WO2021024531A1 - 生化学分析装置及び生化学分析方法 - Google Patents
生化学分析装置及び生化学分析方法 Download PDFInfo
- Publication number
- WO2021024531A1 WO2021024531A1 PCT/JP2020/009037 JP2020009037W WO2021024531A1 WO 2021024531 A1 WO2021024531 A1 WO 2021024531A1 JP 2020009037 W JP2020009037 W JP 2020009037W WO 2021024531 A1 WO2021024531 A1 WO 2021024531A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- measurement
- light
- colorimetric
- determined
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- the present invention relates to a biochemical analyzer and a biochemical analysis method.
- a sample such as blood component (serum or plasma) or urine is dispensed and irradiated with light.
- Biochemical analysis is known in which the coagulation function and fibrinolytic function of a sample are analyzed by measuring light or transmitted light.
- the coagulation time method and the colorimetric method are known as such biochemical analysis methods.
- the coagulation time method is a method of irradiating a cuvette into which a sample and a reagent are injected with light, calculating the coagulation time of the sample from the process of changing the intensity of scattered light, and analyzing the coagulation function from the coagulation time.
- a cuvette in which a sample and a reagent are injected is irradiated with light of a specific wavelength, the absorbance is measured from the intensity of transmitted light, and the absorbance is calculated from the absorbance after a predetermined time or the amount of change in the absorbance within a predetermined time.
- This is a method for analyzing the fibrinolytic function of a sample based on the concentration and activity value.
- the colorimetric method is sometimes called an absorptiometric method.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-520942 describes that the colorimetric method is used for the measurement of an analysis (specimen).
- a light source a detector that detects transmitted light transmitted through the cell, an amplifier that amplifies the signal from the detector, and an A / D (analog / digital) that converts the amplified signal into a digital signal.
- a data processing / control subsystem including a converter, a processor that performs data processing, and a reference detector is described.
- the reference detector measures a signal proportional to the power of the light source incident on the cell. By using such a reference detector, it is possible to compensate for the fluctuation of the light source and positively adjust the power of the light source (see Patent Document 1).
- the amount of transmitted light detected at the measurement port in which the cuvette in which the sample and the reagent are injected is set, and the amount of reference light detected at the reference port by the reference detector as described above.
- a ratio may be calculated and the ratio may be used as a measurement result (absorbance).
- a blank measurement is performed in which the cuvette is not placed in the measurement port before the start of the analytical measurement, and an abnormality is found in the measurement system based on the above light amount ratio at the time of the blank measurement. It is possible to check if it has occurred. However, this alone cannot identify the abnormal part of the measurement system.
- the present invention has been made to solve such a problem, and an object of the present invention is to provide a biochemical analyzer and a biochemical analysis method capable of identifying an abnormal part of a measurement system.
- the biochemical analyzer of the present disclosure is a biochemical analyzer that performs biochemical analysis of a sample by reacting a sample and a reagent in a reaction vessel, and controls a plurality of measurement ports, reference ports, and controls. It is equipped with a device. A plurality of reaction vessels are arranged in each of the plurality of measurement ports at the time of analytical measurement. At each measurement port, the amount of transmitted light transmitted through the reaction vessel is measured. At the reference port, the amount of light corresponding to the irradiation light applied to the reaction vessel is measured. The control device is configured to analyze the sample in the reaction vessel based on the ratio of the amount of light measured at the measurement port where the reaction vessel is located to the amount of light measured at the reference port.
- the control device For each measurement port, the control device performs a blank measurement for obtaining the light amount ratio, which is the ratio of the light amount measured at the measurement port to the light amount measured at the reference port, with the reaction vessel not arranged. Execute. Then, in the blank measurement, when the light amount ratio is out of the predetermined range, the control device determines that the measurement port is an error. The control device determines that the measurement port determined to be an error is abnormal when the number of errors indicating the number of measurement ports determined to be an error is smaller than the predetermined value, and when the number of errors is equal to or greater than the predetermined value. , The reference port is configured to be judged as abnormal.
- the biochemical analysis method of the present disclosure is a biochemical analysis method for performing biochemical analysis of a sample by reacting a sample and a reagent in a reaction vessel.
- the device for performing biochemical analysis includes a plurality of measurement ports and reference ports. A plurality of reaction vessels are arranged in each of the plurality of measurement ports at the time of analytical measurement. At each measurement port, the amount of transmitted light transmitted through the reaction vessel is measured. At the reference port, the amount of light corresponding to the irradiation light applied to the reaction vessel is measured. Then, the biochemical analysis method includes a step of analyzing a sample in the reaction vessel based on the ratio of the amount of light measured at the measurement port in which the reaction vessel is arranged and the amount of light measured at the reference port.
- the step of determining an error for the measurement port and the number of errors indicating the number of measurement ports determined to be an error are smaller than the predetermined value.
- the step of determining the measurement port determined to be an error as abnormal, and the step of determining the reference port as abnormal when the number of errors is equal to or greater than a predetermined value are included.
- the number of errors of the measurement port determined to be an error is smaller than the predetermined value, it is regarded as an error limited to the measurement port, and an error is regarded as an error. It is determined that the determined measurement port is abnormal.
- the number of errors is equal to or greater than a predetermined value, it is determined that the error is not limited to the measurement port and that the reference port is abnormal, which is common to the measurement at each measurement port. Therefore, according to this biochemical analyzer and the biochemical analysis method, it is possible to identify an abnormal part of the measurement system (whether it is an abnormality of the measurement port or an abnormality of the reference port).
- FIG. 2 It is a figure which shows an example of the hardware composition of the control device shown in FIG. It is a flowchart which shows an example of the procedure of abnormality determination processing of a colorimetric port and a reference port. It is a flowchart which shows an example of the procedure of the blank measurement processing executed in step S10 of FIG. It is a flowchart which shows an example of the procedure of the abnormality determination processing of a colorimetric port and a reference port in Embodiment 2.
- the biochemical analyzer of the present disclosure (hereinafter, simply referred to as “analyzer”) is configured to dispense a sample and a reagent into a cuvette by a probe (nozzle) and optically measure the reaction state in the cuvette. Will be done.
- the sample is, for example, a blood component (serum or plasma), urine, or the like.
- the sample may be referred to as a “sample” or a “sample”.
- a disposable type cuvette (disposable cuvette) is adopted as the cuvette.
- FIG. 1 is a diagram functionally showing the overall configuration of the analyzer according to the first embodiment of the present invention.
- the analyzer described in the first embodiment is an example of a biochemical analyzer and can function as an automatic blood coagulation (fibrinolysis) analyzer.
- this analyzer includes a cuvette supply device 110, a cuvette transfer device 120, a stirrer 200, a measuring device 300, and a cuvette disposal container 400.
- the cuvette supply device 110, the cuvette transfer device 120, and the cuvette disposal container 400 are simply referred to as “supply device 110", “transfer device 120”, and “disposal container 400", respectively.
- the analyzer further includes a sample dispensing port P1.
- the supply device 110 includes a cuvette accommodating portion 111 (hereinafter, simply referred to as “accommodating portion 111”) and a supply mechanism 112.
- the accommodating section 111 is configured to accommodate a large number of cuvettes (for example, a maximum of 1000).
- the supply mechanism 112 supplies the cuvette housed in the housing unit 111 to the sample dispensing port P1. Details of the accommodating portion 111 and the supply mechanism 112 will be described later with reference to FIG.
- the sample dispensing port P1 is arranged at a position where the sample can be dispensed into the cuvette by a sample dispensing device (not shown).
- a sample dispensing device not shown.
- the transfer device 120 includes an arm 121 with a chuck (hereinafter, simply referred to as “arm 121”) and a drive device 122.
- the arm 121 has a chuck configured to grip the cuvette.
- the arm 121 is configured to hold the cuvette detachably by a chuck.
- the drive device 122 is configured to operate the arm 121 (chuck) to change the position of the chuck. Details of the arm 121 and the driving device 122 will also be described later with reference to FIG.
- the analyzer further includes a plurality of ports capable of transferring the cuvette by the transfer device 120, specifically, a stirring port P2, a photometric port P3, and a disposal port P5.
- the photometric port P3 includes a plurality of coagulation ports P3a and a plurality of colorimetric ports P3b.
- Each of the sample dispensing port P1, the stirring port P2, the photometric port P3, and the disposal port P5 is provided with a port sensor for detecting the presence or absence of a cuvette.
- the stirring port P2 is arranged at the stirring position of the stirring device 200.
- the stirring device 200 is configured to stir the contents of the cuvette under predetermined conditions (for example, stirring speed and stirring time) when the cuvette is set in the stirring port P2.
- Each of the coagulation port P3a and the colorimetric port P3b is arranged in a photometric unit (not shown).
- Each of the coagulation port P3a and the colorimetric port P3b is provided with a photodetector (not shown) that is irradiated with light from a light source and detects the irradiated light.
- the measuring device 300 receives the detection result of the amount of light from each of the photodetectors of the coagulation port P3a and the colorimetric port P3b, and performs a predetermined measurement on the contents of the cuvette set in each port. That is, for the coagulation port P3a, the measuring device 300 uses the amount of scattered light detected by the photodetector to perform coagulation measurement of the sample in the cuvette based on the time coagulation method. Further, the measuring device 300 measures the absorbance of the sample in the cuvette based on the colorimetric method by using the amount of transmitted light detected by the photodetector for the colorimetric port P3b.
- a light emitting diode can be adopted as the light source for the coagulation port P3a, and a photodiode can be adopted as the photodetector provided in the coagulation port P3a, for example.
- the photodetector of the coagulation port P3a is arranged so as to detect the amount of light of 90 ° scattered light (scattered light in a direction orthogonal to the light irradiation direction).
- the light source for the colorimetric port P3b for example, a halogen lamp can be adopted.
- the wavelength of the light supplied to the colorimetric port P3b can be switched by a filter according to the analysis conditions.
- a photodiode can be adopted as the photodetector provided in the colorimetric port P3b.
- the photodetector of the colorimetric port P3b is arranged so as to detect the amount of transmitted light.
- This analyzer further comprises a reference port P4 for measuring the absorbance of the sample in the cuvette set in the colorimetric port P3b.
- the reference port P4 has the same configuration as each colorimetric port P3b, but the cuvette is not set, and light other than the light from the light source is shielded by a lid or the like so as not to enter the reference port P4. Has been done. Then, based on the colorimetric method, the light amount detected by the photodetector provided in the colorimetric port P3b and the light amount detected by the photodetector provided in the reference port P4 are used to obtain the sample. Absorbance is measured and colorimetric analysis of the sample is performed. The analytical measurement by the colorimetric method will be described in detail later.
- analytical measurement means that a cuvette is set in the photometric port P3 to acquire measurement data, and the cuvette is not inserted in the photometric port P3 (colorimetric port P3b). It is distinguished from the "blank measurement” described later.
- the disposal port P5 is configured to collect used cuvettes.
- the disposal port P5 is connected to the disposal container 400 through, for example, a pipe. When the cuvette is put into the disposal port P5, the cuvette is guided to the disposal container 400.
- FIG. 2 is a plan view showing a configuration example of an analysis table of the analyzer.
- FIG. 2 shows three axes (X-axis, Y-axis and Z-axis) that are orthogonal to each other.
- the X-axis and the Y-axis indicate the width direction and the depth direction of the analyzer, respectively, and the Z-axis is It shows the vertical direction (that is, the vertical direction).
- the direction indicated by the Z-axis arrow is upward, and the opposite direction is downward (that is, the direction of gravity).
- a large number of cuvettes 100 are accommodated in the accommodating portion 111.
- the user can replenish the cuvette 100 into the accommodating portion 111 from the inlet (not shown) of the accommodating portion 111.
- the material of the cuvette 100 is arbitrary as long as it can transmit light, and for example, a transparent acrylic cuvette can be adopted.
- the supply mechanism 112 is configured to take out the cuvettes 100 one by one from the accommodating portion 111 and supply them to the sample dispensing port P1.
- the transfer method of the cuvette 100 in the supply mechanism 112 is arbitrary, and may be, for example, any of a slide method (self-weight method), a belt conveyor method, a roller method, and a slide method.
- the supply mechanism 112 is configured to receive the detection result of the port sensor of the sample dispensing port P1 and supply the next cuvette 100 to the port P1 when the sample dispensing port P1 becomes available.
- the present invention is not limited to this, and the supply mechanism 112 may be configured to supply the cuvette 100 to the sample dispensing port P1 according to the instruction from the control device described later.
- the arm 21 is a device (sample dispensing device) for dispensing the sample sucked from the sample suction port P21 to the cuvette 100 set in the sample dispensing port P1, and includes the probe 21a and the arm body 21b. including.
- the arm body 21b is configured to be rotatable around the rotation shaft 23a, and when the arm body 21b rotates, the probe 21a provided at the tip of the arm body 21b draws an arc-shaped trajectory L2 in the XY plane. Can be moved like this.
- the probe 21a becomes a sample dispensing port P1, a sample suction port P21, an S port P22 (more specifically, ports P22a to P22i), and a cleaning port provided on the track L2. You can move to each of P23.
- S port P22 for example, ports P22a and P22b are detergent ports, ports P22c, P22d and P22e are buffer solutions, and ports P22f, P22g, P22h and P22i are diluent ports.
- a movable sample rack is provided below the sample suction port P21.
- a plurality of sample containers containing samples such as blood components and urine are placed in the sample rack.
- the sample rack Prior to dispensing the sample into the cuvette 100 set in the sample dispensing port P1, the sample rack is used. It operates so that the sample container to be dispensed is arranged directly under the sample suction port P21.
- the CTS mechanism 24 is provided in the vicinity of the sample suction port P21, and is configured to pierce the cap with a piercer when the sample container to be dispensed has a cap.
- a plurality of photometric ports P3 (a plurality of solidification ports P3a and a colorimetric port P3b) are arranged in an arc shape in the photometric unit 130.
- 14 coagulation ports P3a and 6 colorimetric ports P3b are arranged.
- the arm 11 is a device for dispensing the reagent sucked from the suction port P11 to the target cuvette 100 set in the photometric port P3, and includes the probe 11a and the arm body 11b.
- the arm body 11b is configured to be rotatable around the rotation shaft 13a, and when the arm body 11b rotates, the probe 11a provided at the tip of the arm body 11b draws an arc-shaped trajectory L1 in the XY plane. Can be moved like this.
- the probe 11a By turning the arm body 11b, the probe 11a can move to each of the solidification port P3a, the colorimetric port P3b, the suction ports P11, P12, and the recovery port P13 provided on the track L1.
- the probe 11a is actually composed of two probes in order to avoid contamination between reagents, and the reagent tray 31a (described later) includes an outer peripheral tray and an inner peripheral tray.
- the reagent (or cleaning solution) on the outer peripheral tray and the reagent (or cleaning solution) on the inner peripheral tray can be sucked from the suction ports P11 and P12 with two probes, respectively.
- the recovery port P13 is a port for collecting used cleaning liquid, and although not shown in particular, a water sump portion for collecting water discharged from the probe 11a to clean the outer surface of the probe tip and disposal for discarding the liquid. Including part.
- the reference port P4 is provided at a location different from the photometric port P3 (photometric unit 130). As described above, the reference port P4 has the same configuration as each colorimetric port P3b, but since it is not necessary to set the cuvette 100, it is arranged inside the analyzer, for example, instead of on the analysis table.
- a reagent tray 31a on which a plurality of reagent containers 1 and a plurality of detergent containers 1a are placed is provided, and the reagent tray 31a is provided in the reagent cold storage 31. ..
- the plurality of reagent containers 1 have different reagents, and the plurality of detergent containers 1a have different detergents.
- the reagent tray 31a is composed of a disk-shaped turntable, and by driving the turntable, the desired reagent container 1 or detergent container 1a can be arranged directly under the suction ports P11 and P12.
- the arm 121 includes a chuck 121a and an arm body 121b.
- the chuck 121a is configured to be able to grip the cuvette 100.
- the method in which the chuck 121a holds the cuvette 100 is arbitrary, and the chuck 121a may be a mechanical chuck, a magnet chuck, or a vacuum chuck.
- the arm body 121b is configured to be rotatable around the rotating shaft 13a together with the rotating body 122a. When the rotating body 122a rotates, the arm body 121b rotates integrally with the rotating body 122a, and the chuck 121a provided at the tip of the arm body 121b moves so as to draw an arc-shaped trajectory L1 on the XY plane. Can be done.
- the turning centers of the arm 11 and the arm 121 are the same.
- a sample dispensing port P1, a stirring port P2, a disposal port P5, a plurality of photometric ports P3 (a plurality of coagulation ports P3a and a plurality of colorimetric ports P3b), and suction ports P11 and P12 are provided on the orbit L1.
- a collection port P13 is provided on the orbit L1.
- the arm 121 can move the chuck 121a to the sample dispensing port P1, the stirring port P2, each photometric port P3, and the disposal port P5, and the arm 11 has the suction ports P11, P12, the recovery port P13, and the stirring.
- the probe 11a can be moved to the port P2 and each metering port P3.
- FIG. 3 is a diagram showing a configuration example of the photometric unit 130.
- a plurality of solidification ports P3a and colorimetric ports P3b are arranged in an arc shape in the photometric unit 130. More specifically, the plurality of solidification ports P3a and the colorimetric port P3b are arranged so that the cuvette insertion ports of the respective ports follow the arc-shaped trajectory L1. In this example, 14 coagulation ports P3a and 6 colorimetric ports P3b are arranged.
- the number and arrangement order of the solidification port P3a and the colorimetric port P3b are not limited to those shown in the drawings.
- the reference port P4 (not shown) is not arranged in the photometric unit 130 provided with the solidification port P3a and the colorimetric port P3b, but is arranged inside the analyzer, for example.
- FIG. 4 is a plan view showing a configuration example of the colorimetric port P3b and the reference port P4. Further, FIG. 5 is a cross-sectional view showing the configuration of the cross section VV of FIG. Since the configuration of the reference port P4 is the same as the configuration of the colorimetric port P3b, the colorimetric port P3b will be typically described below.
- the colorimetric port P3b includes a lens holder 310, an optical fiber cable 312, a cuvette insertion slot 314, and a photodetector 316.
- the lens holder 310 has a lens at the tip and is inserted into the insertion port of the colorimetric port P3b.
- the lens holder 310 outputs light received from a light source (not shown) through the optical fiber cable 312 toward the cuvette insertion slot 314 through the lens.
- the cuvette insertion port 314 is configured so that the cuvette 100 transferred by the transfer device 120 (arm 121) can be attached and detached.
- the insertion of the cuvette 100 is detected by a port sensor (not shown).
- the photodetector 316 is provided on the opposite side of the lens holder 310 with the cuvette insertion slot 314 in between.
- the photodetector 316 detects the amount of transmitted light transmitted through the cuvette 100 by being irradiated from the lens holder 310 to the cuvette 100 when the sample in the cuvette 100 inserted into the cuvette insertion port 314 is measured.
- the photodetector 316 directly detects the amount of light output from the lens holder 310.
- the photodetector 316 is composed of, for example, a photodiode. Then, the photodetector 316 outputs a detection signal to the substrate 320 through the connection cable 318.
- the cuvette insertion slot 314 is provided with a light-shielding lid so that light does not enter the cuvette insertion slot 314 from the outside, and the photodetector 316 is output from the lens holder 310. The amount of light is always directly detected.
- FIG. 6 is a diagram showing a configuration example of the optical system of the colorimetric port P3b and the reference port P4.
- light from a common light source 330 is supplied to each of the lens holders 310 mounted on the plurality of (six in this example) colorimetric ports P3b and reference port P4.
- the light source 330 is, for example, a halogen lamp.
- the light output from the light source 330 is supplied to one optical fiber cable 334 through the filter device 332.
- the filter device 332 is provided near the output of the light source 330 and has an optical filter that allows light of a specific wavelength to pass through.
- the filter device 332 has a plurality of optical filters, and is configured to be able to switch the wavelength of light to be passed by switching the optical filters.
- FIG. 7 is a plan view showing a configuration example of the filter device 332.
- the filter device 332 is configured by a circular drum provided with a plurality of openings in the circumferential direction.
- four openings are provided at equal intervals in the circumferential direction, and optical filters 340a to 340c having different wavelengths to be passed are mounted on the three openings.
- the optical filters 340a to 340c are composed of, for example, interference filters, and transmit light having wavelengths of 405 nm, 570 nm, and 730 nm, respectively.
- this analyzer is configured to be able to switch the wavelength of the light irradiated to the sample (cuvette), and the light of a specific wavelength according to the sample and the inspection item can be used for the colorimetric analysis. ..
- the light from the light source 330 is supplied to one optical fiber cable 334 through the optical filter of the filter device 332.
- the fiber optic cable 334 is branched into seven fiber optic cables 312, of which six fiber optic cables 312 are connected to six colorimetric ports P3b and the remaining one fiber optic cable 312 is connected to reference port P4. To.
- FIG. 8 is a block diagram functionally showing the configuration of the measurement system using the colorimetric method.
- the light output from the light source 330 is supplied to each colorimetric port P3b and reference port P4 through a filter 340 (any of the optical filters 340a to 340c).
- each colorimetric port P3b (output of the photodetector 316) is amplified by the amplifier 350 and input to the port selection unit 352.
- the port selection unit 352 is configured to output any one of the outputs (output of the amplifier 350) from the six colorimetric ports P3b from the output port connected to the LOG conversion unit 354. Which of the six colorimetric ports P3b is output to the LOG conversion unit 354 is appropriately switched according to the analysis schedule of the colorimetric analysis using the six colorimetric ports P3b.
- the output of the reference port P4 (the output of the photodetector 316) is amplified by the amplifier 350 and input to the LOG conversion unit 354.
- the LOG conversion unit 354 is composed of, for example, a LOG amplifier, and outputs a logarithmic value obtained by dividing the output from the port selection unit 352 by the output from the reference port P4 (the output of the amplifier 350). That is, the LOG conversion unit 354 calculates the ratio of the light amount measured at the colorimetric port P3b to the light amount measured at the reference port P4, and outputs the light amount ratio as a logarithm. Then, the output from the LOG conversion unit 354 is converted into a digital signal by the AD converter 356 and output to the output unit 358 as measurement data.
- the amount of transmitted light detected by the colorimetric port P3b in which the cuvette 100 is set and the reference port P4 The ratio of the reference light detected in is calculated, and the light amount ratio is used as the measurement result (absorbance).
- a blank measurement is performed in which the cuvette 100 is not arranged in each colorimetric port P3b before the start of the analytical measurement.
- the light amount ratio at the time of blank measurement is theoretically 1 if it is normal, and it is possible to check whether or not an abnormality has occurred in the measurement system based on the above light amount ratio at the time of blank measurement.
- the analyzer according to the first embodiment, it is possible to identify the abnormal part of the measurement system (whether the colorimetric port P3b is abnormal or the reference port P4 is abnormal).
- a light source and a photodetector are provided for each solidification port P3a for the solidification port P3a. Then, the detection signal corresponding to the amount of 90 ° scattered light detected by the photodetector is amplified by the amplifier, converted into a digital signal by the AD converter, and acquired as a measurement signal.
- FIG. 9 is a block diagram showing an example of the system configuration of the analyzer according to the first embodiment.
- the analyzer includes a photometric unit 130, a robot unit 150, a measuring device 300, a control device 500, and an operation display unit 520.
- the photometric unit 130 includes a plurality of coagulation ports P3a, a plurality of colorimetric ports P3b, and a reference port P4. Further, the photometric unit 130 further includes a light source 330 shown in FIG. 8, a filter 340 (filter device 332), an amplifier 350, and a port selection unit 352. The amplifier 350 and the port selection unit 352 may be provided in the measuring device 300.
- the robot unit 150 includes arms 11, 21, 121, a cuvette supply device 110, a CTS mechanism 24, a reagent cold storage 31, a reagent tray 31a (see FIG. 2 above), a sample rack, a filter device 332 (see FIGS. 6 and 7), and the like. It is a comprehensive view of the movable devices of.
- the robot unit 150 is a sample handling by the arm 21, a sample rack and the CTS mechanism 24, a reagent handling by the arm 11 and the reagent cold storage 31 and the reagent tray 31a, a transfer handling of the cuvette 100 by the supply device 110 and the arm 121, and a filter device. Drive 332 and the like.
- the robot unit 150 is fully automatically controlled by the transfer control unit 376 of the measuring device 300.
- the measuring device 300 includes a photometric control unit 370, a data collection unit 372, an AD conversion unit 374, and a transfer control unit 376.
- the metering control unit 370 controls the overall metering in the metering unit 130 according to the instruction from the data collecting unit 372.
- the photometric control unit 370 drives the filter device 332 to appropriately switch the optical filters 340a to 340c, and controls the port selection unit 352 so that the output from the colorimetric port P3b to be measured is selected.
- the data collection unit 372 determines the wavelength of the light supplied to the colorimetric port P3b and the colorimetric port P3b for acquiring the measurement data according to the data collection instruction from the control device 500, and gives the instruction for that to the photometric control unit 370. Output to. Then, the data collection unit 372 acquires the measurement data of the light amount ratio from the AD conversion unit 374, and outputs the collected data to the control device 500.
- the data collection unit 372 determines the coagulation port P3a to acquire the measurement data according to the data collection instruction from the control device 500, and performs the measurement at the coagulation port P3a.
- the instruction to perform is output to the metering control unit 370.
- the data collection unit 372 acquires the measurement data (light amount) of the scattered light detected at the coagulation port P3a from the AD conversion unit 374, and outputs the collected data to the control device 500.
- the AD conversion unit 374 includes a LOG conversion unit 354 and an AD converter 356 shown in FIG. Further, the AD conversion unit 374 converts the detection signal from the photodetector of each coagulation port P3a into a digital signal and outputs it to the data collection unit 372 as a measurement signal by the time coagulation method.
- the transfer control unit 376 generates commands for controlling various operations of the robot unit 150 according to an instruction from the data processing unit 510 of the control device 500, and controls various operations of the robot unit 150.
- the control device 500 includes a data processing unit 510 and a storage unit 512.
- the data processing unit 510 generates various instructions for performing measurement according to the measurement instructions from the operation display unit 520 by the user, and outputs the generated various instructions to the data collecting unit 372 and the transfer control unit 376 of the measuring device 300. To do. Further, the data processing unit 510 executes various data processing for performing the analysis by the colorimetric method based on various measurement data received from the data collecting unit 372 of the measuring device 300, and also performs the analysis by the solidification analysis method. Perform various data processing for.
- the data processing unit 510 generates a command for executing the blank measurement in the measurement using the colorimetric port P3b, and outputs the generated command to the measuring device 300. Then, the data processing unit 510 receives the result of the blank measurement from the measuring device 300, and when an abnormality is found in the result of the blank measurement, it is an abnormality of the colorimetric port P3b or an abnormality of the reference port P4. Is determined.
- the specific processing content will be described in detail later.
- the storage unit 512 stores control programs for executing various processes by the control device 500, various information (data), and the like, and stores various control programs and information (data) in accordance with a request from the data processing unit 510. Output to the data processing unit 510.
- FIG. 10 is a diagram showing an example of the hardware configuration of the control device 500 shown in FIG.
- the control device 500 includes a CPU (Central Processing Unit) 530, a RAM (Random Access Memory) 532, a storage device 534, and an input / output buffer for inputting / outputting various signals (not shown). ) And is included.
- a CPU Central Processing Unit
- RAM Random Access Memory
- the CPU 530 expands the control program stored in the storage device 534 into the RAM 532 and executes it.
- This control program is a program in which procedures for various processes executed by the control device 500 are described.
- the storage device 534 also stores various information and data used for various processes.
- the control device 500 executes various processes in the analyzer according to these control programs and various information and data.
- the processing is not limited to software, and can be executed by dedicated hardware (electronic circuit).
- reagent information is information on each reagent prepared in the reagent tray 31a (FIG. 2) (for example, reagent ID, reagent type, expiration date, etc.).
- the analysis schedule is determined based on sample information (for example, analysis items of each sample) and availability of each port in order to efficiently analyze all reserved samples.
- the analysis schedule includes, for example, the respective timings of dispensing and measurement, the samples and reagents to be dispensed, and the photometric port P3 (coagulation port P3a and / or colorimetric port P3b) for performing the measurement.
- the analysis schedule is managed for each sample ID (for each sample container).
- the analysis history shows the degree of progress including the progress of the analysis, and is updated sequentially according to the progress of the analysis.
- the analysis history includes, for example, the cuvette movement path (including the current position), the samples and reagents dispensed into the cuvette, the photometric port P3 where the measurement was performed, and the measurement result.
- the analysis history is managed for each cuvette. By referring to the analysis history, each of the control device 500 and the user can confirm whether or not the analysis has been performed (or is proceeding) according to the analysis schedule.
- the determination condition includes a determination value for identifying an abnormal portion when the colorimetric port P3b determined to be an error exists in the blank measurement for the colorimetric port P3b.
- the control device 500 executes a blank measurement for each colorimetric port P3b before executing the analysis measurement, and the colorimetric port P3b whose light amount ratio is out of the predetermined range. Is determined as an error. Then, the control device 500 determines that the colorimetric port P3b determined to be an error is abnormal when the number of errors indicating the number of the colorimetric ports P3b determined to be an error is smaller than a predetermined value. On the other hand, when the number of errors is equal to or greater than a predetermined value, the control device 500 determines that the reference port P4 is abnormal.
- the determination condition includes the above-mentioned predetermined range of the light amount ratio at the time of executing the blank measurement and the above-mentioned predetermined value of the error number indicating the number of the colorimetric ports P3b determined to be an error.
- the above-mentioned predetermined range may be provided for each wavelength of light supplied to each colorimetric port P3b and reference port P4 (that is, for each optical filter selected in the filter device 332). Since the sensitivity of the photodetector can change depending on the wavelength of light, the above-mentioned predetermined range can be set for each wavelength.
- FIG. 11 is a flowchart showing an example of the procedure of abnormality determination processing of the colorimetric port P3b and the reference port P4.
- the series of processes shown in the flowchart is assumed to be executed when the system of the analyzer is started, but it may be executed immediately before the start of the series of analytical measurements or the analytical measurement. It may be executed after the end of.
- the control device 500 first executes a blank measurement process (step S10).
- the blank measurement is a measurement performed with the cuvette 100 not inserted in each colorimetric port P3b, and the amount of light detected in each colorimetric port P3b and the amount of light detected in the reference port P4. This is to check whether the ratio is within a predetermined range.
- FIG. 12 is a flowchart showing an example of the procedure of the blank measurement process executed in step S10 of FIG.
- the control device 500 first sets 1 in the counter i (step S110) and selects the i-th (that is, the first) colorimetric port P3b as the target of the blank measurement (step S120). ).
- the i-th colorimetric port P3b is also simply referred to as “port i”.
- control device 500 sets the counter k to 1 (step S130) and controls the filter device 332 so that the kth (that is, the first) filter (for example, the optical filter 340a) is selected (step S140). ).
- the k-th filter may be simply referred to as "filter k”.
- control device 500 reads a predetermined range of the light amount ratio for the filter k selected in step S140 from the storage device 534 (step S150). That is, in this example, the above predetermined range is provided for each wavelength of light supplied to each colorimetric port P3b and reference port P4 (that is, for each filter selected in the filter device 332).
- control device 500 executes a blank measurement with the filter k selected for the port i, and acquires the light amount ratio at this time (step S160). Then, the control device 500 determines whether or not the light amount ratio acquired in the blank measurement is out of the predetermined range read in step S150 (step S170).
- step S170 When it is determined that the light amount ratio acquired by the blank measurement is out of the predetermined range (YES in step S170), the control device 500 determines the port i as an error (step S180), and together with the error determination, the measurement result (YES). The light amount ratio) is stored (step S190). When the light amount ratio acquired by the blank measurement is within the predetermined range (NO in step S170), the process of step S180 is not executed and the process is transferred to step S190, and the measurement result (light amount ratio) is stored. To.
- control device 500 determines whether the counter k is 3 (step S200).
- This numerical value "3" corresponds to the number of filters (optical filters 340a to 340c) included in the filter device 332 in the first embodiment, and this numerical value is appropriately set according to the number of filters provided.
- step S200 If it is determined in step S200 that the counter k has not reached 3 (NO in step S200), the control device 500 increments the counter k by one (step S210), and returns the process to step S140. That is, for the port i, the processes of steps S140 to S190 are executed for each filter included in the filter device 332.
- step S200 When it is determined in step S200 that the counter k is 3 (YES in step S200), the control device 500 determines whether the counter i is 6 (step S220).
- This numerical value "6" corresponds to the number of colorimetric ports P3b in the first embodiment, and this numerical value is appropriately set according to the number of colorimetric ports P3b provided.
- step S220 If it is determined in step S220 that the counter i has not reached 6 (NO in step S220), the control device 500 increments the counter i by one (step S230), and returns the process to step S120. That is, the processes of steps S120 to S210 are executed for each colorimetric port P3b. Then, when it is determined in step S220 that the counter i is 6 (YES in step S220), the control device 500 shifts the process to the return and ends the blank measurement process.
- step S20 determines whether or not there is a colorimetric port P3b for which an error has been determined. If there is no colorimetric port P3b for which an error is determined (NO in step S20), the control device 500 determines that each colorimetric port P3b and reference port P4 are normal (step S30), transports the cuvette 100, and cuvette. A series of sample measurement processes including dispensing of samples and reagents to 100 and analytical measurement at photometric port P3 is performed (step S40).
- the control device 500 determines whether or not the number of the colorimetric ports P3b for which an error has been determined is equal to or greater than a predetermined value (step).
- This predetermined value can be, for example, "2" indicating that the number of colorimetric ports P3b for which an error has been determined is plural, but is larger than 2 when the number of colorimetric ports P3b is large. It may be a value (eg 3).
- the control device 500 determines that the colorimetric port P3b for which an error is determined in the blank measurement process is abnormal (step S60). ). If the number of colorimetric ports P3b for which an error is determined is smaller than a predetermined value for a plurality of colorimetric ports P3b, it is determined that an abnormality has occurred in the colorimetric port P3b. Then, the control device 500 controls the operation display unit 520 (FIG. 9) so as to notify the colorimetric port P3b determined to be abnormal (step S70).
- control device 500 shifts the process to the end in order to request the confirmation of the user. Instead of shifting the process to the end, the process may be shifted to step S40, and the sample measurement process may be executed by disabling the colorimetric port P3b determined to be abnormal.
- step S50 determines that the number of colorimetric ports P3b for which an error has been determined is equal to or greater than a predetermined value (YES in step S50).
- the control device 500 determines that the reference port P4 is abnormal (step S80). ). Since the amount of light detected in the reference port P4 is used for measuring the amount of light for each colorimetric port P3b, the number of colorimetric ports P3b for which an error is determined is equal to or greater than a predetermined value for a plurality of colorimetric ports P3b. If this is the case, it is determined that an abnormality has occurred in the reference port P4, not in the individual colorimetric port P3b for which the error has been determined.
- control device 500 controls the operation display unit 520 so as to notify the abnormality of the reference port P4 (step S90). After that, the control device 500 shifts the process to the end without executing step S40. If an abnormality occurs in the reference port P4, the measurement results in all the colorimetric ports P3b become abnormal, so that the sample measurement process is not performed. Although the measurement process using the colorimetric port P3b is not possible, the measurement process using the coagulation port P3a may be executed according to the schedule.
- the abnormal part of the measurement system can be specified (whether the colorimetric port P3b is abnormal or the reference port P4 is abnormal).
- a blank measurement is executed for the vacant colorimetric port P3b, and when the colorimetric port P3b for which an error is determined exists, the abnormal portion is identified. ..
- the overall configuration of the analyzer according to the second embodiment is the same as that of the analyzer described in the first embodiment, and the analyzer according to the second embodiment is a procedure for determining an abnormality of the colorimetric port P3b and the reference port P4.
- FIG. 11 is different from the first embodiment.
- FIG. 13 is a flowchart showing an example of the procedure for determining the abnormality of the colorimetric port P3b and the reference port P4 in the second embodiment. The series of processes shown in this flowchart is executed when the system of the analyzer is started.
- the control device 500 first executes a blank measurement process (step S310).
- the procedure of this blank measurement process is as shown in FIG. 12, and the measurement result is stored in the storage device 534.
- the control device 500 starts a series of sample measurements including transfer of the cuvette 100, dispensing of samples and reagents to the cuvette 100, and analytical measurement at the photometric port P3 ( Step S320).
- the sample measurement is unconditionally started after the blank measurement process is executed in step S310.
- step S20 of FIG. 11 described in the first embodiment is described. Subsequent processing may be performed.
- the control device 500 determines whether or not there is a colorimetric port P3b capable of blank measurement (step S330). Since the blank measurement is performed in a state where the cuvette 100 is not attached, the colorimetric port P3b having a vacancy in the analysis schedule can be used as a port capable of blank measurement. In this case, in order to prevent excessive blank measurement, the colorimetric port P3b that has a vacancy in the analysis schedule and the specified time or more has passed since the previous blank measurement is designated as a blank measurement port. You may try to do it.
- step S330 If it is determined in step S330 that there is a colorimetric port P3b capable of blank measurement (YES in step S330), the control device 500 executes blank measurement for the colorimetric port P3b (step S340).
- the control device 500 determines the result (light amount ratio) of the blank measurement executed at the time of system startup (before the start of sample measurement) in step S310 for the colorimetric port P3b on which the blank measurement was executed. (Step S350). Then, in the control device 500, the amount of deviation between the blank measurement result (light amount ratio) executed in step S340 and the blank measurement result (light amount ratio) at system startup acquired in step S350 is from the threshold value. Is also large (step S360).
- This threshold value can be set as appropriate, and can be, for example, ⁇ 10% of the blank measurement result (light intensity ratio) acquired at system startup.
- control device 500 determines the colorimetric port P3b as an error (step S370). ..
- step S360 when the deviation amount of the light amount ratio is equal to or less than the threshold value (NO in step S360), the colorimetric port P3b is determined to be normal, and the process of step S370 is not executed and the process shifts to step S380. Will be done. Further, even when it is determined in step S330 that there is no colorimetric port P3b capable of blank measurement (NO in step S330), the process is shifted to step S380.
- steps S380 to SS430 is the same as the processing of steps S20 and S50 to S90 shown in FIG. 11, respectively. That is, if there is an error-determined colorimetric port P3b (that is, a port having a large deviation in the light amount ratio from the time the system is started), the number of error-determined colorimetric ports P3b is less than a predetermined value. (NO in step S390), if the error-determined colorimetric port P3b is determined to be abnormal (step S400) and the number of error-determined colorimetric ports P3b is equal to or greater than a predetermined value (YES in step S390), refer to. Port P4 is determined to be abnormal (step S420).
- the control device 500 determines whether or not to end a series of sample measurements (step S430). For example, if the number of colorimetric ports P3b determined to be abnormal is less than a predetermined value, the control device 500 continues a series of sample measurements (NO in step S440), and returns the process to step S330. On the other hand, if the number of the colorimetric ports P3b determined to be abnormal is equal to or greater than a predetermined value, the control device 500 shall end the sample measurement (YES in step S440), and shift the process to the end.
- the abnormal part of the measurement system can be specified (whether the colorimetric port P3b is abnormal or the reference port P4 is abnormal).
- the biochemical analyzer is a biochemical analyzer that performs biochemical analysis of a sample by reacting a sample and a reagent in a reaction vessel, and comprises a plurality of measurement ports. It includes a reference port and a control device. A plurality of reaction vessels are arranged in each of the plurality of measurement ports at the time of analytical measurement. At each measurement port, the amount of transmitted light transmitted through the reaction vessel is measured. At the reference port, the amount of light corresponding to the irradiation light applied to the reaction vessel is measured. The control device is configured to analyze the sample in the reaction vessel based on the ratio of the amount of light measured at the measurement port where the reaction vessel is located to the amount of light measured at the reference port.
- the control device For each measurement port, the control device performs a blank measurement for obtaining the light amount ratio, which is the ratio of the light amount measured at the measurement port to the light amount measured at the reference port, with the reaction vessel not arranged. Execute. Then, in the blank measurement, when the light amount ratio is out of the predetermined range, the control device determines that the measurement port is an error. The control device determines that the measurement port determined to be an error is abnormal when the number of errors indicating the number of measurement ports determined to be an error is smaller than the predetermined value, and when the number of errors is equal to or greater than the predetermined value. , The reference port is configured to be judged as abnormal.
- the biochemical analyzer described in paragraph 1 if the number of errors of the measurement port determined to be an error is smaller than a predetermined value, it is determined that the error is limited to the measurement port and is determined to be an error. It is determined that the measurement port is abnormal. On the other hand, when the number of errors is equal to or greater than a predetermined value, it is determined that the error is not limited to the measurement port and that the reference port is abnormal, which is common to the measurement at each measurement port. Therefore, according to this biochemical analyzer, it is possible to identify an abnormal part of the measurement system (whether it is an abnormality of the measurement port or an abnormality of the reference port).
- the biochemical analyzer further includes a common light source that supplies light to each of a plurality of measurement ports and reference ports.
- the biochemical analyzer has a wavelength of light supplied to each of a plurality of measurement ports and reference ports. Is further provided with a filter device configured to switch according to the analysis conditions. The predetermined range is set according to the wavelength selected by the filter device.
- the sensitivity of the photodetector can change depending on the wavelength of the irradiation light, according to the biochemical analyzer of item 4, even if the wavelength of the irradiation light is switched according to the analysis conditions, the accuracy of abnormality determination can be ensured.
- the control device performs a blank measurement on each of a plurality of measurement ports before starting analytical measurement.
- the first process is executed, and after the start of the analytical measurement, the second process of performing a blank measurement on the measurement port in which the reaction vessel is not arranged is executed.
- the difference between the light amount ratio obtained in the first process and the light amount ratio obtained in the second process is larger than the threshold value for the measurement port on which the second process is executed. In addition, it is determined that the measurement port is an error.
- the control device determines that the measurement port determined to be an error is abnormal, and the number of errors is equal to or greater than the predetermined value.
- the reference port is configured to be judged as abnormal.
- the measurement system It is possible to identify the abnormal part (whether the measurement port is abnormal or the reference port is abnormal).
- the biochemical analysis method is a biochemical analysis method in which a sample and a reagent are reacted in a reaction vessel to perform a biochemical analysis of the sample.
- the device for performing biochemical analysis includes a plurality of measurement ports and reference ports. A plurality of reaction vessels are arranged in each of the plurality of measurement ports at the time of analytical measurement. At each measurement port, the amount of transmitted light transmitted through the reaction vessel is measured. At the reference port, the amount of light corresponding to the irradiation light applied to the reaction vessel is measured.
- the biochemical analysis method includes a step of analyzing a sample in the reaction vessel based on the ratio of the amount of light measured at the measurement port in which the reaction vessel is arranged and the amount of light measured at the reference port. , For each of the plurality of measurement ports, a blank measurement for obtaining the light amount ratio, which is the ratio of the light amount measured at the measurement port to the light amount measured at the reference port, with the reaction vessel not arranged.
- the step of determining an error for the measurement port when the light amount ratio is out of the predetermined range in the blank measurement, and the number of errors indicating the number of measurement ports determined to be an error are greater than the predetermined value.
- it includes a step of determining a measurement port determined to be an error and a step of determining a reference port to be abnormal when the number of errors is a predetermined value or more.
- biochemical analysis method of paragraph 6 it is possible to identify an abnormal part of the measurement system (whether it is an abnormality of the measurement port or an abnormality of the reference port).
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
制御装置(500)は、各比色ポート(P3b)について、キュベット(100)を未配置の状態で、当該比色ポート(P3b)において測定される光量と、参照ポート(P4)において測定される光量との比である光量比を求めるブランク測定を実行する。制御装置(500)は、ブランク測定において、光量比が所定範囲外の場合に、当該比色ポート(P3b)についてエラーと判定する。制御装置(500)は、エラーと判定された比色ポート(P3b)の数を示すエラー数が所定値よりも小さい場合に、エラーと判定された比色ポート(P3b)を異常と判定し、エラー数が所定値以上の場合に、参照ポート(P4)を異常と判定する。
Description
本発明は、生化学分析装置及び生化学分析方法に関する。
血液成分(血清又は血漿)や尿等の検体(試料)が分注された反応容器(以下、「キュベット」或いは「セル」等と称する。)に試薬を注入し、光を照射したときの散乱光又は透過光を測定することで、検体の凝固機能及び線溶機能の分析を行なう生化学分析が知られている。
このような生化学分析の手法として、凝固時間法及び比色法が知られている。凝固時間法は、検体及び試薬が注入されたキュベットに光を照射して散乱光の強度変化の過程から検体の凝固時間を算出し、その凝固時間から凝固機能を分析する手法である。比色法は、検体及び試薬が注入されたキュベットに特定波長の光を照射して透過光の強度から吸光度を測定し、所定時間後の吸光度或いは所定時間内の吸光度の変化量から算出される濃度や活性値に基づいて検体の線溶機能を分析する手法である。なお、比色法は、吸光光度法と称されることもある。
特表2003-520942号公報(特許文献1)には、アナライト(検体)の測定に比色法を用いることが記載されている。装置構成については、光源と、セルを透過した透過光を検出する検出器と、検出器からの信号を増幅する増幅器と、増幅された信号をデジタル信号に変換するA/D(アナログ/デジタル)変換器と、データ処理を行なうプロセッサと、参照検出器とを含むデータ処理・制御サブシステムが記載されている。参照検出器は、セルに入射される光源のパワーに比例した信号を測定する。このような参照検出器を用いることにより、光源変動を補償したり、光源のパワーを積極的に調節したりすることができる(特許文献1参照)。
比色法では、検体及び試薬を注入したキュベットがセットされた測定用ポートで検出される透過光の光量と、上記のような参照検出器により参照用ポートで検出される参照光の光量との比を算出し、その比を測定結果(吸光度)として利用する場合がある。そして、この場合に、分析測定の開始前等に、測定用ポートにキュベットを未配置の状態で測定するブランク測定を実施し、ブランク測定時の上記の光量比に基づいて、測定系に異常が生じていないかをチェックすることが可能である。しかしながら、これだけでは、測定系の異常部位まで特定することはできない。
本発明は、かかる問題を解決するためになされたものであり、その目的は、測定系の異常部位を特定可能な生化学分析装置及び生化学分析方法を提供することである。
本開示の生化学分析装置は、検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析装置であって、複数の測定用ポートと、参照用ポートと、制御装置とを備える。複数の測定用ポートには、分析測定時に、複数の反応容器がそれぞれ配置される。各測定用ポートでは、反応容器を透過した透過光の光量が測定される。参照用ポートでは、反応容器に照射される照射光に相当する光の光量が測定される。制御装置は、反応容器が配置された測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比に基づいて、反応容器内の検体の分析を行なうように構成される。制御装置は、各測定用ポートについて、反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行する。そして、制御装置は、ブランク測定において、光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定する。制御装置は、エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定し、エラー数が所定値以上の場合に、参照用ポートを異常と判定するように構成される。
また、本開示の生化学分析方法は、検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析方法である。生化学分析を行なう装置は、複数の測定用ポートと、参照用ポートとを備えている。複数の測定用ポートには、分析測定時に、複数の反応容器がそれぞれ配置される。各測定用ポートでは、反応容器を透過した透過光の光量が測定される。参照用ポートでは、反応容器に照射される照射光に相当する光の光量が測定される。そして、生化学分析方法は、反応容器が配置された測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比に基づいて、反応容器内の検体の分析を行なうステップと、各測定用ポートについて、反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行するステップと、ブランク測定において、光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定するステップと、エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定するステップと、エラー数が所定値以上の場合に、参照用ポートを異常と判定するステップとを含む。
上記の生化学分析装置及び生化学分析方法においては、エラーと判定された測定用ポートのエラー数が所定値よりも小さい場合には、当該測定用ポートに限定されたエラーであるとして、エラーと判定された測定用ポートの異常と判定される。一方、エラー数が所定値以上の場合には、測定用ポートに限定されないエラーであるとして、各測定用ポートでの測定に共通の参照用ポートの異常と判定される。したがって、この生化学分析装置及び生化学分析方法によれば、測定系の異常部位を特定(測定用ポートの異常か、それとも参照用ポートの異常か)することができる。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
本開示の生化学分析装置(以下、単に「分析装置」と称する。)は、プローブ(ノズル)により検体及び試薬をキュベットに分注し、キュベット内の反応状態を光学的に測定するように構成される。検体は、たとえば、血液成分(血清又は血漿)や尿等である。以下では、検体を「サンプル」或いは「試料」と称する場合がある。また、本開示では、キュベットについて、使い捨てタイプのもの(ディスポーザブルキュベット)が採用される。
本開示の生化学分析装置(以下、単に「分析装置」と称する。)は、プローブ(ノズル)により検体及び試薬をキュベットに分注し、キュベット内の反応状態を光学的に測定するように構成される。検体は、たとえば、血液成分(血清又は血漿)や尿等である。以下では、検体を「サンプル」或いは「試料」と称する場合がある。また、本開示では、キュベットについて、使い捨てタイプのもの(ディスポーザブルキュベット)が採用される。
図1は、本発明の実施の形態1に従う分析装置の全体構成を機能的に示す図である。本実施の形態1で説明される分析装置は、生化学分析装置の一例であり、血液凝固(線溶)自動分析装置として機能し得る。
図1を参照して、この分析装置は、キュベット供給装置110と、キュベット移送装置120と、攪拌装置200と、測定装置300と、キュベット廃棄容器400とを備える。なお、以下では、キュベット供給装置110、キュベット移送装置120、及びキュベット廃棄容器400を、それぞれ単に「供給装置110」、「移送装置120」、及び「廃棄容器400」と称する。
分析装置は、サンプル分注ポートP1をさらに備える。供給装置110は、キュベット収容部111(以下、単に「収容部111」と称する。)と、供給機構112とを含む。収容部111は、多数のキュベット(たとえば最大で1000個)を収容可能に構成される。供給機構112は、収容部111に収容されているキュベットをサンプル分注ポートP1へ供給する。収容部111及び供給機構112の詳細については、後ほど図2にて説明する。
サンプル分注ポートP1は、図示しないサンプル分注装置によってキュベットにサンプルを分注可能な位置に配置される。サンプル分注ポートP1にキュベットがセットされると、サンプル分注装置によってキュベットにサンプルが分注される。
移送装置120は、チャック付きアーム121(以下、単に「アーム121」と称する)と、駆動装置122とを含む。アーム121は、キュベットを把持可能に構成されたチャックを有する。アーム121は、チャックによってキュベットを着脱可能に保持するように構成されている。駆動装置122は、アーム121(チャック)を作動させてチャックの位置を変えるように構成される。アーム121及び駆動装置122の詳細についても、後ほど図2にて説明する。
分析装置は、移送装置120によりキュベットを移送可能な複数のポート、具体的には、攪拌ポートP2、測光ポートP3、及び廃棄ポートP5をさらに備える。測光ポートP3は、複数の凝固ポートP3aと、複数の比色ポートP3bとを含む。サンプル分注ポートP1、攪拌ポートP2、測光ポートP3、及び廃棄ポートP5の各々には、キュベットの有無を検出するポートセンサが設けられている。
攪拌ポートP2は、攪拌装置200の攪拌位置に配置される。攪拌装置200は、攪拌ポートP2にキュベットがセットされると、所定の条件(たとえば、攪拌速度及び攪拌時間)でキュベットの内容物を攪拌するように構成されている。
凝固ポートP3a及び比色ポートP3bの各々は、図示しない測光部に配置されている。凝固ポートP3a及び比色ポートP3bの各々には、光源から光が照射され、照射された光を検出する光検出器(図示せず)が設けられている。
測定装置300は、凝固ポートP3a及び比色ポートP3bの各々の光検出器から光量の検出結果を受け、各ポートにセットされたキュベットの内容物に対して所定の測定を行なう。すなわち、測定装置300は、凝固ポートP3aについては、光検出器によって検出される散乱光の光量を用いて、時間凝固法に基づいて、キュベット内の検体の凝固測定を行なう。また、測定装置300は、比色ポートP3bについては、光検出器によって検出される透過光の光量を用いて、比色法に基づいて、キュベット内の検体の吸光度を測定する。
なお、凝固ポートP3aに対する光源には、たとえば発光ダイオードを採用することができ、凝固ポートP3aに設けられる光検出器には、たとえばフォトダイオードを採用することができる。凝固ポートP3aの光検出器は、90°散乱光(光の照射方向に直交する方向の散乱光)の光量を検出するように配置されている。
また、比色ポートP3bに対する光源には、たとえばハロゲンランプを採用することができる。後述のように、比色ポートP3bに供給される光の波長は、分析条件に応じてフィルタにより切替可能である。比色ポートP3bに設けられる光検出器には、たとえばフォトダイオードを採用することができる。比色ポートP3bの光検出器は、透過光の光量を検出するように配置されている。
この分析装置は、比色ポートP3bにセットされたキュベット内の検体の吸光度を測定するために、参照ポートP4をさらに備えている。参照ポートP4は、各比色ポートP3bと同じ構成を有しているが、キュベットがセットされることはなく、光源からの光以外の光が参照ポートP4内に入らないように蓋等で遮光されている。そして、比色法に基づいて、比色ポートP3bに設けられる光検出器によって検出される光量と、参照ポートP4に設けられる光検出器によって検出される光量との比(光量比)から検体の吸光度が測定され、検体の比色分析が行なわれる。比色法による分析測定については、後ほど詳しく説明する。
なお、本開示では、「分析測定」とは、測光ポートP3にキュベットをセットして測定データを取得することを意味し、測光ポートP3(比色ポートP3b)にキュベットを未挿入の状態で測定を行なう後述の「ブランク測定」と区別される。
廃棄ポートP5は、使用済みのキュベットを回収するように構成される。廃棄ポートP5は、たとえば配管を通じて廃棄容器400に接続されている。廃棄ポートP5にキュベットが投入されると、キュベットは廃棄容器400へ導かれる。
図2は、分析装置の分析テーブルの構成例を示す平面図である。図2には、互いに直交する3つの軸(X軸、Y軸及びZ軸)が示されており、X軸及びY軸は、それぞれ分析装置の幅方向及び奥行き方向を示し、Z軸は、鉛直方向(すなわち上下方向)を示している。Z軸の矢印が指し示す方向は上方向であり、その反対方向は下方向(すなわち重力方向)である。
図2とともに図1も参照して、収容部111には、多数のキュベット100が収容されている。ユーザは、収容部111の投入口(図示せず)から収容部111内へキュベット100を補給することができる。キュベット100は、光を透過可能であれば材質は任意であり、たとえば透明のアクリル製のものを採用することができる。
供給機構112は、収容部111からキュベット100を1つずつ取り出してサンプル分注ポートP1に供給するように構成される。供給機構112におけるキュベット100の移送方式は任意であり、たとえば、滑り台方式(自重方式)、ベルトコンベア方式、ローラ方式、スライド方式のいずれであってもよい。供給機構112は、サンプル分注ポートP1のポートセンサの検出結果を受信し、サンプル分注ポートP1が空いたら次のキュベット100をポートP1に供給するように構成される。但し、これに限られず、供給機構112は、後述の制御装置からの指示に従ってキュベット100をサンプル分注ポートP1に供給するように構成されてもよい。
アーム21は、サンプル吸引ポートP21から吸引されるサンプルを、サンプル分注ポートP1にセットされたキュベット100へ分注するための機器(サンプル分注装置)であり、プローブ21aと、アーム本体21bとを含む。アーム本体21bは、回転軸23aの回りを旋回可能に構成されており、アーム本体21bが旋回することによって、アーム本体21bの先端に設けられるプローブ21aは、XY平面において円弧状の軌道L2を描くように移動することができる。
アーム本体21bが旋回することによって、プローブ21aは、軌道L2上に設けられたサンプル分注ポートP1、サンプル吸引ポートP21、SポートP22(より特定的には、ポートP22a~P22i)、及び洗浄ポートP23の各々に移動することができる。なお、SポートP22について、たとえば、ポートP22a,P22bは洗剤ポートであり、ポートP22c,P22d,P22eは緩衝液ポートであり、ポートP22f,P22g,P22h,P22iは希釈液ポートである。
なお、図示していないが、サンプル吸引ポートP21の下方には、可動式のサンプルラックが設けられている。サンプルラックには、血液成分や尿等のサンプルが入った複数のサンプル容器が載置されており、サンプル分注ポートP1にセットされたキュベット100へのサンプルの分注に先立ち、サンプルラックは、分注対象のサンプル容器がサンプル吸引ポートP21の直下に配置されるように作動する。CTS機構24は、サンプル吸引ポートP21の近傍に設けられ、分注対象のサンプル容器にキャップが付いている場合に、ピアサでキャップを穿孔するように構成される。
測光部130には、複数の測光ポートP3(複数の凝固ポートP3a及び比色ポートP3b)が円弧状に配置されている。この例では、14個の凝固ポートP3aと、6個の比色ポートP3bが配置されている。アーム11は、吸引ポートP11から吸引される試薬を、測光ポートP3にセットされている対象のキュベット100へ分注するための機器であり、プローブ11aと、アーム本体11bとを含む。アーム本体11bは、回転軸13aの回りを旋回可能に構成されており、アーム本体11bが旋回することによって、アーム本体11bの先端に設けられるプローブ11aは、XY平面において円弧状の軌道L1を描くように移動することができる。
アーム本体11bが旋回することによって、プローブ11aは、軌道L1上に設けられた各凝固ポートP3a、各比色ポートP3b、吸引ポートP11,P12、回収ポートP13の各々に移動することができる。なお、特に図示していないが、実際には、プローブ11aは試薬間のコンタミネーションを回避するために2本のプローブで構成されるとともに、試薬トレイ31a(後述)は外周トレイと内周トレイとを有しており、外周トレイ上の試薬(又は洗浄液)及び内周トレイ上の試薬(又は洗浄液)をそれぞれ2本のプローブで吸引ポートP11,P12から吸引することができる。なお、回収ポートP13は、使用済みの洗浄液を回収するポートであり、特に図示しないが、プローブ11aから吐出される水を溜めてプローブ先端の外面を洗浄する水溜め部と、液体を廃棄する廃棄部とを含む。
参照ポートP4は、測光ポートP3(測光部130)とは別の場所に設けられる。上述のように、参照ポートP4は、各比色ポートP3bと同じ構成であるが、キュベット100をセットする必要がないため、たとえば、分析テーブル上ではなく分析装置の内部に配置される。
吸引ポートP11,P12の下方には、複数の試薬容器1及び複数の洗剤容器1aが載置された試薬トレイ31aが設けられており、試薬トレイ31aは、試薬保冷庫31内に設けられている。複数の試薬容器1は、互いに異なる試薬を保有しており、複数の洗剤容器1aは、互いに異なる洗剤を保有している。試薬トレイ31aは、円盤状のターンテーブルによって構成され、ターンテーブルを駆動することにより、所望の試薬容器1又は洗剤容器1aを吸引ポートP11,P12の直下に配置することができる。
アーム121は、チャック121aと、アーム本体121bとを含む。チャック121aは、キュベット100を把持可能に構成される。チャック121aがキュベット100を保持する方式は任意であり、チャック121aは、メカニカルチャックであってもよいし、マグネットチャックであってもよいし、真空チャックであってもよい。アーム本体121bは、回転軸13aの回りを回転体122aとともに旋回可能に構成されている。回転体122aが回転することによって、回転体122aと一体的にアーム本体121bが旋回し、アーム本体121bの先端に設けられるチャック121aは、XY平面において円弧状の軌道L1を描くように移動することができる。
上記のように、アーム11とアーム121との旋回中心は同じである。軌道L1上には、サンプル分注ポートP1と、攪拌ポートP2と、廃棄ポートP5と、複数の測光ポートP3(複数の凝固ポートP3a及び複数の比色ポートP3b)と、吸引ポートP11,P12と、回収ポートP13とが設けられている。そして、アーム121は、サンプル分注ポートP1、攪拌ポートP2、各測光ポートP3、及び廃棄ポートP5にチャック121aを移動させることができ、アーム11は、吸引ポートP11,P12、回収ポートP13、攪拌ポートP2、及び各測光ポートP3にプローブ11aを移動させることができる。
図3は、測光部130の構成例を示す図である。図3を参照して、測光部130には、複数の凝固ポートP3a及び比色ポートP3bが円弧状に配置されている。より詳しくは、複数の凝固ポートP3a及び比色ポートP3bは、各ポートのキュベット挿入口が円弧状の軌道L1に沿うように配置されている。この例では、14個の凝固ポートP3aと、6個の比色ポートP3bが配置されている。なお、凝固ポートP3a及び比色ポートP3bの数及び配置順は、図示されたものに限定されるものではない。
なお、上述のように、参照ポートP4(図示せず)は、凝固ポートP3a及び比色ポートP3bが設けられる測光部130には配置されておらず、たとえば分析装置の内部に配置される。
図4は、比色ポートP3b及び参照ポートP4の構成例を示す平面図である。また、図5は、図4の断面V-Vの構成を示す断面図である。なお、参照ポートP4の構成は、比色ポートP3bの構成と同じであるため、以下では比色ポートP3bについて代表的に説明する。
図4及び図5を参照して、比色ポートP3bは、レンズホルダ310と、光ファイバーケーブル312と、キュベット挿入口314と、光検出器316とを含む。レンズホルダ310は、先端部にレンズを有し、比色ポートP3bの差込口に差し込まれている。レンズホルダ310は、図示しない光源から光ファイバーケーブル312を通じて受ける光を、レンズを通じてキュベット挿入口314へ向けて出力する。
キュベット挿入口314は、移送装置120(アーム121)により移送されたキュベット100を脱着可能に構成される。キュベット挿入口314にキュベット100が挿入されると、図示しないポートセンサによってキュベット100の挿入が検知される。
光検出器316は、キュベット挿入口314を挟んでレンズホルダ310の反対側に設けられる。光検出器316は、キュベット挿入口314に挿入されたキュベット100内の検体の測定が行なわれるときは、レンズホルダ310からキュベット100に照射されてキュベット100を透過した透過光の光量を検出する。キュベット挿入口314にキュベット100が未挿入の状態でブランク測定が行なわれるときは、光検出器316は、レンズホルダ310から出力される光の光量を直接検出する。光検出器316は、たとえばフォトダイオードによって構成される。そして、光検出器316は、接続ケーブル318を通じて基板320へ検出信号を出力する。
なお、参照ポートP4については、キュベット挿入口314に外部から光が入らないように、キュベット挿入口314に遮光用の蓋が設けられており、光検出器316は、レンズホルダ310から出力される光の光量を常時直接検出する。
図6は、比色ポートP3b及び参照ポートP4の光学系の構成例を示す図である。図6を参照して、複数(この例では6個)の比色ポートP3b及び参照ポートP4に装着される各レンズホルダ310には、共通の光源330からの光が供給される。
光源330は、たとえばハロゲンランプである。光源330から出力される光は、フィルタ装置332を通って1本の光ファイバーケーブル334に供給される。フィルタ装置332は、光源330の出力近傍に設けられ、特定の波長の光を通過させる光学フィルタを有する。フィルタ装置332は、複数の光学フィルタを有しており、光学フィルタを切替えることによって通過させる光の波長を切替可能に構成されている。
図7は、フィルタ装置332の構成例を示す平面図である。図7を参照して、フィルタ装置332は、円周方向に複数の開口が設けられた円形ドラムによって構成される。この例では、円周方向に等間隔に4つの開口が設けられており、そのうちの3つの開口部に、通過させる波長が互いに異なる光学フィルタ340a~340cが装着されている。光学フィルタ340a~340cは、たとえば干渉フィルタによって構成され、それぞれ405nm,570nm,730nmの波長の光を透過させる。
このように、この分析装置は、検体(キュベット)に照射される光の波長を切替可能に構成されており、検体及び検査項目に応じた特定の波長の光を比色分析に用いることができる。
再び図6を参照して、光源330からの光は、フィルタ装置332の光学フィルタを通って1本の光ファイバーケーブル334に供給される。光ファイバーケーブル334は、7本の光ファイバーケーブル312に分岐され、そのうちの6本の光ファイバーケーブル312は、6つの比色ポートP3bに接続され、残り1本の光ファイバーケーブル312は、参照ポートP4に接続される。
次に、本実施の形態1に従う分析装置において、比色法による分析測定システムの構成について説明する。
図8は、比色法を用いた測定系の構成を機能的に示すブロック図である。図8を参照して、光源330から出力される光は、フィルタ340(光学フィルタ340a~340cのいずれか)を通って、各比色ポートP3b及び参照ポートP4に供給される。
各比色ポートP3bの出力(光検出器316の出力)は、アンプ350によって増幅され、ポート選択部352に入力される。ポート選択部352は、6つの比色ポートP3bからの出力(アンプ350の出力)のいずれか1つを、LOG変換部354に接続される出力ポートから出力するように構成される。6つの比色ポートP3bのうち、どのポートの出力をLOG変換部354へ出力するかは、6つの比色ポートP3bを用いる比色分析の分析スケジュールに従って適宜切替えられる。
参照ポートP4の出力(光検出器316の出力)は、アンプ350によって増幅され、LOG変換部354に入力される。
LOG変換部354は、たとえばLOGアンプによって構成され、ポート選択部352からの出力を参照ポートP4からの出力(アンプ350の出力)で除算した値の対数値を出力する。すなわち、LOG変換部354では、比色ポートP3bにおいて測定される光量と、参照ポートP4において測定される光量との比が算出され、その光量比が対数値で出力される。そして、LOG変換部354からの出力は、AD変換器356によりデジタル信号に変換され、測定データとして出力部358に出力される。
このように、本実施の形態1においては、比色ポートP3bを用いた比色法による分析測定では、キュベット100がセットされた比色ポートP3bで検出される透過光の光量と、参照ポートP4で検出される参照光の光量との比が算出され、その光量比を測定結果(吸光度)として利用する。
そして、本実施の形態1では、分析測定の開始前に、各比色ポートP3bにキュベット100を未配置の状態で測定するブランク測定が実施される。ブランク測定時の光量比は、正常であれば理論的には1であり、ブランク測定時の上記光量比に基づいて、測定系に異常が生じていないかをチェックすることが可能である。
しかしながら、これだけでは、測定系の異常部位まで特定することはできない。そこで、本実施の形態1に従う分析装置では、ブランク測定において、光量比が所定範囲(たとえば1.0の±10%)外の場合に、当該比色ポートP3bについてエラーと判定される。そして、エラーと判定された比色ポートP3bの数(エラー数)が所定値よりも小さい場合には、当該比色ポートP3bに限定されたエラーであるとして、エラーと判定された比色ポートP3bの異常と判定される。一方、エラー数が所定値以上の場合には、特定の比色ポートP3bに限定されないエラーであるとして、各比色ポートP3bのブランク測定に共通の参照ポートP4の異常と判定される。このように、本実施の形態1に従う分析装置によれば、測定系の異常部位を特定(比色ポートP3bの異常か、それとも参照ポートP4の異常か)することができる。
なお、特に図示しないが、凝固ポートP3aについては、凝固ポートP3a毎に光源及び光検出器が設けられている。そして、光検出器によって検出される90°散乱光の光量に応じた検出信号が、アンプで増幅された後にAD変換器によりデジタル信号に変換され、測定信号として取得される。
図9は、本実施の形態1に従う分析装置のシステム構成の一例を示すブロック図である。図9を参照して、分析装置は、測光部130と、ロボット部150と、測定装置300と、制御装置500と、操作表示部520とを備える。
測光部130は、複数の凝固ポートP3aと、複数の比色ポートP3bと、参照ポートP4とを含む。また、測光部130は、図8に示した光源330と、フィルタ340(フィルタ装置332)と、アンプ350と、ポート選択部352とをさらに含む。なお、アンプ350及びポート選択部352は、測定装置300に設けられてもよい。
ロボット部150は、アーム11,21,121、キュベット供給装置110、CTS機構24、試薬保冷庫31、試薬トレイ31a(以上図2参照)、サンプルラック、フィルタ装置332(図6,7参照)等の可動装置を総括的に示したものである。ロボット部150は、アーム21及びサンプルラック並びにCTS機構24によるサンプルのハンドリング、アーム11並びに試薬保冷庫31及び試薬トレイ31aによる試薬のハンドリング、供給装置110及びアーム121によるキュベット100の移送ハンドリング、フィルタ装置332の駆動等を行なう。ロボット部150は、測定装置300の移送制御部376によって全自動で制御される。
測定装置300は、測光制御部370と、データ収集部372と、AD変換部374と、移送制御部376とを含む。測光制御部370は、データ収集部372からの指示に従って、測光部130における測光全般を制御する。たとえば、測光制御部370は、フィルタ装置332を駆動して光学フィルタ340a~340cを適宜切替えたり、測定対象の比色ポートP3bからの出力が選択されるようにポート選択部352を制御する。
データ収集部372は、制御装置500からのデータ収集指示に従って、比色ポートP3bに供給される光の波長や、測定データを取得する比色ポートP3bを決定し、そのための指示を測光制御部370へ出力する。そして、データ収集部372は、AD変換部374から光量比の測定データを取得し、収集されたデータを制御装置500へ出力する。
なお、凝固ポートP3aを用いた測定を行なう場合には、データ収集部372は、制御装置500からのデータ収集指示に従って、測定データを取得する凝固ポートP3aを決定し、その凝固ポートP3aで測定を行なうための指示を測光制御部370へ出力する。そして、データ収集部372は、凝固ポートP3aにおいて検出された散乱光の測定データ(光量)をAD変換部374から取得し、収集されたデータを制御装置500へ出力する。
AD変換部374は、図8に示したLOG変換部354及びAD変換器356を含んで構成される。また、AD変換部374は、各凝固ポートP3aの光検出器からの検出信号をデジタル信号に変換し、時間凝固法による測定信号としてデータ収集部372へ出力する。移送制御部376は、制御装置500のデータ処理部510からの指示に従って、ロボット部150の各種動作を制御するための指令を生成し、ロボット部150の各種動作を制御する。
制御装置500は、データ処理部510と、記憶部512とを含む。データ処理部510は、ユーザによる操作表示部520からの測定指示に従って、測定を行なうための各種指示を生成し、生成された各種指示を測定装置300のデータ収集部372及び移送制御部376へ出力する。また、データ処理部510は、測定装置300のデータ収集部372から受ける各種測定データに基づいて、比色法による分析を行なうための各種データ処理を実行し、また、凝固分析法による分析を行なうための各種データ処理を実行する。
また、データ処理部510は、比色ポートP3bを用いた測定において、ブランク測定を実行するための指令を生成し、生成された指令を測定装置300へ出力する。そして、データ処理部510は、ブランク測定の結果を測定装置300から受け、ブランク測定の結果に異常が認められる場合には、比色ポートP3bの異常であるか、それとも参照ポートP4の異常であるかを判定する。この具体的な処理内容については、後ほど詳しく説明する。
記憶部512は、制御装置500により各種処理を実行するための制御プログラムや、各種情報(データ)等を記憶しており、データ処理部510からの要求に従って、各種制御プログラムや情報(データ)をデータ処理部510へ出力する。
図10は、図9に示した制御装置500のハード構成の一例を示す図である。図10を参照して、制御装置500は、CPU(Central Processing Unit)530と、RAM(Random Access Memory)532と、記憶装置534と、各種信号を入出力するための入出力バッファ(図示せず)とを含んで構成される。
CPU530は、記憶装置534に格納されている制御プログラムをRAM532に展開して実行する。この制御プログラムは、制御装置500により実行される各種処理の手順が記されたプログラムである。記憶装置534には、制御プログラムのほか、各種処理に用いられる各種情報やデータも格納されている。制御装置500は、これらの制御プログラム並びに各種情報及びデータに従って、分析装置における各種処理を実行する。なお、処理については、ソフトウェアによるものに限られず、専用のハードウェア(電子回路)で実行することも可能である。
なお、記憶装置534には、たとえば、処理手順を記した制御プログラムのほか、試薬情報、分析スケジュール、分析履歴、判定条件等の情報又はデータが登録されている。試薬情報は、試薬トレイ31a(図2)に準備されている各試薬の情報(たとえば、試薬ID、試薬の種類、有効期限等)である。
分析スケジュールは、予約された全てのサンプルの分析を効率良く行なうために、サンプル情報(たとえば、各サンプルの分析項目)及び各ポートの空き状況等に基づいて決定される。たとえば、分析スケジュールは、たとえば、分注及び測定の各々のタイミングと、分注対象のサンプル及び試薬と、測定を行なう測光ポートP3(凝固ポートP3a及び/又は比色ポートP3b)とを含む。分析スケジュールは、サンプルID毎(サンプル容器毎)に管理される。
分析履歴は、分析の途中経過を含む進行度合いを示し、分析の進行に応じて逐次更新される。分析履歴は、たとえば、キュベットの移動経路(現在位置を含む)と、キュベットに分注されたサンプル及び試薬と、測定が行なわれた測光ポートP3と、測定結果とを含む。分析履歴は、キュベット毎に管理される。制御装置500及びユーザの各々は、分析履歴を参照することにより、分析スケジュールどおりに分析が行なわれたか(又は進行しているか)を確認することができる。
判定条件は、比色ポートP3bについてのブランク測定において、エラーと判定された比色ポートP3bが存在する場合に、異常部位を特定するための判定値を含む。具体的には、本実施の形態1に従う分析装置では、制御装置500は、各比色ポートP3bについて、分析測定の実行前にブランク測定を実行し、光量比が所定範囲外の比色ポートP3bをエラーと判定する。そして、制御装置500は、エラーと判定された比色ポートP3bの数を示すエラー数が所定値よりも小さい場合には、エラーと判定された比色ポートP3bを異常と判定する。一方、制御装置500は、エラー数が所定値以上の場合には、参照ポートP4が異常と判定する。
そして、判定条件は、ブランク測定実行時の光量比の上記所定範囲と、エラーと判定された比色ポートP3bの数を示すエラー数の上記所定値とを含む。なお、上記の所定範囲は、各比色ポートP3b及び参照ポートP4に供給される光の波長毎(すなわち、フィルタ装置332において選択される光学フィルタ毎)に設けてもよい。光の波長によって光検出器の感度が変わり得るため、波長毎に上記の所定範囲を設定可能とするものである。
以下、この判定条件を用いた、比色ポートP3b及び参照ポートP4の異常判定処理について、詳しく説明する。
図11は、比色ポートP3b及び参照ポートP4の異常判定処理の手順の一例を示すフローチャートである。ここに示される例では、フローチャートに示される一連の処理は、分析装置のシステムが起動されると実行されるものとしているが、一連の分析測定の開始直前に実行されてもよいし、分析測定の終了後に実行されてもよい。
図11を参照して、制御装置500は、まず、ブランク測定処理を実行する(ステップS10)。上述のように、ブランク測定とは、各比色ポートP3bにキュベット100を未挿入の状態で測定を行ない、各比色ポートP3bにおいて検出される光量と、参照ポートP4において検出される光量との比が所定範囲内であるか否かをチェックするものである。
図12は、図11のステップS10において実行されるブランク測定処理の手順の一例を示すフローチャートである。図12を参照して、制御装置500は、まず、カウンタiに1をセットし(ステップS110)、ブランク測定の対象として第i番目(すなわち1番目)の比色ポートP3bを選択する(ステップS120)。なお、以下では、第i番目の比色ポートP3bを単に「ポートi」とも称する。
次いで、制御装置500は、カウンタkに1をセットし(ステップS130)、第k番目(すなわち1番目)のフィルタ(たとえば光学フィルタ340a)が選択されるようにフィルタ装置332を制御する(ステップS140)。なお、以下では、第k番目のフィルタを単に「フィルタk」と称する場合がある。
続いて、制御装置500は、ステップS140において選択されたフィルタk用の光量比の所定範囲を記憶装置534から読込む(ステップS150)。すなわち、この例では、上記の所定範囲は、各比色ポートP3b及び参照ポートP4に供給される光の波長毎(すなわち、フィルタ装置332において選択されるフィルタ毎)に設けられるものとしている。
次いで、制御装置500は、ポートiについてフィルタkが選択されている状態でのブランク測定を実行し、このときの光量比を取得する(ステップS160)。そして、制御装置500は、ブランク測定において取得された光量比が、ステップS150において読込まれた所定範囲を外れているか否かを判定する(ステップS170)。
ブランク測定で取得された光量比が所定範囲外であると判定されると(ステップS170においてYES)、制御装置500は、当該ポートiをエラーと判定し(ステップS180)、エラー判定とともに測定結果(光量比)を記憶する(ステップS190)。なお、ブランク測定で取得された光量比が所定範囲内のときは(ステップS170においてNO)、ステップS180の処理は実行されずにステップS190へ処理が移行され、測定結果(光量比)が記憶される。
次いで、制御装置500は、カウンタkが3であるかを判定する(ステップS200)。この数値「3」は、本実施の形態1においてフィルタ装置332が有するフィルタ(光学フィルタ340a~340c)の数に相当し、この数値は、設けられるフィルタの数に応じて適宜設定される。
ステップS200においてカウンタkは3に達していないと判定されると(ステップS200においてNO)、制御装置500は、カウンタkを1つインクリメントし(ステップS210)、ステップS140へ処理を戻す。すなわち、ポートiについて、フィルタ装置332が有するフィルタ毎にステップS140~S190の処理が実行される。
ステップS200においてカウンタkが3であると判定されると(ステップS200においてYES)、制御装置500は、カウンタiが6であるかを判定する(ステップS220)。この数値「6」は、本実施の形態1における比色ポートP3bの数に相当し、この数値は、設けられる比色ポートP3bの数に応じて適宜設定される。
ステップS220においてカウンタiは6に達していないと判定されると(ステップS220においてNO)、制御装置500は、カウンタiを1つインクリメントし(ステップS230)、ステップS120へ処理を戻す。すなわち、各比色ポートP3bについて、ステップS120~S210の処理が実行される。そして、ステップS220においてカウンタiが6であると判定されると(ステップS220においてYES)、制御装置500は、リターンへ処理を移行し、ブランク測定処理を終了する。
再び図11を参照して、ステップS10のブランク測定処理が実行されると、制御装置500は、エラー判定された比色ポートP3bが有るか否かを判定する(ステップS20)。エラー判定された比色ポートP3bが無ければ(ステップS20においてNO)、制御装置500は、各比色ポートP3b及び参照ポートP4は正常であると判定し(ステップS30)、キュベット100の搬送、キュベット100へのサンプル及び試薬の分注、測光ポートP3での分析測定を含む一連の検体測定処理を実行する(ステップS40)。
一方、エラー判定された比色ポートP3bが有る場合には(ステップS20においてYES)、制御装置500は、エラー判定された比色ポートP3bの数が所定値以上であるか否か判定する(ステップS50)。この所定値は、たとえば、エラー判定された比色ポートP3bの数が複数であることを示す「2」とすることができるが、比色ポートP3bの数が多い場合には、2よりも大きい値(たとえば3)であってもよい。
エラー判定された比色ポートP3bの数が所定値よりも少ないときは(ステップS50においてNO)、制御装置500は、ブランク測定処理においてエラー判定された比色ポートP3bを異常と判定する(ステップS60)。複数の比色ポートP3bに対して、エラー判定された比色ポートP3bの数が所定値よりも少なければ、当該比色ポートP3bにおいて異常が生じていると判断することとしたものである。そして、制御装置500は、その異常と判定された比色ポートP3bを報知するように操作表示部520(図9)を制御する(ステップS70)。
その後、制御装置500は、ユーザの確認を求めるため、エンドへと処理を移行する。なお、エンドへ処理を移行するのではなくステップS40へ処理を移行し、異常と判定された比色ポートP3bを使用不可として検体測定処理を実行するようにしてもよい。
一方、ステップS50において、エラー判定された比色ポートP3bの数が所定値以上であると判定されると(ステップS50においてYES)、制御装置500は、参照ポートP4を異常と判定する(ステップS80)。参照ポートP4において検出される光量は、各比色ポートP3bについての光量比の測定に用いられるため、複数の比色ポートP3bに対して、エラー判定された比色ポートP3bの数が所定値以上であれば、エラー判定された個々の比色ポートP3bにおいて異常が生じているのではなく、参照ポートP4において異常が生じていると判断することとしたものである。
そして、制御装置500は、参照ポートP4の異常を報知するように操作表示部520を制御する(ステップS90)。その後、制御装置500は、ステップS40を実行することなく、エンドへと処理を移行する。参照ポートP4において異常が生じている場合は、全ての比色ポートP3bでの測定結果が異常となるため、検体測定処理を行なわないこととするものである。なお、比色ポートP3bを用いた測定処理は不可とするけれども、凝固ポートP3aを用いた測定処理については、スケジュールどおりに実行するようにしてもよい。
以上のように、この実施の形態1では、エラーと判定された比色ポートP3bのエラー数が所定値よりも小さい場合には、エラーと判定された比色ポートP3bの異常と判定される。一方、エラー数が所定値以上の場合には、各測定用ポートでの測定に共通の参照ポートP4の異常と判定される。したがって、この実施の形態1によれば、測定系の異常部位を特定(比色ポートP3bの異常か、それとも参照ポートP4の異常か)することができる。
[実施の形態2]
上記の実施の形態1では、検体測定の開始前に全ての比色ポートP3bに対して実行されるブランク測定の結果に基づいて、エラー判定された比色ポートP3bが存在する場合に、異常部位の特定(比色ポートP3bの異常か、それとも参照ポートP4の異常か)が行なわれる。
上記の実施の形態1では、検体測定の開始前に全ての比色ポートP3bに対して実行されるブランク測定の結果に基づいて、エラー判定された比色ポートP3bが存在する場合に、異常部位の特定(比色ポートP3bの異常か、それとも参照ポートP4の異常か)が行なわれる。
この実施の形態2では、検体測定の開始後に、空いている比色ポートP3bに対してブランク測定が実行され、エラー判定された比色ポートP3bが存在する場合に、異常部位の特定が行なわれる。
この実施の形態2における分析装置の全体構成は、実施の形態1で説明した分析装置と同じであり、実施の形態2に従う分析装置は、比色ポートP3b及び参照ポートP4の異常判定処理の手順(図11)が実施の形態1と異なる。
図13は、実施の形態2において、比色ポートP3b及び参照ポートP4の異常判定処理の手順の一例を示すフローチャートである。このフローチャートに示される一連の処理は、分析装置のシステムが起動されると実行される。
図13を参照して、制御装置500は、まず、ブランク測定処理を実行する(ステップS310)。このブランク測定処理の手順は、図12に示したとおりであり、その測定結果は、記憶装置534に記憶される。ステップS310のブランク測定処理が実行されると、制御装置500は、キュベット100の搬送、キュベット100へのサンプル及び試薬の分注、測光ポートP3での分析測定を含む一連の検体測定を開始する(ステップS320)。
なお、この例では、ステップS310でのブランク測定処理の実行後に、無条件に検体測定を開始するものとしているが、ブランク測定処理の実行後に、実施の形態1で説明した、図11のステップS20以降の処理を行なってもよい。
ステップS320において検体測定が開始されると、制御装置500は、ブランク測定可能な比色ポートP3bが有るか否かを判定する(ステップS330)。ブランク測定は、キュベット100が装着されていない状態で実施されるため、ここでは、分析スケジュールにおいて空きが生じた比色ポートP3bをブランク測定可能なポートとすることができる。この場合、過度にブランク測定が行なわれるのを防ぐために、分析スケジュールにおいて空きが生じており、かつ、前回のブランク測定から規定時間以上経過している比色ポートP3bを、ブランク測定可能なポートとするようにしてもよい。
ステップS330において、ブランク測定可能な比色ポートP3bが有ると判定されると(ステップS330においてYES)、制御装置500は、当該比色ポートP3bについてブランク測定を実行する(ステップS340)。
ブランク測定が実行されると、制御装置500は、ブランク測定が実行された当該比色ポートP3bについて、ステップS310においてシステム起動時(検体測定開始前)に実行されたブランク測定の結果(光量比)を取得する(ステップS350)。そして、制御装置500は、ステップS340において実行されたブランク測定の結果(光量比)と、ステップS350において取得した、システム起動時のブランク測定の結果(光量比)とのずれ量がしきい値よりも大きいか否かを判定する(ステップS360)。なお、このしきい値は、適宜設定可能であり、たとえば、システム起動時に取得されたブランク測定の結果(光量比)の±10%とすることができる。
そして、システム起動時からの光量比のずれ量がしきい値よりも大きいと判定されると(ステップS360においてYES)、制御装置500は、当該比色ポートP3bをエラーと判定する(ステップS370)。
一方、光量比のずれ量がしきい値以下である場合には(ステップS360においてNO)、当該比色ポートP3bは正常と判定され、ステップS370の処理は実行されずにステップS380へ処理が移行される。また、ステップS330において、ブランク測定可能な比色ポートP3bは無いと判定された場合も(ステップS330においてNO)、ステップS380へ処理が移行される。
ステップS380~ステップSS430の処理は、それぞれ図11に示したステップS20,ステップS50~ステップS90の処理と同じである。すなわち、エラー判定された比色ポートP3b(すなわち、システム起動時からの光量比のずれ量が大きいポート)が存在する場合に、エラー判定された比色ポートP3bの数が所定値よりも少なければ(ステップS390においてNO)、エラー判定された比色ポートP3bが異常と判定され(ステップS400)、エラー判定された比色ポートP3bの数が所定値以上であれば(ステップS390においてYES)、参照ポートP4が異常と判定される(ステップS420)。
そして、ステップS410又はS430においてポートの異常が報知されると、制御装置500は、一連の検体測定を終了するか否かを判定する(ステップS430)。たとえば、制御装置500は、異常と判定された比色ポートP3bの数が所定値よりも少なければ、一連の検体測定を継続するものとし(ステップS440においてNO)、ステップS330へ処理を戻す。一方、異常と判定された比色ポートP3bの数が所定値以上であれば、制御装置500は、検体測定を終了するものとし(ステップS440においてYES)、エンドへと処理を移行する。
以上のように、この実施の形態2によれば、検体測定の開始後も、空いている比色ポートP3bに対してブランク測定を実施し、エラー判定された比色ポートP3bが存在する場合に、測定系の異常部位を特定(比色ポートP3bの異常か、それとも参照ポートP4の異常か)することができる。
[態様]
上述した複数の例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
上述した複数の例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)一態様に係る生化学分析装置は、検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析装置であって、複数の測定用ポートと、参照用ポートと、制御装置とを備える。複数の測定用ポートには、分析測定時に、複数の反応容器がそれぞれ配置される。各測定用ポートでは、反応容器を透過した透過光の光量が測定される。参照用ポートでは、反応容器に照射される照射光に相当する光の光量が測定される。制御装置は、反応容器が配置された測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比に基づいて、反応容器内の検体の分析を行なうように構成される。制御装置は、各測定用ポートについて、反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行する。そして、制御装置は、ブランク測定において、光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定する。制御装置は、エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定し、エラー数が所定値以上の場合に、参照用ポートを異常と判定するように構成される。
第1項に記載の生化学分析装置においては、エラーと判定された測定用ポートのエラー数が所定値よりも小さい場合には、当該測定用ポートに限定されたエラーであるとして、エラーと判定された測定用ポートの異常と判定される。一方、エラー数が所定値以上の場合には、測定用ポートに限定されないエラーであるとして、各測定用ポートでの測定に共通の参照用ポートの異常と判定される。したがって、この生化学分析装置によれば、測定系の異常部位を特定(測定用ポートの異常か、それとも参照用ポートの異常か)することができる。
(第2項)第1項に記載の生化学分析装置において、参照用ポートは、複数の測定用ポートに対して1つ設けられる。
このような構成により、エラーと判定された測定用ポートの数を示すエラー数が所定値以上の場合に、参照用ポートの異常と判定することができる。
(第3項)第1項又は第2項に記載の生化学分析装置において、生化学分析装置は、複数の測定用ポート及び参照用ポートの各々に光を供給する共通の光源をさらに備える。
このような構成により、エラー数が所定値よりも小さい場合には、エラーと判定された測定用ポートの異常と判定し、エラー数が所定値以上の場合には、参照用ポートの異常と判定することができる。
(第4項)第1項から第3項のいずれか1項に記載の生化学分析装置において、生化学分析装置は、複数の測定用ポート及び参照用ポートの各々に供給される光の波長を分析条件に従って切替えるように構成されたフィルタ装置をさらに備える。所定範囲は、フィルタ装置によって選択された波長に応じて設定される。
照射光の波長によって光検出器の感度が変わり得るところ、第4項の生化学分析装置によれば、分析条件に従って照射光の波長を切替えても、異常判定の精度を確保することができる。
(第5項)第1項から第4項のいずれか1項に記載の生化学分析装置において、制御装置は、分析測定の開始前に、複数の測定用ポートの各々についてブランク測定を行なう第1の処理を実行し、分析測定の開始後に、反応容器が未配置の測定用ポートについてブランク測定を行なう第2の処理を実行する。制御装置は、第2の処理が実行された測定用ポートについて、第1の処理において求められた光量比と、第2の処理において求められた光量比との差がしきい値よりも大きい場合に、当該測定用ポートについてエラーと判定する。そして、制御装置は、第2の処理が実行された測定用ポートについて、エラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定し、エラー数が所定値以上の場合に、参照用ポートを異常と判定するように構成される。
第5項の生化学分析装置によれば、検体測定の開始後も、空いている測定用ポートに対してブランク測定を実施し、エラー判定された測定用ポートが存在する場合に、測定系の異常部位を特定(測定用ポートの異常か、それとも参照用ポートの異常か)することができる。
(第6項)また、一態様に係る生化学分析方法は、検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析方法である。生化学分析を行なう装置は、複数の測定用ポートと、参照用ポートとを備える。複数の測定用ポートには、分析測定時に、複数の反応容器がそれぞれ配置される。各測定用ポートでは、反応容器を透過した透過光の光量が測定される。参照用ポートでは、反応容器に照射される照射光に相当する光の光量が測定される。そして、生化学分析方法は、反応容器が配置された測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比に基づいて、反応容器内の検体の分析を行なうステップと、複数の測定用ポートの各々について、反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行するステップと、ブランク測定において、光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定するステップと、エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定するステップと、エラー数が所定値以上の場合に、参照用ポートを異常と判定するステップとを含む。
第6項の生化学分析方法によれば、測定系の異常部位を特定(測定用ポートの異常か、それとも参照用ポートの異常か)することができる。
今回開示された各実施の形態は、技術的に矛盾しない範囲で適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 試薬容器、1a 洗剤容器、11,21,121 アーム、11a,21a プローブ、11b,21b,121b アーム本体、13a,23a 回転軸、24 CTS機構、31 試薬保冷庫、31a 試薬トレイ、100 キュベット、110 キュベット供給装置、111 キュベット収容部、112 供給機構、120 キュベット移送装置、121a チャック、122 駆動装置、122a 回転体、130 測光部、150 ロボット部、200 攪拌装置、300 測定装置、310 レンズホルダ、312,334 光ファイバーケーブル、314 キュベット装着口、316 光検出器、318 接続ケーブル、320 基板、330 光源、332 フィルタ装置、340a~340c 光学フィルタ、350 アンプ、352 ポート選択部、354 LOG変換部、356,374 AD変換部、358 出力部、370 測光制御部、372 データ収集部、376 移送制御部、400 キュベット廃棄容器、500 制御装置、510 データ処理部、512 記憶部、520 操作表示部、530 CPU、532 RAM、534 記憶装置、P1 サンプル分注ポート、P11,P12 吸引ポート、P13 回収ポート、P2 攪拌ポート、P21 サンプル吸引ポート、P22 Sポート、P23 洗浄ポート、P3 測光ポート、P3a 凝固ポート、P3b 比色ポート、P4 参照ポート、P5 廃棄ポート。
Claims (6)
- 検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析装置であって、
分析測定時に、複数の前記反応容器がそれぞれ配置され、各々において前記反応容器を透過した透過光の光量が測定される複数の測定用ポートと、
前記反応容器に照射される照射光に相当する光の光量が測定される参照用ポートと、
前記反応容器が配置された測定用ポートにおいて測定される光量と、前記参照用ポートにおいて測定される光量との比に基づいて、前記反応容器内の検体の分析を行なうように構成された制御装置とを備え、
前記制御装置は、
前記複数の測定用ポートの各々について、前記反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、前記参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行し、
前記ブランク測定において、前記光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定し、
エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定し、
前記エラー数が前記所定値以上の場合に、前記参照用ポートを異常と判定するように構成される、生化学分析装置。 - 前記参照用ポートは、前記複数の測定用ポートに対して1つ設けられる、請求項1に記載の生化学分析装置。
- 前記複数の測定用ポート及び前記参照用ポートの各々に光を供給する共通の光源をさらに備える、請求項1又は請求項2に記載の生化学分析装置。
- 前記複数の測定用ポート及び前記参照用ポートの各々に供給される光の波長を分析条件に従って切替えるように構成されたフィルタ装置をさらに備え、
前記所定範囲は、前記フィルタ装置によって選択された波長に応じて設定される、請求項1から請求項3のいずれか1項に記載の生化学分析装置。 - 前記制御装置は、
前記分析測定の開始前に、前記複数の測定用ポートの各々について前記ブランク測定を行なう第1の処理を実行し、
前記分析測定の開始後に、前記反応容器が未配置の測定用ポートについて前記ブランク測定を行なう第2の処理を実行し、
前記第2の処理が実行された測定用ポートについて、前記第1の処理において求められた光量比と、前記第2の処理において求められた光量比との差がしきい値よりも大きい場合に、当該測定用ポートについてエラーと判定し、
前記第2の処理が実行された測定用ポートについて、前記エラー数が前記所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定し、前記エラー数が前記所定値以上の場合に、前記参照用ポートを異常と判定するように構成される、請求項1から請求項4のいずれか1項に記載の生化学分析装置。 - 検体と試薬とを反応容器内で反応させることにより検体の生化学分析を行なう生化学分析方法であって、
前記生化学分析を行なう装置は、
分析測定時に、複数の前記反応容器がそれぞれ配置され、各々において前記反応容器を透過した透過光の光量が測定される複数の測定用ポートと、
前記反応容器に照射される照射光に相当する光の光量が測定される参照用ポートとを備えており、
前記生化学分析方法は、
前記反応容器が配置された測定用ポートにおいて測定される光量と、前記参照用ポートにおいて測定される光量との比に基づいて、前記反応容器内の検体の分析を行なうステップと、
前記複数の測定用ポートの各々について、前記反応容器を未配置の状態で、当該測定用ポートにおいて測定される光量と、前記参照用ポートにおいて測定される光量との比である光量比を求めるブランク測定を実行するステップと、
前記ブランク測定において、前記光量比が所定範囲外の場合に、当該測定用ポートについてエラーと判定するステップと、
エラーと判定された測定用ポートの数を示すエラー数が所定値よりも小さい場合に、エラーと判定された測定用ポートを異常と判定するステップと、
前記エラー数が前記所定値以上の場合に、前記参照用ポートを異常と判定するステップとを含む、生化学分析方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021537570A JP7276462B2 (ja) | 2019-08-06 | 2020-03-04 | 生化学分析装置及び生化学分析方法 |
CN202080054779.9A CN114174834A (zh) | 2019-08-06 | 2020-03-04 | 生物化学分析装置和生物化学分析方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-144238 | 2019-08-06 | ||
JP2019144238 | 2019-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021024531A1 true WO2021024531A1 (ja) | 2021-02-11 |
Family
ID=74502621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/009037 WO2021024531A1 (ja) | 2019-08-06 | 2020-03-04 | 生化学分析装置及び生化学分析方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7276462B2 (ja) |
CN (1) | CN114174834A (ja) |
WO (1) | WO2021024531A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181059A1 (ja) * | 2023-02-27 | 2024-09-06 | 株式会社日立ハイテク | 自動分析装置、および自動分析方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029595A1 (ja) * | 2013-08-27 | 2015-03-05 | 株式会社日立ハイテクノロジーズ | 核酸分析装置およびその装置診断方法 |
JP2017111145A (ja) * | 2015-12-17 | 2017-06-22 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | 生物学的試料用の光学測定装置における較正および/またはエラー検出 |
JP2017129460A (ja) * | 2016-01-20 | 2017-07-27 | 日本電子株式会社 | 自動分析装置、光源異常検出方法及びプログラム |
-
2020
- 2020-03-04 WO PCT/JP2020/009037 patent/WO2021024531A1/ja active Application Filing
- 2020-03-04 CN CN202080054779.9A patent/CN114174834A/zh active Pending
- 2020-03-04 JP JP2021537570A patent/JP7276462B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029595A1 (ja) * | 2013-08-27 | 2015-03-05 | 株式会社日立ハイテクノロジーズ | 核酸分析装置およびその装置診断方法 |
JP2017111145A (ja) * | 2015-12-17 | 2017-06-22 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | 生物学的試料用の光学測定装置における較正および/またはエラー検出 |
JP2017129460A (ja) * | 2016-01-20 | 2017-07-27 | 日本電子株式会社 | 自動分析装置、光源異常検出方法及びプログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181059A1 (ja) * | 2023-02-27 | 2024-09-06 | 株式会社日立ハイテク | 自動分析装置、および自動分析方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7276462B2 (ja) | 2023-05-18 |
JPWO2021024531A1 (ja) | 2021-02-11 |
CN114174834A (zh) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4881855B2 (ja) | 検体分析方法および検体分析装置 | |
US8545760B2 (en) | Specimen analyzing method and specimen analyzing apparatus | |
US7842509B2 (en) | Blood analyzer and blood analyzing method | |
WO2009122993A1 (ja) | 血液凝固分析装置、血液凝固分析方法、及びコンピュータプログラム | |
JP2007322324A (ja) | 分析装置 | |
CN108027380B (zh) | 自动分析装置 | |
JP6636047B2 (ja) | 自動分析装置及びその制御方法 | |
JP2007303937A (ja) | 自動分析装置 | |
JP4758793B2 (ja) | 試料分析方法および試料分析装置 | |
WO2021024531A1 (ja) | 生化学分析装置及び生化学分析方法 | |
WO2011090173A1 (ja) | 自動分析装置 | |
US7961324B2 (en) | Wavelength identification method and analyzer | |
JP5271929B2 (ja) | 自動分析装置 | |
JP2007322246A (ja) | 自動分析装置 | |
US20240201083A1 (en) | Diagnostic instruments having multiple illumination sources and methods thereof | |
JP7525395B2 (ja) | 測定装置 | |
JP7520613B2 (ja) | 自動分析装置 | |
JP7350478B2 (ja) | 自動分析装置 | |
JPS6125064A (ja) | 自動化学分析装置 | |
WO2023090017A1 (ja) | 分析装置、および方法 | |
JP7334697B2 (ja) | 自動分析装置 | |
JP2016170075A (ja) | 自動分析装置及び自動分析方法 | |
CN111751280A (zh) | 自动分析装置 | |
JP5205124B2 (ja) | 自動分析装置及びその管理方法 | |
US20230069747A1 (en) | Automatic analyzing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20849672 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021537570 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20849672 Country of ref document: EP Kind code of ref document: A1 |