WO2021024574A1 - 光ファイバー給電システム - Google Patents

光ファイバー給電システム Download PDF

Info

Publication number
WO2021024574A1
WO2021024574A1 PCT/JP2020/020045 JP2020020045W WO2021024574A1 WO 2021024574 A1 WO2021024574 A1 WO 2021024574A1 JP 2020020045 W JP2020020045 W JP 2020020045W WO 2021024574 A1 WO2021024574 A1 WO 2021024574A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power feeding
photoelectric conversion
control unit
optical fiber
Prior art date
Application number
PCT/JP2020/020045
Other languages
English (en)
French (fr)
Inventor
巣山 武彦
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/271,599 priority Critical patent/US11362740B2/en
Priority to CN202080004687.XA priority patent/CN112602274B/zh
Priority to EP20850387.0A priority patent/EP3829086B1/en
Publication of WO2021024574A1 publication Critical patent/WO2021024574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • This disclosure relates to optical power supply.
  • Patent Document 1 describes an optical transmitter that transmits signal light modulated by an electric signal and feed light for supplying power, a core that transmits the signal light, and a core formed around the core.
  • An optical fiber having a first clad having a small refractive index and transmitting the feeding light and a second clad formed around the first clad and having a lower refractive index than the first clad, and a first clad of the optical fiber are used for transmission.
  • an optical communication device including an optical receiver that operates with the converted power of the fed light and converts the signal light transmitted by the core of the optical fiber into the electric signal.
  • a power feeding device including a semiconductor laser that oscillates a laser with electric power to output power feeding light, a power receiving device including a photoelectric conversion element that converts the power feeding light by the power feeding device into electric power, and the power feeding device from the power feeding device to the power receiving device. It is an optical fiber power supply system equipped with an optical fiber cable for transmitting light.
  • the power feeding device includes a plurality of semiconductor lasers that output power feeding light having different wavelengths.
  • the power receiving device includes a plurality of photoelectric conversion elements having different photoelectric conversion efficiencies.
  • a control unit is provided to execute a process of selecting and operating one.
  • the optical fiber power supply system A first data communication device including the power feeding device and a second data communication device including the power receiving device and performing optical communication with the first data communication device are provided.
  • the control unit includes a power supply side control unit included in the first data communication device, and executes a process of switching to operate any one of a plurality of semiconductor lasers included in the power supply device, and the power supply side control unit.
  • the power feeding side control unit sequentially operates a plurality of semiconductor lasers included in the power feeding device one by one, and transmits information for identifying the operating semiconductor lasers to the power receiving side control unit by optical communication.
  • Execute the notification process and The power receiving side control unit sequentially operates a plurality of photoelectric conversion elements included in the power receiving device one by one, and power corresponding to each combination of the plurality of semiconductor lasers and the plurality of photoelectric conversion elements.
  • the process of notifying the power supply side control unit and the process of switching to operate the photoelectric conversion element corresponding to the selected power data are executed.
  • the optical fiber power supply (PoF: Power over Fiber) system 1A of the present embodiment includes a power supply device (PSE: Power Sourcing Equipment) 110, an optical fiber cable 200A, and a power receiving device (PD: Powered Device) 310.
  • PSE Power Sourcing Equipment
  • PD Powered Device
  • the power feeding device in the present disclosure is a device that converts electric power into light energy and supplies it
  • a power receiving device is a device that receives the supply of light energy and converts the light energy into electric power.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the optical fiber cable 200A includes an optical fiber 250A that forms a transmission line for feeding light.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the power feeding device 110 is connected to a power source, and a power feeding semiconductor laser 111 or the like is electrically driven.
  • the power feeding semiconductor laser 111 oscillates the laser with the electric power from the power source and outputs the power feeding light 112.
  • one end 201A can be connected to the power feeding device 110, and the other end 202A can be connected to the power receiving device 310 to transmit the feeding light 112.
  • the power feeding light 112 from the power feeding device 110 is input to one end 201A of the optical fiber cable 200A, the feeding light 112 propagates in the optical fiber 250A, and is output from the other end 202A to the power receiving device 310.
  • the photoelectric conversion element 311 converts the feeding light 112 transmitted through the optical fiber cable 200A into electric power.
  • the electric power converted by the photoelectric conversion element 311 is used as the driving power required in the power receiving device 310. Further, the power receiving device 310 can output the electric power converted by the photoelectric conversion element 311 for an external device.
  • the semiconductor material constituting the semiconductor region that exerts the light-electric conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 is a semiconductor having a short wavelength laser wavelength of 500 nm or less. Since a semiconductor having a short wavelength laser wavelength has a large band gap and high photoelectric conversion efficiency, the photoelectric conversion efficiency on the power generation side and the power receiving side of optical power supply is improved, and the optical power supply efficiency is improved.
  • the semiconductor material for example, a semiconductor material of a laser medium having a laser wavelength (fundamental wave) of 200 to 500 nm, such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor having a band gap of 2.4 eV or more is applied as the semiconductor material.
  • a semiconductor material of a laser medium having a bandgap of 2.4 to 6.2 eV such as diamond, gallium oxide, aluminum nitride, and GaN, may be used.
  • a semiconductor material of a laser medium having a laser wavelength (fundamental wave) smaller than 200 nm may be used.
  • These semiconductor materials may be applied to either one of the power feeding semiconductor laser 111 and the photoelectric conversion element 311. The photoelectric conversion efficiency on the power feeding side or the power receiving side is improved, and the optical power feeding efficiency is improved.
  • the optical fiber power supply (PoF: Power over Fiber) system 1 of the present embodiment includes a power supply system via an optical fiber and an optical communication system, and is a power supply device (PSE: Power Sourcing Equipment) 110. It includes a first data communication device 100 including the above, an optical fiber cable 200, and a second data communication device 300 including a power receiving device (PD) 310.
  • the power feeding device 110 includes a power feeding semiconductor laser 111.
  • the first data communication device 100 includes a power supply device 110, a transmission unit 120 that performs data communication, and a reception unit 130.
  • the first data communication device 100 corresponds to a data terminal equipment (DTE (Data Terminal Equipment)), a repeater (Repeater), and the like.
  • the transmitter 120 includes a signal semiconductor laser 121 and a modulator 122.
  • the receiving unit 130 includes a signal photodiode 131.
  • the optical fiber cable 200 includes an optical fiber 250 having a core 210 forming a signal light transmission path and a clad 220 arranged on the outer periphery of the core 210 and forming a feeding light transmission path.
  • the power receiving device 310 includes a photoelectric conversion element 311.
  • the second data communication device 300 includes a power receiving device 310, a transmitting unit 320, a receiving unit 330, and a data processing unit 340.
  • the second data communication device 300 corresponds to a power end station (Power End Station) or the like.
  • the transmitter 320 includes a signal semiconductor laser 321 and a modulator 322.
  • the receiving unit 330 includes a signal photodiode 331.
  • the data processing unit 340 is a unit that processes a received signal.
  • the second data communication device 300 is a node in the communication network. Alternatively, the second data communication device 300 may be a node that communicates with another node.
  • the first data communication device 100 is connected to a power source, and a power feeding semiconductor laser 111, a signal semiconductor laser 121, a modulator 122, a signal photodiode 131, and the like are electrically driven.
  • the first data communication device 100 is a node in the communication network.
  • the first data communication device 100 may be a node that communicates with another node.
  • the power feeding semiconductor laser 111 oscillates the laser with the electric power from the power source and outputs the power feeding light 112.
  • the photoelectric conversion element 311 converts the power feeding light 112 transmitted through the optical fiber cable 200 into electric power.
  • the electric power converted by the photoelectric conversion element 311 is the driving power of the transmitting unit 320, the receiving unit 330, and the data processing unit 340, and other driving power required in the second data communication device 300.
  • the second data communication device 300 may be capable of outputting the electric power converted by the photoelectric conversion element 311 for an external device.
  • the modulator 122 of the transmitting unit 120 modulates the laser light 123 from the signal semiconductor laser 121 based on the transmission data 124 and outputs it as the signal light 125.
  • the signal photodiode 331 of the receiving unit 330 demodulates the signal light 125 transmitted through the optical fiber cable 200 into an electric signal and outputs it to the data processing unit 340.
  • the data processing unit 340 transmits the data by the electric signal to the node, while receiving the data from the node and outputting the data as the transmission data 324 to the modulator 322.
  • the modulator 322 of the transmitting unit 320 modulates the laser light 323 from the signal semiconductor laser 321 based on the transmission data 324 and outputs it as the signal light 325.
  • the signal photodiode 131 of the receiving unit 130 demodulates the signal light 325 transmitted through the optical fiber cable 200 into an electric signal and outputs it.
  • the data by the electric signal is transmitted to the node, while the data from the node is referred to as transmission data 124.
  • the feed light 112 and the signal light 125 from the first data communication device 100 are input to one end 201 of the optical fiber cable 200, the feed light 112 propagates through the clad 220, the signal light 125 propagates through the core 210, and the other end. It is output from 202 to the second data communication device 300.
  • the signal light 325 from the second data communication device 300 is input to the other end 202 of the optical fiber cable 200, propagates through the core 210, and is output from one end 201 to the first data communication device 100.
  • the first data communication device 100 is provided with an optical input / output unit 140 and an optical connector 141 attached to the optical input / output unit 140.
  • the second data communication device 300 is provided with an optical input / output unit 350 and an optical connector 351 attached to the optical input / output unit 350.
  • An optical connector 230 provided at one end 201 of the optical fiber cable 200 connects to the optical connector 141.
  • An optical connector 240 provided at the other end 202 of the optical fiber cable 200 connects to the optical connector 351.
  • the optical input / output unit 140 guides the feeding light 112 to the clad 220, guides the signal light 125 to the core 210, and guides the signal light 325 to the receiving unit 130.
  • the optical input / output unit 350 guides the feeding light 112 to the power receiving device 310, guides the signal light 125 to the receiving unit 330, and guides the signal light 325 to the core 210.
  • the optical fiber cable 200 has one end 201 connectable to the first data communication device 100 and the other end 202 connectable to the second data communication device 300 to transmit the feeding light 112. Further, in the present embodiment, the optical fiber cable 200 transmits the signal lights 125 and 325 in both directions.
  • the semiconductor material constituting the semiconductor region that exhibits the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311 As the semiconductor material constituting the semiconductor region that exhibits the light-electricity conversion effect of the power feeding semiconductor laser 111 and the photoelectric conversion element 311, the same materials as those in the first embodiment are applied, and high light power feeding efficiency is realized. ..
  • the optical fiber 260 for transmitting signal light and the optical fiber 270 for transmitting the feeding light may be provided separately.
  • the optical fiber cable 200B may also be composed of a plurality of cables.
  • the optical fiber power feeding system 1 shown in FIG. 5 includes a first data communication device 100 including a power feeding device 110, a second data communication device 300 including a power receiving device 310, a first data communication device 100, and a second data.
  • the communication device 300 includes an optical fiber cable 200 for optical communication.
  • the power feeding device 110 included in the first data communication device 100 includes a plurality of power feeding semiconductor lasers 111 that output power feeding light having different wavelengths.
  • the power feeding device 110 here includes three power feeding semiconductor lasers 111a, 111b, and 111c.
  • the power receiving device 310 included in the second data communication device 300 includes a photoelectric conversion element 311 having a predetermined photoelectric conversion efficiency.
  • the first data communication device 100 includes a power feeding side control unit 150 that executes a process of switching to operate any one of the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110.
  • the second data communication device 300 feeds the selection information for selecting and operating one of the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 by optical communication. It includes a power receiving side control unit 360 that executes a process of notifying the side control unit 150.
  • 111c functions as a control unit that executes a process of selecting and operating one of them. That is, the photoelectric conversion element 311 converts the power feeding light output by the selected power feeding semiconductor lasers (111a, 111b, 111c) from the plurality of power feeding semiconductor lasers 111a, 111b, 111c included in the power feeding device 110 into electric power. By converting, a predetermined power supply is performed.
  • this optical fiber power feeding system 1 a plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 are periodically operated one by one, and the power feeding semiconductor lasers 111a, 111b, 111c are output.
  • the photoelectric conversion element 311 of the power receiving device 310 converts the supplied light into electric power. Then, by comparing the values of these electric powers, it is selected which of the plurality of power feeding semiconductor lasers 111a, 111b, 111c is the power feeding semiconductor laser to be operated in order to obtain a predetermined electric power. , The selected power feeding semiconductor laser is operated to supply a predetermined power.
  • the power feeding side control unit 150 sequentially operates a plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 one by one, and each power feeding semiconductor laser 111a, The feed light output by 111b and 111c is supplied to the photoelectric conversion element 311 of the power receiving device 310, respectively.
  • the power feeding side control unit 150 notifies the power receiving side control unit 360 by optical communication of information for identifying the operating power feeding semiconductor laser among the plurality of power feeding semiconductor lasers 111a, 111b, 111c. Execute the process to be performed. Specifically, the power feeding side control unit 150 outputs information for identifying the operating power feeding semiconductor laser from the transmitting unit 120 as signal light 125, and notifies the power receiving side control unit 360.
  • the photoelectric conversion element 311 of the power receiving device 310 converts the feeding light sequentially output by the feeding semiconductor lasers 111a, 111b, and 111c into electric power, respectively.
  • the power receiving side control unit 360 stores the power data corresponding to the combination of each of the plurality of power feeding semiconductor lasers 111a, 111b, 111c and the photoelectric conversion element 311 based on the information notified from the power feeding side control unit 150. The process of temporarily accumulating in the unit 360a is executed. For example, as shown in FIG.
  • the power data corresponding to the combination of the power feeding semiconductor laser 111a and the photoelectric conversion element 311, the power data corresponding to the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311, and the power feeding semiconductor is temporarily stored in the storage unit 360a.
  • the power receiving side control unit 360 executes a process of selecting power data satisfying a predetermined standard from the stored power data. For example, the power receiving side control unit 360 selects the power data corresponding to the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311 as the power data satisfying a predetermined standard from the three power data shown in FIG.
  • the power data satisfying the predetermined criteria referred to here is data on the required power on the power receiving device 310 side, data on the maximum power obtained on the power receiving device 310 side, and the like.
  • the power receiving side control unit 360 executes a process of notifying the power feeding side control unit 150 of the selection information for operating the power feeding semiconductor laser 111b corresponding to the selected power data by optical communication. Specifically, the power receiving side control unit 360 outputs selection information for operating the power feeding semiconductor laser 111b from the transmitting unit 320 as signal light 325, and notifies the power feeding side control unit 150. Then, the power feeding side control unit 150 uses the power feeding semiconductor laser 111b among the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 based on the selection information notified from the power receiving side control unit 360. Select and operate. In this way, in the optical fiber power feeding system 1, power is supplied by operating the power feeding semiconductor laser 111b among the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110.
  • the optical fiber power feeding system 1 of the first embodiment can efficiently supply a predetermined electric power. It can be powered.
  • the optical fiber power feeding system 1 shown in FIG. 7 includes a first data communication device 100 including a power feeding device 110, a second data communication device 300 including a power receiving device 310, a first data communication device 100, and a second data.
  • the communication device 300 includes an optical fiber cable 200 for optical communication.
  • the power feeding device 110 included in the first data communication device 100 includes a power feeding semiconductor laser 111 that outputs power feeding light having a predetermined wavelength.
  • the power receiving device 310 included in the second data communication device 300 includes a plurality of photoelectric conversion elements 311 having different photoelectric conversion efficiencies.
  • the power receiving device 310 here includes three photoelectric conversion elements 311a, 311b, and 311c.
  • the first data communication device 100 includes a power supply side control unit 150 that collectively controls each unit of the data communication device 100.
  • the second data communication device 300 is a power receiving side control unit that executes a process of selecting and switching any one of a plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310 to operate. It is equipped with 360.
  • the power receiving side control unit 360 and the power feeding side control unit 150 cooperate to supply a predetermined power in the optical fiber power feeding system, so that a plurality of photoelectric conversion elements 311a, 311b, and 311c provided in the power receiving device 310 are provided. It functions as a control unit that executes a process of selecting and operating one of them.
  • the photoelectric conversion element (311a, 311b, 311c) selected from the plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310 is the power supply output by the power feeding semiconductor laser 111 of the power feeding device 110. By converting light into electric power, a predetermined power supply is performed.
  • a plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310 are periodically operated one by one, and the power feeding light output by the power feeding semiconductor laser 111 is received by the power receiving device.
  • Each photoelectric conversion element 311a, 311b, 311c of 310 converts electric power. Then, by comparing the values of these electric powers, it is selected and selected which of the plurality of photoelectric conversion elements 311a, 311b, and 311c is to be operated in order to obtain a predetermined electric power.
  • the photoelectric conversion element is operated to supply a predetermined amount of electric power.
  • the power feeding side control unit 150 operates the power feeding semiconductor laser 111 included in the power feeding device 110, and the power feeding light output by the power feeding semiconductor laser 111 is photoelectrically converted into the power receiving device 310. Send to the element.
  • the power receiving side control unit 360 operates a plurality of photoelectric conversion elements 311a, 311b, and 311c provided in the power receiving device 310 one by one in sequence, and receives the power feeding light output by the power feeding semiconductor laser 111.
  • Each photoelectric conversion element 311a, 311b, 311c of the apparatus 310 converts into electric power.
  • the power receiving side control unit 360 temporarily stores the power data corresponding to each combination of the power feeding semiconductor laser 111 of the power feeding device 110 and the plurality of photoelectric conversion elements 311a, 311b, and 311c in the storage unit 360a.
  • the power data corresponding to the combination of the laser 111 and the photoelectric conversion element 311c is temporarily stored in the storage unit 360a.
  • the power receiving side control unit 360 executes a process of selecting power data satisfying a predetermined standard from the stored power data. For example, the power receiving side control unit 360 selects the power data corresponding to the combination of the power feeding semiconductor laser 111 and the photoelectric conversion element 311b as the power data satisfying a predetermined standard from the three power data shown in FIG.
  • the power data satisfying the predetermined criteria referred to here is data on the required power on the power receiving device 310 side, data on the maximum power obtained on the power receiving device 310 side, and the like.
  • the power receiving side control unit 360 executes a process of switching the photoelectric conversion element 311b corresponding to the selected power data so as to operate, and the plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310. Among them, the photoelectric conversion element 311b is selected and operated. In this way, in the optical fiber power feeding system 1, power is supplied by operating the photoelectric conversion element 311b among the plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310.
  • the optical fiber power feeding system 1 shown in FIG. 9 includes a first data communication device 100 including a power feeding device 110, a second data communication device 300 including a power receiving device 310, a first data communication device 100, and a second data.
  • the communication device 300 includes an optical fiber cable 200 for optical communication.
  • the power feeding device 110 included in the first data communication device 100 includes a plurality of power feeding semiconductor lasers 111 that output power feeding light having different wavelengths.
  • the power feeding device 110 here includes three power feeding semiconductor lasers 111a, 111b, and 111c.
  • the power receiving device 310 included in the second data communication device 300 includes a plurality of photoelectric conversion elements 311 having different photoelectric conversion efficiencies.
  • the power receiving device 310 here includes three photoelectric conversion elements 311a, 311b, and 311c.
  • the first data communication device 100 includes a power feeding side control unit 150 that executes a process of switching to operate any one of the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110. I have. Further, the second data communication device 300 feeds the selection information for selecting and operating one of the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 by optical communication. Power receiving side control unit 360 that executes a process of notifying the side control unit 150 and a process of selecting and switching any one of a plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310 to operate. Is equipped with.
  • 111c and functions as a control unit that executes a process of selecting and operating one of the plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310. That is, the power receiving device 310 includes the power feeding light output by the selected power feeding semiconductor lasers (111a, 111b, 111c) among the plurality of power feeding semiconductor lasers 111a, 111b, 111c included in the power feeding device 110.
  • a predetermined power supply is performed by converting the selected photoelectric conversion element (311a, 311b, 311c) from the plurality of photoelectric conversion elements 311a, 311b, and 311c into electric power.
  • this optical fiber power feeding system 1 a plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 are periodically operated one by one, and a plurality of photoelectric conversions provided in the power receiving device 310 are performed.
  • the elements 311a, 311b, and 311c are operated one by one, and the feeding light output by the feeding semiconductor lasers 111a, 111b, and 111c of the feeding device 110 is transmitted by the photoelectric conversion elements 311a, 311b, and 311c of the power receiving device 310, respectively. Convert to power.
  • any one of the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 is selected and operated, and the power receiving device 310 is provided.
  • a process of selecting and operating any one of the plurality of photoelectric conversion elements 311a, 311b, and 311c will be described.
  • the power feeding side control unit 150 sequentially operates a plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 one by one, and each power feeding semiconductor laser 111a, The feed light output by 111b and 111c is sent to the photoelectric conversion element of the power receiving device 310, respectively.
  • the power feeding side control unit 150 notifies the power receiving side control unit 360 by optical communication of information for identifying the operating power feeding semiconductor laser among the plurality of power feeding semiconductor lasers 111a, 111b, 111c. Execute the process to be performed. Specifically, the power feeding side control unit 150 outputs information for identifying the operating power feeding semiconductor laser from the transmitting unit 120 as signal light 125, and notifies the power receiving side control unit 360.
  • the power receiving side control unit 360 operates a plurality of photoelectric conversion elements 311a, 311b, and 311c provided in the power receiving device 310 one by one in sequence, and each of the power feeding semiconductor lasers 111a, 111b, and 111c is operated.
  • the output feed light is converted into electric power by the photoelectric conversion elements 311a, 311b, and 311c of the power receiving device 310, respectively.
  • the power receiving side control unit 360 is based on the information notified from the power feeding side control unit 150, each of the plurality of power feeding semiconductor lasers 111a, 111b, 111c, and each of the plurality of photoelectric conversion elements 311a, 311b, 311c, respectively.
  • the process of temporarily storing the power data corresponding to the combination of the above in the storage unit 360a is executed.
  • power data corresponding to the combination of the power feeding semiconductor laser 111a and the photoelectric conversion element 311a power data corresponding to the combination of the power feeding semiconductor laser 111a and the photoelectric conversion element 311b, and the power feeding semiconductor. It corresponds to the power data corresponding to the combination of the laser 111a and the photoelectric conversion element 311c, the power data corresponding to the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311a, and the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311b.
  • Power data power data corresponding to the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311c, power data corresponding to the combination of the power feeding semiconductor laser 111c and the photoelectric conversion element 311a, and the power feeding semiconductor laser 111c and photoelectric conversion.
  • the power data corresponding to the combination of the elements 311b and the power data corresponding to the combination of the power feeding semiconductor laser 111c and the photoelectric conversion element 311c are temporarily stored in the storage unit 360a.
  • the power receiving side control unit 360 executes a process of selecting power data satisfying a predetermined standard from the stored power data. For example, the power receiving side control unit 360 selects the power data corresponding to the combination of the power feeding semiconductor laser 111b and the photoelectric conversion element 311b as the power data satisfying a predetermined standard from the nine power data shown in FIG.
  • the power data satisfying the predetermined criteria referred to here is data on the required power on the power receiving device 310 side, data on the maximum power obtained on the power receiving device 310 side, and the like.
  • the power receiving side control unit 360 executes a process of notifying the power feeding side control unit 150 of the selection information for operating the power feeding semiconductor laser 111b corresponding to the selected power data by optical communication. Specifically, the power receiving side control unit 360 outputs selection information for operating the power feeding semiconductor laser 111b from the transmitting unit 320 as signal light 325, and notifies the power feeding side control unit 150. Then, the power feeding side control unit 150 uses the power feeding semiconductor laser 111b among the plurality of power feeding semiconductor lasers 111a, 111b, 111c provided in the power feeding device 110 based on the selection information notified from the power receiving side control unit 360. Select and operate.
  • the power receiving side control unit 360 executes a process of switching the photoelectric conversion element 311b corresponding to the selected power data so as to operate, and the plurality of photoelectric conversion elements 311a, 311b, and 311c included in the power receiving device 310.
  • the photoelectric conversion element 311b is selected and operated.
  • the power feeding semiconductor laser 111b is operated, and the plurality of photoelectric conversion elements included in the power receiving device 310 are operated.
  • the 311a, 311b, and 311c power is supplied by operating the photoelectric conversion element 311b.
  • the optical fiber power feeding system 1 of the third embodiment is determined. Power can be supplied efficiently.
  • the power feeding device 110 includes a plurality of power feeding semiconductor lasers 111a, 111b, 111c that output power feeding light of different wavelengths, and the power receiving device 310 has different photoelectric conversions. Even when a plurality of efficient photoelectric conversion elements 311a, 311b, and 311c are provided, the power feeding semiconductor laser 111b and the photoelectric conversion element 311b selected by the control unit (power feeding side control unit 150 and power receiving side control unit 360) are provided. By operating the above, a predetermined amount of power can be efficiently supplied.
  • the feeding side control unit 150 operates a plurality of feeding semiconductor lasers 111a, 111b, 111c one by one in sequence.
  • the feeding light output by each of the feeding semiconductor lasers 111a, 111b, and 111c is sent to the photoelectric conversion element of the power receiving device 310, and the feeding side control unit 150 identifies the operating feeding semiconductor laser.
  • the power receiving side control unit 360 identifies the power feeding semiconductor laser operating on the power feeding device 110 side, and converts the power feeding semiconductor laser into a photoelectric conversion.
  • the present invention is not limited to this.
  • the power receiving side control unit 360 notifies the power feeding side control unit 150 of the request information regarding the order in which the plurality of power feeding semiconductor lasers 111a, 111b, 111c are operated by optical communication, and the power receiving side control unit 360 transmits the request information.
  • the power feeding side control unit 150 By causing the power feeding side control unit 150 to operate the plurality of power feeding semiconductor lasers 111a, 111b, 111c one by one according to the request order, the power receiving side control unit 360 is operating on the power feeding device 110 side.
  • a power semiconductor laser may be specified to store power data corresponding to a combination of the power feeding semiconductor laser and the photoelectric conversion element.
  • the present invention is configured as described above, it can be used as an optical fiber power supply system.
  • Optical fiber power supply system 1A Optical fiber power supply system (optical power supply system) 1 Optical fiber power supply system (optical power supply system) 1B optical fiber power supply system (optical power supply system) 100
  • First data communication device 110 Power supply device 111 (111a, 111b, 111c) Power supply semiconductor laser 112 Power supply light 120 Transmission unit 125 Signal light 130 Reception unit 140 Optical input / output unit 141 Optical connector 150 Power supply side control unit 200A Optical fiber cable 200 Optical fiber cable 200B Optical fiber cable 210 Core 220 Clad 250A Optical fiber 250 Optical fiber 260 Optical fiber 270 Optical fiber 300 Second data communication device 310 Power receiving device 311 (311a, 311b, 311c) Photoelectric conversion element 320 Transmitter 325 Signal light 330 Receiver 350 Optical Input / output unit 351 Optical connector 360 Power receiving side control unit 360a Storage unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

電力によりレーザー発振して給電光112を出力する半導体レーザー111を含む給電装置110と、給電装置110による給電光112を電力に変換する光電変換素子311を含む受電装置310と、給電装置110から受電装置310に給電光112を伝送する光ファイバーケーブル200を備えた光ファイバー給電システム1において、給電装置110が異なる波長の給電光をそれぞれ出力する複数の半導体レーザー(111a、111b、111c)を備え、受電装置310がそれぞれ異なる光電変換効率を有する複数の光電変換素子(311a、311b、311c)を備えている場合、当該システムにおいて所定の給電を行うために好ましい半導体レーザーと光電変換素子の組み合わせを選択し、複数の半導体レーザーから1つ、複数の光電変換素子から1つを作動させるようにした。

Description

光ファイバー給電システム
 本開示は、光給電に関する。
 近時、電力を光(給電光と呼ばれる)に変換して伝送し、当該給電光を電気エネルギーに変換して電力として利用する光給電システムが研究されている。
 特許文献1には、電気信号で変調された信号光、及び電力を供給するための給電光を発信する光発信機と、上記信号光を伝送するコア、上記コアの周囲に形成され上記コアより屈折率が小さく上記給電光を伝送する第1クラッド、及び上記第1クラッドの周囲に形成され上記第1クラッドより屈折率が小さい第2クラッド、を有する光ファイバーと、上記光ファイバーの第1クラッドで伝送された上記給電光を変換した電力で動作し、上記光ファイバーのコアで伝送された上記信号光を上記電気信号に変換する光受信機と、を備えた光通信装置が記載されている。
特開2010-135989号公報
 ところで、光ファイバー給電システムが将来的に改修される過程で、光発信機に従前からの半導体レーザーに加えて新たな半導体レーザーが付加されたり、光受信機に従前からの光電変換素子に加えて新たな光電変換素子が付加されたりすることが予想される。そのような場合にでも、光ファイバー給電システムにおいて効率のよい給電がなされることが望まれている。
 本開示の1つの態様の光ファイバー給電システムは、
 電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置と、前記給電装置から前記受電装置に前記給電光を伝送する光ファイバーケーブルを備えた光ファイバー給電システムであって、
 前記給電装置は、異なる波長の給電光をそれぞれ出力する複数の半導体レーザーを備えており、
 前記受電装置は、それぞれ異なる光電変換効率を有する複数の光電変換素子を備えており、
 当該光ファイバー給電システムにおいて所定の給電を行うために、前記給電装置が備えている複数の半導体レーザーから1つを選択して作動させる処理と、前記受電装置が備えている複数の光電変換素子から1つを選択して作動させる処理を実行する制御部を備えるようにした。
 また、その光ファイバー給電システムは、
 前記給電装置を含む第1のデータ通信装置と、前記受電装置を含み前記第1のデータ通信装置と光通信する第2のデータ通信装置と、を備え、
 前記制御部は、前記第1のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるように切り替える処理を実行する給電側制御部と、前記第2のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるための選択情報を光通信にて前記給電側制御部に通知する処理と、前記受電装置が備えている複数の光電変換素子のいずれか1つを作動させるように切り替える処理を実行する受電側制御部と、を有するようにする。
 また、その光ファイバー給電システムは、
 前記給電側制御部は、前記給電装置が備えている複数の半導体レーザーを順次1つずつ作動させるとともに、作動させている半導体レーザーを特定させるための情報を光通信にて前記受電側制御部に通知する処理を実行し、
 前記受電側制御部は、前記受電装置が備えている複数の光電変換素子を順次1つずつ作動させるとともに、前記複数の半導体レーザーのそれぞれと前記複数の光電変換素子のそれぞれの組み合わせに対応する電力データを一時的に蓄積する処理と、蓄積された電力データから所定の基準を満たす電力データを選択する処理と、選択された電力データに対応する半導体レーザーを作動させるために前記選択情報を光通信にて前記給電側制御部に通知する処理と、選出された電力データに対応する光電変換素子を作動させるように切り替える処理を実行するようにする。
本開示の第1実施形態に係る光ファイバー給電システムの構成図である。 本開示の第2実施形態に係る光ファイバー給電システムの構成図である。 本開示の第2実施形態に係る光ファイバー給電システムの構成図であって、光コネクタ等を図示したものである。 本開示の他の一実施形態に係る光ファイバー給電システムの構成図である。 本開示の第2実施形態に係る光ファイバー給電システム(第1実施例)の構成図であって、制御部(受電側制御部、給電側制御部)を加えて図示したものである。 第1実施例において一時的に蓄積される電力データに関する説明図である。 本開示の第2実施形態に係る光ファイバー給電システム(第2実施例)の構成図であって、制御部(受電側制御部、給電側制御部)を加えて図示したものである。 第2実施例において一時的に蓄積される電力データに関する説明図である。 本開示の第2実施形態に係る光ファイバー給電システム(第3実施例)の構成図であって、制御部(受電側制御部、給電側制御部)を加えて図示したものである。 第3実施例において一時的に蓄積される電力データに関する説明図である。
 以下に本開示の一実施形態につき図面を参照して説明する。
(1)システム概要
〔第1実施形態〕
 図1に示すように本実施形態の光ファイバー給電(PoF:Power over Fiber)システム1Aは、給電装置(PSE:Power Sourcing Equipment)110と、光ファイバーケーブル200Aと、受電装置(PD:Powered Device)310を備える。
 なお、本開示における給電装置は電力を光エネルギーに変換して供給する装置であり、受電装置は光エネルギーの供給を受け当該光エネルギーを電力に変換する装置である。
 給電装置110は、給電用半導体レーザー111を含む。
 光ファイバーケーブル200Aは、給電光の伝送路を形成する光ファイバー250Aを含む。
 受電装置310は、光電変換素子311を含む。
 給電装置110は電源に接続され、給電用半導体レーザー111等が電気駆動される。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
 光ファイバーケーブル200Aは、一端201Aが給電装置110に接続可能とされ、他端202Aが受電装置310に接続可能とされ、給電光112を伝送する。
 給電装置110からの給電光112が、光ファイバーケーブル200Aの一端201Aに入力され、給電光112は光ファイバー250A中を伝搬し、他端202Aから受電装置310に出力される。
 光電変換素子311は、光ファイバーケーブル200Aを通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力が、受電装置310内で必要な駆動電力とされる。さらに受電装置310は光電変換素子311により変換された電力を外部機器用に出力可能とされる。
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が500nm以下の短波長のレーザー波長をもった半導体とされる。
 短波長のレーザー波長をもった半導体は、バンドギャップが大きく光電変換効率が高いので、光給電の発電側及び受電側における光電変換効率が向上され、光給電効率が向上する。
 そのためには、同半導体材料として、例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、レーザー波長(基本波)が200~500nmのレーザー媒体の半導体材料を用いてもよい。
 また、同半導体材料として、2.4eV以上のバンドギャップを有した半導体が適用される。
 例えば、ダイヤモンド、酸化ガリウム、窒化アルミニウム、GaN等、バンドギャップ2.4~6.2eVのレーザー媒体の半導体材料を用いてもよい。
 なお、レーザー光は長波長ほど伝送効率が良く、短波長ほど光電変換効率が良い傾向にある。したがって、長距離伝送の場合には、レーザー波長(基本波)が500nmより大きいレーザー媒体の半導体材料を用いてもよい。また、光電変換効率を優先する場合には、レーザー波長(基本波)が200nmより小さいレーザー媒体の半導体材料を用いてもよい。
 これらの半導体材料は、給電用半導体レーザー111及び光電変換素子311のいずれか一方に適用してもよい。給電側又は受電側における光電変換効率が向上され、光給電効率が向上する。
〔第2実施形態〕
 図2に示すように本実施形態の光ファイバー給電(PoF:Power over Fiber)システム1は、光ファイバーを介した給電システムと光通信システムとを含むものであり、給電装置(PSE:Power Sourcing Equipment)110を含む第1のデータ通信装置100と、光ファイバーケーブル200と、受電装置(PD:Powered Device)310を含む第2のデータ通信装置300とを備える。
 給電装置110は、給電用半導体レーザー111を含む。第1のデータ通信装置100は、給電装置110のほか、データ通信を行う発信部120と、受信部130とを含む。第1のデータ通信装置100は、データ端末装置(DTE(Data Terminal Equipment))、中継器(Repeater)等に相当する。発信部120は、信号用半導体レーザー121と、モジュレーター122とを含む。受信部130は、信号用フォトダイオード131を含む。
 光ファイバーケーブル200は、信号光の伝送路を形成するコア210と、コア210の外周に配置され、給電光の伝送路を形成するクラッド220と有する光ファイバー250を含む。
 受電装置310は、光電変換素子311を含む。第2のデータ通信装置300は、受電装置310のほか、発信部320と、受信部330と、データ処理ユニット340とを含む。第2のデータ通信装置300は、パワーエンドステーション(Power End Station)等に相当する。発信部320は、信号用半導体レーザー321と、モジュレーター322とを含む。受信部330は、信号用フォトダイオード331を含む。データ処理ユニット340は、受信した信号を処理するユニットである。また、第2のデータ通信装置300は、通信ネットワークにおけるノードである。または第2のデータ通信装置300は、他のノードと通信するノードでもよい。
 第1のデータ通信装置100は電源に接続され、給電用半導体レーザー111、信号用半導体レーザー121と、モジュレーター122、信号用フォトダイオード131等が電気駆動される。また、第1のデータ通信装置100は、通信ネットワークにおけるノードである。または第1のデータ通信装置100は、他のノードと通信するノードでもよい。
 給電用半導体レーザー111は、上記電源からの電力によりレーザー発振して給電光112を出力する。
 光電変換素子311は、光ファイバーケーブル200を通して伝送されてきた給電光112を電力に変換する。光電変換素子311により変換された電力は、発信部320、受信部330及びデータ処理ユニット340の駆動電力、その他の第2のデータ通信装置300内で必要となる駆動電力とされる。さらに第2のデータ通信装置300は、光電変換素子311により変換された電力を外部機器用に出力可能とされていてもよい。
 一方、発信部120のモジュレーター122は、信号用半導体レーザー121からのレーザー光123を送信データ124に基づき変調して信号光125として出力する。
 受信部330の信号用フォトダイオード331は、光ファイバーケーブル200を通して伝送されてきた信号光125を電気信号に復調し、データ処理ユニット340に出力する。データ処理ユニット340は、当該電気信号によるデータをノードに送信し、その一方で当該ノードからデータを受信し、送信データ324としてモジュレーター322に出力する。
 発信部320のモジュレーター322は、信号用半導体レーザー321からのレーザー光323を送信データ324に基づき変調して信号光325として出力する。
 受信部130の信号用フォトダイオード131は、光ファイバーケーブル200を通して伝送されてきた信号光325を電気信号に復調し出力する。当該電気信号によるデータがノードに送信され、その一方で当該ノードからデータが送信データ124とされる。
 第1のデータ通信装置100からの給電光112及び信号光125が、光ファイバーケーブル200の一端201に入力され、給電光112はクラッド220を伝搬し、信号光125はコア210を伝搬し、他端202から第2のデータ通信装置300に出力される。
 第2のデータ通信装置300からの信号光325が、光ファイバーケーブル200の他端202に入力され、コア210を伝搬し、一端201から第1のデータ通信装置100に出力される。
 なお、図3に示すように第1のデータ通信装置100に光入出力部140とこれに付設された光コネクタ141が設けられる。また、第2のデータ通信装置300に光入出力部350とこれに付設された光コネクタ351が設けられる。光ファイバーケーブル200の一端201に設けられた光コネクタ230が光コネクタ141に接続する。光ファイバーケーブル200の他端202に設けられた光コネクタ240が光コネクタ351に接続する。光入出力部140は、給電光112をクラッド220に導光し、信号光125をコア210に導光し、信号光325を受信部130に導光する。光入出力部350は、給電光112を受電装置310に導光し、信号光125を受信部330に導光し、信号光325をコア210に導光する。
 以上のように、光ファイバーケーブル200は、一端201が第1のデータ通信装置100に接続可能とされ、他端202が第2のデータ通信装置300に接続可能とされ、給電光112を伝送する。さらに本実施形態では、光ファイバーケーブル200は、信号光125,325を双方向伝送する。
 給電用半導体レーザー111及び光電変換素子311の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料としては上記第1実施形態と同様のものが適用され、高い光給電効率が実現される。
 なお、図4に示す光ファイバー給電システム1Bの光ファイバーケーブル200Bように、信号光を伝送する光ファイバー260と、給電光を伝送する光ファイバー270とを別々に設けてもよい。光ファイバーケーブル200Bも複数本で構成してもよい。
(2)複数の半導体レーザーや複数の光電変換素子が備えられたシステムについて
 次に、光ファイバー給電システム1において効率のよい給電がなされるように、給電装置110に備えられている複数の給電用半導体レーザー111のいずれか1つを作動させるように切り替えたり、受電装置310に備えられている複数の光電変換素子311のいずれか1つを作動させるように切り替えたりする処理について説明する。
[第1実施例]
 図5に示す光ファイバー給電システム1は、給電装置110を含む第1のデータ通信装置100と、受電装置310を含む第2のデータ通信装置300と、第1のデータ通信装置100と第2のデータ通信装置300が光通信するための光ファイバーケーブル200とを備えている。
 図5に示すように、第1のデータ通信装置100に含まれている給電装置110は、異なる波長の給電光をそれぞれ出力する複数の給電用半導体レーザー111を備えている。ここでの給電装置110は3つの給電用半導体レーザー111a、111b、111cを備えている。
 また、第2のデータ通信装置300に含まれている受電装置310は、所定の光電変換効率を有する光電変換素子311を備えている。
 また、第1のデータ通信装置100は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを作動させるように切り替える処理を実行する給電側制御部150を備えている。
 また、第2のデータ通信装置300は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを選択して作動させるための選択情報を光通信にて給電側制御部150に通知する処理を実行する受電側制御部360を備えている。
 この受電側制御部360と給電側制御部150が協働することで、光ファイバー給電システム1において所定の電力の給電を行うために、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cから1つを選択して作動させる処理を実行する制御部として機能する。
 つまり、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、選択された給電用半導体レーザー(111a、111b、111c)が出力した給電光を光電変換素子311が電力に変換することで、所定の給電が行われるようになる。
 例えば、この光ファイバー給電システム1では、定期的に、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cを1つずつ作動させ、各給電用半導体レーザー111a、111b、111cが出力した給電光を受電装置310の光電変換素子311がそれぞれ電力に変換する。そして、それら電力の値を比較するようにして、所定の電力を得るために作動させるべき給電用半導体レーザーが、複数の給電用半導体レーザー111a、111b、111cのうちのいずれであるかを選別し、選別した給電用半導体レーザーを作動させて、所定の電力の給電を行うようにしている。
 次に、第1実施例の光ファイバー給電システム1において、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを選択して作動させる処理について説明する。
 例えば、所定の定期的なタイミングにおいて、給電側制御部150は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cを順次1つずつ作動させ、各給電用半導体レーザー111a、111b、111cがそれぞれ出力した給電光を受電装置310の光電変換素子311に送給する。
 このとき、給電側制御部150は、複数の給電用半導体レーザー111a、111b、111cのうち、作動させている給電用半導体レーザーを特定させるための情報を光通信にて受電側制御部360に通知する処理を実行する。具体的には、給電側制御部150は、作動させている給電用半導体レーザーを特定させるための情報を発信部120から信号光125として出力し、受電側制御部360に通知する。
 そして、受電装置310の光電変換素子311は、各給電用半導体レーザー111a、111b、111cが順次出力した給電光をそれぞれ電力に変換する。
 このとき、受電側制御部360は、給電側制御部150から通知された情報に基づき、複数の給電用半導体レーザー111a、111b、111cのそれぞれと光電変換素子311の組み合わせに対応する電力データを記憶部360aに一時的に蓄積する処理を実行する。例えば、図6に示すように、給電用半導体レーザー111aと光電変換素子311の組み合わせに対応する電力データと、給電用半導体レーザー111bと光電変換素子311の組み合わせに対応する電力データと、給電用半導体レーザー111cと光電変換素子311の組み合わせに対応する電力データが、記憶部360aに一時的に蓄積される。
 次いで、受電側制御部360は、蓄積された電力データから所定の基準を満たす電力データを選択する処理を実行する。例えば、受電側制御部360は、図6に示した3つの電力データから、所定の基準を満たす電力データとして、給電用半導体レーザー111bと光電変換素子311の組み合わせに対応する電力データを選択する。なお、ここで言う、所定の基準を満たす電力データとは、受電装置310側での必要電力に関するデータや、受電装置310側で得られる最大電力に関するデータなどである。
 次いで、受電側制御部360は、選択された電力データに対応する給電用半導体レーザー111bを作動させるための選択情報を光通信にて給電側制御部150に通知する処理を実行する。具体的には、受電側制御部360は、給電用半導体レーザー111bを作動させるための選択情報を発信部320から信号光325として出力し、給電側制御部150に通知する。
 そして、給電側制御部150は、受電側制御部360から通知された選択情報に基づき、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、給電用半導体レーザー111bを選択して作動させる。
 こうして、光ファイバー給電システム1において、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、給電用半導体レーザー111bを作動させた給電が行われるようになる。
 このように、制御部(給電側制御部150および受電側制御部360)によって選択された給電用半導体レーザー111bを作動させることで、第1実施例の光ファイバー給電システム1において所定の電力を効率よく給電することができる。
[第2実施例]
 図7に示す光ファイバー給電システム1は、給電装置110を含む第1のデータ通信装置100と、受電装置310を含む第2のデータ通信装置300と、第1のデータ通信装置100と第2のデータ通信装置300が光通信するための光ファイバーケーブル200とを備えている。
 図7に示すように、第1のデータ通信装置100に含まれている給電装置110は、所定の波長の給電光を出力する給電用半導体レーザー111を備えている。
 また、第2のデータ通信装置300に含まれている受電装置310は、それぞれ異なる光電変換効率を有する複数の光電変換素子311を備えている。ここでの受電装置310は3つの光電変換素子311a、311b、311cを備えている。
 また、第1のデータ通信装置100は、当該データ通信装置100の各部を統括制御する給電側制御部150を備えている。
 また、第2のデータ通信装置300は、受電装置310が備えている複数の光電変換素子311a、311b、311cのいずれか1つを選択して作動させるように切り替える処理を実行する受電側制御部360を備えている。
 この受電側制御部360と給電側制御部150が協働することで、光ファイバー給電システムにおいて所定の電力の給電を行うために、受電装置310が備えている複数の光電変換素子311a、311b、311cから1つを選択して作動させる処理を実行する制御部として機能する。
 つまり、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、選択された光電変換素子(311a、311b、311c)が、給電装置110の給電用半導体レーザー111が出力した給電光を電力に変換することで、所定の給電が行われるようになる。
 例えば、この光ファイバー給電システム1では、定期的に、受電装置310が備えている複数の光電変換素子311a、311b、311cを1つずつ作動させ、給電用半導体レーザー111が出力した給電光を受電装置310の各光電変換素子311a、311b、311cがそれぞれ電力に変換する。そして、それら電力の値を比較するようにして、所定の電力を得るために作動させるべき光電変換素子が、複数の光電変換素子311a、311b、311cのうちのいずれであるかを選別し、選別した光電変換素子を作動させて、所定の電力の給電を行うようにしている。
 次に、第2実施例の光ファイバー給電システム1において、受電装置310が備えている複数の光電変換素子311a、311b、311cのいずれか1つを選択して作動させる処理について説明する。
 例えば、所定の定期的なタイミングにおいて、給電側制御部150は、給電装置110が備えている給電用半導体レーザー111を作動させ、給電用半導体レーザー111が出力した給電光を受電装置310の光電変換素子に送給する。
 また、そのタイミングにおいて、受電側制御部360は、受電装置310が備えている複数の光電変換素子311a、311b、311cを順次1つずつ作動させ、給電用半導体レーザー111が出力した給電光を受電装置310の各光電変換素子311a、311b、311cがそれぞれ電力に変換する。
 このとき、受電側制御部360は、給電装置110の給電用半導体レーザー111と複数の光電変換素子311a、311b、311cのそれぞれの組み合わせに対応する電力データを記憶部360aに一時的に蓄積する処理を実行する。例えば、図8に示すように、給電用半導体レーザー111と光電変換素子311aの組み合わせに対応する電力データと、給電用半導体レーザー111と光電変換素子311bの組み合わせに対応する電力データと、給電用半導体レーザー111と光電変換素子311cの組み合わせに対応する電力データが、記憶部360aに一時的に蓄積される。
 次いで、受電側制御部360は、蓄積された電力データから所定の基準を満たす電力データを選択する処理を実行する。例えば、受電側制御部360は、図8に示した3つの電力データから、所定の基準を満たす電力データとして、給電用半導体レーザー111と光電変換素子311bの組み合わせに対応する電力データを選択する。なお、ここで言う、所定の基準を満たす電力データとは、受電装置310側での必要電力に関するデータや、受電装置310側で得られる最大電力に関するデータなどである。
 次いで、受電側制御部360は、選択された電力データに対応する光電変換素子311bを作動させるように切り替える処理を実行し、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、光電変換素子311bを選択して作動させる。
 こうして、光ファイバー給電システム1において、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、光電変換素子311bを作動させた給電が行われるようになる。
 このように、制御部(給電側制御部150および受電側制御部360)によって選択された光電変換素子311bを作動させることで、第2実施例の光ファイバー給電システム1において所定の電力を効率よく給電することができる。
[第3実施例]
 図9に示す光ファイバー給電システム1は、給電装置110を含む第1のデータ通信装置100と、受電装置310を含む第2のデータ通信装置300と、第1のデータ通信装置100と第2のデータ通信装置300が光通信するための光ファイバーケーブル200とを備えている。
 図9に示すように、第1のデータ通信装置100に含まれている給電装置110は、異なる波長の給電光をそれぞれ出力する複数の給電用半導体レーザー111を備えている。ここでの給電装置110は3つの給電用半導体レーザー111a、111b、111cを備えている。
 また、第2のデータ通信装置300に含まれている受電装置310は、それぞれ異なる光電変換効率を有する複数の光電変換素子311を備えている。ここでの受電装置310は3つの光電変換素子311a、311b、311cを備えている。
 また、第1のデータ通信装置100は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを作動させるように切り替える処理を実行する給電側制御部150を備えている。
 また、第2のデータ通信装置300は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを選択して作動させるための選択情報を光通信にて給電側制御部150に通知する処理と、受電装置310が備えている複数の光電変換素子311a、311b、311cのいずれか1つを選択して作動させるように切り替える処理を実行する受電側制御部360を備えている。
 この受電側制御部360と給電側制御部150が協働することで、光ファイバー給電システム1において所定の電力の給電を行うために、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cから1つを選択して作動させる処理と、受電装置310が備えている複数の光電変換素子311a、311b、311cから1つを選択して作動させる処理を実行する制御部として機能する。
 つまり、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、選択された給電用半導体レーザー(111a、111b、111c)が出力した給電光を、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、選択された光電変換素子(311a、311b、311c)が電力に変換することで、所定の給電が行われるようになる。
 例えば、この光ファイバー給電システム1では、定期的に、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cを1つずつ作動させるとともに、受電装置310が備えている複数の光電変換素子311a、311b、311cを1つずつ作動させ、給電装置110の各給電用半導体レーザー111a、111b、111cがそれぞれ出力した給電光を、受電装置310の各光電変換素子311a、311b、311cがそれぞれ電力に変換する。そして、それら電力の値を比較するようにして、所定の電力を得るために作動させるべき給電用半導体レーザー111と光電変換素子311の組み合わせが、複数の組み合わせのうちのいずれであるかを選別し、選別した給電用半導体レーザーと光電変換素子を作動させて、所定の電力の給電を行うようにしている。
 次に、第3実施例の光ファイバー給電システム1において、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのいずれか1つを選択して作動させるとともに、受電装置310が備えている複数の光電変換素子311a、311b、311cのいずれか1つを選択して作動させる処理について説明する。
 例えば、所定の定期的なタイミングにおいて、給電側制御部150は、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cを順次1つずつ作動させ、各給電用半導体レーザー111a、111b、111cがそれぞれ出力した給電光を受電装置310の光電変換素子に送給する。
 このとき、給電側制御部150は、複数の給電用半導体レーザー111a、111b、111cのうち、作動させている給電用半導体レーザーを特定させるための情報を光通信にて受電側制御部360に通知する処理を実行する。具体的には、給電側制御部150は、作動させている給電用半導体レーザーを特定させるための情報を発信部120から信号光125として出力し、受電側制御部360に通知する。
 また、そのタイミングにおいて、受電側制御部360は、受電装置310が備えている複数の光電変換素子311a、311b、311cを順次1つずつ作動させ、各給電用半導体レーザー111a、111b、111cがそれぞれ出力した給電光を受電装置310の各光電変換素子311a、311b、311cがそれぞれ電力に変換する。
 このとき、受電側制御部360は、給電側制御部150から通知された情報に基づき、複数の給電用半導体レーザー111a、111b、111cのそれぞれと、複数の光電変換素子311a、311b、311cのそれぞれの組み合わせに対応する電力データを記憶部360aに一時的に蓄積する処理を実行する。例えば、図10に示すように、給電用半導体レーザー111aと光電変換素子311aの組み合わせに対応する電力データと、給電用半導体レーザー111aと光電変換素子311bの組み合わせに対応する電力データと、給電用半導体レーザー111aと光電変換素子311cの組み合わせに対応する電力データと、給電用半導体レーザー111bと光電変換素子311aの組み合わせに対応する電力データと、給電用半導体レーザー111bと光電変換素子311bの組み合わせに対応する電力データと、給電用半導体レーザー111bと光電変換素子311cの組み合わせに対応する電力データと、給電用半導体レーザー111cと光電変換素子311aの組み合わせに対応する電力データと、給電用半導体レーザー111cと光電変換素子311bの組み合わせに対応する電力データと、給電用半導体レーザー111cと光電変換素子311cの組み合わせに対応する電力データが、記憶部360aに一時的に蓄積される。
 次いで、受電側制御部360は、蓄積された電力データから所定の基準を満たす電力データを選択する処理を実行する。例えば、受電側制御部360は、図10に示した9つの電力データから、所定の基準を満たす電力データとして、給電用半導体レーザー111bと光電変換素子311bの組み合わせに対応する電力データを選択する。なお、ここで言う、所定の基準を満たす電力データとは、受電装置310側での必要電力に関するデータや、受電装置310側で得られる最大電力に関するデータなどである。
 次いで、受電側制御部360は、選択された電力データに対応する給電用半導体レーザー111bを作動させるための選択情報を光通信にて給電側制御部150に通知する処理を実行する。具体的には、受電側制御部360は、給電用半導体レーザー111bを作動させるための選択情報を発信部320から信号光325として出力し、給電側制御部150に通知する。
 そして、給電側制御部150は、受電側制御部360から通知された選択情報に基づき、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、給電用半導体レーザー111bを選択して作動させる。
 また、受電側制御部360は、選択された電力データに対応する光電変換素子311bを作動させるように切り替える処理を実行し、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、光電変換素子311bを選択して作動させる。
 こうして、光ファイバー給電システム1において、給電装置110が備えている複数の給電用半導体レーザー111a、111b、111cのうち、給電用半導体レーザー111bを作動させ、受電装置310が備えている複数の光電変換素子311a、311b、311cのうち、光電変換素子311bを作動させた給電が行われるようになる。
 このように、制御部(給電側制御部150および受電側制御部360)によって選択された給電用半導体レーザー111bと光電変換素子311bを作動させることで、第3実施例の光ファイバー給電システム1において所定の電力を効率よく給電することができる。
 以上のように、光ファイバー給電システム1において、給電装置110が、異なる波長の給電光をそれぞれ出力する複数の給電用半導体レーザー111a、111b、111cを備えていたり、受電装置310が、それぞれ異なる光電変換効率を有する複数の光電変換素子311a、311b、311cを備えていたりする場合でも、制御部(給電側制御部150および受電側制御部360)によって選択された給電用半導体レーザー111bや光電変換素子311bを作動させることで、所定の電力を効率よく給電することができる。
 なお、上述した第1実施例の光ファイバー給電システム1と、第3実施例の光ファイバー給電システム1において、給電側制御部150が、複数の給電用半導体レーザー111a、111b、111cを順次1つずつ作動させ、各給電用半導体レーザー111a、111b、111cがそれぞれ出力した給電光を受電装置310の光電変換素子に送給するとともに、給電側制御部150が、作動されている給電用半導体レーザーを特定させるための情報を光通信にて受電側制御部360に通知することで、受電側制御部360が給電装置110側で作動されている給電用半導体レーザーを特定して、給電用半導体レーザーと光電変換素子の組み合わせに対応する電力データを蓄積するようにしたが、本発明はこれに限定されるものではない。
 例えば、受電側制御部360が、複数の給電用半導体レーザー111a、111b、111cを作動させる順に関する要求情報を光通信にて給電側制御部150に通知するようにし、受電側制御部360からの要求順に応じて、給電側制御部150が複数の給電用半導体レーザー111a、111b、111cを1つずつ作動させるようにすることで、受電側制御部360が給電装置110側で作動されている給電用半導体レーザーを特定して、給電用半導体レーザーと光電変換素子の組み合わせに対応する電力データを蓄積するようにしてもよい。
 以上本開示の実施形態を説明したが、この実施形態は、例として示したものであり、この他の様々な形態で実施が可能であり、発明の要旨を逸脱しない範囲で、構成要素の省略、置き換え、変更を行うことができる。
 本発明は、以上のように構成されていることから、光ファイバー給電システムとして利用できる。
1A  光ファイバー給電システム(光給電システム)
1   光ファイバー給電システム(光給電システム)
1B  光ファイバー給電システム(光給電システム)
100 第1のデータ通信装置
110 給電装置
111(111a、111b、111c) 給電用半導体レーザー
112 給電光
120 発信部
125 信号光
130 受信部
140 光入出力部
141 光コネクタ
150 給電側制御部
200A 光ファイバーケーブル
200 光ファイバーケーブル
200B 光ファイバーケーブル
210 コア
220 クラッド
250A 光ファイバー
250 光ファイバー
260 光ファイバー
270 光ファイバー
300 第2のデータ通信装置
310 受電装置
311(311a、311b、311c) 光電変換素子
320 発信部
325 信号光
330 受信部
350 光入出力部
351 光コネクタ
360 受電側制御部
360a 記憶部

Claims (12)

  1.  電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置と、前記給電装置から前記受電装置に前記給電光を伝送する光ファイバーケーブルを備えた光ファイバー給電システムであって、
     前記給電装置は、異なる波長の給電光をそれぞれ出力する複数の半導体レーザーを備えており、
     前記受電装置は、それぞれ異なる光電変換効率を有する複数の光電変換素子を備えており、
     当該光ファイバー給電システムにおいて所定の給電を行うために、前記給電装置が備えている複数の半導体レーザーから1つを選択して作動させる処理と、前記受電装置が備えている複数の光電変換素子から1つを選択して作動させる処理を実行する制御部を備えた光ファイバー給電システム。
  2.  前記給電装置を含む第1のデータ通信装置と、前記受電装置を含み前記第1のデータ通信装置と光通信する第2のデータ通信装置と、を備え、
     前記制御部は、前記第1のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるように切り替える処理を実行する給電側制御部と、前記第2のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるための選択情報を光通信にて前記給電側制御部に通知する処理と、前記受電装置が備えている複数の光電変換素子のいずれか1つを作動させるように切り替える処理を実行する受電側制御部と、を有する請求項1に記載の光ファイバー給電システム。
  3.  前記給電側制御部は、前記給電装置が備えている複数の半導体レーザーを順次1つずつ作動させるとともに、作動させている半導体レーザーを特定させるための情報を光通信にて前記受電側制御部に通知する処理を実行し、
     前記受電側制御部は、前記受電装置が備えている複数の光電変換素子を順次1つずつ作動させるとともに、前記複数の半導体レーザーのそれぞれと前記複数の光電変換素子のそれぞれの組み合わせに対応する電力データを一時的に蓄積する処理と、蓄積された電力データから所定の基準を満たす電力データを選択する処理と、選択された電力データに対応する半導体レーザーを作動させるために前記選択情報を光通信にて前記給電側制御部に通知する処理と、選出された電力データに対応する光電変換素子を作動させるように切り替える処理を実行する請求項2に記載の光ファイバー給電システム。
  4.  前記複数の半導体レーザーの少なくとも1つ及び前記複数の光電変換素子の少なくとも1つの光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項1から請求項3のうちいずれか一に記載の光ファイバー給電システム。
  5.  電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置と、前記給電装置から前記受電装置に前記給電光を伝送する光ファイバーケーブルを備えた光ファイバー給電システムであって、
     前記給電装置は、異なる波長の給電光をそれぞれ出力する複数の半導体レーザーを備えており、
     前記受電装置は、所定の光電変換効率を有する光電変換素子を備えており、
     当該光ファイバー給電システムにおいて所定の給電を行うために、前記給電装置が備えている複数の半導体レーザーから1つを選択して作動させる処理を実行する制御部を備えた光ファイバー給電システム。
  6.  前記給電装置を含む第1のデータ通信装置と、前記受電装置を含み前記第1のデータ通信装置と光通信する第2のデータ通信装置と、を備え、
     前記制御部は、前記第1のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるように切り替える処理を実行する給電側制御部と、前記第2のデータ通信装置に含まれ、前記給電装置が備えている複数の半導体レーザーのいずれか1つを作動させるための選択情報を光通信にて前記給電側制御部に通知する処理を実行する受電側制御部と、を有する請求項5に記載の光ファイバー給電システム。
  7.  前記給電側制御部は、前記給電装置が備えている複数の半導体レーザーを順次1つずつ作動させるとともに、作動させている半導体レーザーを特定させるための情報を光通信にて前記受電側制御部に通知する処理を実行し、
     前記受電側制御部は、前記複数の半導体レーザーのそれぞれと前記受電装置の光電変換素子の組み合わせに対応する電力データを一時的に蓄積する処理と、蓄積された電力データから所定の基準を満たす電力データを選択する処理と、選択された電力データに対応する半導体レーザーを作動させるために前記選択情報を光通信にて前記給電側制御部に通知する処理を実行する請求項6に記載の光ファイバー給電システム。
  8.  前記複数の半導体レーザーの少なくとも1つ及び前記光電変換素子の光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項5から請求項7のうちいずれか一に記載の光ファイバー給電システム。
  9.  電力によりレーザー発振して給電光を出力する半導体レーザーを含む給電装置と、前記給電装置による給電光を電力に変換する光電変換素子を含む受電装置と、前記給電装置から前記受電装置に前記給電光を伝送する光ファイバーケーブルを備えた光ファイバー給電システムであって、
     前記給電装置は、所定の波長の給電光を出力する半導体レーザーを備えており、
     前記受電装置は、それぞれ異なる光電変換効率を有する複数の光電変換素子を備えており、
     当該光ファイバー給電システムにおいて所定の給電を行うために、前記受電装置が備えている複数の光電変換素子から1つを選択して作動させる処理を実行する制御部を備えた光ファイバー給電システム。
  10.  前記給電装置を含む第1のデータ通信装置と、前記受電装置を含み前記第1のデータ通信装置と光通信する第2のデータ通信装置と、を備え、
     前記制御部は、前記第2のデータ通信装置に含まれ、前記受電装置が備えている複数の光電変換素子のいずれか1つを作動させるように切り替える処理を実行する受電側制御部を有する請求項9に記載の光ファイバー給電システム。
  11.  前記受電側制御部は、前記受電装置が備えている複数の光電変換素子を順次1つずつ作動させるとともに、前記給電装置の半導体レーザーと前記複数の光電変換素子のそれぞれの組み合わせに対応する電力データを一時的に蓄積する処理と、蓄積された電力データから所定の基準を満たす電力データを選択する処理と、選択された電力データに対応する光電変換素子を作動させるように切り替える処理を実行する請求項10に記載の光ファイバー給電システム。
  12.  前記半導体レーザー及び前記複数の光電変換素子の少なくとも1つの光‐電気間の変換効果を奏する半導体領域を構成する半導体材料が、レーザー波長500nm以下のレーザー媒体とされた請求項9から請求項11のうちいずれか一に記載の光ファイバー給電システム。
PCT/JP2020/020045 2019-08-02 2020-05-21 光ファイバー給電システム WO2021024574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/271,599 US11362740B2 (en) 2019-08-02 2020-05-21 Power over fiber system
CN202080004687.XA CN112602274B (zh) 2019-08-02 2020-05-21 光纤供电系统
EP20850387.0A EP3829086B1 (en) 2019-08-02 2020-05-21 Optical fiber power feeding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-142678 2019-08-02
JP2019142678A JP6814258B1 (ja) 2019-08-02 2019-08-02 光ファイバー給電システム

Publications (1)

Publication Number Publication Date
WO2021024574A1 true WO2021024574A1 (ja) 2021-02-11

Family

ID=74096370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020045 WO2021024574A1 (ja) 2019-08-02 2020-05-21 光ファイバー給電システム

Country Status (5)

Country Link
US (1) US11362740B2 (ja)
EP (1) EP3829086B1 (ja)
JP (1) JP6814258B1 (ja)
CN (1) CN112602274B (ja)
WO (1) WO2021024574A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135989A (ja) 2008-12-03 2010-06-17 Mitsubishi Electric Corp 光ファイバ、光通信装置、及び光通信方法
US7941022B1 (en) * 2008-05-06 2011-05-10 Hrl Laboratories, Llc Single fiber optical links for simultaneous data and power transmission
WO2011158283A1 (ja) * 2010-06-14 2011-12-22 富士通テレコムネットワークス株式会社 光伝送システム
JP2013541234A (ja) * 2010-05-11 2013-11-07 シーレイト リミテッド ライアビリティー カンパニー 複数の光パワーフォームを有する光パワー伝送システムおよび方法
JP2016225817A (ja) * 2015-05-29 2016-12-28 三菱電機株式会社 光マイクロ波伝送装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141468A (en) * 1999-02-16 2000-10-31 Tyco Submarine Systems Ltd. Method of apparatus for remotely pumping a rare-earth doped optical fiber amplifier and a communication system employing same
FI115264B (fi) * 2003-04-17 2005-03-31 Ailocom Oy Langaton tehonsiirto
CN101719670A (zh) * 2009-12-02 2010-06-02 中国科学院半导体研究所 激光长距离输电装置
US20110278479A1 (en) * 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Optical power transmission system and method having counter-propagating control signal
CN102324698A (zh) * 2011-09-22 2012-01-18 西安炬光科技有限公司 一种多波长高功率半导体激光器光源系统
US8743922B2 (en) * 2011-10-21 2014-06-03 Sharp Kabushiki Kaisha Ultraviolet laser
CN104601272B (zh) * 2014-12-18 2017-04-19 武汉邮电科学研究院 基于cwdm的地下管线检测节点光纤供能方法及装置
CN104980227B (zh) * 2015-04-30 2017-07-07 武汉邮电科学研究院 基于cwdm的地下管线多检测节点光纤供能方法和装置
EP3364570B1 (en) * 2015-11-26 2020-04-15 Nippon Telegraph and Telephone Corporation Node and optical power supply system
CN105978445B (zh) * 2016-06-20 2017-12-15 江苏中天科技股份有限公司 一种基于多结聚光光伏电池的光纤供能系统及其供能方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941022B1 (en) * 2008-05-06 2011-05-10 Hrl Laboratories, Llc Single fiber optical links for simultaneous data and power transmission
JP2010135989A (ja) 2008-12-03 2010-06-17 Mitsubishi Electric Corp 光ファイバ、光通信装置、及び光通信方法
JP2013541234A (ja) * 2010-05-11 2013-11-07 シーレイト リミテッド ライアビリティー カンパニー 複数の光パワーフォームを有する光パワー伝送システムおよび方法
WO2011158283A1 (ja) * 2010-06-14 2011-12-22 富士通テレコムネットワークス株式会社 光伝送システム
JP2016225817A (ja) * 2015-05-29 2016-12-28 三菱電機株式会社 光マイクロ波伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829086A4

Also Published As

Publication number Publication date
EP3829086A1 (en) 2021-06-02
EP3829086B1 (en) 2024-02-21
US11362740B2 (en) 2022-06-14
US20210359759A1 (en) 2021-11-18
JP6814258B1 (ja) 2021-01-13
JP2021027439A (ja) 2021-02-22
CN112602274A (zh) 2021-04-02
CN112602274B (zh) 2022-05-03
EP3829086A4 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2021014734A1 (ja) 光ファイバー給電システム
JP2023153145A (ja) データ通信装置及び光給電システム
JP2021019444A (ja) 光給電システム
WO2021024574A1 (ja) 光ファイバー給電システム
WO2021014841A1 (ja) 光給電システム
WO2021014727A1 (ja) 光ファイバー給電システム
WO2021186828A1 (ja) 光給電システムの受電装置及び光給電システム
JP7436160B2 (ja) 光給電システム
JP6890635B2 (ja) 光給電システム
JP7308682B2 (ja) 光給電システム
WO2021075088A1 (ja) 光ファイバー給電システム
WO2021019997A1 (ja) 光ファイバー給電システム
WO2021019995A1 (ja) 光ファイバー給電システム
WO2021024689A1 (ja) 光ファイバー給電システム及び光ファイバーケーブル
JP6898411B2 (ja) 光伝送システム
JP6889226B2 (ja) 光給電システムの受電装置及び給電装置並びに光給電システム
WO2021075087A1 (ja) 光ファイバー給電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20850387.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020850387

Country of ref document: EP

Effective date: 20210226

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE