WO2021024576A1 - プリプレグの製造方法及びプリプレグ - Google Patents

プリプレグの製造方法及びプリプレグ Download PDF

Info

Publication number
WO2021024576A1
WO2021024576A1 PCT/JP2020/020587 JP2020020587W WO2021024576A1 WO 2021024576 A1 WO2021024576 A1 WO 2021024576A1 JP 2020020587 W JP2020020587 W JP 2020020587W WO 2021024576 A1 WO2021024576 A1 WO 2021024576A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyamide
resin
component
cloth
Prior art date
Application number
PCT/JP2020/020587
Other languages
English (en)
French (fr)
Inventor
松本 隆之
欣弘 福田
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to US17/630,741 priority Critical patent/US20220267544A1/en
Priority to EP20850388.8A priority patent/EP4008746A4/en
Publication of WO2021024576A1 publication Critical patent/WO2021024576A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2096/00Use of specified macromolecular materials not provided for in a single one of main groups B29K2001/00 - B29K2095/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • B32B2262/124Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • B32B2262/128Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • B32B2262/132Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a method for producing a prepreg and a prepreg.
  • the present invention particularly relates to a method for producing a prepreg and a prepreg used for obtaining a fiber-reinforced composite material for aircraft applications, marine applications, automobile applications, sports applications, and other general industrial applications.
  • Fiber-reinforced composite materials obtained by laminating multiple prepregs made of various fibers and matrix resins are widely used in aircraft, ships, automobiles, sports equipment and other general industrial applications due to their excellent mechanical properties. In recent years, the range of application of fiber-reinforced composite materials has been expanding more and more as they have been used.
  • Patent Documents 1 and 2 As such a fiber-reinforced composite material, those using a benzoxazine resin are proposed in Patent Documents 1 and 2, for example.
  • the benzoxazine resin has excellent moisture resistance and heat resistance, it has a problem of inferior toughness, and an epoxy resin, various resin fine particles, and the like are blended to compensate for the drawbacks.
  • the fiber-reinforced composite material is required not only to have excellent CAI strength but also to have little variation in CAI strength.
  • excellent CAI strength and reduction of variation in CAI strength are achieved at the same time at a high level.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and while utilizing a benzoxazine resin having excellent moisture resistance and heat resistance, excellent CAI strength and reduction of variation in CAI strength are simultaneously achieved. It is an object of the present invention to provide a method for producing a prepreg, which can obtain a fiber-reinforced composite material achieved at a high level, and a prepreg.
  • a component (A), a component (B), and a component (C) are contained on at least one surface of the fiber substrate, before or after the placement step of placing the cloth, or at the same time as the placement step. It is provided with an impregnation step of supplying the resin composition to be used to the reinforcing fiber base material and impregnating the resin composition between the reinforcing fiber fibers, and the polyamide fiber is a first polyamide resin and a polyamide resin having a melting point of first.
  • a method for producing a prepreg which comprises a second polyamide resin having a temperature higher than the melting point of 7 to 50 ° C.
  • a fiber-reinforced composite material can be obtained by laminating a plurality of prepregs obtained by the production method of the present invention and heating them under pressure.
  • the fiber-reinforced composite material can simultaneously achieve excellent CAI strength and reduction of variation in CAI strength at a high level while utilizing a benzoxazine resin having excellent moisture resistance and heat resistance.
  • the fiber-reinforced composite material can be made lighter and thinner due to the above-mentioned excellent physical properties. Further, the fiber-reinforced composite material can achieve ILSS and interlayer fracture toughness at a high level, reduce the damaged area after impact application, and reduce the variation thereof.
  • the present invention also has (A) a benzoxazine resin, (B) an epoxy resin, and (C) a cured product having two or more phenolic hydroxyl groups in the molecule, which are impregnated between the reinforcing fibers and the fibers of the reinforcing fibers.
  • the resin composition containing the agent, the reinforcing fiber layer containing the agent, the cloth containing the polyamide fiber provided on the surface of at least one of the reinforcing fiber layers, and the fibers of the polyamide fiber were impregnated (A).
  • the polyamide fiber is a polyamide resin having a first polyamide resin and a first polyamide resin having a melting point.
  • prepregs comprising a second polyamide resin which is 7-50 ° C higher than the melting point.
  • the benzoxazine resin having excellent moisture resistance and heat resistance is utilized, and excellent CAI strength and CAI strength are obtained. It is possible to obtain a fiber-reinforced composite material in which variability is reduced at the same time at a high level.
  • the fiber-reinforced composite material can be made lighter and thinner due to the above-mentioned excellent physical properties. Further, the fiber-reinforced composite material can achieve ILSS and interlayer fracture toughness at a high level, reduce the damaged area after impact application, and reduce the variation thereof.
  • the polyamide resin Since the polyamide resin is not locally densely packed, the polyamide resin penetrates uniformly into the reinforcing fiber layer, and as a result, a fiber-reinforced composite material that achieves a high level of reduction in variation in CAI strength is obtained. Is thought to be possible.
  • the melting temperature of the polyamide fiber is lowered by the presence of a compound having a phenolic hydroxyl group, which is a curing agent for the benzoxazine resin. If the melting temperature of the polyamide fiber becomes too low, the polyamide fiber tends to be excessively melted when the thermosetting resin is cured when the fiber-reinforced composite material is produced using the prepreg, so that the melted polyamide fiber is strengthened. It becomes easy to penetrate the fiber layer excessively. On the other hand, by using the polyamide fiber containing the above two specific kinds of polyamide resins, the other polyamide resin is appropriately melted in a state where one polyamide resin is difficult to flow under the temperature condition for curing the resin composition. As a result, it is considered that a resin cured layer having excellent adhesiveness and peeling resistance is formed between the fiber layers.
  • the weight and thickness of the fiber-reinforced composite material can be further reduced as compared with the case where the polyamide resin particles are used as the polyamide resin. This is because when the polyamide resin particles are used, the film thickness of the resin film used when producing the prepreg by the hot melt method is limited by the particle size.
  • a fiber-reinforced composite material having further improved ILSS and interlayer fracture toughness can be obtained as compared with the case where polyamide resin particles are used as the polyamide resin.
  • the reason for this is that when a cloth containing polyamide fibers is used, it is necessary to cut the polyamide fibers at the time of interlayer shearing and interlayer fracture.
  • the present invention it is possible to obtain a fiber-reinforced composite material in which excellent CAI strength and reduction of variation in CAI strength are simultaneously achieved at a high level while utilizing a benzoxazine resin having excellent moisture resistance and heat resistance. It is possible to provide a method for producing a prepreg capable of producing a prepreg, as well as a prepreg.
  • the fiber-reinforced composite material obtained by laminating a plurality of prepregs obtained by the production method of the present invention and the prepregs of the present invention and heating under pressure is used for aircraft applications, marine applications, automobile applications, sports applications, and other general applications. It can be suitably used for industrial applications, and is particularly useful for aircraft applications.
  • the melting point of the polyamide resin is defined by raising the temperature at a rate of 25 ° C. to 10 ° C./min using a differential calorimeter (DSC) and measuring the temperature of the top of the obtained endothermic peak. This is the calculated value. Further, the melting temperature of the polyamide resin measured in the composition constituting the surface fiber layer is 25 ° C to 10 using a differential calorimeter (DSC) for the composition constituting the surface fiber layer containing the polyamide resin. It refers to the top temperature of the heat absorption peak obtained by raising the temperature at a rate of ° C / min.
  • FIG. 1 is a schematic cross-sectional view for explaining the prepreg according to the present invention.
  • the prepreg 10 shown in FIG. 1 is provided on the surface of the reinforcing fiber layer 3 and the reinforcing fiber layer 3 containing the reinforcing fiber 1 and the resin composition 2 impregnated between the fibers of the reinforcing fiber 1. It includes a cloth 4 containing polyamide fibers and a surface fiber layer 6 containing a resin composition 5. In the surface fiber layer 6 of the prepreg 10, the cloth 4 containing the polyamide fiber is contained in the layer of the resin composition 5.
  • the surface fiber layer 6 is provided on both surfaces of the reinforcing fiber layer 3, but the surface fiber layer 6 is provided only on one surface of the reinforcing fiber layer 3. You may.
  • the entire cloth 4 containing the polyamide fibers is contained in the layer of the resin composition 5, but a part of the cloth 4 containing the polyamide fibers is contained in the layer of the resin composition 5. It may be included in.
  • the reinforcing fiber layer 3 in the prepreg 10 according to the present embodiment is a resin containing (A) a benzoxazine resin, (B) an epoxy resin, and (C) a curing agent having two or more phenolic hydroxyl groups in the molecule. Contains composition 2.
  • the surface fiber layer 6 in the prepreg 10 according to the present embodiment is a resin containing (A) a benzoxazine resin, (B) an epoxy resin, and (C) a curing agent having two or more phenolic hydroxyl groups in the molecule. Contains composition 5.
  • Examples of the (A) benzoxazine resin (hereinafter, may be referred to as the component (A)) used in the present invention include a compound having a benzoxazine ring represented by the following general formula (A-1).
  • R 5 is from 1 to 12 carbon atoms chain alkyl groups, cyclic alkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, or of 1 to 12 carbon atoms Indicates a chain alkyl group or an aryl group substituted with a halogen.
  • a hydrogen atom may be bonded to the bond.
  • Examples of the chain alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
  • Examples of the cyclic alkyl group having 3 to 8 carbon atoms include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a phenanthryl group, and a biphenyl group.
  • R 5 may be a methyl group, an ethyl group, a propyl group, a phenyl group, or an o-methylphenyl group because it gives good handleability.
  • L represents an alkylene group or an arylene group.
  • the benzoxazine resin of the component (A) is different from these monomers, for example, a monomer represented by the following formula, an oligomer obtained by polymerizing several molecules of the monomer, and at least one of the monomers represented by the following formula.
  • a reaction product with a compound having a benzoxazine ring having a structure is preferably mentioned.
  • the component (A) is excellent in flame retardancy because the benzoxazine ring is ring-opened polymerized to form a skeleton similar to that of a phenol resin. Further, due to its precise structure, excellent mechanical properties such as low water absorption rate and high elastic modulus can be obtained.
  • one type can be used alone or two or more types can be used in combination.
  • the (B) epoxy resin used in the present invention (hereinafter, may be referred to as (B) component) is blended as a component that controls the viscosity of the composition and enhances the curability of the composition.
  • the component (B) may be, for example, an epoxy resin using a compound such as amines, phenols, carboxylic acid, or intramolecular unsaturated carbon as a precursor.
  • Examples of epoxy resins using amines as precursors include tetraglycidyldiaminodiphenylmethane, glycidyl compounds of xylene diamine, triglycidylaminophenol, position isomers of glycidylaniline, and substituents with alkyl groups and halogens. Be done.
  • the complex viscoelasticity ⁇ * at 25 ° C. obtained by the dynamic viscoelasticity measuring device described later is described as the viscosity of the liquid product.
  • triglycidyl aminophenol examples include, for example, "jER” 630 (viscosity: 750 mPa ⁇ s) (manufactured by Mitsubishi Chemical Corporation), "Araldite” MY0500 (viscosity: 3500 mPa ⁇ s), MY0510 (viscosity: 600 mPa ⁇ s). s) (above, manufactured by Huntsman Advanced Materials Co., Ltd.), ELM100 (viscosity: 16000 mPa ⁇ s) (manufactured by Sumitomo Chemical Corporation).
  • Examples of commercially available glycidyl anilines include GAN (viscosity: 120 mPa ⁇ s) and GOT (viscosity: 60 mPa ⁇ s) (all manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of the glycidyl ether type epoxy resin using phenol as a precursor include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, epoxy resin having a biphenyl skeleton, phenol novolac type epoxy resin, and cresol novolac type.
  • an epoxy resin obtained by modifying an epoxy resin using phenol as a precursor with urethane or isocyanate is also included in this type.
  • liquid bisphenol A type epoxy resins examples include “jER” 825 (viscosity: 5000 mPa ⁇ s), “jER” 826 (viscosity: 8000 mPa ⁇ s), and “jER” 827 (viscosity: 10000 mPa ⁇ s).
  • Examples of commercially available solid or semi-solid bisphenol A type epoxy resins include “jER” 834, "jER” 1001, “jER” 1002, “jER” 1003, “jER” 1004, “jER” 1004AF, and “jER”. 1007, "jER” 1009 (all manufactured by Mitsubishi Chemical Corporation).
  • liquid bisphenol F type epoxy resins examples include “jER” 806 (viscosity: 2000 mPa ⁇ s), “jER” 807 (viscosity: 3500 mPa ⁇ s), and “jER” 1750 (viscosity: 1300 mPa ⁇ s).
  • solid bisphenol F type epoxy resins include, for example, 4004P, "jER” 4007P, “jER” 4009P (manufactured by Mitsubishi Chemical Corporation), “Epototo” YDF2001, “Epototo” YDF2004 (above Nippon Steel). (Made by Chemical Corporation).
  • Examples of the bisphenol S type epoxy resin include EXA-1515 (manufactured by DIC Corporation).
  • Examples of commercially available epoxy resins having a biphenyl skeleton include “jER” YX4000H, “jER” YX4000, “jER” YL6616 (all manufactured by Mitsubishi Chemical Corporation), and NC-3000 (manufactured by Nippon Kayaku Co., Ltd.). ).
  • phenol novolac type epoxy resins examples include “jER” 152, “jER” 154 (all manufactured by Mitsubishi Chemical Corporation), “Epiclon” N-740, “Epiclon” N-770, and “Epiclon” N. -775 (all manufactured by DIC Corporation) can be mentioned.
  • cresol novolac type epoxy resin examples include, for example, "Epiclon” N-660, “Epiclon” N-665, “Epiclon” N-670, “Epiclon” N-673, and “Epiclon” N-695 (above, Examples thereof include DIC (manufactured by DIC Corporation), EOCN-1020, EOCN-102S, and EOCN-104S (all manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available resorcinol-type epoxy resins include "Denacol” (registered trademark, the same applies hereinafter) EX-201 (viscosity: 250 mPa ⁇ s) (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available epoxy resins having a naphthalene skeleton include "Epiclon” HP4032 (manufactured by DIC Corporation), NC-7000, and NC-7300 (all manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available products of triphenylmethane type epoxy resin include TMH-574 (manufactured by Sumitomo Chemical Co., Ltd.).
  • Examples of commercially available urethane and isocyanate-modified epoxy resins include AER4152 (manufactured by Asahi Kasei E-Materials Co., Ltd.) having an oxazolidone ring.
  • Examples of the epoxy resin using a carboxylic acid as a precursor include a glycidyl compound of phthalic acid, a glycidyl compound of hexahydrophthalic acid and dimer acid, and various isomers of each.
  • phthalate diglycidyl ester Commercially available products of phthalate diglycidyl ester include, for example, "Epomic” (registered trademark, the same applies hereinafter) R508 (viscosity: 4000 mPa ⁇ s) (manufactured by Mitsui Chemicals, Inc.), “Denacol” EX-721 (viscosity: 980 mPa). -S) (manufactured by Nagase ChemteX Corporation).
  • hexahydrophthalic acid diglycidyl ester Commercially available products of hexahydrophthalic acid diglycidyl ester include, for example, "Epomic” R540 (viscosity: 350 mPa ⁇ s) (manufactured by Mitsui Chemicals, Inc.), AK-601 (viscosity: 300 mPa ⁇ s) (Nippon Kayaku (Nippon Kayaku). Made by Co., Ltd.).
  • dimer acid diglycidyl ester examples include, for example, "jER” 871 (viscosity: 650 mPa ⁇ s) (manufactured by Mitsubishi Chemical Corporation), “Epototo” YD-171 (viscosity: 650 mPa ⁇ s) (Nippon Steel). (Manufactured by Chemical Corporation).
  • Examples of the epoxy resin using an intramolecular unsaturated carbon as a precursor include an alicyclic epoxy resin.
  • the alicyclic epoxy resin include (3', 4'-epoxycyclohexane) methyl-3,4-epoxycyclohexanecarboxylate, (3', 4'-epoxycyclohexane) octyl-3,4-epoxycyclohexanecarboxylate, and the like. Examples thereof include 1-methyl-4- (2-methyloxylanyl) -7-oxabicyclo [4.1.0] heptane.
  • an epoxy resin liquid at 25 ° C. can be blended from the viewpoint of tackiness and drapeability.
  • it may be 5 mPa ⁇ s or more and 20000 mPa ⁇ s or less, which is the lower limit obtained as a commercially available epoxy resin, and may be 5 mPa ⁇ s or more and 15000 mPa ⁇ s or less. If the viscosity at 25 ° C. exceeds 20000 mPa ⁇ s, the tackiness and drapeability may decrease.
  • a solid epoxy resin can be blended at 25 ° C.
  • the epoxy resin solid at 25 ° C. may be an epoxy resin having a high aromatic content, and examples thereof include an epoxy resin having a biphenyl skeleton, an epoxy resin having a naphthalene skeleton, and a phenol aralkyl type epoxy resin.
  • one type can be used alone or two or more types can be used in combination.
  • Examples of the curing agent having two or more phenolic hydroxyl groups in the molecule (C) used in the present invention include polyfunctional phenols such as bisphenols, for example, bisphenol. Examples thereof include A, bisphenol F, bisphenol S, thiodiphenol, and bisphenols represented by the following general formula (C-1).
  • R 1 , R 2 , R 3 and R 4 represent a hydrogen atom or a hydrocarbon group, and if R 1 , R 2 , R 3 or R 4 is a hydrocarbon group, they. Is a linear or branched alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted aromatic having 6 to 10 carbon atoms in which adjacent R 1 and R 2 or adjacent R 3 and R 4 are bonded. It forms a ring or a substituted or unsubstituted alicyclic structure having 6 to 10 carbon atoms, and x represents 0 or 1. ]
  • Examples of the curing agent represented by the above general formula (C-1) include compounds represented by the following formula.
  • the components (C) are bisphenol A, bisphenol F, thiobisphenol (hereinafter, may be referred to as TDP), 9,9-bis (4).
  • TDP bisphenol F
  • thiobisphenol hereinafter, may be referred to as TDP
  • -Hydroxyphenyl) fluorene hereinafter sometimes referred to as BPF
  • BPC 1,1-bis (4-hydroxyphenyl) cyclohexane
  • one type can be used alone or two or more types can be used in combination.
  • a curing agent other than the above component (C) can be used in combination.
  • the curing agent that can be used in combination include tertiary aromatic amines typified by N, N-dimethylaniline, tertiary aliphatic amines such as triethylamine, imidazole derivatives, and pyridine derivatives. These can be used alone or in combination of two or more.
  • the surface fiber layer of the prepreg according to the present embodiment contains a cloth containing polyamide fibers.
  • the cloth used in the present invention is not particularly limited, but may be at least one selected from the group consisting of knitted cloth, woven cloth and non-woven fabric, has elasticity, is less likely to wrinkle when producing a prepreg, and is polyamide.
  • a knitted fabric may be used because the density of the resin is uniform and the fluctuation rate of various physical properties (CAI strength, ILSS, interlayer fracture toughness and damaged area) of the obtained fiber-reinforced composite material can be further reduced.
  • the knitted cloth When the cloth is a knitted cloth, the knitted cloth may be a weft single knit (flat knit, etc.), a weft double knit (rib knit, etc.), a warp knit (tricot, Russell, Millers), etc., and is productive. From the viewpoint of making the knitted fabric thinner, the weft knit single knit may be used.
  • the lower limit of the fabric basis weight is not particularly limited, it may be a 3 g / m 2 or more, may be at 3.5 g / m 2 or more.
  • the upper limit of the basis weight of the fabric is not particularly limited, it may be a 15 g / m 2 or less, may be at 8 g / m 2 or less.
  • the lower limit of the basis weight of the cloth is 3 g / m 2 or more, the production efficiency of the cloth is improved and the handleability when manufacturing the prepreg is also excellent.
  • the upper limit of the basis weight of the cloth is 15 g / m 2 or less, various physical properties (CAI strength, ILSS, interlayer fracture toughness and damaged area) of the obtained fiber-reinforced composite material are further improved.
  • the lower limit of the maximum opening area of the fabric is not particularly limited, may be a 0.2 mm 2 or more, may be at 0.3 mm 2 or more.
  • Upper limit of the maximum opening area of the fabric is not particularly limited, may be a 3 mm 2 or less, may be at 1.5 mm 2 or less.
  • the lower limit of the maximum opening area of the cloth is 0.2 mm 2 or more, the impregnation property of the resin composition into the cloth is further improved.
  • the upper limit of the aperture ratio of the cloth is 3 mm 2 or less, the damaged area of the obtained fiber-reinforced composite material at the time of impact application can be reduced, and the CAI strength can be achieved at a higher level.
  • the maximum opening area of the cloth was the area of the largest opening of the cloth observed in the 7 ⁇ 5 mm field of view of the optical microscope.
  • the lower limit of the average opening area of the fabric is not particularly limited, it may be a 0.05 mm 2 or more, may be at 0.1 mm 2 or more.
  • the upper limit of the average open area of the fabric is not particularly limited, may be a 1.5 mm 2 or less, it may be at 0.8 mm 2 or less.
  • the lower limit of the average opening area of the cloth may be 0.05 mm 2 or more from the viewpoint of improving the impregnation property of the resin composition with the cloth.
  • the upper limit of the average opening area of the cloth may be 1.5 mm 2 or less from the viewpoint of improving the CAI strength of the obtained fiber-reinforced composite material and reducing the variation thereof.
  • the average opening area of the cloth was taken as the average value of the areas of 10 arbitrary openings of the cloth observed in a 7 ⁇ 5 mm field of view of an optical microscope.
  • the lower limit of the elongation rate in the longitudinal direction (vertical direction) of the cloth is not particularly limited, but may be 5% or more, and may be 10% or more.
  • the upper limit of the elongation rate in the longitudinal direction of the cloth may be 100% or less.
  • the elongation rate in one direction of the cloth means a value measured by the JIS L1096 A method (cut strip method).
  • the lower limit of the fiber diameter of the polyamide fiber is not particularly limited, but may be, for example, 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more.
  • the upper limit of the fiber diameter of the polyamide fiber is not particularly limited, but may be 60 ⁇ m or less, 50 ⁇ m or less, and 40 ⁇ m or less.
  • the lower limit of the fiber diameter of the polyamide fiber may be 10 ⁇ m or more from the viewpoint of the strength and handleability of the cloth.
  • the upper limit of the fiber diameter of the polyamide fiber may be 60 ⁇ m or less from the viewpoint of further reducing the weight and thickness of the fiber-reinforced composite material.
  • the fiber diameter means a value measured by observing the fibers contained in the cloth with an optical microscope.
  • polyamide fiber used in the present invention examples include polymers or copolymers having an amide bond using an aliphatic amino acid, an aliphatic lactam or an aliphatic diamine and an aliphatic carboxylic acid as starting materials.
  • aliphatic amino acid examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like.
  • aliphatic lactam examples include caprolactam, laurolactam, octalactam, undecanelactam and the like.
  • aliphatic diamine examples include tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, and 5-methyl.
  • aliphatic carboxylic acid examples include adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and the like.
  • polyamide resin contained in the polyamide fiber used in the present embodiment examples include a polymer of caprolactam, a polymer of laurolactam, a copolymer of caprolactam and laurolactam, and polyhexamethylene sebacamide (nylon 6/12).
  • Polydecamethylene sebacamide (nylon 10/10), polydecamethylene dodecamide (nylon 10/12), polyundecamethylene adipamide (nylon 11/6), polyundecaneamide (nylon 11), polydodecaneamide (Nylon 12), Polybis (4-aminocyclohexyl) methadodecamide (nylon PACM12), Polybis (3-methyl-4-aminocyclohexyl) metidedecamide (nylondimethylPACM12), and copolymers thereof are used. be able to.
  • the cloth containing the polyamide fiber used in the present invention contains the first polyamide resin and the second polyamide resin whose melting point is 7 to 50 ° C. higher than the melting point of the first polyamide resin.
  • the first polyamide resin and the second polyamide resin used in the present invention for example, the same ones as those exemplified as the above-mentioned polyamide resin can be used.
  • the cloth containing the polyamide fiber used in the present invention can be heat-treated at a temperature equal to or higher than the melting point of the first polyamide resin and lower than the melting point of the second polyamide resin in order to stabilize the morphology.
  • the cloth containing the polyamide fiber used in the present invention may be a cloth in which a part of the first polyamide resin is melted by the above heat treatment.
  • the structure of the polyamide fiber is not particularly limited, and examples thereof include a single fiber made of a single polyamide resin and a composite fiber containing two or more kinds of polyamide resins.
  • the composite fiber examples include a fiber having a core-sheath structure, a conjugated fiber and the like. Among these, it is possible to stabilize the morphology of the cloth by appropriately melting the first polyamide resin by heat treatment during the production of the cloth, and as a result, reduce the variation in the CAI strength of the obtained fiber-reinforced composite material. Since it can be formed, it may be a fiber having a core-sheath structure.
  • the structure of the polyamide fiber is a core-sheath structure
  • the morphology of the cloth is stabilized by appropriately melting the first polyamide resin by heat treatment during the production of the cloth, and as a result, the CAI of the fiber-reinforced composite material.
  • the core-sheath structure may include a core portion containing the second polyamide resin and a sheath portion containing the first polyamide resin that covers the core portion.
  • the melting point m 2 of the second polyamide resin is 7 to 50 ° C. higher than the melting point m 1 of the first polyamide resin.
  • Mp m 2 of the second polyamide resin, the lower limit of the melting point difference between the melting point m 1 of the first polyamide resin (m 2 -m 1) is at 7 ° C. or higher, may be at 10 ° C. or higher, It may be 13 ° C. or higher, and may be 15 ° C. or higher.
  • the lower limit value of (m 2- m 1 ) is 7 ° C. or higher, the heat treatment can be stably performed because the temperature range is widened when the heat treatment is performed during the production of the cloth.
  • the upper limit of the melting point difference (m 2- m 1 ) is 50 ° C. or lower, and may be 40 ° C. or lower.
  • the upper limit of the melting point difference (m 2- m 1 ) is 50 ° C. or less, the melting of the second polyamide resin can be appropriately promoted during the production of the fiber-reinforced composite material.
  • Melting temperature M 1 of the first polyamide resin in the resin composition 5 it is possible to promote the melting of the first polyamide resin during the production of the fiber-reinforced composite material, the resin composition in the surface fiber layers 6 It may be 5 ° C. or higher lower than the curing temperature of 5, and may be 10 ° C. or higher lower.
  • the melting temperature M 2 of the second polyamide resin in the resin composition 5 can appropriately prevent the second polyamide resin from melting and completely entering the reinforcing fiber layer during the production of the fiber reinforced composite material. Therefore, it may be higher than the curing temperature of the resin composition 5 in the surface fiber layer 6 by 1 ° C. or more, and may be higher than 5 ° C. or more.
  • polyamide 6 polyamide 12 resin
  • polyamide resin composed of a copolymer obtained by copolymerizing caprolactam and laurolactam polyamide 1010 resin and the like
  • polyamide 1010 resin and the like can be used. ..
  • the polyamide 6 resin refers to a polyamide resin obtained by ring-opening polymerization of caprolactam.
  • the polyamide 12 resin refers to a polyamide resin obtained by ring-opening polymerization of laurolactam.
  • the copolymer obtained by copolymerizing the above caprolactam and laurolactam is called polyamide 6/12 or the like.
  • the above-mentioned copolymer may be a random copolymer or a block copolymer.
  • the polyamide 1010 resin refers to a polyamide resin obtained by polycondensing sebacic acid and decamethylenediamine.
  • the first polyamide resin used in the present embodiment may be a polyamide 12 resin from the viewpoint of appropriately melting the polyamide resin during the production of the fiber-reinforced composite material.
  • the copolymerization ratio (molar ratio) of caprolactam and laurolactam is 1: 9 to 3: It may be in the range of 7, may be in the range of 1: 9 to 25:75, and may be in the range of 1: 9 to 2: 8.
  • the melting point of the polyamide resin and the melting temperature of the polyamide resin in the resin composition can be adjusted within an appropriate range, and the damaged area after impact is further reduced. Therefore, the CAI strength is further improved.
  • the second polyamide resin used in the present embodiment may be a polyamide 1010 resin from the viewpoint of appropriately suppressing the second polyamide resin from melting and entering the reinforcing fiber layer during the production of the fiber-reinforced composite material. ..
  • the copolymerization ratio (molar ratio) of caprolactam and laurolactam is 9: 1 to 7 :. It may be in the range of 3, may be in the range of 9: 1 to 75:25, and may be in the range of 9: 1 to 8: 2.
  • the melting point of the polyamide resin and the melting temperature of the polyamide resin in the resin composition can be adjusted within an appropriate range, and the damaged area after impact is further reduced. Therefore, the CAI strength is further improved.
  • the first polyamide resin is melted and the polyamide fibers are fused to each other during the heat treatment at the time of producing the cloth. From the viewpoint that the variation in CAI strength of the obtained fiber-reinforced composite material can be reduced, and when the fiber-reinforced composite material is produced, the first polyamide resin is appropriately melted and the second polyamide resin is melted. From the viewpoint of appropriately suppressing the entry into the reinforcing fiber layer, a combination of a polyamide 12 resin as the first polyamide resin and a polyamide 1010 resin as the second polyamide resin may be used.
  • the cloth used in this embodiment may contain fibers other than polyamide fibers.
  • fibers include polyethersulfone resins, polyphenylene ether resins, polyacetal resins, polyphenylene sulfide resins, polyetherimide resins, and polyetheretherketone resins.
  • the content ratio of the component (A) and the component (B) in the resin composition 2 is the content of the component (A) when the total of the component (A) and the component (B) is 100 parts by mass.
  • the lower limit of the content ratio may be 65 parts by mass or more, that is, the upper limit of the content ratio of the component (B) may be 35 parts by mass or less.
  • the content ratio of the component (A) is 65 parts by mass or more, that is, when the content ratio of the component (B) is 35 parts by mass or less, the elastic modulus and water resistance of the obtained fiber-reinforced composite are further increased. It tends to improve, and the glass transition temperature of the cured resin product tends to rise further.
  • the upper limit of the content ratio of the component (A) is 78 parts by mass or less when the total of the component (A) and the component (B) is 100 parts by mass. That is, the lower limit of the content ratio of the component (B) may be 22 parts by mass or more.
  • the lower limit of the content of the component (C) in the resin composition 2 may be 5 parts by mass or more when the total of the component (A) and the component (B) is 100 parts by mass. It may be parts by mass or more.
  • the lower limit of the content of the component (C) is 5 parts by mass or more, a strong crosslinked structure is formed when the resin composition is cured, and as a result, mechanical properties such as the glass transition temperature of the cured product are further improved. There is a tendency.
  • the upper limit of the content of the component (C) in the resin composition 2 is 20 parts by mass or less when the total of the component (A) and the component (B) is 100 parts by mass. It may be 15 parts by mass or less.
  • the content ratio of the component (A) and the component (B) in the surface fiber layer 6 is the content of the component (A) when the total of the component (A) and the component (B) is 100 parts by mass.
  • the lower limit of the content ratio may be 65 parts by mass or more, that is, the upper limit of the content ratio of the component (B) may be 35 parts by mass or less.
  • the content ratio of the component (A) is 65 parts by mass or more, that is, the content ratio of the component (B) is 35 parts by mass or less
  • the elastic modulus and water resistance of the obtained fiber-reinforced composite tend to be further improved.
  • the glass transition temperature of the cured resin product tends to rise further.
  • the content ratio of the component (A) and the component (B) in the surface fiber layer 6 is the upper limit of the content ratio of the component (A) when the total of the component (A) and the component (B) is 100 parts by mass. Is 78 parts by mass or less, that is, the lower limit of the content ratio of the component (B) may be 22 parts by mass or more.
  • the lower limit of the content of the component (C) in the surface fiber layer 6 may be 5 parts by mass or more when the total of the component (A) and the component (B) is 100 parts by mass. It may be parts by mass or more. When the content of the component (C) is 5 parts by mass or more, the CAI strength and flexural modulus of the fiber-reinforced composite material can be further improved.
  • the upper limit of the content of the component (C) in the surface fiber layer 6 may be 20 parts by mass or less, and 15 parts by mass, when the total of the component (A) and the component (B) is 100 parts by mass. It may be: When the content of the component (C) is 20 parts by mass or less, the mechanical properties such as the glass transition temperature of the cured product tend to be further improved.
  • the lower limit of the content of the polyamide fiber in the surface fiber layer 6 may be 15 parts by mass or more, and 25 parts by mass or more, when the total of the components (A) and (B) is 100 parts by mass. It may be there.
  • the content of the polyamide fiber is 15 parts by mass or more, the CAI strength, ILSS and interlayer fracture toughness of the fiber-reinforced composite material can be further improved, and the damaged area after impact application can be further reduced.
  • the upper limit of the content of the polyamide fiber in the surface fiber layer 6 may be 45 parts by mass or less, and 40 parts by mass or less, when the total of the components (A) and (B) is 100 parts by mass. It may be there.
  • the content of the polyamide fiber is 45 parts by mass or less, the flexural modulus tends to be further improved.
  • the total content of the first polyamide resin and the second polyamide resin may be in the above range.
  • the surface fiber layer 6 in the prepreg of the present embodiment refers to the area from the surface of the prepreg to the reinforcing fibers of the reinforcing fiber layer, and the content of the polyamide fiber in the surface fiber layer is, for example, from the surface of the prepreg to the reinforcing fiber of the reinforcing fiber layer. It can be calculated based on the contents of the component (A), the component (B) and the component (C) detected during the period up to.
  • (D) toughness improver can be blended in the surface fiber layer and the reinforcing fiber layer as long as the physical properties are not impaired.
  • (D) As toughness improvers phenoxy resins "YP-70", “YP-50”, “FX-316” (registered trademark, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), polyether sulfone "Sumika Excel” “PES” (above, registered trademark, manufactured by Sumitomo Chemical Co., Ltd.) can be mentioned.
  • nanocarbon, flame retardant, mold release agent, etc. can be blended.
  • nanocarbons include carbon nanotubes, fullerenes, and derivatives thereof.
  • flame retardant include phosphoric acids such as red phosphorus, triphenyl phosphate, tricresyl phosphate, trixilenyl phosphate, cresil diphenyl phosphate, xylenyl diphenyl phosphate, resorcinol bisphenyl phosphate and bisphenol A bisdiphenyl phosphate.
  • ester and borate ester examples of the release agent include silicone oil, stearic acid ester, carnauba wax and the like.
  • glass fiber carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be used. Two or more of these fibers may be mixed and used. In order to obtain a lighter weight and more durable molded product, carbon fiber or graphite fiber may be used, and carbon fiber may be used.
  • PAN-based carbon fiber As the carbon fiber used in the present invention, either PAN-based carbon fiber or pitch-based carbon fiber can be used.
  • the tensile elastic modulus in the strand tensile test of carbon fiber or graphite fiber may be 150 to 650 GPa, and may be 200 to 550 GPa. It may be 230 to 500 GPa.
  • the strand tensile test is a test performed based on JIS R7608 (2007) after impregnating bundled carbon fibers or graphite fibers with epoxy resin and curing at a temperature of 130 ° C. for 35 minutes.
  • the lower limit of the grain size of the reinforcing fibers of the present invention is not particularly limited, but is 75 g / m 2 or more because the number of laminated prepregs can be reduced and workability can be improved when molding the fiber-reinforced composite material. It may be 100 g / m 2 or more.
  • the upper limit of the basis weight of the reinforcing fibers, when forming a fiber reinforced composite material, since the flexibility of the laminate design increases, may be at 300 g / m 2 or less, may be at 200 g / m 2 or less.
  • the form of the reinforcing fibers is not particularly limited, and for example, long fibers aligned in one direction, tow, woven fabric, matte, knit, braid, short fibers chopped to a length of less than 10 mm, etc. Can be used.
  • the long fiber is a single fiber or a fiber bundle that is substantially continuous of 10 mm or more.
  • Short fibers are fiber bundles cut to a length of less than 10 mm.
  • an arrangement in which the reinforcing fiber base materials are aligned in one direction such as the prepreg of the present embodiment, is most suitable, but it is easy to handle. A cloth-like arrangement is also applicable.
  • the prepreg of the present embodiment may have a lower limit of the amount of reinforcing fibers per unit area of 25 g / m 2 or more. If the amount of the reinforcing fibers is less than 25 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when molding the fiber-reinforced composite material, which may complicate the work.
  • the upper limit of the amount of reinforcing fibers per unit area may be 3000 g / m 2 or less. When the amount of reinforcing fibers exceeds 3000 g / m 2 , the drape property of the prepreg tends to deteriorate. If the prepreg is flat or has a simple surface, the amount of reinforcing fibers may exceed 3000 g / m 2 .
  • the lower limit of the content of the reinforcing fiber in the prepreg of the present embodiment may be 30% by mass or more, 35% by mass or more, or 40% by mass or more. When the content is 30% by mass or more, the advantages of the fiber-reinforced composite material having excellent specific strength and specific elastic modulus are further obtained, and the calorific value at the time of curing does not become too large during molding of the fiber-reinforced composite material.
  • the upper limit of the content of the reinforcing fibers in the prepreg of the present embodiment may be 90% by mass or less, 85% by mass or less, or 80% by mass or less. When the content is 90% by mass or less, the impregnation of the resin becomes more favorable, and the voids of the obtained fiber-reinforced composite material tend to be further reduced.
  • the lower limit of the ratio of the mass of the polyamide fiber to the total mass of the component (A), the component (B), the component (C) and the polyamide fiber in the prepreg of the present embodiment is not particularly limited, but is 5% by mass or more. It may be present, and may be 8% by mass or more.
  • the lower limit of the mass ratio of the polyamide fiber may be 5% by mass or more from the viewpoint of reducing the damaged area after impact application and improving the CAI strength in the fiber-reinforced composite material.
  • the upper limit of the ratio of the mass of the polyamide fiber to the total mass of the component (A), the component (B), the component (C) and the polyamide fiber in the prepreg of the present embodiment is not particularly limited, but is 30% by mass or less. It may be 20% by mass or less. When the mass ratio of the polyamide fibers is 30% by mass or less, the flexural modulus of the fiber-reinforced composite material is improved (particularly at high temperature).
  • the method for producing the prepreg according to the present embodiment is a method of arranging the cloth 4 on at least one surface of the reinforcing fiber base material containing the reinforcing fiber 1 and before or after the arranging step, or at the same time as the arranging step.
  • the method for producing the prepreg according to the present embodiment includes an impregnation step before the placement step, a reinforcing fiber base material in which the reinforcing fibers 1 are aligned in one direction is prepared, and the above (The prepreg 10 is obtained by impregnating the resin composition containing the components A) to (C) and then arranging the cloth 4 on at least one surface of the reinforcing fiber base material.
  • the method for producing the prepreg according to the present embodiment includes an impregnation step at the same time as the arranging step, as such an embodiment, a reinforcing fiber base material in which the reinforcing fibers 1 are aligned in one direction is prepared, and the reinforcing fiber base is prepared.
  • a reinforcing fiber base material in which the reinforcing fibers 1 are aligned in one direction is prepared, and the resin composition is impregnated from at least one surface of the reinforcing fiber base material, and at the same time, the surface of the reinforcing fiber base material impregnated with the resin composition.
  • the cloth 4 is placed on at least one surface of the reinforcing fiber base material, and at the same time, the surface of the cloth 4 in contact with the reinforcing fiber base material is opposite.
  • the resin composition may be impregnated into the reinforcing fiber base material through the cloth 4 from the surface of the above.
  • the method for producing the prepreg according to the present embodiment includes an impregnation step after the placement step, a reinforcing fiber base material in which the reinforcing fibers 1 are aligned in one direction is prepared, and on at least one surface of the reinforcing fiber base material.
  • the prepreg 10 is obtained by arranging the cloth 4 and then impregnating the reinforcing fiber base material with the resin composition containing the above components (A) to (C).
  • the prepreg 10 obtained through the above arranging step and impregnation step is obtained by impregnating the reinforcing fiber base material and the cloth 4 with the resin composition.
  • Each resin composition impregnated in the reinforcing fiber base material can be prepared by kneading the above-mentioned components (A) to (C) and, if necessary, other components.
  • the kneading method of the resin composition is not particularly limited, and for example, a kneader, a planetary mixer, a twin-screw extruder, or the like is used.
  • the particles may be diffused into the liquid resin component in advance with a homomixer, three rolls, a ball mill, a bead mill, ultrasonic waves, or the like from the viewpoint of particle dispersibility.
  • a homomixer three rolls, a ball mill, a bead mill, ultrasonic waves, or the like from the viewpoint of particle dispersibility.
  • heating / cooling, pressurization / depressurization may be performed as necessary. From the viewpoint of storage stability, it may be immediately stored in a refrigerator / freezer after kneading.
  • the viscosity of the resin composition may be 10 to 20000 Pa ⁇ s, 10 to 10000 Pa ⁇ s, or 50 to 6000 Pa ⁇ s at 50 ° C. If it is less than 10 Pa ⁇ s, the tack of the resin composition becomes high and coating may become difficult. On the other hand, if it exceeds 20000 Pa ⁇ s, it becomes semi-solid and difficult to apply.
  • Examples of the method for impregnating the resin composition include a wet method in which the resin composition is dissolved in a solvent such as methyl ethyl ketone and methanol to reduce the viscosity and impregnation, and a hot melt method (dry method) in which the resin composition is reduced in viscosity by heating and impregnated. Can be mentioned.
  • the wet method is a method in which the reinforcing fibers are immersed in a solution of the resin composition, pulled up, and the solvent is evaporated using an oven or the like.
  • the hot melt method is a method in which the reinforcing fibers are directly impregnated with the resin composition whose viscosity has been reduced by heating, or the resin composition is once coated on a release paper or the like to prepare a film, and then both sides of the reinforcing fibers are prepared.
  • it is a method in which the reinforcing fibers are impregnated with resin by stacking the films from one side and heating and pressurizing them.
  • the hot melt method is preferable because there is virtually no solvent remaining in the prepreg.
  • the prepreg according to the present embodiment can be made into a fiber-reinforced composite material by a method of heat-curing the resin while applying pressure to the laminate after lamination.
  • the method of applying heat and pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method.
  • the wrapping tape method is a method of winding a prepreg around a core metal of a mandrel or the like to form a tubular body made of a fiber-reinforced composite material, and is a suitable method for producing a rod-shaped body such as a golf shaft or a fishing rod. ..
  • the prepreg is wound around the mandrel, a wrapping tape made of a thermoplastic film is wound on the outside of the prepreg to fix the prepreg and apply pressure, the resin is heat-cured in an oven, and then the core metal is used. It is a method of obtaining a tubular body by extracting.
  • a preform in which a prepreg is wound around an internal pressure applying body such as a tube made of a thermoplastic resin is set in a mold, and then a high pressure gas is introduced into the internal pressure applying body to apply pressure and at the same time gold.
  • This is a method of heating a mold and molding it. This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.
  • FIG. 2 is a schematic view showing an example of a curing profile.
  • M 1 indicates the melting temperature (° C.) of the first polyamide resin in the surface fiber layer
  • M 2 indicates the melting temperature (° C.) of the second polyamide resin in the surface fiber layer. Is shown.
  • a laminate obtained by laminating a plurality of the above-mentioned prepregs is heated to a predetermined curing temperature CP (° C.) at a predetermined heating rate (line a in FIG. 2), and a predetermined curing is performed.
  • a step of curing the resin by holding it at a temperature CP (° C.) for a predetermined time (T 4- T 3 ) (line b in FIG. 2) and then lowering the temperature is shown.
  • the curing temperature CP (° C.) is the type of the component (C) and the components (A) and (B) so that the resin composition 2 containing the components (A) to (C) can be sufficiently cured. It is appropriately set according to the mixing ratio and the like.
  • the curing temperature CP for example, a temperature between 140 and 200 ° C. can be set, and a temperature between 160 and 195 ° C. is set from the viewpoint of productivity and control of the melting state of the polyamide. You can.
  • the curing temperature refers to the temperature of the prepreg.
  • CP may be 1 ⁇ 100 ° C. temperature higher than M 1 ° C. may be 5 ⁇ 70 ° C. higher temperature than M 1 ° C. , M 1 ° C. may be 5 to 60 ° C higher, M 1 ° C may be 7 to 60 ° C higher, M 1 ° C may be 7 to 50 ° C higher, and M 1 ° C may be higher.
  • the temperature may be as high as 10 to 50 ° C.
  • the CP may have an upper limit of a temperature 10 ° C. higher than M 2 ° C. may be at a temperature in the range of -20 ⁇ 10 ° C. relative to M 2 ° C., or a temperature in the range of -10 ⁇ 10 ° C. relative to M 2 ° C..
  • the first polyamide resin and the second polyamide resin may be selected so as to satisfy the above conditions using the curing temperature CP (° C.) as an index. In this case as well, the relationship between the first polyamide resin and the second polyamide resin described above may be satisfied.
  • the melting temperatures M 1 and M 2 ° C as indicators after performing the primary curing at a temperature where M 1 ⁇ CP ⁇ M 2 , the secondary curing is performed at a temperature higher than M 2 in order to further promote the curing. It can also be cured.
  • the rate of temperature rise up to the curing temperature CP may be 0.1 to 5.0 ° C./min or 0.3 to 3.0 ° C./min.
  • M 1 (°C) than to the Atsushi Nobori and M 1 (°C) ⁇ CP heating rate of up to (°C) may be different but, in this embodiment, the at least until M 1 ⁇ CP It may be within the above range.
  • the rate of temperature rise to less than M 1 ° C, the rate of temperature rise from M 1 (° C) to M 2 (° C), and , M 2 (° C.) to CP (° C.) may have different heating rates.
  • the heating rate to less than M 1 (° C.) may be 0.1 to 10.0 ° C./min, 0.1 to 5.0 ° C./min, and 0. It may be 3 to 3.0 ° C./min.
  • the heating rate from M 1 (° C.) to M 2 (° C.) may be 0.1 to 5.0 ° C./min or 0.3 to 3.0 ° C./min.
  • the rate of temperature rise from M 2 (° C.) to CP (° C.) may be 0.1 to 5.0 ° C./min and may be 0.3 to 3.0 ° C./min.
  • the pressure during heating may be 0.2 to 1.0 MPa, and may be 0.3 to 0.8 MPa.
  • the temperature can be lowered at a rate of -0.3 to -3.0 ° C / min.
  • FIG. 3 is a schematic cross-sectional view for explaining the fiber-reinforced composite material according to the present invention.
  • the fiber-reinforced composite material 100 shown in FIG. 3 includes a reinforcing fiber 1, a cured resin product 8, and a cloth 4 containing a polyamide fiber.
  • the fiber-reinforced composite material 100 can be obtained by laminating a plurality of the above-mentioned production methods of the present embodiment, that is, prepregs 10 and heating them under pressure.
  • the cloth 4 containing the polyamide fiber is shown in FIG. 3 in the same manner as that in the surface fiber layer of the prepreg, they are melted by pressurization and heating and deformed by the flow or the bond between the fibers. Become.
  • the fiber-reinforced composite material obtained by the method of the present embodiment can also be obtained by directly impregnating the reinforcing fiber base material with the resin composition and curing it.
  • a method in which a reinforcing fiber base material and a cloth arranged on the surface of the reinforcing fiber base material are placed in a mold, and then a resin composition containing the above components (A) to (C) is poured and impregnated and cured. It can also be produced by laminating a film composed of a reinforcing fiber base material, a cloth containing polyamide fibers, and a resin composition containing the above components (A) to (C), and heating and pressurizing the laminated body.
  • the film can be obtained by previously applying a predetermined amount of a resin composition on a release paper or a release film with a uniform thickness.
  • the reinforcing fiber base material include long fibers aligned in one direction, bidirectional fabrics, non-woven fabrics, mats, knits, braids and the like.
  • the lamination here includes not only the case where the reinforcing fiber base materials are simply overlapped, but also the case where the reinforcing fiber base material is attached to various molds and core materials to preform.
  • the core material a foam core, a honeycomb core, or the like may be used. Urethane or polyimide may be used as the foam core.
  • As the honeycomb core an aluminum core, a glass core, or an aramid core may be used.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a post-impact compression strength (CAI strength) of 250 MPa or more, and may be 300 MPa or more, as measured according to ASTM D7136 and D7137.
  • CAI strength post-impact compression strength
  • Fiber-reinforced composite material obtained by the method of the present embodiment may measure the mode I interlaminar fracture toughness in accordance with ASTM D5528 (G1c) is not more 400 J / m 2 or more, may be at 450 J / m 2 or more.
  • Fiber-reinforced composite material obtained by the method of this embodiment Composite Materials Mode II interlaminar fracture toughness value measured in accordance with Handbook 17-1 (G2c) is may be at 1000 J / m 2 or more, a in 2100J / m 2 or more You can.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have an interlayer shear strength (ILSS) of 90 MPa or more, and may be 100 MPa or more, as measured according to ASTM D2344.
  • ILSS interlayer shear strength
  • the damaged surface area after impact imparted may be less than 1500 mm 2, may be less than 700 mm 2.
  • the damaged area after impact is applied to mean a value measured by a non-destructive inspection using ultrasonic flaw detection.
  • the fluctuation rates of various physical properties (CAI strength, ILSS, interlayer fracture toughness value, and damaged area after impact application) of the fiber-reinforced composite material obtained by the method of the present embodiment are CAI strength, ILSS, interlayer fracture toughness value, and The damaged area after impact application was measured 6 times each, and the standard deviation of the obtained 6 measurement values was divided by the average value of the obtained 6 measurement values.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a volatility of CAI strength of less than 6.0% and may be less than 4.0%.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a G1c volatility of less than 6.0% and may be less than 4.0%.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a G2c volatility of less than 6.0% and may be less than 4.0%.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a volatility of ILSS of less than 2.0% and may be less than 1.0%.
  • the fiber-reinforced composite material obtained by the method of the present embodiment may have a volatility of the damaged area after impact application of less than 8.0% and may be less than 6.0%.
  • the fiber-reinforced composite material obtained by the method of the present embodiment having the above physical characteristics is suitably used for railroad vehicles, aircraft, building members, and other general industrial applications.
  • the cloth containing the polyamide fiber As the cloth containing the polyamide fiber, the cloths shown in Tables 1 to 3 were used.
  • the polyamide fiber has a core-sheath structure, the polyamide fiber includes a core portion made of a second polyamide resin and a sheath portion made of a first polyamide resin that covers the core portion.
  • the knitting method of the knitted cloth is a circular knitting.
  • the polyamide fiber used was a single fiber, the single fiber was twisted into a single twisted yarn and then knitted or woven.
  • the melting points of the first polyamide resin and the second polyamide resin were close to each other, and the heat treatment could not be stably performed, so that the cloth could not be produced.
  • PA6 Polyamide 6 resin
  • PA12 Polyamide 12 resin
  • PA1010 Polyamide 1010 resin
  • PA6 / PA12 (20/80) Polyamide 6/12 copolymer obtained by copolymerizing caprolactam and laurolactam at a molar ratio of 20:80 (random). Copolymer)
  • PA6 / PA12 (80/20) Polyamide 6/12 copolymer (random copolymer) obtained by copolymerizing caprolactam and laurolactam at a molar ratio of 80:20.
  • FIG. 4 is a photograph of the cloth used in Example 1.
  • FIG. 5 is a photograph of the cloth used in Example 2.
  • Benzoxazine resin FA Bisphenol F-aniline type (FA type benzoxazine, manufactured by Shikoku Chemicals Corporation)
  • PA Phenol-aniline type (PA type benzoxazine, manufactured by Shikoku Chemicals Corporation)
  • Epoxy resin 2021P "Selokiside” (registered trademark) 2021P (manufactured by Daicel Chemical Industries, Ltd.)
  • Toughness improver YP70 Phenoxy resin (YP-70, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • PA12 resin particles Polyamide 12 resin particles (trade name: Best Gint 2159, average particle diameter 10 ⁇ m, manufactured by Daicel Evonik)
  • PA1010 resin particles Polyamide 1010 resin particles (trade name: Best Gint 9158, average particle diameter 20 ⁇ m, manufactured by Daicel Evonik)
  • ⁇ Reinforcing fiber> (Examples 1 to 15, Comparative Examples 1, 2, 4, 5)
  • a reinforcing fiber base material a carbon fiber bundle in which carbon fibers having a tensile elastic modulus of 290 GPa were aligned in one direction was prepared.
  • the basis weights of the prepared reinforcing fiber base materials are shown in Tables 1 to 4.
  • Example 2 A prepreg was obtained in the same manner as in Example 1 except that a resin film having a mass per unit area of 28 g / m 2 was used instead of the resin film having a mass per unit area of 36 g / m 2 . ..
  • Example 8 A prepreg was obtained in the same manner as in Example 1 except that a resin film having a mass per unit area of 23 g / m 2 was used instead of the resin film having a mass per unit area of 36 g / m 2 . ..
  • Example 1 A prepreg was obtained in the same manner as in Example 1 except that the cloth containing the polyamide fiber was not arranged on the surface of the reinforcing fiber base material.
  • the obtained first and second resin compositions were applied onto a paper pattern at 70 to 100 ° C. to obtain a first resin film of 18 g / m 2 and a second resin film of 25 g / m 2 . It was.
  • the obtained first resin film was supplied from above and below the reinforcing fiber base material and impregnated between the fibers to form a carbon fiber layer.
  • the conditions for impregnating the first resin film between the fibers were an impregnation temperature of 70 ° C., a pressure of 0.2 MPa, and a speed of delivering the reinforcing fiber base material and the first resin film at 3 m / min.
  • the second resin film was laminated from above and below the carbon fiber layer to form a surface layer, and a prepreg was produced.
  • the conditions for laminating the second resin film from above and below the carbon fiber layer were a temperature of 70 ° C., a pressure of 0.2 MPa, and a speed of feeding out the carbon fiber layer and the second resin film at 7 m / min.
  • Tables 1 to 4 show the content of reinforcing fibers in the obtained prepreg.
  • Tables 1 to 4 show the ratio of the mass of the polyamide fiber to the total mass of the component (A), the component (B), the component (C) and the polyamide fiber in the obtained prepreg.
  • the abbreviation "PA content” is used.
  • ⁇ Measurement of melting points of polyamide resin and polyamide resin particles The temperature of the first polyamide resin, the second polyamide resin, the first polyamide resin particles, and the second polyamide resin particles is raised at a rate of 25 ° C. to 10 ° C./min using a differential calorimetry (DSC). The temperature at the top of the obtained heat absorption peak was taken as the melting point of the polyamide resin and the polyamide resin particles.
  • DSC differential calorimetry
  • the melting point of the polyamide 12 resin is 176 ° C.
  • the melting point of the polyamide 1010 resin is 199 ° C.
  • the melting point of the polyamide 6 resin is 225 ° C.
  • the melting point of the resin composed of the 6/12 copolymer (random copolymer) is 160 ° C.
  • the melting point of the resin made of the copolymer) was 194 ° C.
  • the melting point of the polyamide 12 resin particles was 176 ° C.
  • the melting point of the polyamide 1010 resin particles was 199 ° C.
  • Example 2 A fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the prepreg was laminated with 40 plies (layers) in a pseudo-isotropic manner in a [+ 45 ° / 0 ° / ⁇ 45 ° / 90 °] 5s configuration. , CAI intensity was measured.
  • Example 8 A fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the prepreg was laminated in a pseudo-isotropic manner with 56 plies (layers) in a [+ 45 ° / 0 ° / ⁇ 45 ° / 90 °] 7s configuration. , CAI intensity was measured.
  • Example 2 The obtained prepregs were aligned so that the directions of the carbon fibers were the same, and 34 plies were laminated, except that a Kapton film was sandwiched in a part of the central layer (between the 17th and 18th layers).
  • the mode I interlayer fracture toughness test (G1c) was measured in the same manner as in Example 1.
  • Example 8 The obtained prepregs were aligned so that the directions of the carbon fibers were the same, and 44 plies were laminated, except that the Kapton film was sandwiched in a part of the central layer (between the 22nd and 23rd layers).
  • the mode I interlayer fracture toughness test (G1c) was measured in the same manner as in Example 1.
  • Example 2 The obtained prepregs were aligned so that the directions of the carbon fibers were the same, and 34 plies were laminated, except that a Kapton film was sandwiched in a part of the central layer (between the 17th and 18th layers).
  • the mode II interlayer fracture toughness test (G2c) was measured in the same manner as in Example 1.
  • Example 8 The obtained prepregs were aligned so that the directions of the carbon fibers were the same, and 44 plies were laminated, except that the Kapton film was sandwiched in a part of the central layer (between the 22nd and 23rd layers).
  • the mode II interlayer fracture toughness test (G2c) was measured in the same manner as in Example 1.
  • ILSS interlayer shear strength
  • Examples 1, 3 to 7, 9, 10, 13 to 15, Comparative Examples 1, 2, 4, 5 The obtained prepregs were aligned so that the directions of the carbon fibers were the same, and 26 plies were laminated. This was autoclaved at a pressure of 0.6 MPa from room temperature to 1.0 ° C./min at a heating rate of 185 ° C. After raising the temperature, it was heat-cured at the same temperature for 2 hours to obtain a fiber-reinforced composite material. For this fiber-reinforced composite material, a sample having a length (fiber direction) of 24.0 mm and a width of 8.0 mm was cut out to obtain a test piece.
  • Example 2 Interlayer shear strength (ILSS) was measured in the same manner as in Example 1 except that the obtained prepregs were aligned so that the directions of the carbon fibers were the same and 34 plies were laminated.
  • ILSS Interlayer shear strength
  • Example 8 The interlayer shear strength (ILSS) was measured in the same manner as in Example 1 except that the obtained prepregs were aligned so that the directions of the carbon fibers were the same and 44 plies were laminated.
  • ILSS interlayer shear strength
  • ILSS interlayer shear strength
  • the fiber-reinforced composite materials obtained in Examples 1 to 15 in which the surface fiber layer contains polyamide fibers containing two specific types of polyamide resins have variations in CAI strength and CAI strength. It was confirmed that the reduction was achieved at the same time at a high level. Further, the fiber-reinforced composite materials obtained in Examples 1 to 15 can achieve ILSS and interlayer fracture toughness at a high level, reduce the damaged area after impact application, and reduce the variation thereof. It was confirmed that it could be done.
  • FIG. 6 is a photograph of the surface of the fiber-reinforced composite material obtained in Example 1, Example 2, and Comparative Example 5.
  • the cloth containing the polyamide fiber is used as the polyamide resin, a pattern derived from the cloth can be confirmed on the surface.
  • an expensive carbon fiber woven prepreg may be used on the surface in order to impart design, but by using the prepreg of the present invention, even an inexpensive unidirectional carbon fiber prepreg can be used. A surface having a design property can be obtained.
  • FIG. 7 is a photograph of a cross section of the fiber-reinforced composite material obtained in Example 1, Example 2, and Comparative Example 5.
  • the polyamide resin particles were densely packed and excessively penetrated into the reinforcing fiber layer, while being indicated by B.
  • the polyamide resin particles were not sufficiently present locally and there were some places where the polyamide resin particles did not sufficiently penetrate into the reinforcing fiber layer.
  • the damaged area may become large, which causes an increase in the fluctuation rate of the damaged area and eventually the fluctuation rate of the CAI strength.
  • fiber reinforced plastics that achieve excellent CAI strength and reduction of variation in CAI strength at the same time while utilizing a benzoxazine resin having excellent moisture resistance and heat resistance. It is possible to provide a method for producing a prepreg capable of obtaining a composite material.
  • the fiber-reinforced composite material obtained by laminating a plurality of prepregs obtained by the production method of the present invention and the prepregs of the present invention and heating them under pressure is used for aircraft applications, marine applications, automobile applications, sports applications, and other general applications. It can be suitably used for industrial applications, and is particularly useful for aircraft applications.

Abstract

強化繊維と、その繊維間に含浸された、(A)成分、(B)成分、及び、(C)成分を含有する樹脂組成物と、を含む強化繊維層と、強化繊維層の表面上に設けられた、ポリアミド繊維を含む布と、ポリアミド繊維の繊維間に含浸された、(A)成分、(B)成分、及び、(C)成分を含有する樹脂組成物と、を含む表面繊維層と、を備えるプリプレグの製造方法が開示される。プリプレグの製造方法は、強化繊維基材の表面上に、布を配置する配置工程と、樹脂組成物を強化繊維基材に供給し、強化繊維の繊維間に樹脂組成物を含浸させる含浸工程と、を備える。ポリアミド繊維は、第1のポリアミド樹脂と、融点が第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む。

Description

プリプレグの製造方法及びプリプレグ
 本発明は、プリプレグの製造方法及びプリプレグに関する。本発明は、特には、航空機用途、船舶用途、自動車用途、スポーツ用途、その他一般産業用途の繊維強化複合材料を得るために利用されるプリプレグの製造方法及びプリプレグに関する。
 各種繊維とマトリックス樹脂からなるプリプレグを複数積層して得られる繊維強化複合材料は、その優れた力学物性から、航空機、船舶、自動車、スポーツ用品やその他一般産業用途などに広く使われている。近年、その使用実績を積むに従い、繊維強化複合材料の適用範囲はますます拡がっている。
 このような繊維強化複合材料として、ベンゾオキサジン樹脂を利用したものが、例えば、特許文献1及び2に提案されている。ベンゾオキサジン樹脂は、優れた耐湿性及び耐熱性を有するが、靱性に劣る問題があり、エポキシ樹脂や各種樹脂微粒子等を配合してその欠点を補う工夫がなされている。
特開2007-16121号公報 特開2010-13636号公報
 ところで、航空機用途の繊維強化複合材料は更なる軽量化が望まれている。材料の軽量化のためには、特に、航空機用途で必要とされる力学特性の中でも衝撃後圧縮強度(以下、CAI強度という場合もある)を高次元で達成することが必要である。加えて、繊維強化複合材料には、CAI強度のばらつきが少ないことが求められている。これは、繊維強化複合材料のCAI強度のばらつきが大きいと、衝撃付与時にCAI強度が相対的に低い箇所に応力が集中し、局所的に損傷が生じたり、CAI強度が相対的に低い箇所を起点として損傷が広がるといった問題が起こるおそれがあるためである。また、複数の繊維強化複合材料を製造した際に、それぞれの繊維強化複合材料間でCAI強度のばらつきが大きいと、要求されるCAI強度の規格値を満たさない不良品が発生しやすくなると共に、規格値を満たしていたとしても、同じ用途にCAI強度がばらついている複数の繊維強化複合材料を用いた場合に、得られる目的物の品質が安定しないという問題が生じる。そのため、繊維強化複合材料には、優れたCAI強度を有するだけでなく、CAI強度のばらつきが少ないことも求められている。しかし、上記特許文献に具体的に記載された例では、必ずしも優れたCAI強度とCAI強度のばらつきの低減とが同時に高次元で達成されているとはいえない。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、優れた耐湿性及び耐熱性を有するベンゾオキサジン樹脂を利用しつつ、優れたCAI強度とCAI強度のばらつきの低減とを同時に高次元で達成された繊維強化複合材料を得ることができるプリプレグの製造方法、並びに、プリプレグを提供することにある。
 上記課題を解決するために、本発明は、強化繊維と、強化繊維の繊維間に含浸された、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物と、を含む強化繊維層と、強化繊維層の少なくとも一方の表面上に設けられた、ポリアミド繊維を含む布と、ポリアミド繊維の繊維間に含浸された、(A)成分、(B)成分、及び、(C)成分を含有する樹脂組成物と、を含む表面繊維層と、を備えるプリプレグの製造方法であって、強化繊維を含む強化繊維基材の少なくとも一方の表面上に、布を配置する配置工程と、配置工程の前又は後、或いは配置工程と同時に、(A)成分、(B)成分、及び、(C)成分を含有する樹脂組成物を強化繊維基材に供給し、強化繊維の繊維間に樹脂組成物を含浸させる含浸工程と、を備え、ポリアミド繊維が、第1のポリアミド樹脂と、融点が第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む、プリプレグの製造方法を提供する。
 本発明の製造方法により得られたプリプレグを複数積層し、加圧下で加熱することにより、繊維強化複合材料を得ることができる。該繊維強化複合材料は、優れた耐湿性及び耐熱性を有するベンゾオキサジン樹脂を利用しつつ、優れたCAI強度とCAI強度のばらつきの低減とを同時に高次元で達成することができる。該繊維強化複合材料は、上記の優れた物性によって材料の軽量化及び薄型化を図ることができる。更に、該繊維強化複合材料は、ILSS及び層間破壊靭性を高次元で達成し、衝撃付与後の損傷面積を減少させ、かつ、これらのばらつきの低減を図ることができる。
 本発明はまた、強化繊維と、強化繊維の繊維間に含浸された、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物と、を含む強化繊維層と、強化繊維層の少なくとも一方の表面上に設けられた、ポリアミド繊維を含む布と、ポリアミド繊維の繊維間に含浸された、(A)成分、(B)成分、及び、(C)成分を含有する樹脂組成物と、を含む表面繊維層と、を備え、ポリアミド繊維が、第1のポリアミド樹脂と、融点が第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む、プリプレグを提供する。
 本発明のプリプレグによれば、得られたプリプレグを複数積層し、加圧下で加熱することにより、優れた耐湿性及び耐熱性を有するベンゾオキサジン樹脂を利用しつつ、優れたCAI強度とCAI強度のばらつきの低減とを同時に高次元で達成された繊維強化複合材料を得ることができる。該繊維強化複合材料は、上記の優れた物性によって材料の軽量化及び薄型化を図ることができる。更に、該繊維強化複合材料は、ILSS及び層間破壊靭性を高次元で達成し、衝撃付与後の損傷面積を減少させ、かつ、これらのばらつきの低減を図ることができる。
 上記プリプレグの製造方法によって得られたプリプレグを複数積層し、加圧下で加熱することにより、CAI強度とCAI強度のばらつきの低減とを同時に高次元で達成された繊維強化複合材料を得ることができることについて、発明者らは以下のように考えている。すなわち、ポリアミド樹脂としてポリアミド繊維を含む布を用いることで、ポリアミド樹脂としてポリアミド樹脂粒子を用いた場合と比較して、ポリアミド樹脂がプリプレグの面内に均一に分布する。ポリアミド樹脂が局在的に密集することが無いために、ポリアミド樹脂が強化繊維層に対して均一に入り込み、その結果、CAI強度のばらつきの低減を高次元で達成した繊維強化複合材料を得ることができると考えられる。
 ポリアミド繊維の融解温度は、ベンゾオキサジン樹脂の硬化剤であるフェノール性水酸基を有する化合物の存在により低下する。そして、ポリアミド繊維の融解温度が低くなり過ぎると、プリプレグを用いて繊維強化複合材料を作製する際の熱硬化樹脂の硬化時にポリアミド繊維が過度に融解しやすくなることで、融解したポリアミド繊維が強化繊維層に過度に入り込みやすくなる。これに対し、上記特定の2種のポリアミド樹脂を含むポリアミド繊維を用いることにより、上記樹脂組成物を硬化させる温度条件において、一方のポリアミド樹脂が流動しにくい状態で他方のポリアミド樹脂を適度に融解させることができ、その結果、繊維層間に接着性及びはく離抵抗に優れた樹脂硬化層が形成されると考えられる。
 また、ポリアミド樹脂としてポリアミド繊維を含む布を用いた場合には、ポリアミド樹脂としてポリアミド樹脂粒子を用いた場合と比較して、繊維強化複合材料の更なる軽量化及び薄型化を図ることができる。これは、ポリアミド樹脂粒子を使用する場合、その粒径により、ホットメルト法でプリプレグを製造する際に使用する樹脂フィルムの膜厚が制限を受けるためである。
 また、ポリアミド樹脂としてポリアミド繊維を含む布を用いた場合には、ポリアミド樹脂としてポリアミド樹脂粒子を用いた場合と比較して、ILSS及び層間破壊靭性が一層向上した繊維強化複合材料が得られる。この理由について、発明者らは、ポリアミド繊維を含む布を用いた場合には、層間せん断時及び層間破壊時にポリアミド繊維を切断する必要があるためであると考えている。
 本発明によれば、優れた耐湿性及び耐熱性を有するベンゾオキサジン樹脂を利用しつつ、優れたCAI強度とCAI強度のばらつきの低減とを同時に高次元で達成された繊維強化複合材料を得ることができるプリプレグの製造方法、並びに、プリプレグを提供することができる。
 本発明の製造方法により得られたプリプレグ及び本発明のプリプレグを複数積層し、加圧下で加熱することにより得られた繊維強化複合材料は、航空機用途、船舶用途、自動車用途、スポーツ用途、その他一般産業用途に好適に利用でき、特に、航空機用途に有用である。
本発明に係るプリプレグについて説明するための模式断面図である。 本発明に係る繊維強化複合材料の製造方法における硬化プロファイルの一例を示す模式図である。 本発明に係る繊維強化複合材料について説明するための模式断面図である。 実施例1において用いた布の写真である。 実施例2において用いた布の写真である。 実施例1、実施例2及び比較例5において得られた繊維強化複合材料の表面の写真である。 実施例1、実施例2及び比較例5において得られた繊維強化複合材料の断面の写真である。
 以下本発明について詳細に説明する。
 本明細書において、ポリアミド樹脂の融点とは、示差熱量計(DSC)を用いて、25℃から10℃/分の速度で昇温し、得られた吸熱ピークのトップの温度を測定することで求められた値である。また、表面繊維層を構成する組成中で測定されるポリアミド樹脂の融解温度とは、ポリアミド樹脂を含む表面繊維層を構成する組成物を、示差熱量計(DSC)を用いて、25℃から10℃/分の速度で昇温し、得られた吸熱ピークのトップの温度を指す。
 図1は、本発明に係るプリプレグについて説明するための模式断面図である。図1に示されるプリプレグ10は、強化繊維1と、強化繊維1の繊維間に含浸された樹脂組成物2と、を含む強化繊維層3と、強化繊維層3の表面上に設けられた、ポリアミド繊維を含む布4及び樹脂組成物5を含有する表面繊維層6とを備える。プリプレグ10の表面繊維層6においては、ポリアミド繊維を含む布4が樹脂組成物5の層内に含まれている。図1に示されるプリプレグ10においては、強化繊維層3の両方の表面上に表面繊維層6が設けられているが、強化繊維層3の一方の表面上にのみ表面繊維層6が設けられていてもよい。図1に示されるプリプレグ10においては、ポリアミド繊維を含む布4の全部が樹脂組成物5の層内に含まれているが、ポリアミド繊維を含む布4の一部が樹脂組成物5の層内に含まれていてもよい。
 本実施形態に係るプリプレグ10における強化繊維層3は、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物2を含む。
 本実施形態に係るプリプレグ10における表面繊維層6は、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物5を含む。
 本発明で用いる(A)ベンゾオキサジン樹脂(以下、(A)成分という場合もある)としては、下記一般式(A-1)で表されるベンゾオキサジン環を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
[式(A-1)中、Rは、炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、炭素数6~14のアリール基、又は炭素数1~12の鎖状アルキル基若しくはハロゲンで置換されたアリール基を示す。結合手には水素原子が結合されていてもよい。]
 炭素数1~12の鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基が挙げられる。炭素数3~8の環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。炭素数6~14のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、フェナントリル基、ビフェニル基が挙げられる。炭素数1~12の鎖状アルキル基若しくはハロゲンで置換されたアリール基としては、例えば、o-トリル基、m-トリル基、p-トリル基、キシリル基、o-エチルフェニル基、m-エチルフェニル基、p-エチルフェニル基、o-t-ブチルフェニル基、m-t-ブチルフェニル基、p-t-ブチルフェニル基、o-クロロフェニル基、o-ブロモフェニル基が挙げられる。
 Rとしては、上記例示の中でも、良好な取り扱い性を与えることから、メチル基、エチル基、プロピル基、フェニル基、o-メチルフェニル基であってよい。
 また、下記一般式(A-2)で表されるベンゾオキサジン環を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
[式(A-2)中、Lは、アルキレン基又はアリーレン基を示す。]
 (A)成分のベンゾオキサジン樹脂としては、例えば、以下の式で表されるモノマー、該モノマーが数分子重合したオリゴマー、以下の式で表されるモノマーの少なくとも1種と、これらモノマーとは異なる構造を有するベンゾオキサジン環を有する化合物との反応物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (A)成分は、ベンゾオキサジン環が開環重合することにより、フェノール樹脂と同様の骨格をつくるために、難燃性に優れる。また、その緻密な構造から、低吸水率や高弾性率といった優れた機械特性が得られる。
 (A)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本発明で用いる(B)エポキシ樹脂(以下、(B)成分という場合もある)は、組成物の粘度をコントロールし、また、組成物の硬化性を高める成分として配合される。(B)成分としては、例えば、アミン類、フェノール類、カルボン酸、分子内不飽和炭素等の化合物を前駆体とするエポキシ樹脂であってよい。
 アミン類を前駆体とするエポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、キシレンジアミンのグリシジル化合物、トリグリシジルアミノフェノールや、グリシジルアニリンのそれぞれの位置異性体やアルキル基やハロゲンでの置換体が挙げられる。以下、市販品を例示する場合、液状のものには、後述の動的粘弾性測定装置により得られる25℃における複素粘弾性率ηを粘度として記載している。
 テトラグリシジルジアミノジフェニルメタンの市販品としては、例えば、「スミエポキシ」(登録商標。以下同じ)ELM434(住友化学(株)製)、「アラルダイト」(登録商標、以下同じ)MY720、「アラルダイト」MY721、「アラルダイト」MY9512、「アラルダイト」MY9612、「アラルダイト」MY9634、「アラルダイト」MY9663(以上ハンツマン・アドバンスト・マテリアルズ社製)、「jER」(登録商標、以下同じ)604(三菱化学(株)製)が挙げられる。
 トリグリシジルアミノフェノールの市販品としては、例えば、「jER」630(粘度:750mPa・s)(三菱化学(株)製)、「アラルダイト」MY0500(粘度:3500mPa・s)、MY0510(粘度:600mPa・s)(以上ハンツマン・アドバンスト・マテリアルズ社製)、ELM100(粘度:16000mPa・s)(住友化学(株)製)が挙げられる。
 グリシジルアニリン類の市販品としては、例えば、GAN(粘度:120mPa・s)、GOT(粘度:60mPa・s)(以上日本化薬(株)製)が挙げられる。
 フェノールを前駆体とするグリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルフルオレン型エポキシ樹脂やそれぞれの各種異性体やアルキル基、ハロゲン置換体が挙げられる。また、フェノールを前駆体とするエポキシ樹脂をウレタンやイソシアネートで変性したエポキシ樹脂も、このタイプに含まれる。
 液状のビスフェノールA型エポキシ樹脂の市販品としては、例えば、「jER」825(粘度:5000mPa・s)、「jER」826(粘度:8000mPa・s)、「jER」827(粘度:10000mPa・s)、「jER」828(粘度:13000mPa・s)、(以上三菱化学(株)製)、「エピクロン」(登録商標、以下同じ)850(粘度:13000mPa・s)(DIC(株)製)、「エポトート」(登録商標、以下同じ)YD-128(粘度:13000mPa・s)(新日鐵化学(株)製)、DER-331(粘度:13000mPa・s)、DER-332(粘度:5000mPa・s)(ダウケミカル社製)が挙げられる。固形若しくは半固形のビスフェノールA型エポキシ樹脂の市販品としては、例えば、「jER」834、「jER」1001、「jER」1002、「jER」1003、「jER」1004、「jER」1004AF、「jER」1007、「jER」1009(以上三菱化学(株)製)が挙げられる。
 液状のビスフェノールF型エポキシ樹脂の市販品としては、例えば、「jER」806(粘度:2000mPa・s)、「jER」807(粘度:3500mPa・s)、「jER」1750(粘度:1300mPa・s)、「jER」(以上三菱化学(株)製)、「エピクロン」830(粘度:3500mPa・s)(DIC(株)製)、「エポトート」YD-170(粘度:3500mPa・s)、「エポトート」YD-175(粘度:3500mPa・s)、(以上、新日鐵化学(株)製)が挙げられる。固形のビスフェノールF型エポキシ樹脂の市販品としては、例えば、4004P、「jER」4007P、「jER」4009P(以上三菱化学(株)製)、「エポトート」YDF2001、「エポトート」YDF2004(以上新日鐵化学(株)製)が挙げられる。
 ビスフェノールS型エポキシ樹脂としては、例えば、EXA-1515(DIC(株)製)が挙げられる。
 ビフェニル骨格を有するエポキシ樹脂の市販品としては、例えば、「jER」YX4000H、「jER」YX4000、「jER」YL6616(以上、三菱化学(株)製)、NC-3000(日本化薬(株)製)が挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては、例えば、「jER」152、「jER」154(以上三菱化学(株)製)、「エピクロン」N-740、「エピクロン」N-770、「エピクロン」N-775(以上、DIC(株)製)が挙げられる。
 クレゾールノボラック型エポキシ樹脂の市販品としては、例えば、「エピクロン」N-660、「エピクロン」N-665、「エピクロン」N-670、「エピクロン」N-673、「エピクロン」N-695(以上、DIC(株)製)、EOCN-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)が挙げられる。
 レゾルシノール型エポキシ樹脂の市販品としては、例えば、「デナコール」(登録商標、以下同じ)EX-201(粘度:250mPa・s)(ナガセケムテックス(株)製)が挙げられる。
 ナフタレン骨格を有するエポキシ樹脂の市販品としては、例えば、「エピクロン」HP4032(DIC(株)製)、NC-7000、NC-7300(以上、日本化薬(株)製)が挙げられる。
 トリスフェニルメタン型エポキシ樹脂の市販品としては、例えば、TMH-574(住友化学(株)製)が挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えば、「エピクロン」HP7200、「エピクロン」HP7200L、「エピクロン」HP7200H(以上、DIC(株)製)、「Tactix」(登録商標)558(ハンツマン・アドバンスト・マテリアルズ社製)、XD-1000-1L、XD-1000-2L(以上、日本化薬(株)製)が挙げられる。
 ウレタン及びイソシアネート変性エポキシ樹脂の市販品としては、例えば、オキサゾリドン環を有するAER4152(旭化成イーマテリアルズ(株)製)が挙げられる。
 カルボン酸を前駆体とするエポキシ樹脂としては、例えば、フタル酸のグリシジル化合物や、ヘキサヒドロフタル酸、ダイマー酸のグリシジル化合物やそれぞれの各種異性体が挙げられる。
 フタル酸ジグリシジルエステルの市販品としては、例えば、「エポミック」(登録商標、以下同じ)R508(粘度:4000mPa・s)(三井化学(株)製)、「デナコール」EX-721(粘度:980mPa・s)(ナガセケムテックス(株)製)が挙げられる。
 ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、例えば、「エポミック」R540(粘度:350mPa・s)(三井化学(株)製)、AK-601(粘度:300mPa・s)(日本化薬(株)製)が挙げられる。
 ダイマー酸ジグリシジルエステルの市販品としては、例えば、「jER」871(粘度:650mPa・s)(三菱化学(株)製)、「エポトート」YD-171(粘度:650mPa・s)(新日鐵化学(株)製)が挙げられる。
 分子内不飽和炭素を前駆体とするエポキシ樹脂としては、例えば、脂環式エポキシ樹脂が挙げられる。脂環式エポキシ樹脂としては、(3’,4’-エポキシシクロヘキサン)メチル-3,4-エポキシシクロヘキサンカルボキシレート、(3’,4’-エポキシシクロヘキサン)オクチル-3,4-エポキシシクロヘキサンカルボキシレート、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタンが挙げられる。
 (3’,4’-エポキシシクロヘキサン)メチル-3,4-エポキシシクロヘキサンカルボキシレートの市販品としては、例えば、「セロキサイド」(登録商標、以下同じ)2021P(粘度:250mPa・s)(ダイセル化学工業(株)製)、CY179(粘度:400mPa・s)(ハンツマン・アドバンスドマテリアルズ社製)、(3’,4’-エポキシシクロヘキサン)オクチル3,4-エポキシシクロヘキサンカルボキシレートの市販品としては、例えば、「セロキサイド」2081(粘度:100mPa・s)(ダイセル化学工業(株)製)、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタンの市販品としては、例えば、「セロキサイド」3000(粘度:20mPa・s)(ダイセル化学工業(株)製)が挙げられる。
 本実施形態においては、タックやドレープ性の観点から、25℃で液状のエポキシ樹脂を配合することができる。25℃で液状のエポキシ樹脂の25℃における粘度は、低ければ低いほどタックやドレープ性の観点から好ましい。具体的には、エポキシ樹脂の市販品として得られる下限である5mPa・s以上20000mPa・s以下であってよく、5mPa・s以上15000mPa・s以下であってよい。25℃における粘度が20000mPa・sを超えると、タックやドレープ性が低下することがある。
 一方、耐熱性の観点から、25℃で固形のエポキシ樹脂を配合することができる。25℃で固形のエポキシ樹脂としては、芳香族含有量の高いエポキシ樹脂であってよく、例えば、ビフェニル骨格をもつエポキシ樹脂や、ナフタレン骨格をもつエポキシ樹脂、フェノールアラルキル型エポキシ樹脂が挙げられる。
 (B)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本発明で用いる(C)分子中に2個以上のフェノール性水酸基を有する硬化剤(以下、(C)成分という場合もある)としては、ビスフェノール類等の多官能フェノールが挙げられ、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、チオジフェノール、下記一般式(C-1)で表されるビスフェノール類が挙げられる。
Figure JPOXMLDOC01-appb-C000007
[式(C-1)中、R、R、R及びRは水素原子又は炭化水素基を示し、R、R、R又はRが炭化水素基である場合、それらは炭素数1~4の直鎖若しくは分岐のアルキル基である、又は、隣り合うR及びR若しくは隣り合うR及びRが結合して炭素数6~10の置換若しくは無置換の芳香環又は炭素数6~10の置換若しくは無置換の脂環構造を形成しており、xは、0又は1を示す。]
 上記一般式(C-1)で表される硬化剤としては、例えば、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 本実施形態においては、樹脂硬化物のガラス転移温度を十分高める観点から、(C)成分は、ビスフェノールA、ビスフェノールF、チオビスフェノール(以下、TDPという場合もある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン(以下、BPFという場合もある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(以下、BPCという場合もある)であってよい。
 (C)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態においては、上記(C)成分以外の硬化剤を併用することができる。併用できる硬化剤としては、例えば、N,N-ジメチルアニリンを代表とする第3級芳香族アミン、トリエチルアミン等の第3級脂肪族アミン、イミダゾール誘導体、ピリジン誘導体等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態に係るプリプレグの表面繊維層は、ポリアミド繊維を含む布を含有する。
 本発明で用いる布としては、特に制限されないが、例えば、編布、織布及び不織布からなる群より選ばれる少なくとも一種であってよく、伸縮性がありプリプレグを製造する際にシワとなりにくく、ポリアミド樹脂の密度が均一であり、得られる繊維強化複合材料の各種物性(CAI強度、ILSS、層間破壊靭性及び損傷面積)の変動率を一層低減できることから、編布であってよい。
 布が編布である場合、その編布は、緯編シングルニット(平編等)、緯編ダブルニット(リブ編等)、経編(トリコット、ラッセル、ミラーズ)等であってよく、生産性及び編布の薄型化を図ることができる観点から、緯編シングルニットであってよい。
 布の目付(単位面積当たりの質量)の下限値は、特に制限されないが、3g/m以上であってよく、3.5g/m以上であってよい。布の目付の上限値は、特に制限されないが、15g/m以下であってよく、8g/m以下であってよい。布の目付の下限値が3g/m以上であれば、布の生産効率が向上し、且つ、プリプレグを製造する際の取り扱い性にも優れる。布の目付の上限値が15g/m以下であれば、得られる繊維強化複合材料の各種物性(CAI強度、ILSS、層間破壊靭性及び損傷面積)が一層向上する。
 布の最大開口面積の下限値は、特に制限されないが、0.2mm以上であってよく、0.3mm以上であってよい。布の最大開口面積の上限値は、特に制限されないが、3mm以下であってよく、1.5mm以下であってよい。布の最大開口面積の下限値が0.2mm以上であれば、樹脂組成物の布に対する含浸性が一層向上する。布の開口率の上限値が3mm以下であれば、得られる繊維強化複合材料の衝撃付与時の損傷面積を低減させ、CAI強度を一層高次元で達成できる。布の最大開口面積は、光学顕微鏡の7×5mm視野内で観察される布の最も大きい開口部の面積とした。
 布の平均開口面積の下限値は、特に制限されないが、0.05mm以上であってよく、0.1mm以上であってよい。布の平均開口面積の上限値は、特に制限されないが、1.5mm以下であってよく、0.8mm以下であってよい。布の平均開口面積の下限値は、樹脂組成物の布に対する含浸性が向上する観点から0.05mm以上であってよい。布の平均開口面積の上限値は、得られる繊維強化複合材料のCAI強度の向上及びそのばらつきの低減の観点から1.5mm以下であってよい。布の平均開口面積は、光学顕微鏡の7×5mm視野内で観察される布の任意の開口部10点の面積の平均値とした。
 布の長手方向(たて方向)の伸び率の下限値は、特に制限されないが、5%以上であってよく、10%以上であってよい。布の長手方向の伸び率の下限値が5%以上であれば、プリプレグを製造する際にシワとなりにくく、シワ等の欠点のないプリプレグを得ることができる。布の長手方向の伸び率の上限値は100%以下であってよい。布の一方向の伸び率は、JIS L1096 A法(カットストリップ法)により測定される値を意味する。プリプレグの製造時においては、布の長手方向(MD方向)と、プリプレグの長手方向(MD方向)とを合わせてよい。
 ポリアミド繊維の繊維径の下限値は、特に制限されないが、例えば、10μm以上であってよく、20μm以上であってよく、30μm以上であってよい。ポリアミド繊維の繊維径の上限値は、特に制限されないが、60μm以下であってよく、50μm以下であってよく、40μm以下であってよい。ポリアミド繊維の繊維径の下限値は、布の強度及び取り扱い性の観点から10μm以上であってよい。ポリアミド繊維の繊維径の上限値は、繊維強化複合材料の一層の軽量化及び薄型化を図ることができる観点から、60μm以下であってよい。ここで、繊維径は、布に含まれる繊維を光学顕微鏡により観察し、測定した値を意味する。
 本発明で用いるポリアミド繊維としては、例えば、脂肪族アミノ酸、脂肪族ラクタム或いは脂肪族ジアミンと脂肪族カルボン酸を出発原料としたアミド結合を有する重合体又は共重合体が挙げられる。
 脂肪族アミノ酸としては、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。
 脂肪族ラクタムとしては、例えば、カプロラクタム、ラウロラクタム、オクタラクタム、ウンデカンラクタム等が挙げられる。
 脂肪族ジアミンとしては、例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,8-ビス(アミノメチル)トリシクロデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン等が挙げられる。
 脂肪族カルボン酸としては、例えば、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等が挙げられる。
 本実施形態で用いるポリアミド繊維に含まれるポリアミド樹脂としては、例えば、カプロラクタムの重合体、ラウロラクタムの重合体、カプロラクタム及びラウロラクタムの共重合体、ポリヘキサメチレンセバカミド(ナイロン6/12)、ポリデカメチレンセバカミド(ナイロン10/10)、ポリデカメチレンドデカミド(ナイロン10/12)、ポリウンデカメチレンアジパミド(ナイロン11/6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、並びに、これらの共重合体等を用いることができる。
 本発明で用いられるポリアミド繊維を含む布は、ポリアミド繊維が、第1のポリアミド樹脂と、融点が第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む。本発明で用いられる第1のポリアミド樹脂及び第2のポリアミド樹脂としては、例えば、上述したポリアミド樹脂として例示したものと同様のものを用いることができる。本発明で用いられるポリアミド繊維を含む布は、形態を安定化させるため、第1のポリアミド樹脂の融点以上、第2のポリアミド樹脂の融点以下の温度で熱処理を行うことができる。本発明で用いられるポリアミド繊維を含む布は、上記の熱処理により第1のポリアミド樹脂の一部が溶融した布であってよい。
 ポリアミド繊維の構造としては、特に制限されないが、単一のポリアミド樹脂からなる単繊維、並びに、2種以上のポリアミド樹脂が含まれる複合繊維が挙げられる。前述した熱処理により第1のポリアミド樹脂を適度に融解させることで、布の形態を安定化し、その結果、得られる繊維強化複合材料のCAI強度のばらつきを低減させることができることから、ポリアミド繊維の構造は、複合繊維であってよい。
 複合繊維としては、芯鞘構造を有する繊維、コンジュゲート繊維等が挙げられる。これらの中でも、布の作製時に、熱処理により第1のポリアミド樹脂を適度に融解させることで、布の形態を安定化し、その結果、得られる繊維強化複合材料のCAI強度のばらつきを低減させることができることから、芯鞘構造を有する繊維であってよい。
 ポリアミド繊維の構造が芯鞘構造である場合には、布の作製時に、熱処理により第1のポリアミド樹脂を適度に融解させることで、布の形態を安定化し、その結果、繊維強化複合材料のCAI強度のばらつきを低減させることができること、及び、繊維強化複合材料の作製時に第1のポリアミド樹脂を適度に融解させ、第2のポリアミド樹脂が融解して強化繊維層に入り込むことを適度に抑制することから、第2のポリアミド樹脂を含む芯部と、芯部を被覆する第1のポリアミド樹脂を含む鞘部と、を備えた芯鞘構造であってよい。
 ポリアミド繊維における第1のポリアミド樹脂と第2のポリアミド樹脂との含有割合は、質量比で、繊維強化複合材料の作製時に第1のポリアミド樹脂を適度に融解させ、第2のポリアミド樹脂が融解して強化繊維層に入り込むことを適度に抑制する観点から、第1のポリアミド樹脂:第2のポリアミド樹脂=70:30~30:70の範囲であってよく、60:40~40:60の範囲であってよい。
 第2のポリアミド樹脂の融点mは、第1のポリアミド樹脂の融点mよりも7~50℃高い。第2のポリアミド樹脂の融点mと、第1のポリアミド樹脂の融点mとの融点差(m-m)の下限値は、7℃以上であり、10℃以上であってよく、13℃以上であってよく、15℃以上であってよい。(m-m)の下限値が7℃以上であれば、布の作製時に熱処理を行う際に、温度範囲が広がるために安定して熱処理を実施することができる。融点差(m-m)の上限値は、50℃以下であり、40℃以下であってよい。融点差(m-m)の上限値が50℃以下であれば、繊維強化複合材料の作製時に第2のポリアミド樹脂の融解を適度に促進することができる。
 樹脂組成物5中での第1のポリアミド樹脂の融解温度Mは、繊維強化複合材料の作製時に第1のポリアミド樹脂の融解を促進することができるため、表面繊維層6中の樹脂組成物5の硬化温度よりも5℃以上低くてよく、10℃以上低くてよい。
 樹脂組成物5中での第2のポリアミド樹脂の融解温度Mは、繊維強化複合材料の作製時に第2のポリアミド樹脂が融解して強化繊維層に完全に入り込むことを適度に抑制することができるため、表面繊維層6中の樹脂組成物5の硬化温度よりも1℃以上高くてよく、5℃以上高くてよい。
 第1のポリアミド樹脂及び第2のポリアミド樹脂としては、例えば、ポリアミド6、ポリアミド12樹脂、カプロラクタムとラウロラクタムとを共重合させた共重合体からなるポリアミド樹脂及びポリアミド1010樹脂等を用いることができる。
 本明細書においてポリアミド6樹脂とは、カプロラクタムを開環重合したポリアミド樹脂を指す。
 本明細書においてポリアミド12樹脂とは、ラウロラクタムを開環重合したポリアミド樹脂を指す。
 上記カプロラクタムとラウロラクタムとを共重合させた共重合体は、ポリアミド6/12等と呼ばれるものである。上記共重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
 本明細書においてポリアミド1010樹脂とはセバシン酸とデカメチレンジアミンとを重縮合したポリアミド樹脂を指す。
 本実施形態で用いる第1のポリアミド樹脂としては、繊維強化複合材料の作製時にポリアミド樹脂を適度に融解させる観点から、ポリアミド12樹脂であってよい。
 第1のポリアミド樹脂としてカプロラクタムとラウロラクタムとを共重合させた共重合体からなるポリアミド樹脂を用いる場合には、カプロラクタムとラウロラクタムとの共重合比(モル比)が、1:9~3:7の範囲内であってよく、1:9~25:75の範囲内であってよく、1:9~2:8の範囲内であってよい。共重合比を上記範囲内とすることにより、ポリアミド樹脂の融点及び樹脂組成物中でのポリアミド樹脂の融解温度を適度な範囲に調整することができ、衝撃付与後の損傷面積を一層減少させることで、CAI強度が一層向上する。
 本実施形態で用いる第2のポリアミド樹脂としては、繊維強化複合材料の作製時に第2のポリアミド樹脂が融解して強化繊維層に入り込むことを適度に抑制する観点から、ポリアミド1010樹脂であってよい。
 第2のポリアミド樹脂としてカプロラクタムとラウロラクタムとを共重合させた共重合体からなるポリアミド樹脂を用いる場合には、カプロラクタムとラウロラクタムとの共重合比(モル比)が、9:1~7:3の範囲内であってよく、9:1~75:25の範囲内であってよく、9:1~8:2の範囲内であってよい。共重合比を上記範囲内とすることにより、ポリアミド樹脂の融点及び樹脂組成物中でのポリアミド樹脂の融解温度を適度な範囲に調整することができ、衝撃付与後の損傷面積を一層減少させることで、CAI強度が一層向上する。
 本実施形態で用いる第1のポリアミド樹脂及び第2のポリアミド樹脂の組み合わせとしては、布の作製時の熱処理の際に、第1のポリアミド樹脂を融解させてポリアミド繊維同士を融着させることにより布を安定化させ、得られる繊維強化複合材料のCAI強度のばらつきを低減させることができる観点、及び繊維強化複合材料の作製時に第1のポリアミド樹脂を適度に融解させ、第2のポリアミド樹脂が融解して強化繊維層に入り込むことを適度に抑制する観点から、第1のポリアミド樹脂としてポリアミド12樹脂及び第2のポリアミド樹脂としてポリアミド1010樹脂の組み合わせであってよい。
 本実施形態で用いる布は、ポリアミド繊維以外の繊維を含んでいてもよい。このような繊維としては、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂及びポリエーテルエーテルケトン樹脂等が挙げられる。
 本実施形態において、樹脂組成物2における(A)成分及び(B)成分の含有割合は、(A)成分と(B)成分との合計を100質量部としたときに、(A)成分の含有割合の下限値が65質量部以上であること、即ち、(B)成分の含有割合の上限値が35質量部以下であってよい。(A)成分の含有割合が65質量部以上であれば、即ち、(B)成分の含有割合が35質量部以下である場合には、得られる繊維強化複合体の弾性率及び耐水性が一層向上する傾向にあり、また樹脂硬化物のガラス転移温度が一層上昇する傾向にある。(A)成分及び(B)成分の含有割合は、(A)成分と(B)成分との合計を100質量部としたときに、(A)成分の含有割合の上限値が78質量部以下であること、即ち、(B)成分の含有割合の下限値が22質量部以上であってよい。
 また、樹脂組成物2における(C)成分の含有量の下限値は、(A)成分と(B)成分との合計を100質量部としたときに、5質量部以上であってよく、7質量部以上であってよい。(C)成分の含有量の下限値が5質量部以上であれば、樹脂組成物の硬化時に強固な架橋構造が形成され、その結果、硬化物のガラス転移温度等の機械物性が一層向上する傾向にある。同様の観点から、樹脂組成物2における(C)成分の含有量の上限値は、(A)成分と(B)成分との合計を100質量部としたときに、20質量部以下であってよく、15質量部以下であってよい。
 本実施形態において、表面繊維層6における(A)成分及び(B)成分の含有割合は、(A)成分と(B)成分との合計を100質量部としたときに、(A)成分の含有割合の下限値が65質量部以上、即ち、(B)成分の含有割合の上限値が35質量部以下であってよい。(A)成分の含有割合が65質量部以上、即ち、(B)成分の含有割合が35質量部以下である場合には、得られる繊維強化複合体の弾性率及び耐水性が一層向上する傾向にあり、また樹脂硬化物のガラス転移温度が一層上昇する傾向にある。表面繊維層6における(A)成分及び(B)成分の含有割合は、(A)成分と(B)成分との合計を100質量部としたときに、(A)成分の含有割合の上限値が78質量部以下、即ち、(B)成分の含有割合の下限値が22質量部以上であってよい。
 また、表面繊維層6における(C)成分の含有量の下限値は、(A)成分と(B)成分との合計を100質量部としたときに、5質量部以上であってよく、7質量部以上であってよい。(C)成分の含有量が5質量部以上であれあれば、繊維強化複合材料におけるCAI強度及び曲げ弾性率を一層向上することができる。表面繊維層6における(C)成分の含有量の上限値は、(A)成分と(B)成分との合計を100質量部としたときに、20質量部以下であってよく、15質量部以下であってよい。(C)成分の含有量が20質量部以下であれば、硬化物のガラス転移温度等の機械物性を一層向上させることができる傾向にある。
 表面繊維層6におけるポリアミド繊維の含有量の下限値は、(A)成分と(B)成分との合計を100質量部としたときに、15質量部以上であってよく、25質量部以上であってよい。ポリアミド繊維の含有量が15質量部以上であれば、繊維強化複合材料におけるCAI強度、ILSS及び層間破壊靭性が一層向上し、衝撃付与後の損傷面積を一層減少させることができる。表面繊維層6におけるポリアミド繊維の含有量の上限値は、(A)成分と(B)成分との合計を100質量部としたときに、45質量部以下であってよく、40質量部以下であってよい。ポリアミド繊維の含有量が45質量部以下であれば、曲げ弾性率が一層向上する傾向にある。本実施形態においては、第1のポリアミド樹脂及び第2のポリアミド樹脂の合計含有量が、上記範囲であってよい。
 本実施形態のプリプレグにおける表面繊維層6とはプリプレグ表面から強化繊維層の強化繊維までの間を指し、表面繊維層におけるポリアミド繊維の上記含有量は、例えば、プリプレグ表面から強化繊維層の強化繊維までの間に検出される(A)成分、(B)成分及び(C)成分の含有量に基づき算出することができる。
 本実施形態のプリプレグにおいて、表面繊維層及び強化繊維層には、その物性を損なわない範囲で、例えば、(D)靭性向上剤などのその他の成分を配合することができる。(D)靭性向上剤としては、フェノキシ樹脂「YP-70」、「YP-50」、「FX-316」(以上、登録商標、新日鐵住金化学株式会社製)、ポリエーテルスルフォン「スミカエクセルPES」(以上、登録商標、住友化学株式会社製)が挙げられる。
 更に他の成分としては、ナノカーボンや難燃剤、離型剤等を配合することができる。ナノカーボンとしては、例えば、カーボンナノチューブ、フラーレンやそれぞれの誘導体が挙げられる。難燃剤としては、例えば、赤燐、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホルフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビスフェニルホスフェート、ビスフェノールAビスジフェニルホスフェート等のリン酸エステルや、ホウ酸エステル等が挙げられる。離型剤としては、例えば、シリコンオイル、ステアリン酸エステル、カルナウバワックス等が挙げられる。
 本発明でいう強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等を使用することができる。これらの繊維を2種以上混合して用いてもよい。より軽量で、より耐久性の高い成形品を得るために、炭素繊維又は黒鉛繊維を用いてよく、炭素繊維を用いてよい。
 本発明で用いる炭素繊維としては、PAN系炭素繊維、ピッチ系炭素繊維のいずれも使用可能である。
 本発明においては、用途に応じてあらゆる種類の炭素繊維又は黒鉛繊維を用いることが可能である。耐衝撃性に優れ、高い剛性及び機械強度を有する複合材料が得られることから、炭素繊維又は黒鉛繊維のストランド引張試験における引張弾性率は、150~650GPaであってよく、200~550GPaでであってよく、230~500GPaであってよい。なお、ストランド引張試験とは、束状の炭素繊維又は黒鉛繊維にエポキシ樹脂を含浸させ、130℃の温度で35分間硬化させた後、JIS R7608(2007)に基づいて行う試験をいう。
 本発明の強化繊維の目付の下限値は、特に制限されないが、繊維強化複合材料を成形する際に、プリプレグの積層枚数を少なくでき、作業性を向上できるため、75g/m以上であってよく、100g/m以上であってよい。強化繊維の目付の上限値は、繊維強化複合材料を成形する際に、積層設計の自由度が増加することから、300g/m以下であってよく、200g/m以下であってよい。
 本発明のプリプレグにおいて強化繊維の形態は特に限定されるものではなく、例えば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐、10mm未満の長さにチョップした短繊維等を用いることができる。ここで、長繊維とは実質的に10mm以上連続な単繊維若しくは繊維束である。短繊維とは10mm未満の長さに切断された繊維束である。比強度、比弾性率が高いことを要求される用途には、本実施形態のプリプレグのように強化繊維基材が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も適用可能である。
 本実施形態のプリプレグは、単位面積あたりの強化繊維量の下限値が25g/m以上であってよい。強化繊維量が25g/m未満では、繊維強化複合材料を成形する際に所定の厚みを得るために積層枚数を多くする必要があり、作業が繁雑となることがある。単位面積あたりの強化繊維量の上限値は、3000g/m以下であってよい。強化繊維量が3000g/mを超えると、プリプレグのドレープ性が悪くなる傾向にある。なお、プリプレグが平面若しくは単純な局面であれば、強化繊維量は3000g/mを超えてもよい。
 本実施形態のプリプレグにおける強化繊維の含有率の下限値は、30質量%以上であってよく、35質量%以上であってよく、40質量%以上であってよい。含有率が30質量%以上であれば、比強度と比弾性率に優れる繊維強化複合材料の利点が一層得られ、繊維強化複合材料の成形の際、硬化時の発熱量が大きくなり過ぎない。本実施形態のプリプレグにおける強化繊維の含有率の上限値は、90質量%以下であってよく、85質量%以下であってよく、80質量%以下であってよい。含有率が90質量%以下であれば、樹脂の含浸が一層良好となり、得られる繊維強化複合材料のボイドは一層低減される傾向にある。
 本実施形態のプリプレグにおける、(A)成分、(B)成分、(C)成分及びポリアミド繊維の合計質量に占めるポリアミド繊維の質量の割合の下限値は、特に制限されないが、5質量%以上であってよく、8質量%以上であってよい。ポリアミド繊維の質量の割合の下限値は、繊維強化複合材料における衝撃付与後の損傷面積の低減ならびにCAI強度向上の観点から5質量%以上であってよい。本実施形態のプリプレグにおける、(A)成分、(B)成分、(C)成分及びポリアミド繊維の合計質量に占めるポリアミド繊維の質量の割合の上限値は、特に制限されないが、30質量%以下であってよく、20質量%以下であってよい。ポリアミド繊維の質量の割合が30質量%以下であると、繊維強化複合材料における曲げ弾性率が向上(特に高温における)する。
 次に、本実施形態に係るプリプレグを製造する方法について説明する。本実施形態に係るプリプレグを製造する方法は、強化繊維1を含む強化繊維基材の少なくとも一方の表面上に、布4を配置する配置工程と、配置工程の前又は後、或いは配置工程と同時に、樹脂組成物を強化繊維基材に供給し、強化繊維1の繊維間に樹脂組成物を含浸させる含浸工程と、を備える。
 本実施形態に係るプリプレグを製造する方法が、配置工程の前に含浸工程を備える場合、強化繊維1を一方向に引き揃えた強化繊維基材を用意し、強化繊維基材に対して上記(A)~(C)成分を含む樹脂組成物を含浸し、その後、強化繊維基材の少なくとも一方の表面上に、布4を配置することにより、プリプレグ10が得られる。
 本実施形態に係るプリプレグを製造する方法が、配置工程と同時に含浸工程を備える場合、そのような態様としては、強化繊維1を一方向に引き揃えた強化繊維基材を用意し、強化繊維基材の少なくとも一方の表面上に布4を配置すると同時に、布4の強化繊維基材と接する面とは反対の面から布4を介して強化繊維基材に対して樹脂組成物を含浸する態様、強化繊維1を一方向に引き揃えた強化繊維基材を用意し、強化繊維基材の少なくとも一方の表面上から樹脂組成物を含浸すると同時に、強化繊維基材における樹脂組成物を含浸した表面上に布4を配置する態様、強化繊維1を一方向に引き揃えた強化繊維基材を用意し、予め布4に樹脂組成物を含浸させた後、樹脂組成物が含浸された布4を強化繊維基材の少なくとも一方の表面上に配置する態様等が挙げられる。得られるプリプレグが、プリプレグを積層した際の層間の粘着性に優れるため、強化繊維基材の少なくとも一方の表面上に布4を配置すると同時に、布4の強化繊維基材と接する面とは反対の面から布4を介して強化繊維基材に対して樹脂組成物を含浸してよい。
 本実施形態に係るプリプレグを製造する方法が、配置工程の後に含浸工程を備える場合、強化繊維1を一方向に引き揃えた強化繊維基材を用意し、強化繊維基材の少なくとも一方の表面上に、布4を配置し、その後、強化繊維基材に対して上記(A)~(C)成分を含む樹脂組成物を含浸することにより、プリプレグ10が得られる。以上の配置工程及び含浸工程を経て得られたプリプレグ10は、強化繊維基材及び布4に樹脂組成物が含浸されたものとなる。
 強化繊維基材に含浸する各樹脂組成物は、上記(A)~(C)成分及び必要に応じて他の成分を混練することにより調製できる。
 樹脂組成物の混練方法は、特に限定されず、例えば、ニーダーやプラネタリーミキサー、2軸押出機などが用いられる。また、樹脂組成物が粒子を含む場合には、粒子の分散性の点から、予めホモミキサー、3本ロール、ボールミル、ビーズミル及び超音波などで、粒子を液状の樹脂成分に拡散させてよい。更に、マトリックス樹脂との混合時や、粒子の予備拡散時等には、必要に応じて加熱・冷却、加圧・減圧してもよい。保存安定性の観点から、混練後は、速やかに冷蔵・冷凍庫で保管してよい。
 樹脂組成物の粘度は、前駆体フィルム製造の観点から、50℃において、10~20000Pa・sであってよく、10~10000Pa・sであってよく、50~6000Pa・sであってよい。10Pa・s未満では、樹脂組成物のタックが高くなり、塗布困難となることがある。また、20000Pa・sを超えると、半固形化し塗布が困難となる。
 樹脂組成物を含浸させる方法としては、樹脂組成物をメチルエチルケトン、メタノール等の溶媒に溶解して低粘度化し、含浸させるウェット法、加熱により低粘度化し、含浸させるホットメルト法(ドライ法)等を挙げることができる。
 ウェット法は、強化繊維を樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法である。ホットメルト法は、加熱により低粘度化した樹脂組成物を直接強化繊維に含浸させる方法、又は一旦樹脂組成物を離型紙等の上にコーティングしてフィルムを作製しておき、次いで強化繊維の両側又は片側から上記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。ホットメルト法は、プリプレグ中に残留する溶媒が実質上皆無となるため好ましい。
 本実施形態に係るプリプレグは、積層後、積層物に圧力を付与しながら樹脂を加熱硬化させる方法等により、繊維強化複合材料とすることができる。ここで熱及び圧力を付与する方法には、例えば、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法が挙げられる。ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、繊維強化複合材料製の管状体を成形する方法であり、ゴルフシャフト、釣り竿等の棒状体を作製する際に好適な方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定及び圧力付与のため、プリプレグの外側に熱可塑性フィルムからなるラッピングテープを捲回し、オーブン中で樹脂を加熱硬化させた後、芯金を抜き取って管状体を得る方法である。
 内圧成型法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いで内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、成形する方法である。この方法は、ゴルフシャフト、バッド、テニスやバドミントン等のラケットの如き複雑な形状物を成形する際に好ましく用いられる。
 図2は、硬化プロファイルの一例を示す模式図である。図2中、Mは、表面繊維層を中での第1のポリアミド樹脂の融解温度(℃)を示し、Mは、表面繊維層中での第2のポリアミド樹脂の融解温度(℃)を示す。図2に示される硬化プロファイルは、上述したプリプレグを複数積層した積層体を、所定の硬化温度CP(℃)まで所定の昇温速度で昇温し(図2中のラインa)、所定の硬化温度CP(℃)で所定時間(T-T)保持することにより樹脂硬化し(図2中のラインb)、その後、降温する工程が示されている。
 上記硬化温度CP(℃)は、上記(A)成分~(C)成分を含む樹脂組成物2が十分硬化されるように、(C)成分の種類や(A)成分及び(B)成分の配合割合等に応じて適宜設定される。
 硬化温度CP(℃)としては、例えば、140~200℃の間の温度を設定することができ、生産性及びポリアミドの融解状態の制御の観点から、160~195℃の間の温度を設定してよい。なお、硬化温度とは、プリプレグの温度を指す。
 本実施形態において、第1のポリアミド樹脂を適度に融解させる観点から、CPは、M℃より1~100℃高い温度であってよく、M℃より5~70℃高い温度であってよく、M℃より5~60℃高い温度であってよく、M℃より7~60℃高い温度であってよく、M℃より7~50℃高い温度であってよく、M℃より10~50℃高い温度であってよい。
 また、十分な樹脂硬化を行いつつ、第2のポリアミド樹脂が融解して強化繊維層に入り込むことを適度に抑制する観点から、CPは、M℃より10℃高い温度を上限としてもよく、M℃に対して-20~10℃の範囲の温度であってよく、M℃に対して-10~10℃の範囲の温度であってよい。
 本実施形態においては、硬化温度CP(℃)を指標として、上記の条件を満たすように第1のポリアミド樹脂及び第2のポリアミド樹脂を選択してもよい。この場合も、上述した第1のポリアミド樹脂及び第2のポリアミド樹脂の関係を満たしてよい。一方、融解温度M及びM℃を指標として、M<CP<Mとなる温度で、一次硬化を行った後、更に、硬化を十分進めるために、Mより高い温度で二次硬化を行うこともできる。
 上記硬化温度CP(℃)に至るまでの昇温速度は、0.1~5.0℃/分であってよく、0.3~3.0℃/分であってよい。M(℃)未満までの昇温温度とM(℃)~CP(℃)までの昇温速度は異なっていてもよいが、本実施形態においては、少なくともM~CPまでの間が上記範囲内であってよい。
 また、上記硬化温度CP(℃)がM℃よりも高温である場合には、M℃未満までの昇温速度、M(℃)~M(℃)までの昇温速度、及び、M(℃)~CP(℃)までの昇温速度は異なっていてもよい。
 本実施形態においては、M(℃)未満までの昇温速度は、0.1~10.0℃/分であってよく、0.1~5.0℃/分であってよく、0.3~3.0℃/分であってよい。M(℃)~M(℃)までの昇温速度は、0.1~5.0℃/分であってよく、0.3~3.0℃/分であってよい。M(℃)~CP(℃)までの昇温速度は、0.1~5.0℃/分であってよく、0.3~3.0℃/分であってよい。
 加熱時の圧力は、0.2~1.0MPaであってよく、0.3~0.8MPaであってよい。
 加熱後、-0.3~-3.0℃/分の速度で降温することができる。
 こうして繊維強化複合材料が得られる。
 図3は、本発明に係る繊維強化複合材料について説明するための模式断面図である。図3に示される繊維強化複合材料100は、強化繊維1と、樹脂硬化物8と、ポリアミド繊維を含む布4とを含んでなる。繊維強化複合材料100は、上述した本実施形態の製造方法、すなわちプリプレグ10を複数積層し、加圧下で加熱することにより得ることができる。なお、図3にはポリアミド繊維を含む布4がプリプレグの表面繊維層におけるものと同様に示されているが、それらは加圧、加熱によって融解し、流動や繊維同士の結合により変形したものになる。
 また、本実施形態の方法により得られる繊維強化複合材料は、強化繊維基材に直接、樹脂組成物を含浸させ硬化させることによっても得ることができる。例えば、強化繊維基材及び強化繊維基材の表面上に配置された布を型内に配置し、その後、上記(A)~(C)成分を含む樹脂組成物を流し込み含浸させ硬化させる方法や、強化繊維基材、ポリアミド繊維を含む布、及び上記(A)~(C)成分を含む樹脂組成物からなるフィルムを積層し、該積層体を加熱・加圧する方法によっても製造できる。上記フィルムは、予め離型紙や離型フィルム上に所定量の樹脂組成物を均一な厚みで塗布して得ることができる。強化繊維基材としては、一方向に引き揃えた長繊維、二方向織物、不織布、マット、ニット、組み紐などが挙げられる。また、ここでの積層は、単に強化繊維基材を重ね合わせる場合のみならず、各種型やコア材に貼り付けてプリフォームする場合も含む。コア材としては、フォームコアやハニカムコアなどを用いてよい。フォームコアとしては、ウレタンやポリイミドを用いてよい。ハニカムコアとしてはアルミコアやガラスコア、アラミドコアを用いてよい。
 本実施形態の方法により得られる繊維強化複合材料は、ASTM D7136及びD7137に従い測定した衝撃後圧縮強度(CAI強度)が250MPa以上であってよく、300MPa以上であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、ASTM D5528に従い測定したモードI層間破壊靱性値(G1c)が400J/m以上であってよく、450J/m以上であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、Composite Materials Handbook 17-1に従い測定したモードII層間破壊靱性値(G2c)が1000J/m以上であってよく、2100J/m以上であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、ASTM D2344に従い測定した層間せん断強度(ILSS)が90MPa以上であってよく、100MPa以上であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、衝撃付与後の損傷面積が1500mm未満であってよく、700mm未満であってよい。衝撃付与後の損傷面積とは、超音波探傷を用いた非破壊検査により測定された値を意味する。
 本実施形態の方法により得られる繊維強化複合材料の各種物性(CAI強度、ILSS、層間破壊靭性値、及び衝撃付与後の損傷面積)の変動率は、CAI強度、ILSS、層間破壊靭性値、及び衝撃付与後の損傷面積をそれぞれ6回測定し、得られた6回の測定値の標準偏差を得られた6回の測定値の平均値で除したものである。
 本実施形態の方法により得られる繊維強化複合材料は、CAI強度の変動率が6.0%未満であってよく、4.0%未満であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、G1cの変動率が6.0%未満であってよく、4.0%未満であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、G2cの変動率が6.0%未満であってよく、4.0%未満であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、ILSSの変動率が2.0%未満であってよく、1.0%未満であってよい。
 本実施形態の方法により得られる繊維強化複合材料は、衝撃付与後の損傷面積の変動率が8.0%未満であってよく、6.0%未満であってよい。
 上記物性を有する本実施形態の方法により得られる繊維強化複合材料は、鉄道車両、航空機、建築部材や、その他一般産業用途に好適に用いられる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。
<ポリアミド繊維を含む布>
(実施例1~15、比較例2~4)
 ポリアミド繊維を含む布として、表1~表3に示す布を用いた。ポリアミド繊維が芯鞘構造を備える場合、ポリアミド繊維は、第2のポリアミド樹脂からなる芯部と、芯部を被覆する第1のポリアミド樹脂からなる鞘部とを備える。用いた布が編布である場合、編布の編み方は丸編である。用いたポリアミド繊維が単繊維である場合、単繊維を撚り合わせて一本の撚糸にした上で、編布又は織布とした。なお、比較例3においては、第1のポリアミド樹脂と第2のポリアミド樹脂の融点が近く、熱処理を安定して実施することができなかったために、布を作製することができなかった。
 第1のポリアミド樹脂及び第2ポリアミド樹脂としては、以下の原料を用いた。
PA6:ポリアミド6樹脂
PA12:ポリアミド12樹脂
PA1010:ポリアミド1010樹脂
PA6/PA12(20/80):カプロラクタムとラウロラクタムとを20:80のモル比で共重合させたポリアミド6/12共重合体(ランダム共重合体)
PA6/PA12(80/20):カプロラクタムとラウロラクタムとを80:20のモル比で共重合させたポリアミド6/12共重合体(ランダム共重合体)
 図4は、実施例1にて用いた布の写真である。図5は、実施例2にて用いた布の写真である。
(比較例1)
 ポリアミド繊維を含む布を用いなかった。
(比較例5)
 ポリアミド繊維を含む布の代わりに、後述するように樹脂組成物にポリアミド樹脂粒子を添加した。
<樹脂組成物>
(実施例1~15、比較例1、2、4)
 表1~3に示す割合で原料を加熱混合し、樹脂組成物を得た。ここで用いた原料は以下に示す通りである。
(A)成分:ベンゾオキサジン樹脂
F-a:ビスフェノールF-アニリン型(F-a型ベンゾオキサジン、四国化成(株)製)
P-a:フェノール-アニリン型(P-a型ベンゾオキサジン、四国化成(株)製)
(B)成分:エポキシ樹脂
2021P:「セロキサイド」(登録商標)2021P(ダイセル化学工業(株)製)
(C)成分:硬化剤
BPF(9,9-ビス(4-ヒドロキシフェニル)フルオレン、大阪ガスケミカル製)
(D)成分:靭性向上剤
YP70:フェノキシ樹脂(YP-70、新日鐵住金化学株式会社製)
(比較例5)
 表4に示す割合で原料を加熱混合し、粒子を含有しない第1の樹脂組成物(表中の「第1」の組成)と、粒子を含有する第2の樹脂組成物(表中の「第2」の組成)を得た。なお、実施例1~15、比較例1、2、4で用いた原料に加えて、以下に示す原料を用いた。
ポリアミド樹脂粒子:
PA12樹脂粒子:ポリアミド12樹脂粒子(商品名:ベストジント 2159、平均粒子径10μm、ダイセルエボニック社製)
PA1010樹脂粒子:ポリアミド1010樹脂粒子(商品名:ベストジント 9158、平均粒子径20μm、ダイセルエボニック社製)
<強化繊維>
(実施例1~15、比較例1、2、4、5)
 強化繊維基材として引張弾性率が290GPaの炭素繊維を1方向に引き揃えた炭素繊維束を準備した。準備した強化繊維基材の目付を表1~4に示した。
<プリプレグの製造>
(実施例1、3~7、9、10、13~15、比較例2、4、5)
 得られた樹脂組成物を離型紙上に80℃で塗布し、単位面積当たりの質量が36g/mである樹脂フィルムを得た。次いで、強化繊維基材の両方の表面上にポリアミド繊維を含む布を配置すると同時に、配置した布の上からそれぞれ樹脂フィルムをラミネートし、プリプレグを作製した。ラミネートの条件は、温度70℃、圧力0.2MPa、樹脂フィルム、強化繊維基材及びポリアミド繊維を送り出す速度を7m/分とした。
(実施例2)
 単位面積当たりの質量が36g/mである樹脂フィルムに代えて、単位面積当たりの質量が28g/mである樹脂フィルムを使用したこと以外は、実施例1と同様にしてプリプレグを得た。
(実施例8、11、12)
 単位面積当たりの質量が36g/mである樹脂フィルムに代えて、単位面積当たりの質量が23g/mである樹脂フィルムを使用したこと以外は、実施例1と同様にしてプリプレグを得た。
(比較例1)
 強化繊維基材の表面上にポリアミド繊維を含む布を配置しなかったこと以外は、実施例1と同様にしてプリプレグを得た。
(比較例5)
 得られた第1及び第2の樹脂組成物をそれぞれ離型紙上に70~100℃で塗布し、18g/mである第1の樹脂フィルム及び25g/mの第2の樹脂フィルムを得た。得られた第1の樹脂フィルムを、強化繊維基材の上下から供給して繊維間に含浸し、炭素繊維層を形成した。第1の樹脂フィルムを繊維間に含浸する際の条件は、含浸温度70℃、圧力0.2MPa、強化繊維基材及び第1の樹脂フィルムを送り出す速度を3m/分とした。続いて、第2の樹脂フィルムを炭素繊維層の上下からラミネートして表面層を形成し、プリプレグを作製した。第2の樹脂フィルムを炭素繊維層の上下からラミネートする際の条件は、温度70℃、圧力0.2MPa、炭素繊維層及び第2の樹脂フィルムを送り出す速度を7m/分とした。
 得られたプリプレグにおける強化繊維の含有率を表1~表4に示した。
 得られたプリプレグにおける、(A)成分、(B)成分、(C)成分及びポリアミド繊維の合計質量に占めるポリアミド繊維の質量の割合を表1~表4に示した。表1~表4中においては、PA含有量との略称を用いている。
<ポリアミド樹脂及びポリアミド樹脂粒子の融点の測定>
 第1のポリアミド樹脂、第2のポリアミド樹脂、第1のポリアミド樹脂粒子、第2のポリアミド樹脂粒子を、示差熱量計(DSC)を用いて、25℃から10℃/分の速度で昇温し、得られた吸熱ピークのトップの温度をポリアミド樹脂及びポリアミド樹脂粒子の融点とした。ポリアミド12樹脂の融点は176℃であり、ポリアミド1010樹脂の融点は199℃あり、ポリアミド6樹脂の融点は225℃であり、カプロラクタムとラウロラクタムとを20:80のモル比で共重合させたポリアミド6/12共重合体(ランダム共重合体)からなる樹脂の融点は160℃であり、カプロラクタムとラウロラクタムとを80:20のモル比で共重合させたポリアミド6/12共重合体(ランダム共重合体)からなる樹脂の融点は194℃であり、ポリアミド12樹脂粒子の融点は176℃であり、ポリアミド1010樹脂粒子の融点は199℃であった。
<表面繊維層中でのポリアミド樹脂の融解温度の測定>
 第1のポリアミド樹脂及び第2のポリアミド樹脂を、示差熱量計(DSC)を用いて、表面繊維層中で25℃から10℃/分の速度で昇温し、得られた吸熱ピークのトップの温度を、表面繊維層中での第1のポリアミド樹脂の融解温度及び第2のポリアミド樹脂の融解温度を測定した。結果を表1~3に示す。
<布の最大開口面積の測定>
 光学顕微鏡の7×5mm視野内で観察される布の最も大きい開口部の面積を布の最大開口面積とした。結果を表1~3に示す。
<布の平均開口面積の測定>
 光学顕微鏡の7×5mm視野内で観察される布の任意の開口部10点の面積の平均値を布の平均開口面積とした。結果を表1~3に示す。
<CAI強度の測定>
(実施例1、3~7、9、10、13~15、比較例1~4)
 得られたプリプレグを、[+45°/0°/-45°/90°]4s構成で、擬似等方的に32プライ(層)積層し、オートクレーブにて、圧力0.6MPa、室温から2.0℃/分で185℃まで昇温した後、同温度で2時間加熱硬化し、繊維強化複合材料を得た。この繊維強化複合材料について、ASTM D7136及びD7137に従い、縦150mm×横100mmのサンプルを切り出し、サンプルの中心部に6.7J/mmの落錘衝撃を与え、CAI強度を求めた。上記と同様の測定をそれぞれ異なるサンプルを用いて6回実施し、6回の測定から求めたCAI強度の平均値を下記の評価基準に従って評価した。結果を表5~7に示す。評価がA又はBであるものを合格とした。
A:平均値が300MPa以上
B:平均値が250MPa以上300MPa未満
C:平均値が250MPa未満
(実施例2)
 プリプレグを[+45°/0°/-45°/90°]5s構成で、擬似等方的に40プライ(層)積層したこと以外は、実施例1と同様にして繊維強化複合材料を得て、CAI強度の測定を行った。
(実施例8、11、12)
 プリプレグを[+45°/0°/-45°/90°]7s構成で、擬似等方的に56プライ(層)積層したこと以外は、実施例1と同様にして繊維強化複合材料を得て、CAI強度の測定を行った。
<CAI強度の変動率の算出>
 上記方法で測定した6回のCAI強度の測定値から、CAI強度の変動率を求めた。変動率は、6回の測定から求められたCAI強度の標準偏差をCAI強度の平均値で除したものである。この変動率が大きいほど、得られた繊維強化複合材料のCAI強度のばらつきが大きいことを意味する。結果を表5~7に示す。CAI強度の変動率が6.0未満であるものを合格とした。
<損傷面積の測定>
 超音波探傷を用いた非破壊検査により損傷面積を測定した。測定の際の衝撃エネルギーは、6.7J/mとした。上記と同様の測定をそれぞれ異なるサンプルを用いて6回実施し、6回の測定から求められた損傷面積の平均値を下記の評価基準に従って評価した。結果を表5~7に示す。評価がA又はBであるものを合格とした。
A:平均値が700mm未満
B:平均値が700mm以上1500mm未満
C:平均値が1500mm以上
<損傷面積の変動率の算出>
 上記方法で測定した6回の損傷面積の測定値から、損傷面積の変動率を求めた。変動率は、6回の測定から求められた損傷面積の標準偏差を損傷面積の平均値で除したものである。この変動率が大きいほど、得られた繊維強化複合材料の損傷面積のばらつきが大きいことを意味する。結果を表5~7に示す。
<モードI層間破壊靱性試験(G1c)の測定>
(実施例1、3~7、9、10、13~15、比較例1、2、4、5)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて26プライ積層し、中央層間(13層目と14層目の間)の一部の領域に、炭素繊維の方向と垂直な積層体側面に予亀裂が導入されるように、カプトンフィルム(1mil)(東レ・デュポン社製)をはさんだ。なお、1milは、1/1000インチで、25.3995μmを示す。これをオートクレーブにて、圧力0.6MPa、室温から1.0℃/分の昇温速度で185℃まで昇温した後、同温度で2時間加熱硬化し、繊維強化複合材料を得た。この繊維強化複合材料について、縦(繊維方向)254.0mm×横25.4mmのサンプルを切り出し、端部にヒンジを接着した試験片を得た。この試験片に対して、ASTM D5528に従い、負荷速度1.0mm/minで、ダブルカンチレバービーム試験を実施し、G1cを求めた。上記と同様の測定をそれぞれ異なるサンプルを用いて6回実施し、6回の測定から求められたG1cの平均値を下記の評価基準に従って評価した。結果を表5~7に示す。評価がA又はBであるものを合格とした。
A:平均値が450J/m以上
B:平均値が400J/m以上450J/m未満
C:平均値が400J/m未満
(実施例2)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて34プライ積層し、中央層間(17層目と18層目の間)の一部の領域に、カプトンフィルムをはさんだ事以外は、実施例1と同様にしてモードI層間破壊靱性試験(G1c)の測定を行った。
(実施例8、11、12)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて44プライ積層し、中央層間(22層目と23層目の間)の一部の領域に、カプトンフィルムをはさんだ事以外は、実施例1と同様にしてモードI層間破壊靱性試験(G1c)の測定を行った。
<モードI層間破壊靱性試験(G1c)の変動率の算出>
 上記方法で測定した6回のG1cの測定値から、G1cの変動率を求めた。変動率は、6回の測定から求められたG1cの標準偏差をG1cの平均値で除したものである。この変動率が大きいほど、得られた繊維強化複合材料のG1cのばらつきが大きいことを意味する。結果を表5~7に示す。
<モードII層間破壊靱性試験(G2c)の測定>
(実施例1、3~7、9、10、13~15、比較例1、2、4、5)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて26プライ積層し、中央層間(13層目と14層目の間)の一部の領域に、炭素繊維の方向と垂直な積層体側面に予亀裂が導入されるように、カプトンフィルム(1mil)(東レ・デュポン社製)をはさんだ。なお、1milは、1/1000インチで、25.3995μmを示す。これをオートクレーブにて、圧力0.6MPa、室温から1.0℃/分の昇温速度で185℃まで昇温した後、同温度で2時間加熱硬化し、繊維強化複合材料を得た。この繊維強化複合材料について、縦(繊維方向)254.0mm×横25.4mmのサンプルを切り出し、試験片を得た。この試験片に対して、Composite Materials Handbook 17-1に従い、負荷速度1.0mm/minで端面切欠き曲げ試験を実施し、G2cを求めた。上記と同様の測定を異なるサンプルを用いて6回実施し、6回の測定から求められたG2cの平均値を下記の評価基準に従って評価した。結果を表5~7に示す。評価がA又はBであるものを合格とした。
A:平均値が2100J/m以上
B:平均値が1000J/m以上2100J/m未満
C:平均値が1000J/m未満
(実施例2)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて34プライ積層し、中央層間(17層目と18層目の間)の一部の領域に、カプトンフィルムをはさんだ事以外は、実施例1と同様にしてモードII層間破壊靱性試験(G2c)の測定を行った。
(実施例8、11、12)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて44プライ積層し、中央層間(22層目と23層目の間)の一部の領域に、カプトンフィルムをはさんだ事以外は、実施例1と同様にしてモードII層間破壊靱性試験(G2c)の測定を行った。
<モードII層間破壊靱性試験(G2c)の変動率の算出>
 上記方法で測定した6回のG2cの測定値から、G2cの変動率を求めた。変動率は、6回の測定から求められたG2cの標準偏差をG2cの平均値で除したものである。この変動率が大きいほど、得られた繊維強化複合材料のG2cのばらつきが大きいことを意味する。結果を表5~7に示す。
<層間せん断強度(ILSS)の測定>
(実施例1、3~7、9、10、13~15、比較例1、2、4、5)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて26プライ積層し、これをオートクレーブにて、圧力0.6MPa、室温から1.0℃/分の昇温速度で185℃まで昇温した後、同温度で2時間加熱硬化し、繊維強化複合材料を得た。この繊維強化複合材料について、縦(繊維方向)24.0mm×横8.0mmのサンプルを切り出し、試験片を得た。この試験片に対して、ASTM D2344に従い、負荷速度1.0mm/分でショートビームせん断試験を実施し、層間せん断強度(ILSS)を測定した。上記と同様の測定を異なるサンプルを用いて6回実施し、6回の測定から求められたILSSの平均値を下記の評価基準に従って評価した。結果を表5~7に示す。評価がA又はBであるものを合格とした。
A:平均値が100MPa以上
B:平均値が90MPa以上100MPa未満
C:平均値が90MPa未満
(実施例2)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて34プライ積層した事以外は、実施例1と同様にして層間せん断強度(ILSS)の測定を行った。
(実施例8、11、12)
 得られたプリプレグを炭素繊維の方向が同じ方向になるように揃えて44プライ積層した事以外は、実施例1と同様にして層間せん断強度(ILSS)の測定を行った。
<層間せん断強度(ILSS)の変動率の算出>
 上記方法で測定した6回のILSSの測定値から、ILSSの変動率を求めた。変動率は、6回の測定から求められたILSSの標準偏差をILSSの平均値で除したものである。この変動率が大きいほど、得られた繊維強化複合材料のILSSのばらつきが大きいことを意味する。結果を表5~7に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 
 表5及び表6に示される通り、表面繊維層が特定の2種類のポリアミド樹脂を含むポリアミド繊維を含む実施例1~15において得られた繊維強化複合材料は、CAI強度とCAI強度のばらつきの低減とが同時に高次元で達成されたことが確認された。更に、実施例1~15において得られた繊維強化複合材料は、ILSS及び層間破壊靭性を高次元で達成し、衝撃付与後の損傷面積を減少させ、かつ、これらのばらつきの低減を図ることができることが確認された。
 表5の実施例1と実施例2とを比較することで、強化繊維の目付を115g/mとした場合であっても、強化繊維の目付を150g/mとした場合と同様にCAI強度とCAI強度のばらつきの低減とが同時に高次元で達成されたことが確認された。更に、強化繊維の目付を115g/mとした場合であっても、得られた繊維強化複合材料は、ILSS及び層間破壊靭性を高次元で達成し、衝撃付与後の損傷面積を減少させ、かつ、これらのばらつきの低減を図ることができることが確認された。
 表5の実施例1及び2と、表7の比較例5とを比較すると、ポリアミド繊維を含む布を用いた場合に、ポリアミド樹脂としてポリアミド樹脂粒子を用いた場合と比較してCAI強度の変動率が低減していることが確認された。このような結果が得られた理由について、発明者らは、ポリアミド繊維を含む布を用いた場合には、ポリアミド樹脂粒子を用いた場合と比較してポリアミド樹脂がプリプレグの面内に均一に分布するためであると考えている。
 表5の実施例1と、表7の比較例5とを比較すると、ポリアミド繊維を含む布を用いた場合に、ポリアミド樹脂としてポリアミド樹脂粒子を用いた場合と比較してG2c及びILSSが一層向上していることがわかる。このような結果が得られた理由について、発明者らは、ポリアミド繊維を含む布を用いた場合には、層間せん断時及び層間破壊時に繊維を切断する必要があるためであると考えている。
 図6は、実施例1、実施例2及び比較例5において得られた繊維強化複合材料の表面の写真である。実施例1及び2においては、ポリアミド樹脂としてポリアミド繊維を含む布を用いているため、表面に布に由来する模様が確認できる。スポーツ用品や自動車用途等においては、意匠性を付与するため、表面に高価な炭素繊維織物プリプレグを使用する場合があるが、本発明のプリプレグを使用することで、安価な一方向炭素繊維プリプレグでも意匠性を有する表面を得ることができる。
 図7は、実施例1、実施例2及び比較例5において得られた繊維強化複合材料の断面の写真である。比較例5において得られた繊維強化複合材料においては、図7中のAによって示されているように、ポリアミド樹脂粒子が密集して強化繊維層に過剰に入り込んだ箇所がある一方、Bによって示されているように、局所的にポリアミド樹脂粒子が十分に存在せず、強化繊維層に十分に入り込まない箇所が生じる場合があった。そのようなポリアミド樹脂粒子が十分に存在しない箇所では、衝撃付与時に亀裂進展を抑制できず、損傷面積が大きくなるおそれがあり、これが損傷面積の変動率やひいてはCAI強度の変動率の上昇の原因となったと推測される。一方で、ポリアミド樹脂としてポリアミド繊維を含む布を用いている実施例1及び2では、ポリアミド樹脂がプリプレグの面内に均一に分布するため、損傷面積やCAI強度の変動率は低く抑えられている。
 以上説明した通り、本発明によれば、優れた耐湿性及び耐熱性を有するベンゾオキサジン樹脂を利用しつつ、優れたCAI強度とCAI強度のばらつきの低減とを同時に高次元で達成された繊維強化複合材料を得ることができるプリプレグの製造方法を提供することができる。本発明の製造方法により得られたプリプレグ及び本発明のプリプレグを複数積層し、加圧下で加熱することにより得られた繊維強化複合材料は、航空機用途、船舶用途、自動車用途、スポーツ用途、その他一般産業用途に好適に利用でき、特に、航空機用途に有用である。
 1…強化繊維、2…樹脂組成物、3…強化繊維層、4…布、5…樹脂組成物、6…表面繊維層、8…樹脂硬化物、10…プリプレグ、100…繊維強化複合材料、A…ポリアミド樹脂粒子が密集して強化繊維層に過剰に入り込んだ箇所、B…ポリアミド樹脂粒子が十分に存在せず、強化繊維層に十分に入り込まない箇所。

Claims (11)

  1.  強化繊維と、前記強化繊維の繊維間に含浸された、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物と、を含む強化繊維層と、
     前記強化繊維層の少なくとも一方の表面上に設けられた、ポリアミド繊維を含む布と、前記ポリアミド繊維の繊維間に含浸された、前記(A)成分、前記(B)成分、及び、前記(C)成分を含有する樹脂組成物と、を含む表面繊維層と、
    を備えるプリプレグの製造方法であって、
     前記強化繊維を含む強化繊維基材の少なくとも一方の表面上に、前記布を配置する配置工程と、
     前記配置工程の前又は後、或いは前記配置工程と同時に、前記(A)成分、前記(B)成分、及び、前記(C)成分を含有する樹脂組成物を前記強化繊維基材に供給し、前記強化繊維の繊維間に樹脂組成物を含浸させる含浸工程と、
    を備え、
     前記ポリアミド繊維が、第1のポリアミド樹脂と、融点が前記第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む、プリプレグの製造方法。
  2.  前記強化繊維基材の少なくとも一方の表面上に、前記(A)成分、前記(B)成分、及び、前記(C)成分を含有する樹脂組成物を前記ポリアミド繊維の繊維間に含浸させた前記布を配置することで、前記配置工程と前記含浸工程とを同時に行う、請求項1に記載のプリプレグの製造方法。
  3.  前記ポリアミド繊維が、前記第2のポリアミド樹脂を含む芯部と、前記芯部を被覆する前記第1のポリアミド樹脂を含む鞘部と、を備えた芯鞘構造の繊維を含む、請求項1又は2に記載のプリプレグの製造方法。
  4.  前記ポリアミド繊維において、前記第1のポリアミド樹脂と前記第2のポリアミド樹脂との含有割合が、質量比で、前記第1のポリアミド樹脂:前記第2のポリアミド樹脂=70:30~30:70の範囲である、請求項1~3のいずれか一項に記載のプリプレグの製造方法。
  5.  前記布が、編布、織布及び不織布からなる群より選ばれる少なくとも一種である、請求項1~4のいずれか一項に記載のプリプレグの製造方法。
  6.  前記布の最大開口面積が0.2~3mmである、請求項1~5のいずれか一項に記載のプリプレグの製造方法。
  7.  強化繊維と、前記強化繊維の繊維間に含浸された、(A)ベンゾオキサジン樹脂、(B)エポキシ樹脂、及び、(C)分子中に2個以上のフェノール性水酸基を有する硬化剤を含有する樹脂組成物と、を含む強化繊維層と、
     前記強化繊維層の少なくとも一方の表面上に設けられた、ポリアミド繊維を含む布と、前記ポリアミド繊維の繊維間に含浸された、前記(A)成分、前記(B)成分、及び、前記(C)成分を含有する樹脂組成物と、を含む表面繊維層と、
    を備え、
     前記ポリアミド繊維が、第1のポリアミド樹脂と、融点が前記第1のポリアミド樹脂の融点よりも7~50℃高い第2のポリアミド樹脂とを含む、プリプレグ。
  8.  前記ポリアミド繊維が、前記第2のポリアミド樹脂を含む芯部と、前記芯部を被覆する前記第1のポリアミド樹脂を含む鞘部と、を備えた芯鞘構造の繊維を含む、請求項7に記載のプリプレグ。
  9.  前記ポリアミド繊維において、前記第1のポリアミド樹脂と前記第2のポリアミド樹脂との含有割合が、質量比で、前記第1のポリアミド樹脂:前記第2のポリアミド樹脂=70:30~30:70の範囲である、請求項7又は8に記載のプリプレグ。
  10.  前記布が、編布、織布及び不織布からなる群より選ばれる少なくとも一種である、請求項7~9のいずれか一項に記載のプリプレグ。
  11.  前記布の最大開口面積が0.2~3mmである、請求項7~10のいずれか一項に記載のプリプレグ。
PCT/JP2020/020587 2019-08-02 2020-05-25 プリプレグの製造方法及びプリプレグ WO2021024576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/630,741 US20220267544A1 (en) 2019-08-02 2020-05-25 Method for producing prepreg, and prepreg
EP20850388.8A EP4008746A4 (en) 2019-08-02 2020-05-25 PROCESS FOR MANUFACTURE OF PREPREGS AND PREPREG

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-142841 2019-08-02
JP2019142841A JP7166995B2 (ja) 2019-08-02 2019-08-02 プリプレグの製造方法及びプリプレグ

Publications (1)

Publication Number Publication Date
WO2021024576A1 true WO2021024576A1 (ja) 2021-02-11

Family

ID=74503441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020587 WO2021024576A1 (ja) 2019-08-02 2020-05-25 プリプレグの製造方法及びプリプレグ

Country Status (4)

Country Link
US (1) US20220267544A1 (ja)
EP (1) EP4008746A4 (ja)
JP (1) JP7166995B2 (ja)
WO (1) WO2021024576A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202313810A (zh) * 2021-06-08 2023-04-01 日商日鐵化學材料股份有限公司 單向強化纖維預浸體以及使用該單向強化纖維預浸體的纖維強化塑膠片、纖維強化塑膠的製造方法及纖維強化塑膠

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080607A (ja) * 2001-07-06 2003-03-19 Toray Ind Inc プリフォームおよびそれからなるfrpならびにそれらの製造方法
JP2005313607A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 強化繊維基材、プリプレグ、繊維強化プラスチックおよび繊維強化プラスチックの製造方法
JP2007016121A (ja) 2005-07-07 2007-01-25 Toray Ind Inc 複合材料用プリプレグおよび複合材料
JP2010013636A (ja) 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd 繊維強化複合材料用樹脂組成物およびそれを用いた繊維強化複合材料
JP2013166854A (ja) * 2012-02-15 2013-08-29 Jx Nippon Oil & Energy Corp 繊維強化複合材料
WO2015076070A1 (ja) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 繊維強化複合材料の製造方法、プリプレグ、粒子含有樹脂組成物及び繊維強化複合材料
JP2019099987A (ja) * 2017-11-29 2019-06-24 東レ株式会社 強化繊維基材、強化繊維積層体および繊維強化樹脂

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2333151C (en) * 1999-03-23 2009-08-18 Toray Industries, Inc. Complex fiber reinforced material, preform, and method of producing fiber reinforced plastic
JP6291221B2 (ja) * 2013-11-19 2018-03-14 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6308756B2 (ja) * 2013-11-19 2018-04-11 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080607A (ja) * 2001-07-06 2003-03-19 Toray Ind Inc プリフォームおよびそれからなるfrpならびにそれらの製造方法
JP2005313607A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 強化繊維基材、プリプレグ、繊維強化プラスチックおよび繊維強化プラスチックの製造方法
JP2007016121A (ja) 2005-07-07 2007-01-25 Toray Ind Inc 複合材料用プリプレグおよび複合材料
JP2010013636A (ja) 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd 繊維強化複合材料用樹脂組成物およびそれを用いた繊維強化複合材料
JP2013166854A (ja) * 2012-02-15 2013-08-29 Jx Nippon Oil & Energy Corp 繊維強化複合材料
WO2015076070A1 (ja) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 繊維強化複合材料の製造方法、プリプレグ、粒子含有樹脂組成物及び繊維強化複合材料
JP2019099987A (ja) * 2017-11-29 2019-06-24 東レ株式会社 強化繊維基材、強化繊維積層体および繊維強化樹脂

Also Published As

Publication number Publication date
JP7166995B2 (ja) 2022-11-08
JP2021024922A (ja) 2021-02-22
US20220267544A1 (en) 2022-08-25
EP4008746A1 (en) 2022-06-08
EP4008746A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP6291223B2 (ja) 繊維強化複合材料の製造方法、プリプレグ、粒子含有樹脂組成物及び繊維強化複合材料
JP5739361B2 (ja) 繊維強化複合材料
JP6291221B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6308756B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6278951B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
KR20150135270A (ko) 섬유 강화 복합 재료의 제조 방법
WO2021024576A1 (ja) プリプレグの製造方法及びプリプレグ
JP5912922B2 (ja) 繊維強化複合材料
JP5912920B2 (ja) 繊維強化複合材料
JP6291222B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6308755B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6324373B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6422857B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6278952B2 (ja) プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP5912921B2 (ja) 繊維強化複合材料
JP2023120708A (ja) 繊維強化複合材料の製造方法、及び、プリプレグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020850388

Country of ref document: EP

Effective date: 20220302