕などのサニタリー用品、靴底(アウトソール)、ミッドソール、カバー材などの靴用品、さらには、車両用のパッドやクッションなどの体圧分散用品、ドアトリム、インスツルメントパネル、ギアノブなどの手で触れる部材、電気冷蔵庫や建築物の断熱材、ショックアブソーバーなどの衝撃吸収材、充填材、車両のハンドル、自動車内装部材、自動車外装部材などの車両用品、化学機械研磨(CMP)パッドなどの半導体製造用品などにおいて、好適に用いられる。
 さらには、上記の成形品は、被覆材(フィルム、シート、ベルト、ワイヤー、電線、金属製の回転機器、ホイール、ドリルなどの被覆材)、糸や繊維(チューブ、タイツ、スパッツ、スポーツウエア、水着などに用いられる糸や複合繊維)、押出成形用途(テニス、バトミントンなどのガットおよびその収束材などの押出成形用途)、マイクロペレット化などによるパウダー形状でのスラッシュ成形品、人造皮革、表皮、シート、被覆ロール(鉄鋼などの被覆ロール)、シーラント、ローラー、ギアー、ボール、バットのカバーあるいはコア材(ゴルフボール、バスケットボール、テニスボール、バレーボール、ソフトボール、バットなどのカバーあるいはコア材(これらはポリウレタン樹脂組成物を発泡成形した形態であってもよい。))、マット、スキー用品、ブーツ、テニス用品、グリップ(ゴルフクラブや二輪車などのグリップ)、ラックブーツ、ワイパー、シートクッション部材、介護製品のフィルム、3Dプリンター成形品、繊維強化材料(炭素繊維、リグニン、ケナフ、ナノセルロースファイバー、ガラス繊維などの繊維の強化材料)、安全ゴーグル、サングラス、メガネフレーム、スキーゴーグル、水泳ゴーグル、コンタクトレンズ、ガスアシストの発泡成形品、ショックアブソーバー、CMP研磨パッド、ダンバー、ベアリング、ダストカバー、切削バルブ、チッピングロール、高速回転ローラー、タイヤ、時計、ウエアブルバンドなど、繰返し伸縮、圧縮変形などによる回復性や耐摩耗が要求される用途において、好適に使用される。
 次に、本発明を、製造例、合成例、実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 1) 原料
 <ポリイソシアネート成分(a)>
1,4-HXDI:国際公開WO2019/069802号公報の製造例3に記載の方法で合成した1,4-ビス(イソシアナトメチル)シクロヘキサン、トランス体86モル%
1,3-HXDI:1,3-ビス(イソシアナトメチル)シクロヘキサン、商品名;タケネート600、三井化学社製
4,4’-MDI:4,4’-ジフェニルメタンジイソシアネート、商品名;コスモネートPH、三井化学SKC社製
IPDI:イソホロンジイソシアネート、三井化学社製
 <ポリオール成分(b)>
 ・ポリカーボネートポリオール(b1)
(b1-1)PCD#500(数平均分子量500):ポリカーボネートポリオール、商品名;ETERNACOL UH-50、水酸基価=224.4mgKOH/g、宇部興産社製
(b1-2)PCD#1000(数平均分子量1000):ポリカーボネートポリオール、商品名;ETERNACOL UH-100、水酸基価=112.2mgKOH/g、宇部興産社製
(b1-3)PCD#2000(数平均分子量2000):ポリカーボネートポリオール、商品名;ETERNACOL UH-200、水酸基価=56.1mgKOH/g、宇部興産社製
 ・ポリカプロラクトンポリオール(b2)
(b2-1)PCL#500(数平均分子量500):ポリカプロラクトンポリオール、商品名;PLACCEL205U、水酸基価=224.4mgKOH/g、ダイセル社製
(b2-2)PCL#800(数平均分子量800):ポリカプロラクトンポリオール、商品名;PLACCEL208、水酸基価=140.3mgKOH/g、ダイセル社製
(b2-3)PCL#1000(数平均分子量1000):ポリカプロラクトンポリオール、商品名;PLACCEL210N、水酸基価=112.2mgKOH/g、ダイセル社製
(b2-4)PCL#2000(数平均分子量2000):ポリカプロラクトンポリオール、商品名;PLACCEL220N、水酸基価=56.1mgKOH/g、ダイセル社製
 ・ポリブチレンアジペート(b3)
(b3-1)PBA#500(数平均分子量500):製造例1に記載の方法で合成したポリブチレンアジペート、水酸基価=224.4mgKOH/g
(b3-2)PBA#600(数平均分子量600):製造例2に記載の方法で合成したポリブチレンアジペート、水酸基価=187.0mgKOH/g
(b3-3)PBA#1000(数平均分子量1000):ポリブチレンアジペート、商品名;タケラックU-2410、水酸基価=112.2mgKOH/g、三井化学社製
(b3-4)PBA#1200(数平均分子量1200):製造例3に記載の方法で合成したポリブチレンアジペート、水酸基価=93.5mgKOH/g
(b3-5)PBA#1500(数平均分子量1500):製造例4に記載の方法で合成したポリブチレンアジペート、水酸基価=74.8mgKOH/g
 ・ポリテトラメチレンエーテルグリコール(b4)
(b4-1)PTG#1000(数平均分子量1000):ポリテトラメチレンエーテルグリコール(PTMEG)、商品名;PTG1000、水酸基価=112.2mgKOH/g、保土ヶ谷化学社製
 <低分子量ポリオール(b’)>
(b’-1)1,4-BD:1,4-ブタンジオール、三菱化学社製
 <ワックス(c)>
(c-1)オレフィンワックス1:後述の合成例1に記載の方法で合成したポリエチレン・ポリプロピレン共重合ワックス、溶融粘度(150℃)11mPa・s
(c-2)オレフィンワックス2:後述の合成例2に記載の方法で合成したポリエチレン・ポリプロピレン共重合ワックス、溶融粘度(150℃)79mPa・s
(c-3)オレフィンワックス3:後述の合成例3に記載の方法で合成したポリエチレン・ポリプロピレン共重合ワックス、溶融粘度(150℃)285mPa・s
(c-4)酸変性オレフィンワックス:後述の合成例4に記載の方法で合成したポリエチレン・ポリプロピレン共重合ワックスの無水マレイン酸変性物、溶融粘度(150℃)86mPa・s
(c-5)脂肪酸エステル:脂肪酸エステル系ワックス、商品名リコルブWE4(モンタン酸エステル)、クラリアントジャパン社製、溶融粘度(190℃)16mPa・s
(c-6)脂肪酸アマイド1:脂肪酸アミド系ワックス、商品名ライトアマイドWH510K、共栄社化学社製、溶融粘度(190℃)14mPa・s
(c-7)脂肪酸アマイド2:脂肪酸アミド系ワックス、商品名カオーワックスEB-P(エチレン・ビスステアリン酸アミド)、花王ケミカル社製、溶融粘度(190℃)3mPa・s
(c-8)脂肪酸アマイド3:脂肪酸アミド系ワックス、商品名AMX-6091、共栄社化学製、溶融粘度(190℃)55mPa・s
 <ウレタン化触媒>
スズ系触媒:オクチル酸スズ(II)、商品名;スタノクト、エーピーアイコーポレーション社製
 <触媒希釈剤>
ジイソノニルアジペート:商品名:DINA、大八化学工業社製
 <安定剤>
酸化防止剤:ヒンダードフェノール化合物、商品名;イルガノックス245、BASFジャパン社製
紫外線吸収剤:ベンゾトリアゾール化合物、商品名;チヌビン234、BASFジャパン社製
耐光安定剤:ヒンダードアミン化合物、商品名;LA-72、ADEKA社製
加水分解防止剤:カルボジイミド化合物、商品名;スタバクゾールI-LF、ランクセス社製
<染料>
アントラキノン系ブルーイング剤:商品名;Plast Blue8514、有本化学工業社製
 2)測定方法
 (1)数平均分子量
 以下の式に従い、水酸基価および平均官能基数に基づいて、数平均分子量を算出した。なお、平均官能基数は、原料処方から算出した。また、水酸基価は、JIS K 1557-1(2007年)の記載に準拠して測定した。
  数平均分子量=56100×平均官能基数/平均水酸基価
 (2)粘度
 ワックスを150℃または190℃に加熱して溶融させ、その粘度を以下の方法で測定した。
 すなわち、東亜工業社製のコーンプレート粘度計(型番CV-1S)を用いて、150℃または190℃における溶融粘度を測定した。
 なお、測定においては、10ポアズコーンを使用し、粘度計回転数は、750rpmとした。
 (3)ハードセグメント濃度
 ハードセグメント濃度は、各成分の配合処方(仕込)から次式により算出した。
[鎖伸長剤(g)+(鎖伸長剤(g)/鎖伸長剤の分子量(g/mol))×ポリイソシアネート成分の平均分子量(g/mol)]÷(ポリイソシアネート成分(g)+ポリオール成分(g))×100
 3)ポリブチレンアジペートの製造
  製造例1
 アジピン酸2992g(20.5モル)および1,4-ブタンジオール2815g(31.2モル)を、温度計、撹拌装置、リービッヒ冷却器を備えた4つ口フラスコに仕込み、180℃まで昇温し、窒素気流下にて、重縮合反応を進めながら、220℃まで昇温した。酸価が15mgKOH/gになった時点で、触媒として、スタノクトを添加して、酸価が1mgKOH/g未満に到達するまで、同温度で重縮合反応を継続した。その後、冷却して、数平均分子量500のポリブチレンアジペートを得た。
  製造例2
 アジピン酸3101g(21.2モル)および1,4-ブタンジオール2743g(30.4モル)を12時間反応させた以外は、製造例1と同じ方法で、数平均分子量600のポリブチレンアジペートを得た。
  製造例3
 アジピン酸3375g(23.1モル)および1,4-ブタンジオール2567g(28.5モル)を16時間反応させた以外は、製造例1と同じ方法で、数平均分子量1200のポリブチレンアジペートを得た。
  製造例4
 アジピン酸3430g(23.5モル)および1,4-ブタンジオール2536g(28.1モル)を18時間反応させた以外は、製造例1と同じ方法で、数平均分子量1500のポリブチレンアジペートを得た。
 4)ワックスの合成
  合成例1(オレフィンワックス1の合成)
 特開2017-78100号公報の製造例1に記載の方法で、エチレン・プロピレン共重合体を得た。これを、オレフィンワックス1とした。
  合成例2(オレフィンワックス2の合成)
 特開2017-78100号公報の製造例1において、水素の装入量を18kg/cm(ゲージ圧)に変えたこと以外は、特開2017-78100号公報の製造例1と同様にして、エチレン・プロピレン共重合体を得た。これを、オレフィンワックス2とした。
  合成例3(オレフィンワックス3の合成)
 特開2017-78100号公報の製造例1において、ヘキサンの挿入量を885ml、プロピレンの挿入量を115ml、水素の装入量を15kg/cm(ゲージ圧)に変えたこと以外は、特開2017-78100号公報の製造例1と同様にして、エチレン・プロピレン共重合体を得た 。これを、オレフィンワックス3とした。
  合成例4(酸変性オレフィンワックスの合成)
 特開2017-78100号公報の製造例1のエチレン・プロピレン共重合体500gをガラス製反応器に仕込み、窒素雰囲気下160℃にて溶融した。
 次いで、無水マレイン酸30gおよびジ-t-ブチルペルオキシド(DTBPO)3gを、上記反応器(温度160℃)に5時間かけて連続供給した。
 その後、さらに1時間加熱反応させた後、溶融状態のまま10mmHg真空中で0.5時間脱気処理して揮発分を除去し、その後冷却し、エチレン・プロピレン共重合体の酸変性物を得た。これを、酸変性オレフィンワックスとした。
 5)ポリウレタン樹脂組成物および成形品の製造
 実施例1
 (1)ポリウレタン樹脂組成物の製造
 表1に記載の割合で、予め80℃に温調した高分子量ポリオール(ポリカーボネートポリオールおよびポリエステルポリオール)を計量した。
 次いで、ポリエステルポリオール100質量部に対して0.1質量部となる割合で、高分子量ポリオールにスタバクゾールI-LF(商品名、加水分解防止剤、ランクセス社製)を添加した。
 次いで、得られた混合物を、窒素雰囲気下、80℃の油浴中で、高速撹拌ディスパー(500~1500rpm)により1時間撹拌した。
 次いで、高分子量ポリオールに、ワックスおよび添加剤を添加した。
 より具体的には、ポリイソシアネート成分とポリオール成分(高分子量ポリオールおよび低分子量ポリオール)との総量100質量部に対してオレフィンワックス1が0.05質量部(phr)となるように、高分子量ポリオールにオレフィンワックス1を添加した。
 また、ポリイソシアネート成分とポリオール成分(高分子量ポリオールおよび低分子量ポリオール)との総量100質量部に対して、イルガノックス245(BASF社製 耐熱安定剤)0.3質量部、チヌビン234(BASF社製 紫外線吸収剤)0.05質量部、アデカスタブLA-72(ADEKA社製 HALS)0.1質量部となるように、高分子量ポリオールに各添加剤を添加した。
 さらに、予めDINA(大八化学社製)により0.5質量%に希釈したPlast Blue8514を、ポリウレタン樹脂組成物に対するPlast Blue8514が0.5ppmとなるように、上記の混合物に添加した。
 次いで、表1に示す処方で、上記の混合物にポリイソシアネート成分(a)を添加した。
 さらに、予めDINA(大八化学社製)により4質量%に希釈したオクチル酸スズ(触媒、商品名:スタノクト、エーピーアイコーポレーション社製)を、ポリウレタン樹脂組成物に対する触媒量が5ppmとなるように、添加した。
 次いで、得られた混合物を、80℃の油浴中で、高速撹拌ディスパー(500~1500rpm)により3分間撹拌混合した。
 次いで、予め計量して80℃に温調した1,4-BD(低分子量ポリオール)を、混合液に添加し、高速撹拌ディスパーを使用して、500~1500rpmの撹拌下、3~10分間撹拌混合した。
 次いで、予め150℃に温調したテフロン(登録商標)製のバットに混合液を流し込み、150℃にて2時間反応させた後、100℃に降温して20時間反応を継続し、ポリウレタン樹脂およびワックスを含むポリウレタン樹脂組成物(一次生成物)を得た。なお、仕込み比から算出されるポリウレタン樹脂のウレタン基濃度を、表1に示す。
 ・ペレットの製造
 バットからポリウレタン樹脂組成物の一次生成物を取り外し、ベールカッターによりサイコロ状に切断し、粉砕機にてサイコロ状の樹脂を粉砕し、粉砕ペレットを得た。次いで、粉砕ペレットを、80℃のオーブン中で7日間熱処理(養生、熟成)し、真空減圧下、23℃で12時間乾燥させた。
 その後、得られた粉砕ペレットを、単軸押出機(型式:SZW40-28MG、テクノベル社製)を用いて、スクリュー回転数30rpm、シリンダー温度170~270℃の範囲でストランドを押出し、カットすることによって、ポリウレタン樹脂組成物のペレットを得た。
 ・成形品の製造
 ポリウレタン樹脂組成物のペレットを、予め、真空減圧下、80℃で12時間乾燥させた。次いで、射出成型機(型式:SE-180DU-C510、住友重機械工業社製)を使用して、計量回転数100rpm、バレル温度170~270℃、金型温度20~50℃、射出速度60mm/s、保圧10~90MPaおよび脱型時間20~60秒の条件でペレットを射出成形し、成形品としてのシートを得た。
 得られた1mm厚みのシートを、80℃のオーブン中で24時間アニール処理をした。
 その後、シートを、室温23℃、相対湿度55%の恒温恒湿条件下にて、7日間養生した。
  実施例2~44および比較例1~25
 表1~表16に記載の処方に変更した以外は、実施例1と同じ方法で、ポリウレタン樹脂組成物、ペレットおよびシートを製造した。
 なお、実施例2および実施例20では、オクチル酸スズ(触媒)を添加しなかった。
 また、スタバクゾールI-LF(商品名、加水分解防止剤、ランクセス社製)は、高分子量ポリオールとしてポリエステルポリオールを使用する場合にのみ、添加した。
 6)評価
 <湿熱環境における耐ブルーム性>
 射出成形で得た厚み1mmのシートを、70℃、98%RHの恒温恒湿オーブン中に静置して、シート表面に発生する粉吹き現象までの日数を、以下の評価5~1の5段階で評価した。
評価5:試験10日以内では、粉吹き現象が発生しない。
評価4:試験10日以内に粉吹き現象が発生した。
評価3:試験5日以内に粉吹き現象が発生した。
評価2:試験2日以内に粉吹き現象が発生した。
評価1:試験1日以内に粉吹き現象が発生した。
 <脱型性(脱型後のシートの表面評価)>
 射出成形時の脱型時間を、実施例1~18および比較例1~12では20秒、実施例19~44および比較例13~25では18秒に統一し、脱型後のシートの表面状態を、以下の評価5~1の5段階で評価した。
評価5:脱型時に金型への貼り付きが無く、表面荒れの全く無い、均一なシートが得られた。
評価4:金型へのシートの貼り付きがあるが、シート表面の剥がし跡は、シート全体の20%未満であった。
評価3:金型へのシートの貼り付きがあり、シート表面の剥がし跡は、シート全体の20%以上、50%未満であった。
評価2:金型へのシートの貼り付きがあり、シート表面の50%以上に剥がし跡が残った。
評価1:金型開放時に、両側の金型にシートが貼り付いており、シートが裂けた。
 <耐UV変色性>
 厚み1mmのシートから20×60mmのサイズの試験片を切り出して、紫外線蛍光灯が取り付けられたQUVウェザリングテスター(スガ試験機社製、紫外線蛍光灯ウェザーメーターFUV)を使用して、60℃、相対湿度10%、紫外線(波長270~720nm)の照射強度28W/mの条件および50℃、相対湿度95%、紫外線照射なしの条件を4時間ごとに、48時間にわたり、6サイクル繰り返した。試験前後におけるシートのΔb(b値の変化量)を、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて測定した。
 <溶融温度>
 以下の方法で、ポリウレタン樹脂組成物の粘度が2000Pa・sとなる温度を、測定した。
 すなわち、高化式フローテスターCFT-500D(島津製作所製)を用い、ダイ径1.0mm、ダイ長10mmのダイを備えたシリンダー中にポリウレタン樹脂組成物のペレットを装入し、昇温速度25℃/min、荷重20kg/cmで、粘度を測定した。
 <透明性>
 以下の方法で、成形品の透明性を、測定した。
 すなわち、HAZE METER NDH-5000(日本電色工業社製)を用い、射出成形で得た厚み1mmのシートのヘイズを測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
 本発明のポリウレタン樹脂組成物および成形品は、例えば、スマートデバイスのカバーなどとして、好適に用いられる。

Claims (13)

  1.  ポリイソシアネート成分およびポリオール成分の反応生成物と、ワックスとを含有し、
     前記ポリイソシアネート成分は、高対称性ポリイソシアネートを含有し、
     前記ポリオール成分は、数平均分子量600以上1200以下のポリカーボネートポリオールと、数平均分子量600以上1200以下のポリエステルポリオールとを含み、
     前記ポリカーボネートポリオールおよび前記ポリエステルポリオールの総量100質量部に対して、前記ポリカーボネートポリオールが3質量部以上40質量部以下であり、前記ポリエステルポリオールが60質量部以上97質量部以下である
    ことを特徴とする、ポリウレタン樹脂組成物。
  2.  前記ポリウレタン樹脂組成物の粘度が2000Pa・sとなる温度が、185℃以上225℃以下である
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  3.  前記高対称性ポリイソシアネートが、1,4-ビス(イソシアナトメチル)シクロヘキサンまたは4,4’-ジフェニルメタンジイソシアネートを含む
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  4.  前記ポリイソシアネート成分が、1,4-ビス(イソシアナトメチル)シクロヘキサンを含む
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  5.  前記ポリエステルポリオールが、ポリカプロラクトンポリオールを含む
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  6.  前記ポリカーボネートポリオールの数平均分子量が、600以上1000以下であり、
     前記ポリエステルポリオールの数平均分子量が、1000以上1200以下である
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  7.  前記ワックスの含有割合が、ポリイソシアネート成分とポリオール成分との総量100質量部に対して、0.005質量部以上0.15質量部以下である
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  8.  前記ワックスが、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される少なくとも1種を含む
    ことを特徴とする、請求項1に記載のポリウレタン樹脂組成物。
  9.  前記ワックスが、ポリオレフィン系ワックスを含み、
     前記ポリオレフィン系ワックスの150℃における溶融粘度が10mPa・s以上100mPa・s以下であることを特徴とする、請求項8に記載のポリウレタン樹脂組成物。
  10.  前記ワックスが、脂肪酸エステル系ワックスおよび/または脂肪酸アミド系ワックスを含み、
     前記脂肪酸エステル系ワックスおよび前記脂肪酸アミド系ワックスの190℃における溶融粘度が10mPa・s以上100mPa・s以下であることを特徴とする、請求項8に記載のポリウレタン樹脂組成物。
  11.  前記ワックスが、ポリオレフィン系ワックス、脂肪酸エステル系ワックスおよび脂肪酸アミド系ワックスからなる群から選択される2種以上を含む
    ことを特徴とする、請求項8に記載のポリウレタン樹脂組成物。
  12.  請求項1に記載のポリウレタン樹脂組成物を含む
    ことを特徴とする、成形品。
  13.  スマートデバイスのカバーである
    ことを特徴とする、請求項12に記載の成形品。
PCT/JP2020/029379 2019-08-07 2020-07-31 ポリウレタン樹脂組成物および成形品 WO2021024929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021537284A JP7280954B2 (ja) 2019-08-07 2020-07-31 ポリウレタン樹脂組成物および成形品
US17/628,623 US20220251379A1 (en) 2019-08-07 2020-07-31 Polyurethane resin composition and molded article
CN202080053014.3A CN114144446B (zh) 2019-08-07 2020-07-31 聚氨酯树脂组合物及成型品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019145643 2019-08-07
JP2019-145643 2019-08-07
JP2020-079200 2020-04-28
JP2020079200 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021024929A1 true WO2021024929A1 (ja) 2021-02-11

Family

ID=74503828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029379 WO2021024929A1 (ja) 2019-08-07 2020-07-31 ポリウレタン樹脂組成物および成形品

Country Status (4)

Country Link
US (1) US20220251379A1 (ja)
JP (1) JP7280954B2 (ja)
CN (1) CN114144446B (ja)
WO (1) WO2021024929A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099905A1 (en) * 2022-11-11 2024-05-16 Basf Se Thermoplastic polyurethane, polyurethane resin composition comprising the same, and molded product obtained from the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281944A (ja) * 1999-04-01 2000-10-10 Nippon Paint Co Ltd 電着塗料組成物
WO2008026513A1 (fr) * 2006-08-31 2008-03-06 Ube Industries, Ltd. Composition réactive thermofusible et article moulé l'utilisant
JP2009048678A (ja) * 2007-08-15 2009-03-05 Fujifilm Corp 磁気記録媒体
WO2016035865A1 (ja) * 2014-09-05 2016-03-10 東ソー株式会社 ポリウレタンエラストマー形成性組成物、及びそれを用いた産業機械部品、並びに樹脂成型に用いられる離型剤組成物、及びそれを用いて成型されるポリウレタン樹脂成型物
JP2019195469A (ja) * 2018-05-10 2019-11-14 ディメンシア・フロント株式会社 睡眠評価方法及び睡眠評価シート、並びに、睡眠評価結果に基づいて脳機能疾病を鑑別する鑑別方法及び鑑別シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780917B2 (en) * 2001-03-02 2004-08-24 Teijin Chemicals, Ltd. Aromatic polycarbonate resin composition
CN105153399B (zh) * 2015-09-29 2018-04-10 合肥安利聚氨酯新材料有限公司 一种耐水解超软质湿蜡感干法面层树脂及其制备方法
JP2017210511A (ja) * 2016-05-24 2017-11-30 東洋インキScホールディングス株式会社 感圧式接着剤、接着フィルムおよび光学積層体
JP7231383B2 (ja) * 2018-11-08 2023-03-01 株式会社イノアックコーポレーション 低アウトガス性ウレタンホットメルト接着剤組成物
JP7188685B2 (ja) * 2018-05-11 2022-12-13 サンユレック株式会社 ポリウレタン樹脂組成物
JP7239345B2 (ja) * 2019-02-19 2023-03-14 株式会社イノアックコーポレーション 積層体および車両用内装材の表皮材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281944A (ja) * 1999-04-01 2000-10-10 Nippon Paint Co Ltd 電着塗料組成物
WO2008026513A1 (fr) * 2006-08-31 2008-03-06 Ube Industries, Ltd. Composition réactive thermofusible et article moulé l'utilisant
JP2009048678A (ja) * 2007-08-15 2009-03-05 Fujifilm Corp 磁気記録媒体
WO2016035865A1 (ja) * 2014-09-05 2016-03-10 東ソー株式会社 ポリウレタンエラストマー形成性組成物、及びそれを用いた産業機械部品、並びに樹脂成型に用いられる離型剤組成物、及びそれを用いて成型されるポリウレタン樹脂成型物
JP2019195469A (ja) * 2018-05-10 2019-11-14 ディメンシア・フロント株式会社 睡眠評価方法及び睡眠評価シート、並びに、睡眠評価結果に基づいて脳機能疾病を鑑別する鑑別方法及び鑑別シート

Also Published As

Publication number Publication date
CN114144446B (zh) 2023-08-15
JPWO2021024929A1 (ja) 2021-02-11
TW202112965A (zh) 2021-04-01
JP7280954B2 (ja) 2023-05-24
US20220251379A1 (en) 2022-08-11
CN114144446A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
JP6946447B2 (ja) ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法
JP7268015B2 (ja) 光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、光学用ポリウレタン樹脂の製造方法
US10927213B2 (en) Producing method of polyurethane resin, polyurethane resin, and molded article
JP7184760B2 (ja) ポリウレタンエラストマー、ポリウレタンエラストマーの製造方法、および、成形品
CN114375312B (zh) 热塑性聚氨酯树脂及膜
JP7280954B2 (ja) ポリウレタン樹脂組成物および成形品
JP7296249B2 (ja) 熱可塑性ポリウレタン樹脂
JP7246910B2 (ja) 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851096

Country of ref document: EP

Kind code of ref document: A1