WO2021024492A1 - 端末装置、無線通信システム及び無線通信方法 - Google Patents

端末装置、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2021024492A1
WO2021024492A1 PCT/JP2019/031521 JP2019031521W WO2021024492A1 WO 2021024492 A1 WO2021024492 A1 WO 2021024492A1 JP 2019031521 W JP2019031521 W JP 2019031521W WO 2021024492 A1 WO2021024492 A1 WO 2021024492A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
dmrs
wireless communication
pscch
communication
Prior art date
Application number
PCT/JP2019/031521
Other languages
English (en)
French (fr)
Inventor
フィテン チェン
ジヤンミン ウー
紅陽 陳
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/031521 priority Critical patent/WO2021024492A1/ja
Publication of WO2021024492A1 publication Critical patent/WO2021024492A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal device, a wireless communication system, and a wireless communication method.
  • the traffic of mobile terminals occupies most of the network resources.
  • the traffic used by mobile terminals tends to increase in the future.
  • 5G is expected to support many use cases in order to support a wide variety of services.
  • Use cases are classified into, for example, eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication).
  • eMBB Enhanced Mobile BroadBand
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • D2D communication is called, for example, side link communication, and there is, for example, V2X.
  • V2X is, for example, V2V (Vehicle to Vehicle) indicating communication between vehicles, V2P (Vehicle to Pedestrian) indicating communication between a vehicle and a pedestrian, and V2I (Vehicle) indicating communication between a vehicle and a road infrastructure such as a sign. to Infrastructure), V2N (Vehicle to Network), etc., which indicates communication between a car and a network.
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I Vehicle indicating communication between a vehicle and a road infrastructure
  • V2N Vehicle to Network
  • the provisions regarding V2X are described in, for example, Non-Patent Documents 1 to 3.
  • DMRS Demodulation Reference signal
  • PSCCH Physical Control Channel
  • the terminal device for transmitting the PSCCH selects and uses the DMRS sequence for transmitting the PSCCH from the four defined DMRS sequences.
  • the receiving terminal device attempts to decode all the defined DMRS sequences in order to identify which of the DMRS sequences defined for the received PSCCH is selected by the transmitting terminal device.
  • HARQ Hybrid Automatic repeat request
  • the distance between the terminal device on the transmitting side and the terminal device on the receiving side is compared with the communication range specified for each data, and whether or not to give feedback such as ACK and NACK is determined. It has been proposed to determine (Non-Patent Documents 37 and 38).
  • the distance between the transmitting side terminal device and the receiving side terminal device is estimated based on the position information of the transmitting side terminal device and the position information of the receiving side terminal device.
  • the position information of the terminal device on the transmitting side and the communication range defined for each data are transmitted to the terminal device on the receiving side using, for example, SCI (Sidelink Control information) which is control information included in the PSCCH.
  • the disclosed technology aims to provide a terminal device, a wireless communication system, and a wireless communication method capable of reducing the overhead of a control channel.
  • the terminal device disclosed in the present application includes a control unit that determines a DMRS attribute according to at least one of position information and a communication range, a communication unit that transmits a PSCCH or a PSCH using the DMRS attribute, and a communication unit. Has.
  • FIG. 1 is an explanatory diagram showing an example of the wireless communication system of the first embodiment.
  • FIG. 2 is a diagram showing an example of a functional configuration of the base station apparatus according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the terminal device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a specific example of the operation of the terminal device according to the first embodiment.
  • FIG. 5 is a sequence diagram showing an example of the operation of the wireless communication system according to the first embodiment.
  • FIG. 6 is a sequence diagram showing another example of the operation of the wireless communication system according to the first embodiment.
  • FIG. 7 is a diagram illustrating a specific example of the operation of the terminal device according to the second embodiment.
  • FIG. 8 is a diagram for explaining the reuse of the zone ID.
  • FIG. 9 is a diagram showing a hardware configuration example of the terminal device.
  • FIG. 10 is a diagram showing a hardware configuration example of the base station apparatus.
  • FIG. 1 is an explanatory diagram showing an example of the wireless communication system of the first embodiment.
  • the wireless communication system 1 shown in FIG. 1 has a plurality of terminal devices (UE: User Equipment) 20 and a base station device (BS: Base Station) 30.
  • UE User Equipment
  • BS Base Station
  • NR-V2V New Radio-Vehicle to Vehicle
  • the resource allocation method for V2V communication includes, for example, mode 1 and mode 2.
  • Mode 1 is a method in which the base station device 30 of the wireless communication system 1A centrally controls resources, and is applicable when the terminal device 20 that implements V2X is in the coverage of the base station device 30.
  • the mode 2 is a method in which each terminal device 20 that performs V2V communication is autonomously controlled, and can be applied even if the terminal device 20 is not in the coverage of the base station device 30. In mode 2, communication for resource allocation is not performed between the terminal device 20 and the base station device 30.
  • Each terminal device 20 in the wireless communication system 1B used in mode 2 senses the frequency band used for V2V communication. Specifically, the terminal device 20 receives SCI (Sidelink Control Information) transmitted by PSCCH of the entire frequency band used for V2V communication in a predetermined sensing period, and receives the corresponding side link data channel (PSSCH). : Physical Sidelink Shared CHannel) Measures the received power of the reference signal at the sub-channel particle size. Then, the terminal device 20 determines whether or not another terminal device 20 is transmitting a signal in each slot and subchannel. When the terminal device 20 detects a transmission request for data transmission, the terminal device 20 selects a resource to be assigned to data transmission based on the sensing result, and transmits data with the selected resource.
  • SCI Segment Control Information
  • PSSCH side link data channel
  • a group may be further composed of a plurality of terminal devices 20.
  • one terminal device 20 may be a head station (or a scheduling station (scheduling UE)), and a terminal device 20 other than the head station may be a member station. Then, the head station may schedule to autonomously allocate radio resources to a plurality of member stations.
  • FIG. 2 is a diagram showing an example of the functional configuration of the base station device 30 according to the first embodiment.
  • the base station apparatus 30 includes a wireless communication unit 31, a control unit 34, a storage unit 35, and a communication unit 36.
  • the wireless communication unit 31 has a wireless transmission unit 32 and a wireless reception unit 33.
  • the communication unit 36 is an interface to the network.
  • the wireless receiving unit 33 receives, for example, measurement information measured by the terminal device 20 (for example, speed information regarding moving speed, information measuring radio quality, etc.) from the terminal device 20 and supplies the measurement information to the control unit 34.
  • the wireless receiving unit 33 may not receive the measurement information depending on the state of the terminal device 20.
  • the wireless transmission unit 32 periodically transmits the synchronization signal and the broadcast information into the own cell by beam sweeping.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the terminal device 20 according to the first embodiment.
  • the terminal device 20 includes a wireless communication unit 21, a control unit 24, a storage unit 25, and a wireless communication unit 27.
  • the wireless communication unit 21 is a wireless interface used for communication with the base station device 30, and includes a wireless transmission unit 22 and a wireless reception unit 23.
  • the wireless communication unit 27 is a wireless interface for the side link (D2D), and has a wireless transmission unit 28 and a wireless reception unit 29.
  • the wireless communication unit 27 may be configured as the same functional unit as the wireless communication unit 21.
  • the control unit 24 detects the current position of the terminal device 20 via GPS (Global Positioning Satellite) or the like, generates a zone ID that identifies the current position of the terminal device 20 with respect to a predetermined origin, and wirelessly transmits the zone ID. It can be supplied to the unit 22 or the wireless transmission unit 28.
  • GPS Global Positioning Satellite
  • the wireless reception unit 23 receives, for example, broadcast information and a downlink data channel (PDSCH: Physical Downlink Shared Channel) from the base station device 30.
  • PDSCH Physical Downlink Shared Channel
  • the control unit 24 performs wireless measurement at a measurement cycle according to the broadcast information, and transmits the measurement result to the base station device via the wireless transmission unit 22. Send to 30.
  • the control unit 24 executes side link communication with another terminal device 20 via the wireless communication unit 27 by using the DMRS attribute generated by the process described later. That is, the wireless communication unit 27 transmits PSCCH or PSCH (Physical Sidelink Shared CHannel) using the generated DMRS attribute.
  • PSCCH or PSCH Physical Sidelink Shared CHannel
  • the control unit 24 determines the DMRS attribute according to at least one of the position information and the communication range.
  • the position information is, for example, a zone ID for identifying the current position of the terminal device 20 with respect to a predetermined origin.
  • the communication range is a communication range defined for each data transmitted by the terminal device 20.
  • the DMRS attribute may be either a DMRS attribute arranged on the PSCCH (hereinafter referred to as "PSCCH_DMRS”) or a DMRS attribute arranged on the PSCCH (hereinafter referred to as "PSSCH_DMRS").
  • the DMRS attribute is determined from, for example, a DMRS sequence, a resource mapping rule, and an antenna port, depending on at least one of the location information and the communication range.
  • a DMRS sequence for example, sequence initialization parameters, cyclic shift, and orthogonal cover codes (OCCs: Orthogonal Cover Codes) are used.
  • OCCs orthogonal Cover Codes
  • the control unit 24 determines the DMRS attribute by using the correspondence information in which at least one of the position information and the communication range is associated with the DMRS attribute.
  • Correspondence information is stored in, for example, the storage unit 25.
  • the control unit 24 has at least one of the position information and the communication range based on the DMRS attribute used for the PSCCH or PSCH received from the terminal device 20 on the transmitting side. To get.
  • the control unit 24 uses the corresponding information in which at least one of the position information and the communication range is associated with the DMRS attribute to obtain the position information and the communication range corresponding to the DMRS attribute used in the received PSCCH or PSCH. Get at least one.
  • Correspondence information is stored in, for example, the storage unit 25.
  • FIG. 4 is a diagram illustrating a specific example of the operation of the terminal device 20 in the first embodiment.
  • FIG. 4 shows a specific example of the operation of the terminal device 20 on the transmitting side.
  • the control unit 24 determines the DMRS sequence according to the position information of the own terminal device 20. Specifically, the control unit 24 determines the DMRS sequence according to the zone ID of the own terminal device 20.
  • the area in a predetermined range is divided into 16 zones identified by 16 zone IDs consisting of zones 0 to 15 according to the geographical distance from the predetermined origin. Then, as shown in the lower part of FIG. 4, a DMRS sequence set including one or a plurality of sequences is set for each zone ID. For example, the DMRS sequence set corresponding to zone 0 is set0. set0 contains two sequences consisting of # 0 and # 1.
  • the control unit 24 selects a DMRS sequence set including one or a plurality of sequences according to the zone ID of the own terminal device 20, and determines one DMRS sequence from the selected DMRS sequence set.
  • the method for determining one DMRS sequence from the DMRS sequence set is not particularly limited.
  • the control unit 24 may randomly determine one DMRS sequence from the DMRS sequence set.
  • control unit 24 selects set0, which is a DMRS sequence set corresponding to zone 0, and determines one DMRS sequence from set0. ..
  • the wireless communication unit 27 transmits the PSCCH or the PSCH using the DMRS sequence determined by the control unit 24.
  • the receiving side terminal device 20 can acquire the zone ID of the transmitting side terminal device 20 based on the DMRS sequence used for the PSCCH or PSCH received from the transmitting side terminal device 20.
  • FIG. 5 is a sequence diagram showing an example of the operation of the wireless communication system 1 according to the first embodiment.
  • the terminal device 20 on the transmitting side will be referred to as “transmitting UE 20A”
  • the terminal device 20 on the receiving side will be referred to as “receiving UE 20B”.
  • FIG. 5 illustrates the operation of the wireless communication system 1 when the transmitting UE 20A and the receiving UE 20B are in the coverage of the base station apparatus 30.
  • the base station apparatus 30 transmits the corresponding information in which the zone ID, which is an example of the position information, and the DMRS attribute are associated with each other to the transmitting UE 20A and the receiving UE 20B via the PBCH (Physical Broadcast Channel) or the PDSCH (step S1).
  • PBCH Physical Broadcast Channel
  • PDSCH Physical Broadcast Channel
  • the transmitting UE 20A and the receiving UE 20B receive the correspondence information and store the received correspondence information in their respective storage units 25 (steps S2 and S3).
  • the transmitting UE 20A acquires the zone ID, refers to the correspondence information, and determines the DMRS attribute corresponding to the zone ID as PSCCH_DMRS (step S4).
  • the transmitting UE 20A maps the determined PSCCH_DMRS together with the SCI to the PSCCH and transmits the determined PSCCH_DMRS to the receiving UE 20B (step S5).
  • the SCI includes a communication range defined for each data transmitted by the transmitting UE 20A.
  • the transmitting UE 20A maps the data to the PSSCH and transmits it to the receiving UE 20B (step S6).
  • the receiving UE 20B When the receiving UE 20B receives the PSCCH from the transmitting UE 20A, the receiving UE 20B detects the PSCCH_DMRS and acquires the zone ID of the transmitting UE 20A corresponding to the PSCCH_DMRS by referring to the corresponding information (step S7). Further, the receiving UE 20B decodes the SCI of the PSCCH to acquire the communication range included in the SCI.
  • the receiving UE 20B estimates the distance between the transmitting UE 20A and the receiving UE 20B based on the zone ID of the transmitting UE 20A and the zone ID of the receiving UE 20B, compares the estimated distance between terminals with the communication range, and NACKs. Determine whether or not to give feedback. For example, the receiving UE 20B determines that NACK feedback is performed when the distance between terminals is less than or equal to the communication range, and determines that NACK feedback is not performed when the distance between terminals is larger than the communication range.
  • step S1 of FIG. 5 an example is shown in which the base station device 30 transmits the correspondence information in which the zone ID and the DMRS attribute are associated with each other to the transmitting UE 20A and the receiving UE 20B, but scheduling in a group of a plurality of terminal devices 20
  • the station may send the correspondence information.
  • the scheduling station transmits the correspondence information to the transmitting UE 20A and the receiving UE 20B via the PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • step S4 of FIG. 5 an example in which the transmitting UE 20A determines the DMRS attribute as PSCCH_DMRS is shown, but the DMRS attribute may be determined as PSCH_DMRS.
  • the transmitting UE 20A maps the PSCH_DMRS together with the data to the PSCH and transmits the PSCH_DMRS to the receiving UE 20B.
  • the receiving UE 20B receives the PSCH from the transmitting UE 20A
  • the receiving UE 20B detects the PSCH_DMRS and acquires the zone ID of the transmitting UE 20A corresponding to the PSCH_DMRS by referring to the corresponding information.
  • the terminal device 20 may store in advance the correspondence information in which the zone ID and the DMRS attribute are associated with each other. That is, when the terminal device 20 is not in the coverage of the base station device 30, each terminal device 20 may store the corresponding information in advance.
  • FIG. 6 is a sequence diagram showing another example of the operation of the wireless communication system 1 according to the first embodiment. The transmitting UE 20A and the receiving UE 20B shown in FIG.
  • the correspondence information held in the storage unit 25 of the transmitting UE 20A and the correspondence information held in the storage unit 25 of the receiving UE 20B have the same contents.
  • the transmitting UE 20A acquires the zone ID, refers to the correspondence information, and determines the DMRS attribute corresponding to the zone ID as PSCCH_DMRS (step S11).
  • the transmitting UE 20A maps the determined PSCCH_DMRS together with the SCI to the PSCCH and transmits the determined PSCCH_DMRS to the receiving UE 20B (step S12).
  • the SCI includes a communication range defined for each data transmitted by the transmitting UE 20A.
  • the transmitting UE 20A maps the data to the PSSCH and transmits it to the receiving UE 20B (step S13).
  • the receiving UE 20B When the receiving UE 20B receives the PSCCH from the transmitting UE 20A, the receiving UE 20B detects the PSCCH_DMRS and acquires the zone ID of the transmitting UE 20A corresponding to the PSCCH_DMRS by referring to the corresponding information (step S14). Further, the receiving UE 20B decodes the SCI of the PSCCH to acquire the communication range included in the SCI.
  • the terminal device 20 has a control unit 24 and a wireless communication unit 27.
  • the control unit 24 determines the DMRS attribute according to at least one of the position information and the communication range. Specifically, the control unit 24 determines at least one DMRS attribute from the DMRS sequence, the resource mapping rule, and the antenna port according to at least one of the position information and the communication range.
  • the wireless communication unit 27 transmits the PSCCH or the PSCH using the determined DMRS attribute. Thereby, the position information and the communication range of the terminal device 20 on the transmitting side can be notified to the terminal device on the receiving side by using the arrangement of the DMRS attribute without using SCI. Therefore, the size of the SCI contained in the PSCCH can be reduced, and as a result, the overhead of the control channel can be reduced.
  • the feature of the second embodiment is that the terminal device 20 determines the DMRS attribute according to the position information or a part of the communication range. Since the wireless communication system 1 according to the second embodiment is the same as the wireless communication system 1 (see FIGS. 1 to 3) according to the first embodiment, the description thereof will be omitted, and the differences will be described.
  • FIG. 7 is a diagram illustrating a specific example of the operation of the terminal device 20 in the second embodiment.
  • FIG. 7 shows an example in which the DMRS sequence is determined according to a part of the zone ID which is an example of the position information.
  • the number of DMRS sequence sets increases as the number of bits in the zone ID or communication range increases. For example, if the zone ID is 10 bits, the number of DMRS sequence sets can be up to 1024. If the number of DMRS sequence sets is excessively large, the detection of DMRS sequences becomes complicated and the probability of false detection increases.
  • a part of the zone ID or the communication range is implicitly notified by the DMRS attribute, and the other part of the zone ID or the communication range is explicitly notified by the SCI. ..
  • a DMRS sequence set including one or a plurality of sequences is set according to the 4 bits which are the least significant bits of all 10 bits of the zone ID.
  • the control unit 24 selects a DMRS sequence set including one or a plurality of sequences according to the lowest 4 bits of the zone ID of the own device, and determines one DMRS sequence from the selected DMRS sequence set. .. Then, the control unit 24 generates an SCI including the first 6 bits other than the lowest 4 bits of the zone ID.
  • the radio communication unit 27 transmits the PSCCH using the determined DMRS sequence and SCI.
  • the number of DMRS sequence sets can be reduced from 1024 corresponding to all 10 bits of the zone ID to 16 corresponding to the lowest 4 bits of the zone ID. Therefore, it is possible to suppress the complexity of detecting the DMRS sequence and reduce the probability of false detection.
  • the control unit 24 determines the DMRS attribute according to a part of the position information or the communication range, and determines the SCI including the other part of the position information or the communication range. Generate.
  • the radio communication unit 27 transmits the PSCCH using the determined DMRS sequence and SCI. As a result, the overhead of the control channel can be reduced, and the probability of false detection of the DMRS sequence can be reduced.
  • the zone ID may be reused for a plurality of regions different from each other.
  • FIG. 8 is a diagram for explaining the reuse of the zone ID.
  • nine zone IDs including zones 1 to 9 are repeatedly assigned to two different regions.
  • the receiving terminal device 20 may erroneously identify the position of the transmitting terminal device 20.
  • the receiving side terminal device 20 located in the zone 7 erroneously identifies that the transmitting side terminal device 20 is located in the right zone 5 even if the transmitting terminal device 20 is actually located in the left zone 5. There is.
  • the inter-terminal distance is not correctly estimated from the zone ID of the transmitting side terminal device 20 and the zone ID of the receiving side terminal device 20, so that the inter-terminal distance and the communication range CR are set.
  • the accuracy of the based HARQ feedback determination is reduced.
  • the terminal device 20 on the receiving side may perform the HARQ feedback determination in consideration of the received signal strength. That is, the terminal device 20 determines that NACK feedback is performed when the received signal strength is larger than a predetermined threshold value and the distance between terminals is equal to or less than the communication range CR. On the other hand, the terminal device 20 determines that NACK feedback is not performed when the received signal strength is equal to or less than a predetermined threshold value or when the distance between terminals is larger than the communication range CR.
  • the received signal strength for example, RSRP (Reference Signal Received Power) can be used.
  • the terminal device 20 on the transmitting side may preset a plurality of sets of the communication range and implicitly notify the information identifying each set by the DMRS attribute.
  • the communication range is divided into 10 sets in the range of 50 m to 1000 m, and the value that identifies each set (for example, a 4-bit value) is DMRS. It may be implicitly notified by a sequence.
  • FIG. 9 is a diagram showing a hardware configuration example of the terminal device 20.
  • the terminal device 20 includes a CPU (Central Processing Unit) 10a, a memory 10b, and an RF (Radio Frequency) circuit 10c having an antenna A1.
  • the memory 10b is composed of, for example, a RAM such as an SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), and a flash memory.
  • the storage unit 25 is realized by, for example, the memory 10b.
  • the control unit 24 is realized by, for example, the CPU 10a.
  • the wireless communication units 21 and 27 are realized by, for example, a CPU 10a and an RF circuit 10c.
  • FIG. 10 is a diagram showing a hardware configuration example of the base station device 30.
  • the base station apparatus 30 includes a DSP (Digital Signal Processor) 30a, an FPGA (Field Programmable Gate Array) 30b, a memory 30c, an RF circuit 30d, and a network IF (Inter Face) 30e.
  • the DSP 30a and the FPGA 30b are connected so that various signals and data can be input and output via a network IF30e such as a switch.
  • the RF circuit 30d has an antenna A2.
  • the memory 30c is composed of, for example, a RAM such as SDRAM, a ROM, and a flash memory.
  • the storage unit 35 is realized by, for example, the memory 30c.
  • the control unit 34 is realized by, for example, an RF circuit 30d, a DSP 30a, and an FPGA 30b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置は、位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する制御部と、DMRS属性を使用してPSCCH又はPSSCHを送信する通信部と、を有する。

Description

端末装置、無線通信システム及び無線通信方法
 本発明は、端末装置、無線通信システム及び無線通信方法に関する。
 現在のネットワークは、モバイル端末(スマートフォンやフューチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。
 一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、次世代(例えば、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献4~13)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められておいる(非特許文献14~36)。
 上記で述べたように、多種多様なサービスに対応するために、5Gでは、多くのユースケースのサポートを想定している。ユースケースは、例えば、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される。
 また、3GPPの作業部会では、D2D(Device to Device)通信についても議論されている。D2D通信は、例えば、サイドリンク通信と呼ばれ、例えば、V2Xがある。V2Xは、例えば、自動車間通信を示すV2V(Vehicle to Vehicle)、自動車と歩行者(Pedestrian)との通信を示すV2P(Vehicle to Pedestrian)、自動車と標識等の道路インフラの通信を示すV2I(Vehicle to Infrastructure)、自動車とネットワークとの通信を示すV2N(Vehicle to Network)等がある。V2Xに関する規定は、例えば、非特許文献1~3に記載されている。
 LTEで規定されているV2Xでは、サイドリンク制御チャネル(PSCCH:Physical Control Channel)用のDMRS(Demodulation Reference signal)シーケンスが定義されている。
 PSCCHを送信する端末装置は、定義される4つのDMRSシーケンスからPSCCHを送信するためのDMRSシーケンスを選択して用いる。受信側の端末装置では、受信したPSCCHに対して定義されているDMRSシーケンスのうち送信側の端末装置がどれを選択したか識別するために、定義されている全てのDMRSシーケンスで復号を試みる。
 また、現在3GPPでは、V2Xにおけるハイブリッド自動再送要求(HARQ:Hybrid Automatic repeat request)が議論されている。V2XにおけるHARQでは、送信側の端末装置と受信側の端末装置との間の距離と、データごとに規定される通信範囲とを比較して、例えばACK及びNACKなどのフィードバックを行うか否かを判定することが提案されている(非特許文献37、38)。送信側の端末装置と受信側の端末装置との間の距離は、送信側の端末装置の位置情報と受信側の端末装置の位置情報とに基づいて推定される。送信側の端末装置の位置情報とデータごとに規定される通信範囲とは、例えば、PSCCHに含まれる制御情報であるSCI(Sidelink Control information)を用いて受信側の端末装置へ送信される。
3GPP TS 22.186 V16.2.0(2019-06) 3GPP TR 22.885 V14.0.0(2015-12) 3GPP TR 22.886 V16.2.0(2018-12) 3GPP TS 36.133 V16.0.0(2018-12) 3GPP TS 36.211 V15.5.0(2019-03) 3GPP TS 36.212 V15.5.0(2019-03) 3GPP TS 36.213 V15.5.0(2019-03) 3GPP TS 36.214 V15.3.0(2018-09) 3GPP TS 36.300 V15.5.0(2019-03) 3GPP TS 36.321 V15.5.0(2019-03) 3GPP TS 36.322 V15.1.0(2018-07) 3GPP TS 36.323 V15.3.0(2019-03) 3GPP TS 36.331 V15.5.1(2019-04) 3GPP TS 37.340 V15.5.0(2019-03) 3GPP TS 38.201 V15.0.0(2017-12) 3GPP TS 38.202 V15.4.0(2018-12) 3GPP TS 38.211 V15.5.0(2019-03) 3GPP TS 38.212 V15.5.0(2019-03) 3GPP TS 38.213 V15.5.0(2019-03) 3GPP TS 38.214 V15.5.0(2019-03) 3GPP TS 38.215 V15.5.0(2019-03) 3GPP TS 38.300 V15.5.0(2019-03) 3GPP TS 38.321 V15.5.0(2019-03) 3GPP TS 38.322 V15.5.0(2019-03) 3GPP TS 38.323 V15.5.0(2019-03) 3GPP TS 38.331 V15.5.1(2019-04) 3GPP TS 38.470 V15.5.0(2019-03) 3GPP TS 38.473 V15.5.0(2019-03) 3GPP TR 23.501 V16.1.0(2019-06) 3GPP TR 38.801 V14.0.0(2017-03) 3GPP TR 38.802 V14.2.0(2017-09) 3GPP TR 38.803 V14.2.0(2017-09) 3GPP TR 38.804 V14.0.0(2017-03) 3GPP TR 38.900 V15.0.0(2018-06) 3GPP TR 38.912 V15.0.0(2018-06) 3GPP TR 38.913 V15.0.0(2018-06) NR Sidelink Physical Layer Procedure, Qualcomm Incorporated, NTT DOCOMO, INC., 3GPP TSG RAN WG1 Meeting #97, R1-1907274, Reno, USA, 13-17 May 2019 Physical layer procedures for sidelink, 3GPP TSG RAN WG1 #97, R1-1906209, Reno, USA, 13-17 May, 2019
 ところで、PSCCHに含まれるSCIを用いて位置情報及び通信範囲の両方が送信される場合、SCIのサイズが増大するため、PSCCHのオーバヘッドが増加するという問題がある。
 開示の技術は、制御チャネルのオーバヘッドを低減することができる端末装置、無線通信システム及び無線通信方法を提供することを目的とする。
 本願の開示する端末装置は、一つの態様において、位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する制御部と、前記DMRS属性を使用してPSCCH又はPSSCHを送信する通信部と、を有する。
 本願の開示する通信装置の一つの態様によれば、制御チャネルのオーバヘッドを低減することができる、という効果を奏する。
図1は、実施例1の無線通信システムの一例を示す説明図である。 図2は、実施例1に係る基地局装置の機能的構成の一例を示す図である。 図3は、実施例1に係る端末装置の機能的構成の一例を示すブロック図である。 図4は、実施例1における端末装置の動作の具体例を説明する図である。 図5は、実施例1に係る無線通信システムの動作の一例を示すシーケンス図である。 図6は、実施例1に係る無線通信システムの動作の他の一例を示すシーケンス図である。 図7は、実施例2における端末装置の動作の具体例を説明する図である。 図8は、ゾーンIDの再利用を説明するための図である。 図9は、端末装置のハードウェア構成例を示す図である。 図10は、基地局装置のハードウェア構成例を示す図である。
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなどの通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書としては、例えば、上述した3GPP TS 38.211 V15.1.0(2018-03)がある。
 以下に、本願の開示する端末装置、無線通信システム及び無線通信方法の実施例を図面に基づいて詳細に説明する。なお、実施例により開示技術が限定されるものではない。また、各実施例において同等の機能を有する構成には同一の符号を付し、重複する説明は省略される。
 図1は、実施例1の無線通信システムの一例を示す説明図である。図1に示す無線通信システム1は、複数の端末装置(UE:User Equipment)20と、基地局装置(BS:Base Station)30とを有する。無線通信システム1A、1Bには、端末装置20を車両に配置し、端末装置20間の直接通信を実現するリソース割当方式として、例えば、NR-V2V(New Radio-Vehicle to Vehicle)がある。V2V通信のリソース割当方式には、例えば、モード1及びモード2がある。
 モード1は、無線通信システム1Aの基地局装置30が集中的にリソースを制御する方式であり、V2Xを実施する端末装置20が基地局装置30のカバレッジに在圏する際に適用可能である。一方、モード2は、V2V通信を実施する各端末装置20が自律的に制御する方式であり、端末装置20が基地局装置30のカバレッジに在圏しなくても適用可能である。モード2では、端末装置20と基地局装置30との間でのリソースの割当のための通信が行われない。
 モード2で使用する無線通信システム1B内の各端末装置20は、V2V通信に用いられる周波数帯域をセンシングする。具体的には、端末装置20は、所定のセンシング期間において、V2V通信に用いられる周波数帯域全体のPSCCHで送信されているSCI(Sidelink Control Information)を受信し、対応するサイドリンクのデータチャネル(PSSCH:Physical Sidelink Shared CHannel)の参照信号の受信電力をサブチャネル粒度で計測する。そして、端末装置20は、それぞれのスロット及びサブチャネルにおいて他の端末装置20が信号を送信しているか否かを判定する。端末装置20は、データ送信の送信要求を検出した場合、センシング結果に基づき、データ送信に割り当てるリソースを選択し、選択したリソースでデータを送信する。
 なお、モード2ではさらに、複数の端末装置20でグループを構成してもよい。この場合、複数の端末装置20の内、1台の端末装置20をヘッド局(又はスケジューリング局(scheduling UE))、ヘッド局以外の他の端末装置20をメンバ局としてもよい。そして、ヘッド局が複数のメンバ局に対して無線リソースを自律的に割り当てるスケジューリングを行ってもよい。
 図2は、実施例1に係る基地局装置30の機能的構成の一例を示す図である。図2に示すように、基地局装置30は、無線通信部31、制御部34、記憶部35、及び通信部36を有する。無線通信部31は、無線送信部32及び無線受信部33を有する。通信部36は、ネットワークに対するインターフェースである。
 無線受信部33は、例えば、端末装置20で測定された測定情報(例えば、移動速度に関する速度情報、無線品質を測定した情報等)を端末装置20から受信し、制御部34へ供給する。なお、無線受信部33は、端末装置20の状態に応じて測定情報を受信しない場合もある。また、無線送信部32は、同期信号及び報知情報を自セル内にビームスイーピングで周期的に送信する。
 図3は、実施例1に係る端末装置20の機能的構成の一例を示すブロック図である。図3に示すように、端末装置20は、無線通信部21、制御部24、記憶部25、及び無線通信部27を有する。無線通信部21は、基地局装置30との通信に用いられる無線インターフェースであり、無線送信部22及び無線受信部23を有する。無線通信部27は、サイドリンク(D2D)用の無線インターフェースであり、無線送信部28及び無線受信部29を有する。なお、無線通信部27は、無線通信部21と同一の機能部として構成されてもよい。
 制御部24は、例えば、GPS(Global Positioning Satellite)等を介して端末装置20の現在位置を検知し、予め定められた原点に対する端末装置20の現在位置を識別するゾーンIDを生成して無線送信部22または無線送信部28へ供給することができる。
 無線受信部23は、例えば、基地局装置30から報知情報や、ダウンリンクのデータチャネル(PDSCH:Physical Downlink Shared Channel)を受信する。制御部24は、端末装置20が基地局装置30のセルを選択している場合に報知情報に応じた測定周期で無線測定を行って、無線送信部22を介して、測定結果を基地局装置30に送信する。
 制御部24は、後述する処理によって生成されたDMRS属性を用いて、無線通信部27を介して他の端末装置20とのサイドリンク通信を実行する。つまり、無線通信部27は、生成されたDMRS属性を使用してPSCCH又はPSSCH(Physical Sidelink Shared CHannel)を送信する。
 具体的には、制御部24は、端末装置20が送信側の端末装置である場合、位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する。ここで、位置情報は、例えば、予め定められた原点に対する端末装置20の現在位置を識別するためのゾーンIDである。通信範囲(Communication Range)は、端末装置20が送信するデータごとに規定される通信範囲である。DMRS属性は、PSCCHに配置されるDMRS属性(以下「PSCCH_DMRS」と表記)及びPSSCHに配置されるDMRS属性(以下「PSSCH_DMRS」と表記)のいずれであってもよい。DMRS属性は、位置情報及び通信範囲の少なくとも一方に応じて、例えば、DMRSシーケンス、リソースマッピングルール及びアンテナポートの中から決定される。DMRSシーケンスとしては、例えば、シーケンス初期化パラメータ、サイクリックシフト、直交カバーコード(OCCs:Orthogonal Cover Codes)が用いられる。例えば、制御部24は、位置情報及び通信範囲の少なくとも一方とDMRS属性とを対応付けた対応情報を用いて、DMRS属性を決定する。対応情報は、例えば記憶部25に格納されている。
 また、制御部24は、端末装置20が受信側の端末装置である場合、送信側の端末装置20から受信したPSCCH又はPSSCHに使用されているDMRS属性に基づき、位置情報及び通信範囲の少なくとも一方を取得する。例えば、制御部24は、位置情報及び通信範囲の少なくとも一方とDMRS属性とを対応付けた対応情報を用いて、受信したPSCCH又はPSSCHに使用されているDMRS属性に対応する位置情報及び通信範囲の少なくとも一方を取得する。対応情報は、例えば記憶部25に格納されている。
 以下、位置情報に応じて決定されたDMRS属性を用いる具体例について説明する。
 図4は、実施例1における端末装置20の動作の具体例を説明する図である。図4では、送信側の端末装置20の動作の具体例が示されている。制御部24は、自端末装置20の位置情報に応じてDMRSシーケンスを決定する。具体的には、制御部24は、自端末装置20のゾーンIDに応じてDMRSシーケンスを決定する。
 図4の例では、予め定められた原点との地理的な距離に応じて、所定範囲の地域がゾーン0~ゾーン15からなる16のゾーンIDで識別される16のゾーンに区分されている。そして、図4の下側に示すように、ゾーンIDごとに、1つ又は複数のシーケンスを含むDMRSシーケンスセットが設定されている。例えば、ゾーン0に対応するDMRSシーケンスセットはset0である。set0には、#0及び#1からなる2つのシーケンスが含まれている。
 制御部24は、自端末装置20のゾーンIDに応じて、1つ又は複数のシーケンスを含むDMRSシーケンスセットを選択し、選択したDMRSシーケンスセットの中から1つのDMRSシーケンスを決定する。DMRSシーケンスセットの中から1つのDMRSシーケンスを決定する手法は、特に限定されない。例えば、制御部24は、DMRSシーケンスセットの中からランダムに1つのDMRSシーケンスを決定してもよい。
 図4の例では、制御部24は、端末装置20がゾーン0のゾーンに位置するため、ゾーン0に対応するDMRSシーケンスセットであるset0を選択し、set0の中から1つのDMRSシーケンスを決定する。
 無線通信部27は、制御部24により決定されたDMRSシーケンスを使用してPSCCH又はPSSCHを送信する。
 これにより、受信側の端末装置20は、送信側の端末装置20から受信したPSCCH又はPSSCHに使用されているDMRSシーケンスに基づき、送信側の端末装置20のゾーンIDを取得することができる。
 次に、本実施例に係る無線通信システム1の動作を説明する。図5は、実施例1に係る無線通信システム1の動作の一例を示すシーケンス図である。以下では、送信側の端末装置20を「送信UE20A」と表記し、受信側の端末装置20を「受信UE20B」と表記する。図5には、送信UE20A及び受信UE20Bが基地局装置30のカバレッジに在圏する場合の無線通信システム1の動作が例示されている。
 基地局装置30は、位置情報の一例であるゾーンIDとDMRS属性とを対応付けた対応情報をPBCH(Physical Broadcast CHannel)又はPDSCHを介して送信UE20A及び受信UE20Bへ送信する(ステップS1)。
 送信UE20A及び受信UE20Bは、対応情報を受信し、受信した対応情報を各々の記憶部25に格納する(ステップS2及びS3)。
 送信UE20Aは、ゾーンIDを取得し、対応情報を参照してゾーンIDに対応するDMRS属性をPSCCH_DMRSとして決定する(ステップS4)。送信UE20Aは、決定したPSCCH_DMRSをSCIと共にPSCCHにマッピングして受信UE20Bへ送信する(ステップS5)。SCIには、送信UE20Aが送信するデータごとに規定される通信範囲が含まれる。
 送信UE20Aは、データをPSSCHにマッピングして受信UE20Bへ送信する(ステップS6)。
 受信UE20Bは、送信UE20AからPSCCHを受信すると、PSCCH_DMRSを検出し、対応情報を参照してPSCCH_DMRSに対応する送信UE20AのゾーンIDを取得する(ステップS7)。また、受信UE20Bは、PSCCHのSCIを復号して、SCIに含まれる通信範囲を取得する。
 その後、受信UE20Bは、送信UE20AのゾーンIDと受信UE20BのゾーンIDとに基づき、送信UE20Aと受信UE20Bとの間の距離を推定し、推定した端末間距離と通信範囲とを比較して、NACKのフィードバックを行うか否かを判定する。例えば、受信UE20Bは、端末間距離が通信範囲以下である場合、NACKのフィードバックを行うと判定し、端末間距離が通信範囲よりも大きい場合、NACKのフィードバックを行わないと判定する。
 なお、図5のステップS1では、基地局装置30がゾーンIDとDMRS属性とを対応付けた対応情報を送信UE20A及び受信UE20Bへ送信する例を示したが、複数の端末装置20のグループにおけるスケジューリング局が対応情報を送信してもよい。その際、スケジューリング局は、対応情報をPSBCH(Physical Sidelink Broadcast Channel)を介して送信UE20A及び受信UE20Bへ送信する。
 また、図5のステップS4では、送信UE20AがDMRS属性をPSCCH_DMRSとして決定する例を示したが、DMRS属性をPSSCH_DMRSとして決定してもよい。この場合、送信UE20Aは、ステップS6において、PSSCH_DMRSをデータとともにPSSCHにマッピングして受信UE20Bへ送信する。受信UE20Bは、送信UE20AからPSSCHを受信すると、PSSCH_DMRSを検出し、対応情報を参照してPSSCH_DMRSに対応する送信UE20AのゾーンIDを取得する。
 また、例えば、モード2のサイドリンク通信に対応するために、端末装置20がゾーンIDとDMRS属性とを対応付けた対応情報を予め記憶していてもよい。すなわち、端末装置20が基地局装置30のカバレッジに在圏していない場合には、各端末装置20が対応情報を予め記憶していてもよい。送信UE20A及び受信UE20Bが基地局装置30のカバレッジに在圏しない場合の無線通信システム1の動作を図6を参照して説明する。図6は、実施例1に係る無線通信システム1の動作の他の一例を示すシーケンス図である。図6に示す送信UE20A及び受信UE20Bは、位置情報の一例であるゾーンIDとDMRS属性とを対応付けた対応情報を各々の記憶部25に保持している。送信UE20Aの記憶部25に保持されている対応情報と受信UE20Bの記憶部25に保持されている対応情報とは内容が共通している。
 送信UE20Aは、ゾーンIDを取得し、対応情報を参照してゾーンIDに対応するDMRS属性をPSCCH_DMRSとして決定する(ステップS11)。送信UE20Aは、決定したPSCCH_DMRSをSCIと共にPSCCHにマッピングして受信UE20Bへ送信する(ステップS12)。SCIには、送信UE20Aが送信するデータごとに規定される通信範囲が含まれる。
 送信UE20Aは、データをPSSCHにマッピングして受信UE20Bへ送信する(ステップS13)。
 受信UE20Bは、送信UE20AからPSCCHを受信すると、PSCCH_DMRSを検出し、対応情報を参照してPSCCH_DMRSに対応する送信UE20AのゾーンIDを取得する(ステップS14)。また、受信UE20Bは、PSCCHのSCIを復号して、SCIに含まれる通信範囲を取得する。
 以上、本実施例によれば、端末装置20は、制御部24と、無線通信部27と、を有する。制御部24は、位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する。具体的には、制御部24は、位置情報及び通信範囲の少なくとも一方に応じて、DMRSシーケンス、リソースマッピングルール及びアンテナポートの中から、少なくとも一つのDMRS属性を決定する。無線通信部27は、決定したDMRS属性を使用してPSCCH又はPSSCHを送信する。これにより、SCIを用いることなくDMRS属性の配置を用いて送信側の端末装置20の位置情報及び通信範囲を受信側の端末装置へ通知することができる。このため、PSCCHに含まれるSCIのサイズを縮小することができ、結果として、制御チャネルのオーバヘッドを低減することができる。
 実施例2の特徴は、端末装置20が、位置情報又は通信範囲の一部に応じてDMRS属性を決定する点である。実施例2に係る無線通信システム1は、実施例1に係る無線通信システム1(図1~図3参照)と同様であるためその説明を省略し、異なる点について説明する。
 図7は、実施例2における端末装置20の動作の具体例を説明する図である。図7には、位置情報の一例であるゾーンIDの一部に応じてDMRSシーケンスを決定する例が示されている。一般に、DMRSシーケンスセットの数は、ゾーンID又は通信範囲のビット数が大きいほど、多くなる。例えば、ゾーンIDが10ビットである場合、DMRSシーケンスセットの数は1024個まで多くなる。DMRSシーケンスセットの数が過度に多いと、DMRSシーケンスの検出が複雑化し且つ誤検出の確率が増大してしまう。
 そこで、本実施例では、図4に示すように、ゾーンID又は通信範囲の一部をDMRS属性により暗示的に通知し、ゾーンID又は通信範囲の他の一部をSCIにより明示的に通知する。図4の例では、ゾーンIDの全10ビットのうち、最下位ビットである4ビットに応じて、1つ又は複数のシーケンスを含むDMRSシーケンスセットが設定されている。制御部24は、自装置のゾーンIDの最下位の4ビットに応じて、1つ又は複数のシーケンスを含むDMRSシーケンスセットを選択し、選択したDMRSシーケンスセットの中から1つのDMRSシーケンスを決定する。そして、制御部24は、ゾーンIDの最下位の4ビット以外の先頭の6ビットを含むSCIを生成する。無線通信部27は、決定されたDMRSシーケンス及びSCIを使用してPSCCHを送信する。
 これにより、DMRSシーケンスセットの数をゾーンIDの全10ビットに対応する1024個からゾーンIDの最下位の4ビットに対応する16個まで減らすことができる。そのため、DMRSシーケンスの検出の複雑化を抑制して誤検出の確率を低減することができる。
 以上、本実施例によれば、端末装置20において、制御部24は、位置情報又は通信範囲の一部に応じてDMRS属性を決定し、位置情報又は通信範囲の他の一部を含むSCIを生成する。無線通信部27は、決定されたDMRSシーケンス及びSCIを使用してPSCCHを送信する。これにより、制御チャネルのオーバヘッドを低減するとともに、DMRSシーケンスの誤検出の確率を低減することができる。
 以上、種々の実施例について説明してきたが、開示の技術は、上記実施例に限定されることなく種々の変形態様を構成可能である。また、上記説明では、個々の実施例毎に個別の構成及び作用を説明した。しかしながら、上記各実施例に係る無線通信システム1、1A、1Bは、他の実施例に特有の構成要素を併せて有するものとしてもよい。
 また、無線通信システム1において、ゾーンIDは、互いに異なる複数の地域に対して再利用されてもよい。図8は、ゾーンIDの再利用を説明するための図である。図8に示した例では、2つの異なる地域に対して、ゾーン1~9からなる9個のゾーンIDが繰り返し付与されている。ゾーンIDが互いに異なる複数の地域に対して再利用される場合、受信側の端末装置20は、送信側の端末装置20の位置を誤って識別する可能性がある。例えば、ゾーン7に位置する受信側の端末装置20は、送信側の端末装置20が実際には左側のゾーン5に位置する場合であっても、右側のゾーン5に位置すると誤って識別することがある。この場合、受信側の端末装置20において、送信側の端末装置20のゾーンIDと受信側の端末装置20のゾーンIDとから端末間距離が正しく推定されないため、端末間距離と通信範囲CRとに基づくHARQのフィードバック判定の精度が低下する。
 そこで、無線通信システム1では、受信側の端末装置20が受信信号強度を考慮してHARQのフィードバック判定を行うようにしてもよい。すなわち、端末装置20は、受信信号強度が予め定められた閾値よりも大きく、且つ、端末間距離が通信範囲CR以下である場合、NACKのフィードバックを行うと判定する。一方、端末装置20は、受信信号強度が予め定められた閾値以下である場合、又は、端末間距離が通信範囲CRよりも大きい場合、NACKのフィードバックを行わないと判定する。なお、受信信号強度としては、例えばRSRP(Reference Signal Received Power)を用いることができる。
 また、無線通信システム1において、送信側の端末装置20が通信範囲の複数のセットを予め設定し、各セットを識別する情報をDMRS属性により暗示的に通知してもよい。例えば、V2Xの仕様(TS 22.186)によれば、通信範囲は50m~1000mの範囲で10個のセットに分割されるが、各セットを識別する値(例えば、4ビットの値)をDMRSシーケンスにより暗示的に通知してもよい。
 [ハードウェア構成]
 上記実施例1、2における端末装置20は、例えば、次のようなハードウェア構成により実現することができる。図9は、端末装置20のハードウェア構成例を示す図である。図9に示すように、端末装置20は、CPU(Central Processing Unit)10aと、メモリ10bと、アンテナA1を有するRF(Radio Frequency)回路10cとを有する。メモリ10bは、例えば、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM、ROM(Read Only Memory)、フラッシュメモリにより構成される。記憶部25は、例えば、メモリ10bにより実現される。制御部24は、例えばCPU10aにより実現される。無線通信部21,27は、例えばCPU10a及びRF回路10cにより実現される。
 また、上記実施例1、2における基地局装置30は、例えば、次のようなハードウェア構成により実現することができる。図10は、基地局装置30のハードウェア構成例を示す図である。図10に示すように、基地局装置30は、DSP(Digital Signal Processor)30aと、FPGA(Field Programmable Gate Array)30bと、メモリ30cと、RF回路30dと、ネットワークIF(Inter Face)30eとを有する。DSP30aと、FPGA30bとは、スイッチ等のネットワークIF30eを介して各種信号やデータの入出力が可能なように接続されている。RF回路30dは、アンテナA2を有する。メモリ30cは、例えば、SDRAM等のRAM、ROM、フラッシュメモリにより構成される。記憶部35は、例えば、メモリ30cにより実現される。制御部34は、例えば、RF回路30d、DSP30a及びFPGA30bにより実現される。
1、1A、1B 無線通信システム
20 端末装置
21、27 無線通信部
22、28 無線送信部
23、29 無線受信部
24 制御部
25 記憶部
30 基地局装置

Claims (5)

  1.  位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する制御部と、
     前記DMRS属性を使用してPSCCH又はPSSCHを送信する通信部と、
     を有することを特徴とする端末装置。
  2.  前記制御部は、前記位置情報及び前記通信範囲の少なくとも一方に応じて、DMRSシーケンス、リソースマッピングルール及びアンテナポートの中から、少なくとも一つの前記DMRS属性を決定することを特徴とする請求項1に記載の端末装置。
  3.  前記制御部は、前記位置情報又は前記通信範囲の一部に応じて前記DMRS属性を決定し、前記位置情報又は前記通信範囲の他の一部を含むSCIを生成し、
     前記通信部は、前記DMRS属性及び前記SCIを使用してPSCCHを送信することを特徴とする請求項1に記載の端末装置。
  4.  第1の端末装置と、第2の端末装置とを有する無線通信システムであって、
     前記第1の端末装置は、
     位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定する制御部と、
     前記DMRS属性を使用してPSCCH又はPSSCHを送信する通信部と、
     を有し、
     前記第2の端末装置は、
     前記第1の端末装置から受信したPSCCH又はPSSCHに使用されている前記DMRS属性に基づき、位置情報及び通信範囲の少なくとも一方を取得する制御部を有する
     ことを特徴とする無線通信システム。
  5.  端末装置における無線通信方法であって、
     位置情報及び通信範囲の少なくとも一方に応じてDMRS属性を決定し、
     前記DMRS属性を使用してPSCCH又はPSSCHを送信する
     処理を有することを特徴とする無線通信方法。
PCT/JP2019/031521 2019-08-08 2019-08-08 端末装置、無線通信システム及び無線通信方法 WO2021024492A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031521 WO2021024492A1 (ja) 2019-08-08 2019-08-08 端末装置、無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031521 WO2021024492A1 (ja) 2019-08-08 2019-08-08 端末装置、無線通信システム及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021024492A1 true WO2021024492A1 (ja) 2021-02-11

Family

ID=74502623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031521 WO2021024492A1 (ja) 2019-08-08 2019-08-08 端末装置、無線通信システム及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2021024492A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504247A (ja) * 2013-12-20 2017-02-02 京セラ株式会社 セル識別子を持つ装置間(d2d)サブフレーム
JP2017513271A (ja) * 2014-02-13 2017-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるd2d通信のための同期化信号送受信方法及びそのための装置
US20190268904A1 (en) * 2018-05-14 2019-08-29 Honglei Miao Configurable resynchronization signal (rss) for machine type communication (mtc) in new radio (nr) systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504247A (ja) * 2013-12-20 2017-02-02 京セラ株式会社 セル識別子を持つ装置間(d2d)サブフレーム
JP2017513271A (ja) * 2014-02-13 2017-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるd2d通信のための同期化信号送受信方法及びそのための装置
US20190268904A1 (en) * 2018-05-14 2019-08-29 Honglei Miao Configurable resynchronization signal (rss) for machine type communication (mtc) in new radio (nr) systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on physical layer procedure for NR V2X", 3GPP TSG RAN WG1 #98 R1-1908223, vol. RAN WG1, 16 August 2019 (2019-08-16), XP051764842 *
FUJITSU: "Discussion on physical layer structure for NR sidelink", 3GPP TSG RAN WG1 #97 R1-1906436, vol. RAN WG1, 2 May 2019 (2019-05-02), XP051708471 *
FUJITSU: "Other aspects on physical layer structure for NR sidelink", 3GPP TSG RAN WG1 #98 R1-1908224, vol. RAN WG1, 16 August 2019 (2019-08-16), XP051764843 *
HUAWEI , HISILICON: "Sidelink physical layer procedures for NR V2X", 3GPP TSG RAN WG1 #96B R1-1903944, vol. RAN WG1, 12 April 2019 (2019-04-12), XP051707059 *

Similar Documents

Publication Publication Date Title
US20230254789A1 (en) Method and apparatus for transmitting synchronization signal in wireless communication system
JP7087069B2 (ja) サイドリンク通信におけるキャリア集約のための方法および装置
US20220191811A1 (en) Transmission and receipt processing method and device for time-frequency synchronization between v2x terminals
KR20200026928A (ko) 사용자 장치를 위한 위치 결정 방법 및 디바이스와 사용자 장치
US20190045469A1 (en) Transmission and receipt processing method and device for time-frequency synchronization between v2x terminals
JP2020535726A (ja) ビーム障害回復プロシージャのためのリソース割当て
EP2802165B1 (en) Indication of device to device communication state to base station
US11974241B2 (en) Method and device for transmitting or receiving synchronization signal in wireless communication system
US11202219B2 (en) Two-level mobility reference signal configuration
CN110972106A (zh) 同步方法、通信装置和网络设备
US20230034336A1 (en) Method and apparatus for sidelink positioning in wireless communication system
CN111418190A (zh) 新无线电车联网群集管理的方法和装置
EP2897388B1 (en) Power efficient support of small packet transmission
US11082982B2 (en) Methods devices, and systems, for allocation of uplink resources for wireless data transmission
US20220201506A1 (en) Resource indication method, terminal device, and network device
WO2021024492A1 (ja) 端末装置、無線通信システム及び無線通信方法
WO2020194711A1 (ja) 端末装置、無線通信システム及び無線通信方法
WO2022077435A1 (en) Systems and methods for resource allocation and encoding of inter-ue coordination messages
WO2021149121A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
US20240235778A1 (en) Comb-level sensing for sidelink positioning reference signal resource selection
US12035165B2 (en) Two-level mobility reference signal configuration
EP4369818A1 (en) Method, apparatus, and device for location acquisition, medium, chip, product, and program
WO2021149122A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
CN116158040A (zh) 信道传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP