WO2021024842A1 - ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物 - Google Patents

ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物 Download PDF

Info

Publication number
WO2021024842A1
WO2021024842A1 PCT/JP2020/028789 JP2020028789W WO2021024842A1 WO 2021024842 A1 WO2021024842 A1 WO 2021024842A1 JP 2020028789 W JP2020028789 W JP 2020028789W WO 2021024842 A1 WO2021024842 A1 WO 2021024842A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
urethane
component
compound
Prior art date
Application number
PCT/JP2020/028789
Other languages
English (en)
French (fr)
Inventor
久憲 石田
瑞生 畠中
Original Assignee
根上工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 根上工業株式会社 filed Critical 根上工業株式会社
Priority to JP2021537236A priority Critical patent/JP7040842B2/ja
Priority to CN202080034653.5A priority patent/CN113811555B/zh
Publication of WO2021024842A1 publication Critical patent/WO2021024842A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to urethane (meth) acrylates, neutralized products thereof, photocurable resin compositions and liquid compositions.
  • the present application claims priority based on Japanese Patent Application No. 2019-142965 filed in Japan on August 2, 2019, the contents of which are incorporated herein by reference.
  • urethane (meth) acrylate having a urethane bond and a (meth) acryloyl group is known.
  • urethane (meth) acrylate is generally diluted with an organic solvent or a reactive diluent. In recent years, it has been studied to dilute urethane (meth) acrylate with water to make it water-based.
  • compositions containing urethane (meth) acrylate At least one monomer selected from (meth) acrylates of mono or polypentaerythritol, urethane poly (meth) acrylate compounds having at least two radically polymerizable unsaturated double bonds in one molecule, light
  • An emulsion coating material composition containing a polymerization initiator, a radical polymerization reactive surfactant, and water Patent Document 1.
  • a photocurable resin composition containing a polyfunctional urethane acrylate having a carboxyl group neutralized with an oxyalkylene group and an amino compound, a photopolymerization initiator, and water Patent Document 2.
  • a carboxyl group-containing urethane (meth) acrylate was produced in the presence of a water-soluble reactive diluent having a water mixing ratio of 100% by weight or more, and the carboxyl group of the polyurethane (meth) acrylate was used as an amine salt.
  • an aqueous active energy ray-curable resin composition obtained by further adding water and emulsifying (Patent Document 3).
  • a water-dispersible curable resin composition obtained by dispersing at least one of curable oligomers selected from urethane acrylates and epoxy acrylates in an aqueous solvent in the presence of a reactive emulsifier (Patent Document 4).
  • the polyfunctional oligomer having 3 to 30 radically polymerizable unsaturated groups is aqueous in the presence of a polyfunctional reactive surfactant which is a urethane (meth) acrylate compound using a polyalkylene glycol derivative.
  • a polyfunctional reactive surfactant which is a urethane (meth) acrylate compound using a polyalkylene glycol derivative.
  • Japanese Patent Application Laid-Open No. 9-137081 Japanese Patent Application Laid-Open No. 11-209448 Japanese Patent Application Laid-Open No. 11-279242 Japanese Patent Application Laid-Open No. 2000-159847 Japanese Patent Application Laid-Open No. 2008-303258
  • compositions of Patent Documents 1 to 5 are not aqueous solutions but aqueous dispersions, and their homogeneity is not sufficient.
  • An object of the present invention is to provide a urethane (meth) acrylate that exhibits water solubility when neutralized and a neutralized product thereof.
  • Another object of the present invention is to provide a photocurable resin composition containing a water-soluble urethane (meth) acrylate and which can be made into an aqueous solution, and a liquid composition using the same.
  • the present invention has the following aspects.
  • the isocyanate component (B) contains the polyisocyanate compound (B2), and the (meth) acrylate component (C) is a dipentaerythritol poly (meth) acrylate (C1) having one or more hydroxyl groups and one.
  • the amino alcohol component (A) is at least one selected from the group consisting of 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol and 2- (dibutylamino) ethanol. Urethane (meth) acrylate.
  • the diisocyanate compound (B1) is at least one selected from the group consisting of an alicyclic diisocyanate compound and an aliphatic diisocyanate compound.
  • the polyisocyanate compound (B2) is polyhexamethylene diisocyanate.
  • the diisocyanate compound (B1) is hexamethylene diisocyanate.
  • [6] A neutralized product in which a tertiary amino group based on the amino alcohol component (A) in the urethane (meth) acrylate according to any one of [1] to [5] is neutralized with a carboxylic acid.
  • the (meth) acrylate component (C) contains the dipentaerythritol poly (meth) acrylate (C1).
  • the (meth) acrylate component (C) contains the pentaerythritol poly (meth) acrylate (C2).
  • urethane (meth) acrylate that exhibits water solubility when neutralized and a neutralized product thereof. Further, according to the present invention, it is possible to provide a photocurable resin composition containing a water-soluble urethane (meth) acrylate and capable of being made into an aqueous solution, and a liquid composition using the same.
  • (meth) acryloyl group is a general term for acryloyl group and methacryloyl group.
  • (Meta) acrylate” is a general term for acrylate and methacrylate.
  • “Urethane (meth) acrylate” is a (meth) acrylate having a urethane bond.
  • a "poly (meth) acrylate” is a (meth) acrylate having two or more (meth) acryloyl groups.
  • the "weight average molecular weight” (hereinafter, also referred to as "Mw”) is a standard polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • the "hydroxyl value” is the amount of potassium hydroxide required to acetylate the hydroxyl groups in the sample and neutralize the acetic acid used for acetylation, expressed in mg with respect to 1.0 g of the sample. , A measure of the content of hydroxyl groups in the sample. The hydroxyl value is measured using the neutralization titration method specified in JIS K 0070: 1992.
  • JIS K 0070 JIS K 0070
  • the urethane (meth) acrylate according to one embodiment of the present invention (hereinafter, also referred to as “the present urethane (meth) acrylate”) is referred to as an amino alcohol component (A) (hereinafter, also referred to as “(A) component”).
  • the component (A) has one hydroxyl group and one or more tertiary amino groups in the molecule.
  • the number of tertiary amino groups contained in the component (A) is preferably one from the viewpoint of water solubility.
  • Examples of the component (A) include compounds represented by (R 1 ) 2- N-R 2 .
  • R 1 represents an alkyl group and R 2 represents a hydroxyalkyl group.
  • Two of R 1 in the formula may be the same or different.
  • R 1 may be linear or branched.
  • the carbon number of R 1 is preferably 1 to 4 from the viewpoint of water solubility.
  • R 2 may be linear or branched.
  • the number of carbon atoms of R 2, from the viewpoint of water solubility, 1-4 are preferred.
  • component (A) at least one selected from the group consisting of 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol and 2- (dibutylamino) ethanol is preferable from the viewpoint of water solubility.
  • one type may be used alone, or two or more types may be used in combination.
  • the diisocyanate compound (B1) may be a compound having two isocyanate groups in the molecule, and examples thereof include an aliphatic diisocyanate compound, an alicyclic diisocyanate compound, and an aromatic diisocyanate compound.
  • aliphatic diisocyanate compound examples include hexamethylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, methylene diisocyanate, ethylene diisocyanate, butylene diisocyanate, propylene diisocyanate, octadecylene diisocyanate, 1,4-tetramethylene diisocyanate, and 1,6-.
  • Hexamethylene diisocyanate and 1,10-decamethylene diisocyanate can be mentioned.
  • Examples of the alicyclic diisocyanate compound include 4,4'-methylenebis (cyclohexylisocyanate), methylcyclohexane-2,4 (or 2,6) -diisocyanate, 1,3- (isocyanatemethyl) cyclohexane, isophorone diisocyanate, and dimer. Examples thereof include acid diisocyanate, 1,3-cyclohexylene diisocyanate, and 4,4'-methylene-bis (cyclohexyl isocyanate).
  • aromatic diisocyanis examples include tolylene diisocyanis, 4,4'-diphenylmethane diisocyanate, xylene diisocyanis, xylene diisocyanate, dianisidine diisocyanate, phenyl diisocyanate, halogenated phenyl diisocyanate, 1,5-naphthalenediis diis, polymethylene polyphenylenediis diisis.
  • the diisocyanate compound (B1) at least one selected from the group consisting of an alicyclic diisocyanate compound and an aliphatic diisocyanate compound is preferable from the viewpoint of suppressing yellowing. Among the above, hexamethylene diisocyanate is preferable from the viewpoint of water solubility.
  • the diisocyanate compound (B1) one type may be used alone, or two or more types may be used in combination.
  • Polyisocyanate compound (B2) may be a compound having three or more isocyanate groups in the molecule, and examples thereof include an aliphatic polyisocyanate compound, an alicyclic polyisocyanate compound, and an aromatic polyisocyanate compound.
  • Examples of the aliphatic polyisocyanate compound include multimers, biurets and adducts of the aliphatic diisocyanate compounds.
  • Examples of the alicyclic polyisocyanate compound include multimers, biurets and adducts of alicyclic diisocyanate compounds.
  • Examples of the aromatic polyisocyanate compound include multimers of aromatic diisocyanate compounds, biuret and adduct compounds, and triphenylmethane triisocyanate. Specific examples of the aliphatic diisocyanate compound, the alicyclic polyisocyanate compound, and the aromatic polyisocyanate compound are as described above.
  • Examples of the multimer include a nurate form (isocyanurate).
  • the polyisocyanate compound (B2) at least one selected from the group consisting of an alicyclic polyisocyanate compound and an aliphatic polyisocyanate compound is preferable from the viewpoint of suppressing yellowing.
  • polyhexamethylene diisocyanate multimer of hexamethylene diisocyanate
  • hexamethylene diisocyanate nurate (nulate form of hexamethylene diisocyanate) is particularly preferable.
  • the polyisocyanate compound (B2) one type may be used alone, or two or more types may be used in combination.
  • the component (B) contains at least the polyisocyanate compound (B2) among the diisocyanate compound (B1) and the polyisocyanate compound (B2) from the viewpoint of water solubility of the neutralized product of the urethane (meth) acrylate.
  • the ratio of the polyisocyanate compound (B2) to the total mass of the component (B) is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more.
  • the upper limit of the ratio is not particularly limited and may be 100% by mass.
  • the ratio of the ratio of the polyisocyanate compound (B2) is at least the above lower limit value, the water solubility of the neutralized product of the urethane (meth) acrylate is more excellent.
  • the component (C) includes dipentaerythritol poly (meth) acrylate (C1) having one or more hydroxyl groups (hereinafter, also referred to as “compound (C1)”) and pentaerythritol poly (meth) having one or more hydroxyl groups. ) Includes at least one selected from the group consisting of acrylate (C2) (hereinafter, also referred to as “compound (C2)").
  • Compound (C1) is a compound in which 2 or more and 5 or less of the 6 hydroxyl groups of dipentaerythritol are substituted with (meth) acryloyloxy groups. Specific examples thereof include dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate and dipentaerythritol penta (meth) acrylate. These compounds (C1) may be used alone or in combination of two or more.
  • Compound (C2) is a compound in which 2 or more and 3 or less of the four hydroxyl groups of pentaerythritol are substituted with (meth) acryloyloxy groups. Specific examples thereof include pentaerythritol di (meth) acrylate and pentaerythritol tri (meth) acrylate. These compounds (C2) may be used alone or in combination of two or more.
  • the component (C) contains the compound (C1)
  • the component (C) has two or more hydroxyl groups as the compound (C1) from the viewpoint of water solubility of the neutralized product of the urethane (meth) acrylate. That is, it is preferable to contain at least one selected from the group consisting of dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate and dipentaerythritol tetra (meth) acrylate.
  • the compound (C1) a compound having two or more hydroxyl groups and a dipentaerythritol tetra (meth) acrylate may be used in combination.
  • the component (C) contains the compound (C2)
  • the component (C) has two or more hydroxyl groups as the compound (C2) from the viewpoint of water solubility of the neutralized product of the urethane (meth) acrylate. That is, it is preferable to contain pentaerythritol di (meth) acrylate.
  • pentaerythritol di (meth) acrylate and pentaerythritol tri (meth) acrylate may be used in combination.
  • the number of hydroxyl groups increases, the amount of tertiary amino groups introduced per molecule of the urethane (meth) acrylate increases, and the water solubility of the neutralized product increases.
  • the component (C) may further contain a (meth) acrylate having one or more hydroxyl groups other than the compound (C1) and the compound (C2).
  • a (meth) acrylate having one or more hydroxyl groups other than the compound (C1) and the compound (C2).
  • Examples of such (meth) acrylate include dipentaerythritol mono (meth) acrylate, pentaerythritol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl acrylate, and 4-hydroxybutyl acrylate. ..
  • the total ratio of the compound (C1) and the compound (C2) to the total mass of the component (C) is preferably 90% by mass or more, more preferably 95% by mass or more, and may be 100% by mass.
  • the urethane (meth) acrylate is derived from the component (A) and has a tertiary amino group.
  • the content of the tertiary amino group in the urethane (meth) acrylate is preferably 0.1 to 6% by mass as the ratio of nitrogen atoms in the tertiary amino group to the total mass of the urethane (meth) acrylate. , 0.2 to 3% by mass is more preferable.
  • the ratio of nitrogen atoms is equal to or higher than the above lower limit, the water solubility of the neutralized product of the urethane (meth) acrylate is more excellent.
  • the proportion of nitrogen atoms is not more than the above upper limit value, it is easy to obtain a cured product having high surface hardness and excellent scratch resistance and hard coat property.
  • the ratio of nitrogen atoms can be obtained by calculating the charging ratio.
  • the urethane (meth) acrylate is derived from the component (C) and has a (meth) acryloyl group and therefore has a polymerizable unsaturated bond (carbon-carbon double bond).
  • the double bond equivalent of the urethane (meth) acrylate is preferably 125 to 250 g / mol, more preferably 130 to 200 g / mol.
  • the double bond equivalent is at least the above lower limit value, it is easy to obtain a cured product having high surface hardness and excellent scratch resistance and hard coat property.
  • the double bond equivalent is not more than the above upper limit value, the towability is more excellent.
  • “Double bond equivalent” is the mass per mole of double bond in a compound.
  • the number of moles of the component (C) required for producing 1 g of this urethane (meth) acrylate is ⁇ mol and the number of polymerizable unsaturated bonds contained in one molecule of the component (C) is ⁇ , it is double.
  • the binding equivalent is calculated by 1 / ( ⁇ ⁇ ⁇ ).
  • is the number of polymerizable unsaturated bonds of each compound and the number of each compound. It is a weighted average value calculated from the abundance ratio (polymer ratio). The abundance ratio of each compound is determined by the charging ratio.
  • the Mw of this urethane (meth) acrylate is 1000 or more, preferably 1300 or more.
  • the Mw of the urethane (meth) acrylate is preferably 20000 or less, more preferably 2000 or less.
  • the Mw of the urethane (meth) acrylate is preferably 1000 or more and 20000 or less, and more preferably 1300 or more and 2000 or less.
  • the present urethane (meth) acrylate can be produced by reacting the component (A), the component (B) and the component (C) (urethaneization reaction). When each of these components is reacted, the hydroxyl groups of the components (A) and (C) and the isocyanate groups of the component (B) form a urethane bond to form the present urethane (meth) acrylate.
  • the reaction temperature of the urethanization reaction is, for example, 50 to 150 ° C., further 60 to 100 ° C.
  • the reaction time of the urethanization reaction varies depending on the reaction temperature, the presence or absence of a catalyst, and the type, but is, for example, 6 to 48 hours, and further 12 to 36 hours.
  • the ratio of each component can be appropriately selected in consideration of the number of hydroxyl groups of the components (A) and (C), the physical characteristics after synthesis, and the like.
  • the ratio (NCO / OH) of the number of isocyanate groups of the component (B) to the total number of the hydroxyl groups of the component (A) and the hydroxyl groups of the component (C) is, for example, 0.5 to 2.
  • the ratio of the component (A) to the total mass of the component (A), the component (B) and the component (C) is preferably 3 to 30% by mass, more preferably 3 to 15% by mass.
  • the ratio of the component (B) to the total mass of the component (A), the component (B), and the component (C) is preferably 7 to 50% by mass, more preferably 15 to 40% by mass.
  • the ratio of the component (C) to the total mass of the component (A), the component (B) and the component (C) is preferably 50 to 90% by mass, more preferably 65 to 80% by mass.
  • the ratio of the component (A) to the total mass of the component (A) and the component (C) is preferably 3 to 40% by mass, more preferably 5 to 20% by mass.
  • the urethanization reaction is also referred to as dipentaerythritol hexa (meth) acrylate (hereinafter, also referred to as “DPH (M) A”) or / and pentaerythritol tetra (meth) acrylate (hereinafter, also referred to as “PET (M) A”). It can be done in the presence of.).
  • DPH (M) A dipentaerythritol hexa (meth) acrylate
  • PET (M) A pentaerythritol tetra (meth) acrylate
  • the urethanization reaction is typically carried out in the presence of DPH (M) A.
  • Compound (C1) is generally produced by esterifying dipentaerythritol with (meth) acrylic acid and is produced as a mixture with DPH (M) A. This mixture may contain multiple compounds (C1) with different (meth) acryloyl cardinal numbers.
  • the urethanization reaction is carried out using a mixture of the compound (C1) and DPH (M) A, the DPH (M) A having no hydroxyl group remains as it is without reacting with the component (B), and this urethane A mixture of (meth) acrylate and DPH (M) A is obtained. Since DPH (M) A in the mixture does not react and remains as it is when the urethane (meth) acrylate in the mixture is neutralized, it can be used as a monomer of the photocurable resin composition.
  • the hydroxyl value of the mixture of compound (C1) and DPH (M) A is preferably 80 mgKOH / g or more.
  • DPH (M) A is water-insoluble by itself, but if the hydroxyl value of the mixture of compound (C1) and DPH (M) A is 80 mgKOH / g or more, the urethane (meth) acrylate can be obtained from the mixture.
  • a mixture of the urethane (meth) acrylate and DPH (M) A which is obtained by obtaining a mixture with DPH (M) A and neutralizing the urethane (meth) acrylate in the mixture, becomes water-soluble.
  • the upper limit of the hydroxyl value of the mixture of compound (C1) and DPH (M) A is not particularly limited, but is, for example, 130 mgKOH / g.
  • the urethanization reaction is typically carried out in the presence of PET (M) A.
  • Compound (C2) is generally produced by esterifying pentaerythritol with (meth) acrylic acid and is produced as a mixture with PET (M) A. This mixture may contain multiple compounds (C2) with different (meth) acryloyl cardinal numbers.
  • PET (M) A having no hydroxyl group remains as it is without reacting with the component (B), and this urethane A mixture of (meth) acrylate and PET (M) A is obtained. Since PET (M) A in the mixture does not react and remains as it is when the urethane (meth) acrylate in the mixture is neutralized, it can be used as a monomer of the photocurable resin composition.
  • the hydroxyl value of the mixture of compound (C2) and PET (M) A is preferably 90 mgKOH / g or more, and more preferably 100 mgKOH / g or more.
  • PET (M) A is water-insoluble by itself, but if the hydroxyl value of the mixture of compound (C2) and PET (M) A is 90 mgKOH / g or more, the mixture can be mixed with the present urethane (meth) acrylate.
  • a mixture of the urethane (meth) acrylate and PET (M) A which is obtained by obtaining a mixture with PET (M) A and neutralizing the urethane (meth) acrylate in the mixture, becomes water-soluble.
  • the upper limit of the hydroxyl value of the mixture of compound (C2) and PET (M) A is not particularly limited, but is, for example, 290 mgKOH / g.
  • the hydroxyl value of the mixture of compound (C2) and PET (M) A may be, for example, 90 to 290 mgKOH / g, and further 100 to 290 mgKOH / g.
  • the urethanization reaction is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time.
  • a catalyst a known urethanization catalyst can be used, and examples thereof include organometallic compounds such as dibutyltin acetate, dibutyltin dilaurate and dioctyltin dilaurate, and basic compounds such as triethylenediamine and triethylamine.
  • the amount of the catalyst used can be appropriately adjusted depending on the activity of the catalyst used, but is preferably 0.01 to 0.50% by mass, preferably 0, based on the total mass of the components (A) and (C). 3.03 to 0.30% by mass is more preferable, and 0.05 to 0.25% by mass is further preferable.
  • the urethanization reaction is preferably carried out in the presence of a thermal polymerization inhibitor from the viewpoint of suppressing the reaction of the (meth) acryloyl group.
  • a thermal polymerization inhibitor known thermal polymerization inhibitors can be used, and examples thereof include 2,6-di-tert-butyl-p-cresol and 4-methoxyphenol.
  • the amount of the thermal polymerization inhibitor used can be appropriately adjusted depending on the activity of the thermal polymerization inhibitor used, but is preferably 0.01 to 1.5% by mass with respect to 100% by mass of the reactive product, and is 0. 0.03 to 1.0% by mass is more preferable, and 0.03 to 0.8% by mass is further preferable.
  • substantially all of the isocyanate groups in the component (B) react with the component (A) or the component (C).
  • substantially all of the isocyanate groups in the component (B) were the component (A).
  • the tertiary amino group based on the component (A) in the urethane (meth) acrylate is carboxylic acid. It is a sum. Water solubility is developed by neutralizing the tertiary amino group with a carboxylic acid.
  • the tertiary amino groups may be neutralized, or some of them may be neutralized.
  • the ratio of the carboxylic acid-neutralized tertiary amino group to 100 mol% of all the tertiary amino groups in the neutralized product is preferably 80 mol% or more, preferably 95 mol. % Or more is more preferable, and it may be 100 mol%.
  • All the tertiary amino groups in the neutralized product are the sum of the tertiary amino groups neutralized with carboxylic acid and the tertiary amino groups not neutralized with carboxylic acid.
  • the carboxylic acid may be any carboxylic acid having a carboxyl group and capable of neutralizing a tertiary amino group, and examples thereof include acetic acid and acrylic acid.
  • acetic acid and acrylic acid are preferable from the viewpoint of solubility in water.
  • the neutralized product can be produced, for example, by contacting the urethane (meth) acrylate with an aqueous carboxylic acid solution.
  • the temperature at the time of contact is, for example, 20 to 70 ° C.
  • the contact time is, for example, 10 to 60 minutes.
  • a mixture of the present urethane (meth) acrylate and DPH (M) A or PET (M) A may be used instead of the present urethane (meth) acrylate. In this case, a mixture of the neutralized product and DPH (M) A or PET (M) A is obtained.
  • the photocurable resin composition according to one embodiment of the present invention contains the present neutralized product and a photopolymerization initiator.
  • the resin composition preferably further contains a monomer having a polymerizable unsaturated bond.
  • the present resin composition may further contain other components, if necessary.
  • active species When the resin composition is irradiated with light, active species (radicals and cations) are generated by intramolecular cleavage and hydrogen transfer of the photopolymerization initiator, and the active species act on the urethane (meth) acrylate and the monomer. A polymerization or cross-linking reaction occurs, and the resin composition is cured.
  • photopolymerization initiator a known photopolymerization initiator can be used, and for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, ⁇ -hydroxyacetophenone, diethoxyacetophenone, 2-hydroxy-2- Methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethyl Amino-1- (4-morpholinophenyl) butanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, benzophenone, methyl o-benzoylbenzoate, hydroxybenzophenone , 2-Isopropy
  • the monomer may be a monofunctional monomer having one polymerizable unsaturated bond, or a polyfunctional monomer having two or more polymerizable unsaturated bonds.
  • a monofunctional monomer and a polyfunctional monomer may be used in combination.
  • the monomer may be a water-soluble monomer or a water-insoluble monomer.
  • a water-soluble monomer and a water-insoluble monomer may be used in combination.
  • the "water-soluble monomer” refers to a monomer that is miscible with water to form a uniform solution.
  • Examples of the monofunctional monomer include hydroxyl group-containing monofunctional (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl acrylate, and 4-hydroxybutyl acrylate, acryloylmorpholine, dimethylacrylamide, and isobornyl acrylate.
  • Examples of the polyfunctional monomer include hydroxyl group-containing polyfunctional (meth) acrylate such as pentaerythritol di or tri (meth) acrylate, dipentaerythritol di, tri, tetra or penta (meth) acrylate, DPH (M) A, PET. Examples thereof include (M) A, tripropylene glycol diacrylate, and trimethylolpropane triacrylate. These monomers may be used alone or in combination of two or more.
  • the monomer preferably contains a polyfunctional monomer from the viewpoint of forming a cured film having excellent surface hardness.
  • a polyfunctional monomer a monomer having three or more polymerizable unsaturated bonds is preferable, and DPH (M) A and PET (M) A are particularly preferable from the viewpoint of hardness.
  • the component (C) contains the compound (C1)
  • the monomer preferably contains DPH (M) A.
  • the component (C) contains the compound (C2)
  • the monomer preferably contains PET (M) A.
  • ingredients include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, flame retardants, antistatic agents, anti-aging agents, antibacterial agents, fungicides, defoamers, leveling agents, fillers, Examples thereof include additives such as thickeners, adhesion-imparting agents, thixo-imparting agents, and brighteners.
  • the total content of the urethane (meth) acrylate and the monomer is preferably 20 to 70% by mass, more preferably 30 to 60% by mass, based on the total mass of the resin composition.
  • the ratio of the urethane (meth) acrylate to the total content of the urethane (meth) acrylate and the monomer is preferably 1 to 30% by mass, more preferably 1 to 20% by mass. If the proportion of the urethane (meth) acrylate is equal to or higher than the lower limit, the resin composition is water-soluble even if it contains a water-insoluble monomer (DPH (M) A, PET (M) A, etc.) as the monomer. Is easy to show.
  • DPH (M) A, PET (M) A, etc. water-insoluble monomer
  • the content of DPH (M) A is the compound ( The amount of the mixture of C1) and DPH (M) A having a hydroxyl value of 80 mgKOH / g or more is preferable. The larger the hydroxyl value of the mixture, the smaller the proportion of DPH (M) A tends to be. DPH (M) A is water-insoluble by itself, but if the hydroxyl value of the mixture of compound (C1) and DPH (M) A is 80 mgKOH / g or more, the resin composition tends to show water solubility. ..
  • the upper limit of the hydroxyl value of the mixture of compound (C1) and DPH (M) A is not particularly limited, but is, for example, 130 mgKOH / g.
  • the content of PET (M) A is the compound ( The amount of the mixture of C2) and PET (M) A having a hydroxyl value of 90 mgKOH / g or more is preferable, and an amount of 100 mgKOH / g or more is more preferable.
  • the larger the hydroxyl value of the mixture the smaller the proportion of PET (M) A tends to be.
  • PET (M) A is water-insoluble by itself, but if the hydroxyl value of the mixture of compound (C2) and PET (M) A is 90 mgKOH / g or more, the resin composition tends to be water-soluble.
  • the upper limit of the hydroxyl value of the mixture of compound (C2) and PET (M) A is not particularly limited, but is, for example, 290 mgKOH / g.
  • the hydroxyl value of the mixture of compound (C2) and PET (M) A may be, for example, 90 to 290 mgKOH / g, and further 100 to 290 mgKOH / g.
  • the content of the photopolymerization initiator is preferably 0.5 to 7.0% by mass, more preferably 1 to 5% by mass, based on the total mass of the present resin composition.
  • the content of the photopolymerization initiator is at least the above lower limit value, the photocurability of the present resin composition is more excellent, and when it is at least the above upper limit value, the storage stability of the present resin composition is more excellent.
  • the resin composition can be produced by mixing the urethane (meth) acrylate, a photopolymerization initiator, a monomer and other components, if necessary.
  • the mixing order of each component is not particularly limited.
  • the monomer contains DPH (M) A
  • the present resin composition may be produced by using a mixture of the present urethane (meth) acrylate and DPH (M) A.
  • the monomer contains PET (M) A
  • the present resin composition may be produced by using a mixture of the present urethane (meth) acrylate and PET (M) A.
  • the present resin composition can be cured by irradiating with light to obtain a cured product.
  • Examples of light include visible light, ultraviolet rays, plasma, infrared rays, and ionizing radiation.
  • ultraviolet rays are preferable from the viewpoint that the irradiation device is widely used.
  • the light irradiation conditions can be appropriately selected according to the light source used.
  • the integrated amount of light when irradiating with ultraviolet rays is, for example, 50 to 1000 mJ / cm 2 .
  • the liquid composition according to one embodiment of the present invention includes the present resin composition and water.
  • the liquid composition is typically in the form of an aqueous solution.
  • the content of the resin composition in the liquid composition is, for example, 10 to 60% by mass with respect to the total mass of the liquid composition.
  • the liquid composition may further contain a non-reactive diluent other than water, if desired.
  • the non-reactive diluent is a compound that does not have a polymerizable unsaturated bond and is liquid at room temperature.
  • Other non-reactive diluents are preferably compatible with water, and examples thereof include methanol, ethanol, isopropyl alcohol, and propylene glycol monomethyl ether.
  • the content of the other non-reactive diluent in 100% by mass of the present liquid composition is preferably 15% by mass or less, particularly preferably 0% by mass.
  • the liquid composition can be used, for example, for forming a coating film made of a cured product of the resin composition.
  • the liquid composition is applied to the surface of an arbitrary base material and dried to form a coating film composed of the resin composition, and the coating film is irradiated with light to be cured to form the resin composition.
  • a coating film (cured coating film) made of a cured product can be obtained.
  • the base material include resins, films, sheets, and molded products.
  • the resin include polyesters such as polyethylene terephthalate (PET), polycarbonate resins, and ABS resins.
  • PET polyethylene terephthalate
  • the coating method a known coating method can be appropriately adopted, and examples thereof include spray coating, spin coating, and gravure coating.
  • a non-reactive diluent such as water
  • examples thereof include a condition of 60 to 110 ° C. for 0.5 to 10 minutes.
  • the light irradiation conditions are the same as described above.
  • the thickness of the coating film (after drying) can be, for example, 1 to 10 ⁇ m.
  • the “dipentaerythritol acrylate mixture” is a mixture of a plurality of dipentaerythritol acrylates having different numbers of acryloyl groups, contains dipentaerythritol polyacrylate having a hydroxyl group and dipentaerythritol hexaacrylate (DPHA), and has a hydroxyl value of 80 mgKOH. The one of / g was used.
  • pentaerythritol acrylate mixture is a mixture of a plurality of pentaerythritol acrylates having different numbers of acryloyl groups, contains pentaerythritol polyacrylate having a hydroxyl group and pentaerythritol tetraacrylate (PETA), and has a hydroxyl value of 100 mgKOH / g. Was used.
  • the ratio of urethane acrylate to DPHA in the urethane acrylate / DPHA-containing mixture and the ratio of urethane acrylate to PETA in the urethane acrylate / PETA-containing mixture are GPC (gel permeation chromatography) area ratios, respectively.
  • urethane acrylate / DPHA-containing mixture a mixture containing urethane acrylate and DPHA (hereinafter, also referred to as "urethane acrylate / DPHA-containing mixture") was obtained.
  • Example 1 In a flask equipped with a stirrer, 35 parts of the urethane acrylate / DPHA-containing mixture obtained in Production Example 1 and a photopolymerization initiator (2-hydroxy-4'-(2-hydroxyethoxy) -2-methylpropiophenone) , IGM Resins B.V. product name "Omnirad 2959”) (hereinafter, simply referred to as "Omnirad 2959”) 1.1 parts, 1.8 parts of 80% acetic acid, and 66 parts of water. It was charged and stirred for about 1 hour to obtain a liquid composition. The liquid composition after stirring was pale yellow and transparent.
  • the obtained liquid composition was applied to a film-like easy-adhesive PET having a thickness of 100 ⁇ m so that the film thickness after drying was 5 ⁇ m, and dried at 100 ° C. to form a coating film. Then, the coating film was irradiated with ultraviolet rays so that the integrated light intensity was 500 mJ / cm 2, and a cured coating film was obtained.
  • Examples 2 to 4 A liquid composition was obtained in the same manner as in Example 1 except that the type and amount of the material to be charged into the flask were changed according to the formulation shown in Table 2.
  • Table 2 "ACMO” indicates acryloyl morpholine. All of the liquid compositions after stirring were pale yellow and transparent.
  • the obtained liquid composition was applied to a film-like easy-adhesive PET having a thickness of 100 ⁇ m so that the film thickness after drying was 5 ⁇ m, and dried at 100 ° C. to form a coating film. Then, the coating film was irradiated with ultraviolet rays so that the integrated light intensity was 500 mJ / cm 2, and a cured coating film was obtained.
  • the water solubility of the photocurable resin composition (the balance obtained by removing water from the liquid composition of each example) was evaluated according to the following criteria.
  • the curability of the photocurable resin composition was evaluated according to the following criteria.
  • the coating film had hardened due to the loss of tactile touch.
  • ⁇ Pencil hardness> The pencil hardness of the surface of the cured coating film was measured according to JIS K 5600-5-4.
  • Leveling property of the liquid composition was evaluated according to the following criteria. A: When the liquid composition was applied to the easy-adhesion PET, no repellency or the like was generated, and a cured coating film having a smooth surface was obtained. B: When the liquid composition was applied to the easy-adhesive PET, cissing and the like were generated, and a cured coating film having a smooth surface could not be obtained.
  • the urethane (meth) acrylate of the present invention exhibits water solubility when neutralized and can be made into an aqueous solution. By making it into an aqueous solution, the leveling property is improved as compared with the case of the aqueous dispersion, and the surface smoothness of the coating film and the physical properties of the coating film after curing (surface hardness, etc.) can be expected to be improved.
  • the urethane (meth) acrylate of the present invention can be used as a hard coating agent, a cross-linking agent and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明の一実施形態に係るウレタン(メタ)アクリレートは、1個の水酸基と1個以上の第3級アミノ基とを有するアミノアルコール成分(A)と、ジイソシアネート化合物(B1)及び3個以上のイソシアネート基を有するポリイソシアネート化合物(B2)からなる群から選ばれる少なくとも1種のイソシアネート成分(B)と、1個以上の水酸基を有する(メタ)アクリレート成分(C)との反応物であり、前記イソシアネート成分(B)が、前記ポリイソシアネート化合物(B2)を含み、前記(メタ)アクリレート成分(C)が、1個以上の水酸基を有するジペンタエリスリトールポリ(メタ)アクリレート(C1)及び1個以上の水酸基を有するペンタエリスリトールポリ(メタ)アクリレート(C2)からなる群から選ばれる少なくとも1種を含み、重量平均分子量が1000以上である。

Description

ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物
 本発明は、ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物に関する。
 本願は、2019年8月2日に、日本に出願された特願2019-142965号に基づき優先権を主張し、その内容をここに援用する。
 光硬化性樹脂として、ウレタン結合及び(メタ)アクリロイル基を有するウレタン(メタ)アクリレートが知られている。ウレタン(メタ)アクリレートの使用に際しては一般に、ウレタン(メタ)アクリレートを有機溶剤や反応性希釈剤により希釈する。近年、ウレタン(メタ)アクリレートを水で希釈して水系化することが検討されている。
 ウレタン(メタ)アクリレートを含む水系の組成物として、以下のものが提案されている。
 (1)モノ又はポリペンタエリスリトールの(メタ)アクリレートから選ばれる少なくとも一種の単量体、1分子中に少なくとも2個のラジカル重合性不飽和二重結合を有するウレタンポリ(メタ)アクリレート化合物、光重合開始剤、ラジカル重合反応性界面活性剤、水を配合したエマルジョン被覆材組成物(特許文献1)。
 (2)オキシアルキレン基及びアミノ化合物で中和されたカルボキシル基を有する多官能ウレタンアクリレート、光重合開始剤、及び水を含んでなる光硬化性樹脂組成物(特許文献2)。
 (3)カルボキシル基含有ウレタン(メタ)アクリレートを、水混和率が100重量%以上の水溶性反応性希釈剤の存在下で製造するとともに、当該ポリウレタン(メタ)アクリレートのカルボキシル基をアミン塩とした後、さらに水を加え、乳化して得られる水性活性エネルギー線硬化性樹脂組成物(特許文献3)。
 (4)ウレタンアクリレート、エポキシアクリレートから選ばれる硬化性オリゴマーの少なくとも1種を反応性乳化剤の存在下に、水溶媒中に分散させてなる水分散型硬化性樹脂組成物(特許文献4)。
 (5)ラジカル重合性不飽和基を3~30個有する多官能オリゴマーが、ポリアルキレングリコール誘導体を用いたウレタン(メタ)アクリレート系化合物である多官能性反応性界面活性剤の存在下に、水性溶媒中で分散され、エチレン性不飽和モノマーを含有する活性エネルギー線硬化型エマルジョン組成物(特許文献5)。
日本国特開平9-137081号公報 日本国特開平11-209448号公報 日本国特開平11-279242号公報 日本国特開2000-159847号公報 日本国特開2008-303258号公報
 特許文献1~5の組成物はいずれも、水溶液ではなく水分散液であり、均質性が充分ではない。
 本発明は、中和したときに水溶性を示すウレタン(メタ)アクリレート及びその中和物を提供することを目的とする。
 また、本発明は、水溶性のウレタン(メタ)アクリレートを含み、水溶液化が可能な光硬化性樹脂組成物及びこれを用いた液状組成物を提供することを他の目的とする。
 本発明は下記の態様を有する。
 [1]1個の水酸基と1個以上の第3級アミノ基とを有するアミノアルコール成分(A)と、ジイソシアネート化合物(B1)及び3個以上のイソシアネート基を有するポリイソシアネート化合物(B2)からなる群から選ばれる少なくとも1種のイソシアネート成分(B)と、1個以上の水酸基を有する(メタ)アクリレート成分(C)との反応物であり、
 前記イソシアネート成分(B)が、前記ポリイソシアネート化合物(B2)を含み、 前記(メタ)アクリレート成分(C)が、1個以上の水酸基を有するジペンタエリスリトールポリ(メタ)アクリレート(C1)及び1個以上の水酸基を有するペンタエリスリトールポリ(メタ)アクリレート(C2)からなる群から選ばれる少なくとも1種を含み、
 重量平均分子量が1000以上であるウレタン(メタ)アクリレート。
 [2]前記アミノアルコール成分(A)が、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール及び2-(ジブチルアミノ)エタノールからなる群から選ばれる少なくとも1種である、前記[1]のウレタン(メタ)アクリレート。
 [3]前記ジイソシアネート化合物(B1)が、脂環式ジイソシアネート化合物及び脂肪族ジイソシアネート化合物からなる群から選ばれる少なくとも1種であり、
 前記ポリイソシアネート化合物(B2)が、脂環式ポリイソシアネート化合物及び脂肪族ポリイソシアネート化合物からなる群から選ばれる少なくとも1種である、前記[1]又は[2]のウレタン(メタ)アクリレート。
 [4]ポリイソシアネート化合物(B2)が、ポリヘキサメチレンジイソシアネートである、前記[1]~[3]のいずれかのウレタン(メタ)アクリレート。
 [5]前記ジイソシアネート化合物(B1)が、ヘキサメチレンジイソシアネートである、前記[1]~[4]のいずれかのウレタン(メタ)アクリレート。
 [6]前記[1]~[5]のいずれかのウレタン(メタ)アクリレート中の前記アミノアルコール成分(A)に基づく第3級アミノ基がカルボン酸で中和された中和物。
 [7]前記[6]の中和物と、光重合開始剤とを含む光硬化性樹脂組成物。
 [8]重合性不飽和結合を有するモノマーをさらに含む、前記[7]の光硬化性樹脂組成物。
 [9]前記(メタ)アクリレート成分(C)が前記ジペンタエリスリトールポリ(メタ)アクリレート(C1)を含み、
 前記モノマーが、ジペンタエリスリトールヘキサ(メタ)アクリレートを含む、前記[8]の光硬化性樹脂組成物。
 [10]前記ジペンタエリスリトールポリ(メタ)アクリレート(C1)と前記ジペンタエリスリトールヘキサ(メタ)アクリレートとの混合物の水酸基価が80mgKOH/g以上である、前記[9]の光硬化性樹脂組成物。
 [11]前記(メタ)アクリレート成分(C)が前記ペンタエリスリトールポリ(メタ)アクリレート(C2)を含み、
 前記モノマーが、ペンタエリスリトールテトラ(メタ)アクリレートを含む、前記[8]~[10]のいずれかの光硬化性樹脂組成物。
 [12]前記ペンタエリスリトールポリ(メタ)アクリレート(C2)と前記ペンタエリスリトールテトラ(メタ)アクリレートとの混合物の水酸基価が90mgKOH/g以上である、前記[11]の光硬化性樹脂組成物。
 [13]前記[7]~[12]のいずれかの光硬化性樹脂組成物と水とを含む液状組成物。
 本発明によれば、中和したときに水溶性を示すウレタン(メタ)アクリレート及びその中和物を提供できる。
 また、本発明によれば、水溶性のウレタン(メタ)アクリレートを含み、水溶液化が可能な光硬化性樹脂組成物及びこれを用いた液状組成物を提供できる。
 本明細書において、「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基の総称である。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
 「ウレタン(メタ)アクリレート」は、ウレタン結合を有する(メタ)アクリレートである。
 「ポリ(メタ)アクリレート」は、2個以上の(メタ)アクリロイル基を有する(メタ)アクリレートである。
 「重量平均分子量」(以下、「Mw」とも記す。)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定される標準ポリスチレン換算の値である。
 「水酸基価」は、試料中の水酸基をアセチル化して、アセチル化に使用した酢酸を中和するのに必要な水酸化カリウムの量を、前記試料1.0gに対するmg数で表したものであり、試料中の水酸基の含有量を示す尺度となる。水酸基価は、JIS K 0070:1992に規定されている中和滴定法を用いて測定される。
 以下、本発明の好適な実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
〔ウレタン(メタ)アクリレート〕
 本発明の一実施形態に係るウレタン(メタ)アクリレート(以下、「本ウレタン(メタ)アクリレート」とも記す。)は、アミノアルコール成分(A)(以下、「(A)成分」とも記す。)と、イソシアネート成分(B)(以下、「(B)成分」とも記す。)と、1個以上の水酸基を有する(メタ)アクリレート成分(C)(以下、「(C)成分」とも記す。)との反応物である。
 この反応物は、(A)成分に基づく単位と(B)成分に基づく単位と(C)成分に基づく単位とから構成されている。
 <(A)成分>
 (A)成分は、分子内に1個の水酸基と1個以上の第3級アミノ基とを有する。
 (A)成分が有する第3級アミノ基の数は、水溶性の観点から、1個が好ましい。
 (A)成分としては、例えば、(R-N-Rで表される化合物が挙げられる。ここで、Rはアルキル基を示し、Rはヒドロキシアルキル基を示す。式中の2個のRは同一でも異なってもよい。
 Rは直鎖状でも分岐状でもよい。Rの炭素数は、水溶性の観点から、1~4が好ましい。
 Rは直鎖状でも分岐状でもよい。Rの炭素数は、水溶性の観点から、1~4が好ましい。
 (A)成分としては、水溶性の観点から、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール及び2-(ジブチルアミノ)エタノールからなる群から選ばれる少なくとも1種が好ましい。
 (A)成分は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 <(B)成分>
 (B)成分は、ジイソシアネート化合物(B1)及び3個以上のイソシアネート基(-N=C=O)を有するポリイソシアネート化合物(B2)からなる群から選ばれる少なくとも1種である。
 「ジイソシアネート化合物(B1)」
 ジイソシアネート化合物(B1)としては、分子内に2個のイソシアネート基を有する化合物であればよく、例えば、脂肪族ジイソシアネート化合物、脂環族ジイソシアネート化合物、芳香族ジイソシアネート化合物が挙げられる。
 脂肪族ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、メチレンジイソシアネート、エチレンジイソシアネート、ブチレンジイソシアネート、プロピレンジイソシアネート、オクタデシレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,10-デカメチレンジイソシアネートが挙げられる。
 脂環族ジイソシアネート化合物としては、例えば、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(又は2,6)-ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、ダイマー酸ジイソシアネート、1,3-シクロヘキシレンジイソシアネート、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)が挙げられる。
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、キシレンジイソシアネート、ジアニシジンジイソシアネート、フェニルジイソシアネート、ハロゲン化フェニルジイソシアネート、1,5-ナフタレンジイソシアネート、ポリメチレンポリフェニレンジイソシアネート、ナフタレンジイソシアネート、3-フェニル-2-エチレンジイソシアネート、クメン-2,4-ジイソシアネート、4-メトキシ-1,3-フェニレンジイソシアネート、4-エトキシ-1,3-フェニレンジイソシアネート、2,4’-ジイソシアネートジフェニルエーテル、5,6-ジメチル-1,3-フェニレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、ベンジジンジイソシアネート、9,10-アンスラセンジイソシアネート、4,4’-ジイソシアネートベンジル、3,3’-ジメチル-4,4’-ジイソシアネートジフェニルメタン、2,6-ジメチル-4,4’-ジイソシアネートジフェニル、3,3’-ジメトキシ-4,4’-ジイソシアネートジフェニル、1,4-アンスラセンジイソシアネート、フェニレンジイソシアネートが挙げられる。
 以上のジイソシアネート化合物はそれぞれアロファネート体であってもよい。
 ジイソシアネート化合物(B1)としては、黄変抑制の観点から、脂環式ジイソシアネート化合物及び脂肪族ジイソシアネート化合物からなる群から選ばれる少なくとも1種が好ましい。
 上記の中でも、水溶性の観点から、ヘキサメチレンジイソシアネートが好ましい。
 ジイソシアネート化合物(B1)は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 「ポリイソシアネート化合物(B2)」
 ポリイソシアネート化合物(B2)としては、分子内に3個以上のイソシアネート基を有する化合物であればよく、例えば、脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、脂肪族ジイソシアネート化合物の多量体、ビウレット体及びアダクト体が挙げられる。
 脂環族ポリイソシアネート化合物としては、例えば、脂環族ジイソシアネート化合物の多量体、ビウレット体及びアダクト体が挙げられる。
 芳香族ポリイソシアネート化合物としては、例えば、芳香族ジイソシアネート化合物の多量体、ビウレット体及びアダクト体、並びにトリフェニルメタントリイソシアネートが挙げられる。
 脂肪族ジイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物それぞれの具体例は前記したとおりである。
 多量体としては、例えばヌレート体(イソシアヌレート)が挙げられる。
 ポリイソシアネート化合物(B2)としては、黄変抑制の観点から、脂環式ポリイソシアネート化合物及び脂肪族ポリイソシアネート化合物からなる群から選ばれる少なくとも1種が好ましい。
 上記の中でも、水溶性の観点から、ポリヘキサメチレンジイソシアネート(ヘキサメチレンジイソシアネートの多量体)が好ましく、ヘキサメチレンジイソシアネートヌレート(ヘキサメチレンジイソシアネートのヌレート体)が特に好ましい。
 ポリイソシアネート化合物(B2)は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 (B)成分は、本ウレタン(メタ)アクリレートの中和物の水溶性の観点から、ジイソシアネート化合物(B1)及びポリイソシアネート化合物(B2)のうち少なくとも、ポリイソシアネート化合物(B2)を含む。
 (B)成分の総質量に対するポリイソシアネート化合物(B2)の割合は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。該割合の上限に特に制限はなく、100質量%であってもよい。ポリイソシアネート化合物(B2)の割合の割合が前記下限値以上であれば、本ウレタン(メタ)アクリレートの中和物の水溶性がより優れる。
 <(C)成分>
 (C)成分は、1個以上の水酸基を有するジペンタエリスリトールポリ(メタ)アクリレート(C1)(以下、「化合物(C1)」とも記す。)及び1個以上の水酸基を有するペンタエリスリトールポリ(メタ)アクリレート(C2)(以下、「化合物(C2)」とも記す。)からなる群から選ばれる少なくとも1種を含む。
 化合物(C1)は、ジペンタエリスリトールの6個の水酸基のうち2個以上5個以下が(メタ)アクリロイルオキシ基で置換された化合物である。具体的には、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。これら化合物(C1)は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 化合物(C2)は、ペンタエリスリトールの4個の水酸基のうち2個以上3個以下が(メタ)アクリロイルオキシ基で置換された化合物である。具体的には、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが挙げられる。これら化合物(C2)は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 (C)成分が化合物(C1)を含む場合、(C)成分は、本ウレタン(メタ)アクリレートの中和物の水溶性の観点から、化合物(C1)として、2個以上の水酸基を有するもの、つまりジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールテトラ(メタ)アクリレートからなる群から選ばれる少なくとも1種を含むことが好ましい。化合物(C1)として、2個以上の水酸基を有するものと、ジペンタエリスリトールテトラ(メタ)アクリレートとを併用してもよい。
 (C)成分が化合物(C2)を含む場合、(C)成分は、本ウレタン(メタ)アクリレートの中和物の水溶性の観点から、化合物(C2)として、2個以上の水酸基を有するもの、つまりペンタエリスリトールジ(メタ)アクリレートを含むことが好ましい。化合物(C2)として、ペンタエリスリトールジ(メタ)アクリレートと、ペンタエリスリトールトリ(メタ)アクリレートとを併用してもよい。
 水酸基の数が多いほど、本ウレタン(メタ)アクリレート1分子あたりの第3級アミノ基の導入量が増え、中和物の水溶性が高まる。
 (C)成分は、化合物(C1)及び化合物(C2)以外の、1個以上の水酸基を有する(メタ)アクリレートをさらに含んでいてもよい。かかる(メタ)アクリレートとしては、例えば、ジペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレートが挙げられる。
 (C)成分の総質量に対する化合物(C1)及び化合物(C2)の合計の割合は、90質量%以上が好ましく、95質量%以上がより好ましく、100質量%であってもよい。
 本ウレタン(メタ)アクリレートは、(A)成分に由来して、第3級アミノ基を有する。
 本ウレタン(メタ)アクリレート中の第3級アミノ基の含有量は、本ウレタン(メタ)アクリレートの総質量に対する第3級アミノ基中の窒素原子の割合として、0.1~6質量%が好ましく、0.2~3質量%がより好ましい。前記窒素原子の割合が上記下限値以上であれば、本ウレタン(メタ)アクリレートの中和物の水溶性がより優れる。前記窒素原子の割合が上記上限値以下であれば、表面硬度が高く耐擦り傷性、ハードコート性に優れる硬化物を得やすい。前記窒素原子の割合は、仕込み比の計算により求められる。
 本ウレタン(メタ)アクリレートは、(C)成分に由来して、(メタ)アクリロイル基を有し、したがって、重合性不飽和結合(炭素-炭素二重結合)を有する。
 本ウレタン(メタ)アクリレートの二重結合当量は、125~250g/molが好ましく、130~200g/molがより好ましい。二重結合当量が上記下限値以上であれば、表面硬度が高く耐擦り傷性、ハードコート性に優れる硬化物を得やすい。二重結合当量が上記上限値以下であれば、可トウ性がより優れる。
 「二重結合当量」とは、化合物における二重結合1モル当たりの質量である。
 本ウレタン(メタ)アクリレート1gを製造するにあたって必要な(C)成分のモル数をαmolとし、(C)成分1分子中に含まれる重合性不飽和結合の数をβ個とした場合、二重結合当量は1/(α×β)により算出される。
 (C)成分として、重合性不飽和結合の数((メタ)アクリロイル基の数)が異なる複数の化合物を併用する場合、βは、各化合物が有する重合性不飽和結合の数と各化合物の存在比(モル比)から算出される加重平均値である。各化合物の存在比は、仕込み比により求められる。
 本ウレタン(メタ)アクリレートのMwは、1000以上であり、1300以上が好ましい。
 本ウレタン(メタ)アクリレートのMwは、20000以下が好ましく、2000以下がより好ましい。
 本ウレタン(メタ)アクリレートのMwは、1000以上20000以下が好ましく、1300以上2000以下がより好ましい。
 <ウレタン(メタ)アクリレートの製造方法>
 本ウレタン(メタ)アクリレートは、(A)成分と(B)成分と(C)成分とを反応(ウレタン化反応)させることにより製造できる。これら各成分を反応させると、(A)成分及び(C)成分の水酸基と(B)成分のイソシアネート基とがウレタン結合を形成して本ウレタン(メタ)アクリレートが生成する。
 ウレタン化反応の反応温度は、例えば50~150℃、さらには60~100℃である。
 ウレタン化反応の反応時間は、反応温度、触媒の有無や種類によって異なるが、例えば6~48時間、さらには12~36時間である。
 上記ウレタン化反応において各成分の割合は、(A)成分及び(C)成分が有する水酸基の数、合成後の物性等を考慮して適宜選定できる。
 (A)成分の水酸基と(C)成分の水酸基との合計数に対する(B)成分のイソシアネート基の数の割合(NCO/OH)は、例えば0.5~2である。
 (A)成分と(B)成分と(C)成分との合計質量に対する(A)成分の割合は、3~30質量%が好ましく、3~15質量%がより好ましい。
 (A)成分と(B)成分と(C)成分との合計質量に対する(B)成分の割合は、7~50質量%が好ましく、15~40質量%がより好ましい。
 (A)成分と(B)成分と(C)成分との合計質量に対する(C)成分の割合は、50~90質量%が好ましく、65~80質量%がより好ましい。
 (A)成分と(C)成分との合計質量に対する(A)成分の割合は、3~40質量%が好ましく、5~20質量%がより好ましい。
 上記ウレタン化反応は、ジペンタエリスリトールヘキサ(メタ)アクリレート(以下、「DPH(M)A」とも記す。)又は/及びペンタエリスリトールテトラ(メタ)アクリレート(以下、「PET(M)A」とも記す。)の存在下で行うことができる。
 (C)成分が化合物(C1)を含む場合、典型的には、DPH(M)Aの存在下で上記ウレタン化反応を行う。
 化合物(C1)は一般に、ジペンタエリスリトールと(メタ)アクリル酸とをエステル化反応させることにより製造され、DPH(M)Aとの混合物として生成する。この混合物は、(メタ)アクリロイル基数が異なる複数の化合物(C1)を含み得る。
 化合物(C1)とDPH(M)Aとの混合物を用いて上記ウレタン化反応を行うと、水酸基を有さないDPH(M)Aは(B)成分と反応せずにそのまま残存し、本ウレタン(メタ)アクリレートとDPH(M)Aとの混合物が得られる。混合物中のDPH(M)Aは、混合物中の本ウレタン(メタ)アクリレートを中和する際にも反応せずにそのまま残存するので、光硬化性樹脂組成物のモノマーとして利用できる。
 化合物(C1)とDPH(M)Aとの混合物の水酸基価は、80mgKOH/g以上が好ましい。混合物の水酸基価が大きいほどDPH(M)Aの割合が少ない傾向がある。DPH(M)Aは単独では非水溶性であるが、化合物(C1)とDPH(M)Aとの混合物の水酸基価が80mgKOH/g以上であれば、前記混合物から本ウレタン(メタ)アクリレートとDPH(M)Aとの混合物を得て、前記混合物中の本ウレタン(メタ)アクリレートを中和して得られる、本ウレタン(メタ)アクリレートとDPH(M)Aとの混合物が、水溶性となりやすい。
 化合物(C1)とDPH(M)Aとの混合物の水酸基価の上限は、特に限定されないが、例えば130mgKOH/gである。
 (C)成分が化合物(C2)を含む場合、典型的には、PET(M)Aの存在下で上記ウレタン化反応を行う。
 化合物(C2)は一般に、ペンタエリスリトールと(メタ)アクリル酸とをエステル化反応させることにより製造され、PET(M)Aとの混合物として生成する。この混合物は、(メタ)アクリロイル基数が異なる複数の化合物(C2)を含み得る。
 化合物(C2)とPET(M)Aとの混合物を用いて上記ウレタン化反応を行うと、水酸基を有さないPET(M)Aは(B)成分と反応せずにそのまま残存し、本ウレタン(メタ)アクリレートとPET(M)Aとの混合物が得られる。混合物中のPET(M)Aは、混合物中の本ウレタン(メタ)アクリレートを中和する際にも反応せずにそのまま残存するので、光硬化性樹脂組成物のモノマーとして利用できる。
 化合物(C2)とPET(M)Aとの混合物の水酸基価は、90mgKOH/g以上が好ましく、100mgKOH/g以上がより好ましい。混合物の水酸基価が大きいほどPET(M)Aの割合が少ない傾向がある。PET(M)Aは単独では非水溶性であるが、化合物(C2)とPET(M)Aとの混合物の水酸基価が90mgKOH/g以上であれば、該混合物から本ウレタン(メタ)アクリレートとPET(M)Aとの混合物を得て、該混合物中の本ウレタン(メタ)アクリレートを中和して得られる、本ウレタン(メタ)アクリレートとPET(M)Aとの混合物が、水溶性となりやすい。
 化合物(C2)とPET(M)Aとの混合物の水酸基価の上限は、特に限定されないが、例えば290mgKOH/gである。
 化合物(C2)とPET(M)Aとの混合物の水酸基価は、例えば90~290mgKOH/g、さらには100~290mgKOH/gであってよい。
 上記ウレタン化反応は、反応時間の短縮の観点から、触媒の存在下で行うことが好ましい。触媒としては、公知のウレタン化触媒を用いることができ、例えばジブチルスズアセテート、ジブチルスズジラウレート、ジオクチルスズジラウレート等の有機金属化合物、トリエチレンジアミン、トリエチルアミン等の塩基性化合物が挙げられる。
 触媒の使用量は、用いる触媒の活性によって適宜調整することが可能であるが、(A)成分と(C)成分との合計質量に対し、0.01~0.50質量%が好ましく、0.03~0.30質量%がより好ましく、0.05~0.25質量%がさらに好ましい。
 上記ウレタン化反応は、(メタ)アクリロイル基が反応することを抑制する観点から、熱重合禁止剤の存在下で行うことが好ましい。熱重合禁止剤としては、公知の熱重合禁止剤を用いることができ、例えば2,6-ジ-tert-ブチル-p-クレゾール、4-メトキシフェノールが挙げられる。
 熱重合禁止剤の使用量は、用いる熱重合禁止剤の活性によって適宜調整することが可能であるが、反応性生成物100質量%に対し、0.01~1.5質量%が好ましく、0.03~1.0質量%がより好ましく、0.03~0.8質量%がさらに好ましい。
 ウレタン化反応においては、(B)成分中のイソシアネート基の実質的に全てが(A)成分又は(C)成分と反応することが好ましい。
 反応物の赤外線吸収スペクトルを測定し、イソシアネート残基に由来する波長2200~2300cm-1の吸収が観察されなくなったことをもって、(B)成分中のイソシアネート基の実質的に全てが(A)成分又は(C)成分と反応したと判断することができる。
〔ウレタン(メタ)アクリレートの中和物〕
 本発明の一実施形態に係る中和物(以下、「本中和物」とも記す。)は、本ウレタン(メタ)アクリレート中の(A)成分に基づく第3級アミノ基がカルボン酸で中和されたものである。第3級アミノ基がカルボン酸で中和されることで、水溶性が発現する。
 本中和物においては、第3級アミノ基の全部が中和されていてもよく、一部が中和されていてもよい。水溶性の観点から、本中和物中の全ての第3級アミノ基100モル%に対し、カルボン酸で中和された第3級アミノ基の割合は、80モル%以上が好ましく、95モル%以上がより好ましく、100モル%であってもよい。カルボン酸で中和された第3級アミノ基の割合が高いほど、水溶性に優れる傾向がある。
 本中和物中の全ての第3級アミノ基は、カルボン酸で中和された第3級アミノ基と、カルボン酸で中和されていない第3級アミノ基との合計である。
 カルボン酸としては、カルボキシル基を有し、第3級アミノ基を中和可能なものであればよく、例えば酢酸、アクリル酸が挙げられる。これらのカルボン酸は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。カルボン酸としては、水への溶解性の観点から、酢酸、アクリル酸が好ましい。
 本中和物は、例えば、本ウレタン(メタ)アクリレートとカルボン酸水溶液とを接触させることにより製造できる。
 接触時の温度は、例えば20~70℃である。接触時間は、例えば10~60分間である。
 本ウレタン(メタ)アクリレートの代わりに本ウレタン(メタ)アクリレートとDPH(M)A又はPET(M)Aとの混合物を用いてもよい。この場合、本中和物とDPH(M)A又はPET(M)Aとの混合物が得られる。
〔光硬化性樹脂組成物〕
 本発明の一実施形態に係る光硬化性樹脂組成物(以下、「本樹脂組成物」とも記す。)は、本中和物と光重合開始剤とを含む。
 本樹脂組成物は、重合性不飽和結合を有するモノマーをさらに含むことが好ましい。 本樹脂組成物は、必要に応じて、他の成分をさらに含んでいてもよい。
 本樹脂組成物に光が照射されると、光重合開始剤の分子内開裂や水素移動により活性種(ラジカルやカチオン)が生成し、前記活性種が本ウレタン(メタ)アクリレートやモノマーに作用して重合又は架橋反応が起こり、本樹脂組成物が硬化する。
 <光重合開始剤>
 光重合開始剤としては、公知の光重合開始剤を用いることができ、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、α-ヒドロキシアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルフォリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ヒドロキシベンゾフェノン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2,4,6-トリス(トリクロロメチル)-S-トリアジン、2-メチル-4,6-ビス(トリクロロ)-S-トリアジン、2-(4-メトキシフェニル)-4、6-ビス(トリクロロメチル)-S-トリアジン、鉄-アレン錯体、チタノセン化合物が挙げられる。これらの光重合開始剤は、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 <モノマー>
 モノマーは、重合性不飽和結合を1個有する単官能モノマーでもよく、重合性不飽和結合を2個以上有する多官能モノマーでもよい。単官能モノマーと多官能モノマーとを併用してもよい。
 モノマーは、水溶性モノマーでもよく、非水溶性モノマーでもよい。水溶性モノマーと非水溶性モノマーとを併用してもよい。「水溶性モノマー」とは、水と混和して均一な溶液となるモノマーを示す。
 単官能モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート等の水酸基含有単官能(メタ)アクリレート、アクリロイルモルフォリン、ジメチルアクリルアミド、イソボルニルアクリレートが挙げられる。
 多官能モノマーとしては、例えば、ペンタエリスリトールジ又はトリ(メタ)アクリレート、ジペンタエリスリトールジ、トリ、テトラ又はペンタ(メタ)アクリレート等の水酸基含有多官能(メタ)アクリレート、DPH(M)A、PET(M)A、トリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレートが挙げられる。 これらのモノマーは、1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 モノマーは、表面硬度に優れた硬化膜を形成する観点では、多官能モノマーを含むことが好ましい。多官能モノマーとしては、重合性不飽和結合を3個以上有するモノマーが好ましく、硬度の観点から、DPH(M)A、PET(M)Aが特に好ましい。
 (C)成分が化合物(C1)を含む場合は、モノマーがDPH(M)Aを含むことが好ましい。
 (C)成分が化合物(C2)を含む場合は、モノマーがPET(M)Aを含むことが好ましい。
 <他の成分>
 他の成分としては、熱重合禁止剤、紫外線吸収剤、シランカップリング剤、可塑剤、難燃剤、帯電防止剤、老化防止剤、抗菌剤、防黴剤、消泡剤、レベリング剤、フィラー、増粘剤、密着性付与剤、チキソ性付与剤、光輝材等の添加剤が挙げられる。
 <各成分の含有量>
 本ウレタン(メタ)アクリレート及びモノマーの合計の含有量は、本樹脂組成物の総質量に対し、20~70質量%が好ましく、30~60質量%がより好ましい。
 本ウレタン(メタ)アクリレート及びモノマーの合計の含有量に対する本ウレタン(メタ)アクリレートの割合は、1~30質量%が好ましく、1~20質量%がより好ましい。本ウレタン(メタ)アクリレートの割合が前記下限値以上であれば、モノマーとして非水溶性モノマー(DPH(M)A、PET(M)A等)を含んでいても、本樹脂組成物が水溶性を示しやすい。
 本樹脂組成物中の本ウレタン(メタ)アクリレートを形成する(C)成分が化合物(C1)を含み、モノマーがDPH(M)Aを含む場合、DPH(M)Aの含有量は、化合物(C1)とDPH(M)Aとの混合物の水酸基価が80mgKOH/g以上となる量が好ましい。混合物の水酸基価が大きいほどDPH(M)Aの割合が少ない傾向がある。DPH(M)Aは単独では非水溶性であるが、化合物(C1)とDPH(M)Aとの混合物の水酸基価が80mgKOH/g以上であれば、本樹脂組成物が水溶性を示しやすい。
 化合物(C1)とDPH(M)Aとの混合物の水酸基価の上限は、特に限定されないが、例えば130mgKOH/gである。
 本樹脂組成物中の本ウレタン(メタ)アクリレートを形成する(C)成分が化合物(C2)を含み、モノマーがPET(M)Aを含む場合、PET(M)Aの含有量は、化合物(C2)とPET(M)Aとの混合物の水酸基価が90mgKOH/g以上となる量が好ましく、100mgKOH/g以上となる量がより好ましい。混合物の水酸基価が大きいほどPET(M)Aの割合が少ない傾向がある。PET(M)Aは単独では非水溶性であるが、化合物(C2)とPET(M)Aとの混合物の水酸基価が90mgKOH/g以上であれば、本樹脂組成物が水溶性を示しやすい。
 化合物(C2)とPET(M)Aとの混合物の水酸基価の上限は、特に限定されないが、例えば290mgKOH/gである。
 化合物(C2)とPET(M)Aとの混合物の水酸基価は、例えば90~290mgKOH/g、さらには100~290mgKOH/gであってよい。
 光重合開始剤の含有量は、本樹脂組成物の総質量に対し、0.5~7.0質量%が好ましく、1~5質量%がより好ましい。光重合開始剤の含有量が前記下限値以上であれば、本樹脂組成物の光硬化性がより優れ、前記上限値以下であれば、本樹脂組成物の保存安定性がより優れる。
 本樹脂組成物は、本ウレタン(メタ)アクリレートと、光重合開始剤と、必要に応じてモノマー及び他の成分を混合することにより製造できる。各成分の混合順序は特に限定されない。モノマーがDPH(M)Aを含む場合、本ウレタン(メタ)アクリレートとDPH(M)Aとの混合物を用いて本樹脂組成物を製造してもよい。モノマーがPET(M)Aを含む場合、本ウレタン(メタ)アクリレートとPET(M)Aとの混合物を用いて本樹脂組成物を製造してもよい。
 本樹脂組成物は、光を照射することで硬化させて硬化物とすることができる。
 光としては、可視光線、紫外線、プラズマ、赤外線、電離放射線等が挙げられる。これらの中では、照射装置が広く普及している観点から、紫外線が好ましい。
 光の照射条件は、使用する光源に応じて適宜選定できる。紫外線を照射する場合の積算光量は、例えば50~1000mJ/cmである。
〔液状組成物〕
 本発明の一実施形態に係る液状組成物(以下、「本液状組成物」とも記す。)は、本樹脂組成物と水とを含む。本液状組成物は典型的には水溶液状である。
 本液状組成物中の本樹脂組成物の含有量は、例えば、本液状組成物の総質量に対し、10~60質量%である。
 本液状組成物は、必要に応じて、水以外の他の非反応性希釈剤をさらに含んでいてもよい。非反応性希釈剤は、重合性不飽和結合を有さず、常温で液状の化合物である。他の非反応性希釈剤としては、水と相溶可能なものが好ましく、例えばメタノール、エタノール、イソプロピルアルコール、プロピレングリコールモノメチルエーテルが挙げられる。
 水系の概念を考慮すると、本液状組成物100質量%中の他の非反応性希釈剤の含有量は、15質量%以下が好ましく、0質量%が特に好ましい。
 本液状組成物は、例えば、本樹脂組成物の硬化物からなる塗膜の形成に用いることができる。任意の基材の表面に本液状組成物を塗布し、乾燥することで本樹脂組成物からなる塗膜を形成し、前記塗膜に光を照射して硬化させることで、本樹脂組成物の硬化物からなる塗膜(硬化塗膜)が得られる。
 基材としては、例えば樹脂、フィルム、シート、成型物が挙げられる。樹脂としては、例えばポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート樹脂、ABS樹脂が挙げられる。
 塗布方法としては、公知の塗布方法を適宜採用でき、例えばスプレーコート、スピンコート、グラビヤコートが挙げられる。
 乾燥条件としては、水等の非反応性希釈剤を除去できればよく、例えば60~110℃で0.5~10分間の条件が挙げられる。
 光の照射条件は前記と同様である。
 塗膜の厚さ(乾燥後)は、例えば1~10μmとすることができる。
 以下、本発明について実施例を挙げて具体的に説明する。
 以下において「部」は「質量部」、「%」は「質量%」を示す。
 「ジペンタエリスリトールアクリレート混合物」は、アクリロイル基の数が異なる複数のジペンタエリスリトールアクリレートの混合物であり、水酸基を有するジペンタエリスリトールポリアクリレート及びジペンタエリスリトールヘキサアクリレート(DPHA)を含み、水酸基価が80mgKOH/gのものを用いた。
 「ペンタエリスリトールアクリレート混合物」は、アクリロイル基の数が異なる複数のペンタエリスリトールアクリレートの混合物であり、水酸基を有するペンタエリスリトールポリアクリレート及びペンタエリスリトールテトラアクリレート(PETA)を含み、水酸基価が100mgKOH/gのものを用いた。
 ウレタンアクリレート・DPHA含有混合物におけるウレタンアクリレートとDPHAとの比率、及びウレタンアクリレート・PETA含有混合物におけるウレタンアクリレートとPETAとの比率はそれぞれ、GPC(ゲル浸透クロマトグラフィー)の面積比である。
[製造例1]
 温度計、冷却管、攪拌装置を備えた4口フラスコに、ジペンタエリスリトールアクリレート混合物の501部と、2-(ジメチルアミノ)エタノール50部と、ジブチルスズジラウレート0.2部と、2,6-ジ-tert-ブチル-p-クレゾール0.8部と、ヘキサメチレンジイソシアネートヌレート249部とを投入し、充分に攪拌した後、70℃に昇温し、約24時間攪拌加熱して反応させた。反応後、赤外線吸収スペクトル測定によりイソシアネート残基が観測されなくなったのを確認した。このようにして、ウレタンアクリレートとDPHAとを含む混合物(以下、「ウレタンアクリレート・DPHA含有混合物」とも記す。)を得た。ウレタンアクリレート・DPHA含有混合物におけるウレタンアクリレートとDPHAとの比率は、ウレタンアクリレート:DPHA=37:63であった。
[製造例2~3、比較製造例1~4]
 4口フラスコに投入する材料の種類及び量を表1に示す配合に従って変更した以外は製造例1と同様にしてウレタンアクリレート・DPHA含有混合物又はウレタンアクリレートとPETAとを含む混合物(以下、「ウレタンアクリレート・PETA含有混合物」とも記す。)を得た。ただし、比較製造例2では、(C)成分の代わりに比較品を用いたので、得られた混合物はDPHA及びPETAを含まない。表1に、各製造例のウレタンアクリレート・DPHA含有混合物又はウレタンアクリレート・PETA含有混合物におけるウレタンアクリレートとDPHA又はPETAとの比率を示す。
[実施例1]
 攪拌装置を備えたフラスコに、製造例1で得たウレタンアクリレート・DPHA含有混合物の35部と、光重合開始剤(2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、IGM Resins B.V.社製品名「Omnirad 2959」)(以下、単に「Omnirad 2959」と記す。)の1.1部と、80%酢酸の1.8部と、水の66部とを投入し、約1時間攪拌して液状組成物を得た。攪拌後の液状組成物は淡黄色透明であった。
 得られた液状組成物を、厚さ100μmのフィルム状の易接着PETに、乾燥後の膜厚が5μmになるように塗布し、100℃で乾燥して塗膜を形成した。その後、塗膜に対して紫外線を、積算光量が500mJ/cmとなるように照射して硬化塗膜を得た。
[実施例2~4]
 フラスコに投入する材料の種類及び量を表2に示す配合に従って変更した以外は実施例1と同様にして液状組成物を得た。表2中、「ACMO」は、アクリロイルモルフォリンを示す。攪拌後の液状組成物はいずれも淡黄色透明であった。
 得られた液状組成物を、厚さ100μmのフィルム状の易接着PETに、乾燥後の膜厚が5μmになるように塗布し、100℃で乾燥して塗膜を形成した。その後、塗膜に対して紫外線を、積算光量が500mJ/cmとなるように照射して硬化塗膜を得た。
[比較例1~4]
 フラスコに投入する材料の種類及び量を表2に示す配合に従って変更した以外は実施例1と同様にして液状組成物を得た。液状組成物はいずれも、撹拌後も相分離を起こしたままで、透明にはならなかった。
[評価]
 各例の液状組成物及び硬化塗膜について、以下の評価を行った。結果を表2に示す。 なお、水溶性の評価がBであった比較例1~4については、水溶性以外の評価は行わなかった。
 <水溶性>
 光硬化性樹脂組成物(各例の液状組成物から水を除いた残部)の水溶性を以下の基準で評価した。
 A:液状組成物が約1時間の攪拌後に透明になっており、その後、7日間放置しても分離等の現象が発生しなかった。
 B:液状組成物が約1時間の攪拌後に透明になっていなかった。
 <硬化性>
 光硬化性樹脂組成物の硬化性を以下の基準で評価した。
 A:積算光量500mJ/cmの紫外線の照射で塗膜が硬化した。
 B:積算光量500mJ/cmの紫外線の照射で塗膜が硬化しなかった。
 ここで、塗膜が硬化したことは、指触タックの喪失により確認した。
 <鉛筆硬度>
 硬化塗膜の表面の鉛筆硬度をJIS K 5600-5-4に従って測定した。
 <レベリング性>
 液状組成物のレベリング性を以下の基準で評価した。
 A:液状組成物を易接着PETに塗布したときに、ハジキ等が発生せず、表面の平滑な硬化塗膜が得られた。
 B:液状組成物を易接着PETに塗布したときに、ハジキ等が発生し、表面の平滑な硬化塗膜が得られなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 製造例1~3で得たウレタンアクリレート・DPHA含有混合物又はウレタンアクリレート・PETA含有混合物を用いた実施例1~4では、光硬化性樹脂組成物が水溶性を示した。また、光硬化性樹脂組成物の硬化性、硬化塗膜の表面硬度、液状組成物のレベリング性に優れていた。
 比較製造例1~4で得たウレタンアクリレート・DPHA含有混合物又はウレタンアクリレート・PETA含有混合物を用いた比較例1~4では、光硬化性樹脂組成物が水溶性を示さなかった。
 本発明のウレタン(メタ)アクリレートは、中和したときに水溶性を示し、水溶液化が可能である。水溶液化することで、水分散液の場合に比べて、レベリング性が向上し、塗膜の表面平滑性及び硬化後の塗膜物性(表面硬度等)の向上が期待できる。
 本発明のウレタン(メタ)アクリレートは、ハードコート剤、架橋剤等として利用できる。

Claims (13)

  1.  1個の水酸基と1個以上の第3級アミノ基とを有するアミノアルコール成分(A)と、ジイソシアネート化合物(B1)及び3個以上のイソシアネート基を有するポリイソシアネート化合物(B2)からなる群から選ばれる少なくとも1種のイソシアネート成分(B)と、1個以上の水酸基を有する(メタ)アクリレート成分(C)との反応物であり、
     前記イソシアネート成分(B)が、前記ポリイソシアネート化合物(B2)を含み、
     前記(メタ)アクリレート成分(C)が、1個以上の水酸基を有するジペンタエリスリトールポリ(メタ)アクリレート(C1)及び1個以上の水酸基を有するペンタエリスリトールポリ(メタ)アクリレート(C2)からなる群から選ばれる少なくとも1種を含み、
     重量平均分子量が1000以上であるウレタン(メタ)アクリレート。
  2.  前記アミノアルコール成分(A)が、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール及び2-(ジブチルアミノ)エタノールからなる群から選ばれる少なくとも1種である、請求項1に記載のウレタン(メタ)アクリレート。
  3.  前記ジイソシアネート化合物(B1)が、脂環式ジイソシアネート化合物及び脂肪族ジイソシアネート化合物からなる群から選ばれる少なくとも1種であり、
     前記ポリイソシアネート化合物(B2)が、脂環式ポリイソシアネート化合物及び脂肪族ポリイソシアネート化合物からなる群から選ばれる少なくとも1種である、請求項1又は2に記載のウレタン(メタ)アクリレート。
  4.  前記ポリイソシアネート化合物(B2)が、ポリヘキサメチレンジイソシアネートである、請求項1又は2に記載のウレタン(メタ)アクリレート。
  5.  前記ジイソシアネート化合物(B1)が、ヘキサメチレンジイソシアネートである、請求項1~4のいずれか一項に記載のウレタン(メタ)アクリレート。
  6.  請求項1~5のいずれか一項に記載のウレタン(メタ)アクリレート中の前記アミノアルコール成分(A)に基づく第3級アミノ基がカルボン酸で中和された中和物。
  7.  請求項6に記載の中和物と、光重合開始剤とを含む光硬化性樹脂組成物。
  8.  重合性不飽和結合を有するモノマーをさらに含む、請求項7に記載の光硬化性樹脂組成物。
  9.  前記(メタ)アクリレート成分(C)が前記ジペンタエリスリトールポリ(メタ)アクリレート(C1)を含み、
     前記モノマーが、ジペンタエリスリトールヘキサ(メタ)アクリレートを含む、請求項8に記載の光硬化性樹脂組成物。
  10.  前記ジペンタエリスリトールポリ(メタ)アクリレート(C1)と前記ジペンタエリスリトールヘキサ(メタ)アクリレートとの混合物の水酸基価が80mgKOH/g以上である、請求項9に記載の光硬化性樹脂組成物。
  11.  前記(メタ)アクリレート成分(C)が前記ペンタエリスリトールポリ(メタ)アクリレート(C2)を含み、
     前記モノマーが、ペンタエリスリトールテトラ(メタ)アクリレートを含む、請求項8~10のいずれか一項に記載の光硬化性樹脂組成物。
  12.  前記ペンタエリスリトールポリ(メタ)アクリレート(C2)と前記ペンタエリスリトールテトラ(メタ)アクリレートとの混合物の水酸基価が90mgKOH/g以上である、請求項11に記載の光硬化性樹脂組成物。
  13.  請求項7~12のいずれか一項に記載の光硬化性樹脂組成物と水とを含む液状組成物。
PCT/JP2020/028789 2019-08-02 2020-07-28 ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物 WO2021024842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021537236A JP7040842B2 (ja) 2019-08-02 2020-07-28 ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物
CN202080034653.5A CN113811555B (zh) 2019-08-02 2020-07-28 氨基甲酸酯(甲基)丙烯酸酯、其中和物、光固化性树脂组合物及液状组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019142965 2019-08-02
JP2019-142965 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024842A1 true WO2021024842A1 (ja) 2021-02-11

Family

ID=74503562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028789 WO2021024842A1 (ja) 2019-08-02 2020-07-28 ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物

Country Status (3)

Country Link
JP (1) JP7040842B2 (ja)
CN (1) CN113811555B (ja)
WO (1) WO2021024842A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202777A (ja) * 2009-03-04 2010-09-16 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化性組成物
WO2014106939A1 (ja) * 2013-01-07 2014-07-10 宇部興産株式会社 水性樹脂分散体及びその使用
WO2017161607A1 (zh) * 2016-03-24 2017-09-28 万华化学集团股份有限公司 水性可辐射固化聚氨酯丙烯酸酯组合物及制备方法及涂料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181972A1 (ja) * 2017-03-31 2018-10-04 日本合成化学工業株式会社 活性エネルギー線硬化性樹脂組成物及びコーティング剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202777A (ja) * 2009-03-04 2010-09-16 Toyo Ink Mfg Co Ltd 活性エネルギー線硬化性組成物
WO2014106939A1 (ja) * 2013-01-07 2014-07-10 宇部興産株式会社 水性樹脂分散体及びその使用
WO2017161607A1 (zh) * 2016-03-24 2017-09-28 万华化学集团股份有限公司 水性可辐射固化聚氨酯丙烯酸酯组合物及制备方法及涂料

Also Published As

Publication number Publication date
JPWO2021024842A1 (ja) 2021-02-11
CN113811555B (zh) 2023-03-10
JP7040842B2 (ja) 2022-03-23
CN113811555A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US4861629A (en) Polyfunctional ethylenically unsaturated cellulosic polymer-based photocurable compositions
US20080255264A1 (en) Low Viscosity Multi-Functional Urethane Acrylate Oligomer-Containing High Solid Uv Curable Coating Compostion
EP1189964B1 (en) Radiation curable coating containing polyfluorooxetane
JP4802461B2 (ja) 光重合開始剤及びそれを用いた光硬化性材料
KR20120052192A (ko) 우레탄(메타)아크릴레이트 화합물 및 그것을 함유하는 수지 조성물
KR101624213B1 (ko) 활성 에너지선 경화형 수성 수지 조성물, 활성 에너지선 경화형 수성 도료, 및 당해 도료로 도장된 물품
KR101455422B1 (ko) 수성 우레탄 수지 조성물
CA2335258A1 (en) Process for preparing radiation-curable binders, and the coatings produced therewith
JP3251608B2 (ja) ウレタン(メタ)アクリレートオリゴマーの製造方法およびそれを用いた光硬化性樹脂組成物
JP7040842B2 (ja) ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物
JP7040843B2 (ja) ウレタン(メタ)アクリレート、その中和物、光硬化性樹脂組成物及び液状組成物
JP7054753B1 (ja) ハードコート樹脂組成物
JP3301447B2 (ja) ウレタン・不飽和オルガノオリゴマーとその製造方法
JP7105502B2 (ja) ウレタン(メタ)アクリレート含有組成物、光硬化性樹脂組成物、その硬化物、ハードコート剤、及びハードコート層付き基材
JP2020084093A (ja) 高安全性ウレタンアクリレートとその製造方法
KR102124853B1 (ko) 폴리에스테르 폴리올의 혼합물을 이용한 광경화 우레탄 아크릴레이트 중합체 및 이의 제조방법
JP3157321B2 (ja) 活性エネルギー線硬化型樹脂組成物
JP5229501B2 (ja) 活性エネルギー線硬化性樹脂、活性エネルギー線硬化性樹脂組成物、コーティング剤及びプラスチック成形物
JP3193495B2 (ja) 活性エネルギー線硬化性樹脂組成物
JP2006063163A (ja) 活性エネルギー線硬化性樹脂、活性エネルギー線硬化性樹脂組成物、コーティング剤及びプラスチック成形物
ES2688698T3 (es) Alofanato poliacrilato
JPH05209038A (ja) 紫外線硬化性ウレタンアクリレートオリゴマー
WO2024033289A1 (en) A photocurable oligomer containing uretdione groups, method of preparing the oligomer and dual-cure resin composition containing the oligomer thereof
JP3090047B2 (ja) 水洗浄可能な非水系活性エネルギー線硬化性樹脂組成物
JP5201125B2 (ja) ウレタン(メタ)アクリレート樹脂、活性エネルギー線硬化性樹脂組成物、コーティング剤及びプラスチック成形物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849835

Country of ref document: EP

Kind code of ref document: A1