WO2021023031A1 - 板式换热器 - Google Patents

板式换热器 Download PDF

Info

Publication number
WO2021023031A1
WO2021023031A1 PCT/CN2020/104656 CN2020104656W WO2021023031A1 WO 2021023031 A1 WO2021023031 A1 WO 2021023031A1 CN 2020104656 W CN2020104656 W CN 2020104656W WO 2021023031 A1 WO2021023031 A1 WO 2021023031A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
edge
corner
corner hole
protrusion
Prior art date
Application number
PCT/CN2020/104656
Other languages
English (en)
French (fr)
Inventor
李华
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Publication of WO2021023031A1 publication Critical patent/WO2021023031A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • the structure of the plate heat exchanger needs to be optimized to obtain a plate heat exchanger with stronger heat exchange performance.
  • the improvement of the plate heat exchanger in this application is beneficial to improving the uniformity of fluid distribution on the plates, thereby improving the heat exchange performance of the plate heat exchanger.
  • the embodiment of the present application provides a plate heat exchanger, which includes a plurality of stacked plates.
  • the multiple plates include at least one set of adjacent first and second plates.
  • the first plate The front side of the sheet is opposite to the reverse side of the second sheet; the sheet includes a base plate, two first corner holes and two second corner holes, and the sheet is provided with a main heat exchange area;
  • the plate further has an annular convex portion and an edge convex portion; the annular convex portion protrudes relative to the base plate portion on the front of the plate, and the first corner hole is provided in the annular convex portion ,
  • the first corner hole forms a boss hole; there is a gap between the side wall of the annular protrusion and the edge of the plate for fluid to flow;
  • the edge protrusion is opposite to the base plate on the front of the plate Protrusions, the edge protrusions simultaneously form edge recesses on the reverse side of the plate, and the edge protrusions are located in the first side channel area between the second corner hole and the edge of the plate;
  • the second corner hole of the first plate is opposite to the first corner hole of the second plate, and there is a gap between the two corner holes for fluid to flow into or out of the two plates;
  • the first corner hole of one plate is opposite to the second corner hole of the second plate, and the ring-shaped protrusion of the first plate is connected to the outer surface of the second corner hole of the second plate in a sealed manner;
  • the plate is located in the second side channel area between the annular protrusion and the edge of the plate.
  • the base plate of the first plate is at least partially opposite to the edge recess of the second plate; the edge protrusion of the first plate is at least The part is opposite to the base plate on the periphery of the annular protrusion of the second plate.
  • the base plate portion of the first plate is at least partially connected to the edge recess of the second plate
  • the depth of the flow cross section of the fluid can be as large as the sum of the height of the annular protrusion and the depth of the edge recess.
  • the increase in the depth of the circulation cross-section of the regional fluid makes the fluid flow smoother in the second side channel area that is relatively difficult to circulate, which is more conducive to the uniform distribution of the fluid on both sides of the plate, which improves the utilization of the plate surface and correspondingly improves heat exchange The heat exchange performance of the device.
  • Figure 1 is a schematic diagram of the structure of the plate heat exchanger of the application
  • Figure 2 is a schematic diagram of the exploded structure of two adjacent plates of the plate heat exchanger of the application
  • Figure 3 is a schematic diagram of the unilateral flow of the fluid in the application between two adjacent plates assembled together;
  • FIG. 4 is a schematic diagram of the cross-sectional structure in the direction A-A in FIG. 3 of this application;
  • Figure 5 is an enlarged view of a structure of a partial area of the plate in this application.
  • FIG. 6 is an enlarged view of the structure of the corner area between the second corner hole of the plate and the edge of the plate in the application of FIG. 5;
  • Figure 7 is an enlarged view of another structure of a partial area of the plate in this application.
  • FIG. 8 is a schematic diagram of the flow mode of the diagonal flow of the fluid in the application between two adjacent plates assembled together;
  • Fig. 9 is a schematic diagram of the U-shaped loop flow of the fluid in the application between two adjacent plates assembled together.
  • the present application provides a plate heat exchanger 10, which includes a plurality of plates, and the plurality of plates are stacked.
  • the multiple plates include at least one group of adjacent first plate 100 and second plate 101.
  • the front surface 103 of the first plate 100 is opposite to the reverse surface 104 of the second plate 101, along the lines of the multiple plates.
  • the first plate 100 is the lower plate
  • the second plate 101 is the upper plate.
  • a line with a double arrow indicates the up and down direction, and defines the side of the plate facing the outside, that is, the side that can be seen is the front 103, and the side facing the inside, that is, the invisible side is the reverse. 104.
  • the plate includes a base plate portion 102.
  • the plate includes two second corner holes 12 and two first corner holes 11.
  • the two second corner holes 12 and the two first corner holes 11 can be formed by stamping.
  • a main heat exchange area 202 is provided in the middle of each plate, and four corner holes are distributed between the main heat exchange area 202 and the edge of the plate.
  • the main heat exchange zone 202 of the plate is provided with a heat exchange element 203.
  • the heat exchange element 203 is convex relative to the base plate 102.
  • the heat exchange element 203 and the base plate 102 are integrally formed, for example,
  • the heat element 203 can be stamped and formed, and the heat exchange element 203 forms a recess on the back 104 of the plate relative to the base plate 102.
  • the heat exchange element 203 may be a separate component.
  • the heat exchange element 203 is a fin plate.
  • the heat exchange element 203 is brazed with the plate and finally formed into one body.
  • corrugated plates In addition to the channel structure of the plate, it is also possible to use corrugated plates, point wave plates, filamentous fillers, porous media, etc., to achieve the structure to meet the strength of the plate, and at the same time to enhance the fluid in the channel formed by two adjacent plates.
  • the present invention does not impose excessive restrictions on the structure and form of the heat exchange element.
  • each plate can be formed by a single pair of molds, that is, each plate is a plate with exactly the same shape and structure. When multiple plates are assembled, adjacent plates can be reversed.
  • multiple plates Plates can also be formed by two or more secondary molds, that is, multiple plates can have different shapes or structures. For example, one plate has a flat plate as the main heat exchange area, and the other plate has a main heat exchange. The zone is provided with a point wave-shaped convex structure, and the two plates can also be assembled together and alternately stacked, as long as the plates meet the plate structure and the corresponding relationship of plate assembly described in this application.
  • the plate mentioned in the following embodiments may be the first plate 100 or the second plate 101.
  • the plate also has an annular protrusion 22 and an edge protrusion 33. Both the annular protrusion 22 and the edge protrusion 33 can be formed by stamping the plate. Of course, the annular protrusion 22 and the edge protrusion 33
  • the raised portions 33 may also be separate components. At corresponding positions, the annular raised portion 22 and the edge raised portion 33 are welded and fixed to the plate surface as a whole.
  • the annular protrusion 22 is arranged around the outer edge of the first corner hole 11.
  • the annular protrusion 22 protrudes relative to the base plate 102 on the front surface 103 of the plate, and the first corner hole 11 is provided on the annular protrusion 22 Above, the first corner hole 11 forms a boss hole.
  • the annular protrusion 22 simultaneously forms an annular recess 22 ′ around the outer edge of the first corner hole 11 on the reverse surface 104.
  • the circumferential direction of 22 can provide fluid flow.
  • the edge protrusion 33 protrudes relative to the substrate portion 102 on the front surface 103 of the plate, and the edge protrusion 33 simultaneously forms an edge recess 33' on the reverse surface 104.
  • the edge protrusion 33 is located between the second corner hole 12 and the edge of the plate.
  • the area between the second corner hole 12 and the edge of the plate can be recorded as the first side lane area 1011.
  • the lower plate in the relative position is the first plate 100
  • the plate in the upper relative position is the second plate 101
  • the first plate 100 mainly shows the front 103
  • the second plate 101 mainly shows the reverse side 104.
  • the second corner hole 12 of the first plate 100 is opposite to the first corner hole 11 of the second plate 101, and the two corners
  • the first corner hole 11 of the first plate 100 is opposite to the second corner hole 12 of the second plate 101, and the annular protrusion 22 of the first plate 100 is opposite to the second corner hole 12 of the second plate 101
  • the peripheral board surface is connected in a sealed manner.
  • the sealed connection prevents fluid from entering the circulation channel between the plates from between the first corner hole 11 of the first plate 100 and the second corner hole 12 of the second plate 101.
  • the sealing connection can be brazed. .
  • the annular protrusion 22 of the first plate 100 cooperates with the plate surface of the periphery of the second corner hole 12 of the second plate 101 to form a dead zone where fluid cannot flow. When the fluid flows on the plate, it can protrude in the annular shape.
  • the portion 22 flows in the circumferential peripheral area.
  • the base portion 102 of the first plate 100 is at least partially opposite to the edge recess 33' of the second plate 101 .
  • the edge protrusion 33 of the first plate 100 is at least partially opposite to the base plate 102 on the periphery of the annular protrusion 22 of the second plate 101.
  • the plate in the plane where the substrate portion 102 is located, has a length direction and a width direction, the longer side of the plate is parallel to the length direction, the shorter side of the plate is parallel to the width direction, and the aspect ratio of the plate is less than Equal to 3.
  • the aspect ratio L/W of the plate is less than or equal to 3.
  • the length and width of the plate do not include the length and width of the flanging part.
  • the two first corner holes or two The side where the second corner hole is located is the length side of the plate, and the side where the first corner hole and the second corner hole are located on the plate is the width side of the plate.
  • the ratio of the distance between the centers of the two corner holes on the same side in the width direction of the plate and the width of the entire plate is less than or equal to 2.
  • annular protrusion 22 and the edge protrusion 33 facilitates the assembly of multiple plates, and the main heat exchange areas 202 of two adjacent plates can maintain a distance between them to form a flow channel for fluid circulation.
  • the black dashed curve with arrows in Figure 3 when two plates are stacked and assembled together, the first corner hole 11 of the second plate 101 and the second corner hole of the first plate 100 There is a gap between 12, which can form a fluid inlet or outlet.
  • fluid flows from a second corner hole 12 of the first plate 100 into the front surface 103 of the first plate 100, correspondingly
  • the fluid flows from a first corner hole 11 of the second plate 101 into the reverse side 104 of the plate 101.
  • the black dashed curve with arrows indicates that the fluid is in two
  • the schematic diagram of the flow path between the two plates, and the plate observed in FIG. 3 is the front surface 103 of the second plate 101.
  • the main heat exchange Part of the fluid flowing out of zone 202 directly reaches the second corner hole 12 and flows out, and the other part of the fluid flows between the side wall of the other annular protrusion 22 and the side wall of the heat exchange element 203, and finally from the other
  • the two corner holes 12 flow out, and some of them need to bypass the second side channel area 1012 of the first plate 100 to reach the other second corner hole 12 and flow out.
  • the depth of the flow cross-section between two adjacent plates can reach the maximum sum of the height H1 of the annular protrusion 22 and the depth H2 of the edge recess 33',
  • the depth H2 of the edge recess 33' is approximately similar to the height of the edge protrusion 33.
  • the height H1 of the annular protrusion 22 is the same as the height H2 of the edge protrusion 33, and its height (H1, The range of H2) can be 0.5mm ⁇ 5mm. In this way, in the second side channel area 1012, the depth of the fluid flow cross section can reach approximately twice the height H1 of the annular protrusion 22 or the height of the edge protrusion 33.
  • the distance between two adjacent plates 101 is still the height H1 of the annular protrusion 22, so that the first corner hole 11 on the plate and the edge of the plate While the flow cross-section of the second side channel area 1012 between them is increased, the distance between the main heat exchange areas of adjacent plates is not increased, which is beneficial for the fluid to flow smoothly at the second side channel area 1012, which is beneficial to When the fluid flows on the plate, it can be evenly distributed on the plate surface, and at the same time, it is helpful for the fluid to maintain a high flow rate in the main heat exchange area. Especially for the plate design with a small length and width, it is beneficial to improve the overall plate heat exchanger The heat transfer effect.
  • the heat exchange element 203 includes a herringbone pattern, a W-shaped pattern, even more heavy herringbone patterns, or a dot wave pattern arranged at even intervals.
  • the height of the protrusion of the heat exchange element 203 can be equivalent to the height of the annular protrusion 22.
  • the heat exchange element 203 forms ridges and grooves on the front surface 103 of the plate relative to the base plate 102.
  • the heat exchange element 203 also forms ridges or grooves on the reverse side 104 relative to the base plate 102. The ridges and grooves cooperate to form a flow channel between adjacent plates 101.
  • the front surface 103 of the first plate 100 The top part of the ridge of the second plate 101 abuts against the base plate part of the back 104 of the second plate 101, and is finally brazed and connected as a whole.
  • the fluid flows in the main heat exchange area 202 of the plate 101, it runs along the plane of the plate. Basically, there is also up and down movement, which can make the heat exchange effect better.
  • the height of the annular protrusion 22 and the edge protrusion 33 relative to the substrate portion 102 may be the same or different.
  • the height of the edge protrusion 33 may be less than or equal to the height of the annular protrusion 22, which is provided in this application.
  • the height of the annular protrusion 22 and the edge protrusion 33 relative to the base plate 102 is the same.
  • the edge protrusion 33 of the first plate 100 and The substrate portion 102 of the second plate 101 is hermetically connected.
  • the top of the annular protrusion 22 and the edge protrusion 33 may have a flat surface or a slightly curved surface that is convenient for welding.
  • the annular protrusion 22 of one plate and the base plate of the adjacent plate The sealing connection of the part 102 can be realized by welding.
  • the sealing connection between the edge protrusion 33 of one plate and the base plate 102 of the adjacent plate can also be realized by welding. Space is the weak link in the strength of the plate heat exchanger.
  • the provision of the annular protrusion 22 and the edge protrusion 33 can increase the welding space around the corner holes of the plate, which is beneficial to improve the overall strength of the plate heat exchanger, which can further Improve the pressure bearing capacity of the plate heat exchanger and the service life under the fluid pulse pressure.
  • the second corner hole 12 is provided on the base plate 102, and the second corner hole 12 forms a plane hole.
  • the second corner hole 12 can also be a boss hole.
  • the direction of the protrusion of the hole 12 is opposite to that of the first corner hole 11, that is, the plate surface around the second corner hole 12 may be convex relative to the base plate portion 11 on the reverse side of the plate.
  • the second corner hole 12 is described as a plane corner hole.
  • the edge protrusion 33 may be in contact with the edge of the plate or not.
  • the plate further includes a flange 105 surrounding the base plate portion 102. After the plurality of plates are assembled, the flange 105 of the plurality of plates can be sealed by welding such as brazing, thereby facilitating fluid retention. In the flow channel formed between the plates.
  • the first corner hole 11 and the second corner hole 12 are both set close to the corner of the plate.
  • the edge protrusion 33 is curved based on the corner of the plate, and the edge protrusion 33 is connected to the heat exchange element. 203 is connected.
  • the edge protrusion 33 is provided along the intersection of the base plate 102 and the flange 105 of the plate.
  • the edge protrusion 33 can extend from the corner area to the main heat exchange area 202.
  • the edge protrusion 33 can be connected with the heat exchange element 203 provided in the main heat exchange zone 202 to achieve cooperation, thereby extending the length of the fluid flow path with a deeper cross-sectional depth.
  • the annular protrusion 22 and the heat exchange element 203 are spaced apart by the base plate 102, and a long and narrow flow channel 2201 is formed between the side wall of the annular protrusion 22 and the side wall of the heat exchange element 203.
  • the minimum cross-sectional width of the elongated flow channel 2201 is 30% of the minimum cross-sectional width of the edge protrusion 33.
  • the distance between the elongated flow channel 2201 and the annular protrusion 22 is greater than or equal to 1 mm.
  • annular protrusion 22 and the heat exchange element 203 can also be partially connected, but the side wall of the annular protrusion 22 and the side wall of the heat exchange element 203 have at least a gap for fluid to circulate.
  • the size and shape of the second corner hole 12 and the first corner hole 11 are the same, which is beneficial to simplify the punching process of the plate and simplify the mold operation.
  • any point on the outer edge of the projection of the annular protrusion 22 is at the same distance from the outer edge of the projection of the first corner hole 11, and the outer edge of the projection of the annular protrusion 22 is equal to the first corner hole.
  • the projection outer edge shape is roughly the same, the projection of the annular protrusion 22 is set coaxially with the projection of the first corner hole 11, and the outer edge of the projection of the annular protrusion 22 to the outer edge of the projection of the first corner hole 11 The distance between is recorded as the first distance L1.
  • the second distance L2 is greater than or equal to the first distance L1.
  • the annular protrusion 22 of the first circulation plate 200 is not easy to interfere with the edge recess 33' of the second circulation plate 300, and at the same time, the first The edge protrusion 33 of the circulation plate 200 is not easy to interfere with the gap formed by the second corner hole of the first circulation plate 200 and the annular recess 22 ′ of the second circulation plate 300.
  • the second corner hole 12 and the first corner hole 11 are both elongated elliptical holes or oblong holes, and the length direction of the second corner hole 12 and the length direction of the first corner hole 11 roughly coincide with the width direction of the plate. .
  • the arrangement of the first corner hole 11 and the second corner hole 12 into a slender hole shape can effectively improve the flow-sharing effect of the surrounding space, and facilitate the distribution of fluid in the width direction of the plate.
  • the edge protrusion 33 includes an arc-shaped connecting part 331, a first part 332 and a second part 333 connected to the arc-shaped connecting part 331 and located on both sides of the arc-shaped connecting part 331, and the end of the first part 332
  • a first end 334 is formed, and the end of the second sub-section 333 forms a second end 335.
  • the first end 334 is farther from the main heat exchange area 202 than the second end 335.
  • the projections of the first end 334 and the second end 335 in the vertical direction are substantially linear, and further, the imaginary extension line of the first end 334 and the imaginary extension of the second end 335 The extension lines do not overlap.
  • the position where the outer edge of the second corner hole 12 is closest to the first end 334 is recorded as the first position a1, and the position of the second corner hole 12
  • the position of the outer edge closest to the second end 335 is marked as the second position a2.
  • the outer edge of the second corner hole 12 forms a first outer edge opposite to the edge protrusion 33 between the first position a1 and the second position a2.
  • the proportion of the first outer edge section 110 in the circumferential direction of the second corner hole 12 is 1/4 to 1/2.
  • the proportion of the first outer edge section 110 on the outer edge of the second corner hole 12 can reflect the size of the edge protrusion 33 in its corresponding extending direction from a certain side.
  • the top of the edge protrusion 33 is sealed to the adjacent plate.
  • the first side channel area 1011 The proportion of the first outer edge section 110 on the outer edge of the second corner hole 12 should not be too large, and the edge protrusion 33 should try to avoid affecting the flow of fluid at the second corner hole 12, causing excessive flow resistance to the fluid .
  • the proportion of the first outer edge section 110 on the outer edge of the second corner hole 12 cannot be too small.
  • the edge protrusion 33 can provide as much as possible.
  • the large flow cross section facilitates the flow of fluid through the second side channel area 1012.
  • the first end portion 334 has a first oblique side surface 336.
  • the first oblique side surface 336 is arranged obliquely from the edge of the plate relative to the longitudinal direction of the plate, and the edge protrusion 33 faces the second corner hole 12
  • the side of the arc is an arc-shaped side, which can ensure the smooth flow of fluid and avoid excessive flow resistance to the fluid.
  • the intersection of the oblique side 336 and the arc-shaped side transition at an obtuse angle.
  • the first corner hole 11 is an elongated ring shape, and the arc edge of the first corner hole 11 is The edge of the plate forms a gradually shrinking necking structure.
  • the first oblique side surface 336 of the first end 334 helps to optimize the process of fluid entering the second side channel area 1012. By increasing the entrance size into the narrow side channel area, The local flow resistance is reduced, which is conducive to the distribution of fluid in the corner area, which in turn is conducive to improving the heat exchange effect of the plate heat exchanger.
  • the edge of the projection of the second corner hole 12 has two parallel straight edges 111 and two symmetrical to the straight edges 111.
  • the arc-shaped edge 112 connects two straight edges 111 with the arc-shaped edge 112.
  • the arc-shaped edge 112 that is relatively close to the adjacent first corner hole 11 or relatively far from the edge of the plate is recorded as the first arc edge 1121, and the first arc edge 1121 corresponds to the arc end point (b1, b2)
  • the projection of the connecting line between the center b3 of the connecting line and the center b4 of the second corner hole 12 on the straight line where the straight edge 111 is located is recorded as the first projection S1, and the first oblique side surface 336 is on the base plate 102
  • the projection on the plane where it is located is marked as the second projection S2
  • the projection of the second projection S2 on the straight line where the straight edge 111 is located is marked as the third projection S3, and the first projection S1 and the third projection S3 are roughly coincident.
  • the curvature of the arc-shaped connecting portion 331 is substantially the same as the curvature of the arc-shaped edge 112 corresponding to the arc.
  • the flow path of the fluid is relatively smooth, which is beneficial to the distribution effect of the fluid in the corner area.
  • the two first corner holes 11 are both located on one side of the width direction of the plate 101, and correspondingly, the two second corner holes 12 are both located on the plate 101. 101 on the other side in the width direction.
  • the two first corner holes 11 are located in the area near the longer side of the plate 101
  • the two second corner holes 12 are located in the area near the shorter side of the plate 101. This way is It is a unilateral flow form.
  • the first diversion area 201 which is indicated by a dashed frame in FIG. 7, and the effective cross-sectional area of the first diversion area 201 is roughly equivalent to the effective cross-sectional area of the first side channel area 1012.
  • the effective cross-sectional area of the first diversion area 201 and the first side channel area 1012 does not have many sudden changes, which is beneficial to the flow process of the fluid entering the first side channel area 1012 Relatively smooth, it is more conducive to uniform distribution on the plate.
  • the first diversion area 201 can also be provided with a relatively small number of protruding elements 204.
  • the protruding elements 204 form protrusions on the front of the plate and at the same time form depressions on the back of the plate.
  • the protruding elements 204 can increase The welding strength of the part near the edge of the plate is beneficial to increase the overall strength of the plate heat exchanger.
  • the raised element 204 can strengthen the disturbance of the heat exchange fluid, and the boundary layer separation occurs when the fluid passes through the raised element 204 , Enhance heat transfer.
  • the mapping shape of the pressing shape of the protruding element 204 on the substrate portion may be a shape such as a circle, a triangle, a trapezoid, an ellipse, or a polygon.
  • the number of protruding elements 204 should not be too large, which is beneficial to reduce the flow resistance of the first diversion area 201, and try to avoid affecting the distribution of fluid in the width direction of the plate 101.
  • FIG. 8 illustrates the flow path of the fluid between the two plates 101 when the two plates 101 applying the diagonal flow method are assembled together.
  • the plate of the present application can also be applied to a U-shaped loop flow mode, that is, two first corner holes 11 are located on one side of the length of the plate 101, and two second corner holes 12 are located on the other side of the length of the plate 101,
  • the plates are also provided with stop structures such as ribs, and the fluid flows in a manner similar to a U-shaped loop when flowing.
  • Figure 9 is for two plates 101 that are suitable for U-shaped loop when assembled together, the fluid flows between the two plates. The flow path between is illustrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开一种板式换热器,包括多张板片,任意相邻的两张板片,第一板片的正面与第二板片的反面相对;每张板片设有主换热区,四个角孔分别分布于主换热区与板片边沿之间;板片还具有环状凸起部和边沿凸起部;第一角孔设于所述环状凸起部上;环状凸起部的侧壁与板片边沿之间具有间隙;边沿凸起部位于第二角孔与板片边沿之间的第一边道区域;第一板片的第二角孔与第二板片的第一角孔相对且具有间隙;第一板片环状凸起部与第二板片第二角孔外围的板面密封;第一板片基板部与第二板片的边沿凹部相对;第一板片的边沿凸起部与第二板片基板部相对。本发明能够提高板式换热器的换热性能。

Description

板式换热器
相关申请的交叉引用
本专利申请要求于2019年8月2日提交的、申请号为201910713496.X、发明名称为“板式换热器”的中国专利申请的优先权,此申请的全文以引用的方式并入本文中。
背景技术
随着对板式换热器使用性能的要求不断提高,需要对板式换热器进行结构上的优化,以得到换热性能更强的板式换热器。相关技术中,板式换热器中存在板片上流体分布不均匀的现象,尤其是针对长宽比较小的板片而言,这种不均匀会降低板片有效换热面积,即板片板面利用率较低。
发明内容
本申请对板式换热器进行改进,有利于提高板片上流体分布均匀性,进而提高板式换热器的换热性能。
本申请实施例提供了一种板式换热器,包括层叠设置的多张板片,所述多张板片包括至少一组相邻的第一板片和第二板片,所述第一板片的正面与所述第二板片的反面相对;所述板片包括基板部、两个第一角孔和两个第二角孔,所述板片设有主换热区;
所述板片还具有环状凸起部和边沿凸起部;所述环状凸起部在板片正面相对于基板部凸起,所述第一角孔设于所述环状凸起部,所述第一角孔形成凸台孔;所述环状凸起部的侧壁与板片边沿之间具有能够供流体流动的间隙;所述边沿凸起部在板片正面相对于基板部凸起,所述边沿凸起部在板片反面同时形成边沿凹部,所述边沿凸起部位于所述第二角孔与板片边沿之间的第一边道区域;
所述第一板片的第二角孔与所述第二板片的第一角孔相对,且该两个角孔之间具有供流体流入或者流出该两张板片之间的间隙;第一板片的第一角孔与第二板片的第二角孔相对,且第一板片的环状凸起部与第二板片第二角孔外围的板面密封连接;在第一板片位于环状凸起部与板片边沿之间的第二边道区域,第一板片的基板部至少部分与第二板片的边沿凹部相对;第一板片的边沿凸起部至少部分与第二板片环状凸起部外围的基板部相对。
本申请对板式换热器改进后,在第一板片位于环状凸起部与板片边沿之间的第二边道 区域,第一板片基板部至少部分与第二板片的边沿凹部相对,这样在两张相邻板片之间对应第一板片的第二边道区域,流体的流通截面的深度最大可达环状凸起部的高度以及边沿凹部的深度之和,第二边道区域流体的流通截面深度增加使得流体在相对较难流通的第二边道区域流通更顺畅,更有利于流体在板片两侧均匀分布,提高板片板面利用率,对应的提高的换热器的换热性能。
附图说明
图1为本申请板式换热器的结构示意图;
图2为本申请板式换热器的相邻两张板片的爆炸结构示意图;
图3为本申请流体在装配在一起的相邻两张板片之间的单边流的流动方式示意图;
图4为本申请图3中A-A方向的剖面结构示意图;
图5为本申请中板片部分区域的一种结构放大图;
图6为本申请中图5板片的第二角孔与板片边沿之间的拐角区域结构放大图;
图7为本申请中板片部分区域的另一种结构放大图;
图8为本申请流体在装配在一起的相邻两张板片之间的对角流的流动方式示意图;
图9为本申请流体在装配在一起的相邻两张板片之间的U型回路流动方式示意图。
具体实施方式
为了使本领域的技术人员更好的理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1至图9所示,本申请提供一种板式换热器10,其包括多张板片,多张板片层叠设置。其中,多张板片包括至少一组相邻的第一板片100和第二板片101,第一板片100的正面103与第二板片101的反面104相对,沿多张板片的层叠方向,第一板片100为下方板片,第二板片101为上方板片。在图1中,以带双箭头的线条示意上下方向,并且定义板片朝向外侧的一面,亦即所能看到的一面为正面103,朝向内侧的一面亦即所不能看到的一面为反面104,板片包括基板部102。板片包括有两个第二角孔12和两个第一角孔11。两个第二角孔12以及两个第一角孔11可以通过冲压成型。每张板片的中部设有主换热区202,四个角孔分布于主换热区202与板片边沿之间。
板片的主换热区202设置有换热元件203,在板片正面103,换热元件203相对于基板部102凸起,可选的,换热元件203与基板部102一体成型,例如换热元件203可以冲压 成型,换热元件203在板片反面104相对于基板部102形成凹部。或者,换热元件203可以为单独的部件,例如,换热元件203为翅片板,在主换热区202,换热元件203与板片进行钎焊,最终成型为一体,除了采用如翅片板的通道结构外,还可以采用如波纹板、点波板、丝状填充物、多孔介质等,实现结构上满足板片强度,且同时增强相邻两张板片形成的通道内流体的扰流、掺混、增大换热面积等效果,最终实现强化换热,提升板式换热器产品的性能,本发明对换热元件的结构和形式不作过多限制。
对于多张板片,其可以通过单副模具成型,即每张板片均为形状和结构完全相同的板片,多张板片装配时,相邻板片可以反向设置,当然,多张板片也可以通过两副甚至更多副模具成型,即多张板片可以为不同形状或结构,例如,一张板片其主换热区为平板部,另一张板片其主换热区设置点波型凸起结构,这两种板片也可以装配在一起并且交替层叠设置,只要板片满足本申请所描述的板片结构以及板片装配的对应关系即可。
对于第一板片100和第二板片101中的任一张板片而言,下述实施方式中提到的板片可以为第一板片100,也可以为第二板片101。板片还具有环状凸起部22和边沿凸起部33,环状凸起部22和边沿凸起部33都可以通过对板片进行冲压成型,当然,环状凸起部22和边沿凸起部33也可以分别为单独的零部件,在对应位置处,环状凸起部22和边沿凸起部33与板片的板面进行焊接固定为一体。
环状凸起部22围绕第一角孔11的外沿设置,环状凸起部22在板片的正面103相对于基板部102凸起,第一角孔11设于环状凸起部22上,第一角孔11形成凸台孔,可选的,环状凸起部22在反面104同时形成环绕第一角孔11的外沿的环状凹部22’。环状凸起部22的侧壁与换热元件203的侧壁之间具有间隙,环状凸起部22的侧壁与板片的边沿之间均具有间隙,该间隙使得环状凸起部22的周向能供流体流动。也就是说,流体在环状凸起部22周向附近时,既存在能直接进入主换热区202的流动路径,也存在绕过位于环状凸起部22与板片边沿之间的边道流动路径。有利于流体从多个路径流入或者流出主换热区202。
边沿凸起部33在板片的正面103相对于基板部102凸起,边沿凸起部33在反面104同时形成边沿凹部33’。边沿凸起部33位于第二角孔12与板片边沿之间,在本实施方式中,可以记第二角孔12与板片边沿之间的区域为第一边道区域1011。
在图2中,相对位置靠下的板片为第一板片100,相对位置靠上的板片为第二板片101,并且在图2中,第一板片100主要展示正面103,第二板片101主要展示反面104,在任意相邻的两张板片中,第一板片100的第二角孔12与第二板片101的第一角孔11相对,且该两个角孔之间具有供流体流入或者流出两张板片之间的间隙。当相邻的两张板片装配时,板片之间可以形成流体通道,而该间隙可作为流体通道的进口或者出口。第一板片100的 第一角孔11与第二板片101的第二角孔12相对,且第一板片100的的环状凸起部22与第二板片101第二角孔12外围的板面密封连接。该密封连接使得流体不能从第一板片100的第一角孔11与第二板片101的第二角孔12之间进入板片之间的流通通道,密封连接的方式可以为钎焊密封。第一板片100的环状凸起部22与第二板片101第二角孔12外围的板面配合形成不能供流体流通的死区,流体在板片上流动时,可以在环状凸起部22的周向外围区域内流动。
在第一板片100位于环状凸起部22与板片边沿之间的第二边道区域1012,第一板片100的基板部102至少部分与第二板片101的边沿凹部33’相对。相应的,第一板片100的边沿凸起部33至少部分与第二板片101环状凸起部22外围的基板部102相对。
其中,在基板部102所在的平面,板片具有长度方向以及宽度方向,板片较长的侧边与长度方向平行,板片较短的侧边与宽度方向平行,板片的长宽比小于等于3。参考图3,板片的长宽比L/W小于等于3,板片的长度和宽度均不包含翻边部分的长度和宽度,在图3中,板片上两个第一角孔或者两个第二角孔所在的一侧为板片的长度侧,板片上第一角孔和第二角孔所在的一侧为板片的宽度侧。或者进一步的,在板片长宽比小于等于3的基础上,针对板片宽度方向上同一侧的两个角孔中心的距离与整板宽度之间的比值小于等于2。采用本申请板式换热器的板片结构以及板片之间的装配关系,有利于提高流体在此类型的板片的板面上分配的均匀性。
环状凸起部22以及边沿凸起部33的存在有利于多张板片装配后,相邻两张板片的主换热区202之间能够保持间距形成流道供流体流通。
参考图3中黑色带箭头的虚线曲线示意的的流体流动方向,当两张板片层叠装配在一起时,第二板片101的第一角孔11与第一板片100的第二角孔12之间存在间隙,该间隙能够形成流体进口或者出口,对第一板片100而言,流体从第一板片100的一个第二角孔12流入第一板片100的正面103,相应的,对第二板片101而言,流体从第二板片101的一个第一角孔11流入板片101的反面104,在图3中,黑色带箭头的虚线曲线示表示的是流体在两个板片之间流道路径的示意,并且在图3中被观测到的板片是第二板片101的正面103。
对于位于下方的第一板片100而言,其中,一部分流体直接经主换热区202到达另一第二角孔12并流出,另一部分流体流至其中一个环状凸起部22的侧壁与换热元件203的侧壁之间,并进入主换热区202,还有一部分流体需要绕过板片101的第二边道区域1012进入主换热区202,相应的,由主换热区202流出的流体,一部分直接到达第二角孔12并流出,另一部分流体流至另一个环状凸起部22的侧壁与换热元件203的侧壁之间,并最终 从另一个第二角孔12流出,还有一部分需绕过第一板片100的第二边道区域1012才能到达另一个第二角孔12并流出。在第一板片100的第二边道区域1012处,两个相邻板片之间的流通截面深度最大可达到环状凸起部22的高度H1以及边沿凹部33’的深度H2之和,边沿凹部33’的深度H2也即大致与边沿凸起部33的高度相似,一种情况下,环状凸起部22的高度H1与边沿凸起部33的高度H2相同,其高度(H1,H2)的范围可以为0.5mm~5mm,这样,在第二边道区域1012,流体的流通截面深度最大可达到大致2倍的环状凸起部22的高度H1或者边沿凸起部33的高度H2,同时,在板片的主换热区202,两张相邻板片101之间的间距仍为环状凸起部22的高度H1,这样,在兼顾板片上第一角孔11与板片边沿之间的第二边道区域1012流通截面增大的同时,并不增加相邻板片主换热区之间的间距,有利于流体在第二边道区域1012处能够顺畅流动,进而有利于流体在板片上流动时能够均匀在板面上分配,同时有利于流体在主换热区保持较高的流速,尤其针对长宽比较小的板片板型设计,有利于提高板式换热器整体的换热效果。
进一步的,对换热元件203而言,换热元件203包括均匀间隔设置的人字形图案、W型图案,甚至更多重的人字波图案,或者点波型图案。换热元件203凸起的高度可以与环状凸起部22的高度相当,一种情况下,换热元件203在板片的正面103相对于基板部102形成凸脊和凹槽,换热元件203在反面104相对于基板部102同样也形成凸脊或者称为槽部,凸脊与槽部配合使得相邻的板片101之间形成流道,具体的,第一板片100上正面103的凸脊的顶端部分与第二板片101的反面104的基板部抵接,并最终钎焊连接为一体,流体在板片101的主换热区202流动时,在沿板片平面运行的基础上,还存在上下运动,从而能够使得换热效果更佳。
环状凸起部22与边沿凸起部33相对于基板部102凸起的高度可以相同也可以不同,边沿凸起部33的高度可以小于等于环状凸起部22的高度,在本申请提供的一种实施方式中,在板片的正面,环状凸起部22与边沿凸起部33相对于基板部102凸起的高度相同。在任意相邻的两张板片中,在第二板片101环状凸起部22与板片101边沿之间的第二边道区域1012,第一板片100的边沿凸起部33与第二板片101的基板部102密封连接。环状凸起部22以及边沿凸起部33的顶部可以具有便于焊接的平面或者微曲面,当多张板片装配时,一张板片的环状凸起部22与相邻板片的基板部102密封连接可以通过焊接实现,同理,一张板片的边沿凸起部33与相邻板片的基板部102密封连接也可以通过焊接实现,对板片而言,其各个角孔周围空间是板式换热器强度的薄弱环节,设置环状凸起部22以及边沿凸起部33可以增加板片角孔周围区域的焊接空间,有利于提升板式换热器的整体强度,从而可以进一步提升板式换热器的承压能力以及在流体脉冲压力下的使用寿命。
进一步的,第二角孔12设于基板部102,第二角孔12形成平面孔,当然,第二角孔12也可以为凸台孔,相对于第一角孔11而言,第二角孔12凸起的方向与第一角孔11相反,即第二角孔12周围的板面可以在板片反面相对于基板部11凸起。在本申请中,以第二角孔12为平面角孔进行描述。边沿凸起部33可以与板片的边沿相接,或者不相接。一种情况下,板片还包括包围基板部102的翻边105,当多个板片装配后,多个板片的翻边105能够以焊接如钎焊的方式密封,从而有利于将流体保持在板片之间构成的流道内。
第一角孔11和第二角孔12均靠近板片角部设置,在第二边道区域1012,边沿凸起部33基于板片拐角呈弯曲形态,且边沿凸起部33与换热元件203相连接。具体的,边沿凸起部33沿着板片的基板部102与翻边105的交汇处设置。边沿凸起部33能够自拐角区域延伸至主换热区202。边沿凸起部33能够与所述主换热区202内设置的换热元件203相连接实现配合,从而延长流体具有较深截面深度的流动路径的长度。
如图5示意,环状凸起部22与换热元件203之间通过基板部102相间隔,环状凸起部22的侧壁与换热元件203的侧壁之间形成有一狭长流道2201,具体的,该狭长流道2201的最小截面宽度为边沿凸起部33的最小截面宽度的30%,进一步的,狭长流道2201与环状凸起部22的间距大于等于1mm。
当然,环状凸起部22与换热元件203之间也可以实现部分连接,但是环状凸起部22的侧壁与换热元件203的侧壁至少具有供流体流通的间隙。
第二角孔12和第一角孔11的尺寸以及形状均相同,有利于简化板片的冲压加工工艺,简化模具操作。在基板部102所在的平面,环状凸起部22的投影外沿上任意一点与第一角孔11的投影的外沿间距相等,环状凸起部22的投影外沿与第一角孔11投影外沿形状大致相同,环状凸起部22的投影与第一角孔11的投影同轴设置,环状凸起部22的投影的外沿至第一角孔11的投影的外沿的间距记为第一距离L1。如图5所示,在基板部102所在平面,边沿凸起部33的投影靠近第二角孔12的侧边上任意一点到第二角孔12的投影的外沿的最短距离记为第二距离L2。可选的,第二距离L2大于等于第一距离L1。这样,第一流通板200和第二流通板300装配在一起时,第一流通板200的环状凸起部22不容易与第二流通板300的边沿凹部33’相干涉,同时,第一流通板200的边沿凸起部33也不容易与第一流通板200的第二角孔和第二流通板300的环状凹部22’形成的间隙相干涉。
第二角孔12和第一角孔11均为细长的椭圆形孔或者长圆形孔,第二角孔12的长度方向和第一角孔11的长度方向与板片的宽度方向大致重合。第一角孔11和第二角孔12设置成为细长的孔型能够有效的改善周围空间的均流效果,有利于流体在板片的宽度方向上进行分配。
边沿凸起部33包括弧形连接部331、与弧形连接部331相连接且分别位于弧形连接部331两侧的第一分部332和第二分部333,第一分部332的末端形成第一端部334,第二分部333的末端形成第二端部335,第一端部334比第二端部335远离主换热区202。如图5所示,第一端部334和第二端部335在竖直方向上的投影呈大致直线状,且进一步的,第一端部334的假想延伸线与第二端部335的假想延伸线不重合。
针对一组相互靠近的第二角孔12与边沿凸起部33而言,第二角孔12的外沿与第一端部334最近的位置记为第一位置a1,第二角孔12的外沿与第二端部335最近的位置记为第二位置a2,第二角孔12的外沿在第一位置a1至第二位置a2之间形成与边沿凸起部33相对的第一外沿段110,第一外沿段110在第二角孔12周向上的占比为1/4~1/2。第一外沿段110在第二角孔12的外沿上的占比可以从一定侧面反映边沿凸起部33在其对应延伸方向上的尺寸。
在板片的第一边道区域1011处,边沿凸起部33的顶部与相邻板片实现密封连接,流体从第二角孔12进入板片的正面103后,在第一边道区域1011,第一外沿段110在第二角孔12的外沿上的占比不能过大,边沿凸起部33尽量避免影响第二角孔12处流体的进出,给流体造成过多的流动阻力。
同时,第一外沿段110在第二角孔12的外沿上的占比不能过小,流体在第二边道区域1012流动并拐弯时,边沿凸起部33能够提供尽量多一些的较大的流通截面,便于流体从第二边道区域1012流过。
如图5所示,第一端部334具有第一斜侧面336,第一斜侧面336自板片的边沿相对于板片的长度方向倾斜设置,且边沿凸起部33朝向第二角孔12的侧面为弧形侧面,该弧形侧面能够保证流体顺滑流通,避免给流体造成过多流阻,斜侧面336与弧形侧面的交汇处以钝角夹角过渡。
举例来说,流体从第二角孔12进入板片,并逐渐向第二边道区域1012流动的过程中,第一角孔11为细长环状,第一角孔11的弧形边沿与板片的边沿形成逐渐收缩的缩口结构,通过第一端部334的第一斜侧面336,有利于优化流体进入第二边道区域1012的过程,通过增加进入狭窄边道区域的入口尺寸,降低了局部流阻,有利于流体在拐角区域的分配,进而有利于提升板式换热器的换热效果。
在此基础上,如图6所示,在基板部102所在的平面上,第二角孔12的投影的边沿具有两个相平行的平直边沿111以及相对于平直边沿111对称的两个圆弧形边沿112,圆弧形边沿112连接两个平直边沿111。
两个圆弧形边沿112中相对靠近相邻的第一角孔11或者相对远离板片边沿的圆弧形边 沿112记为第一圆弧边沿1121,第一圆弧边沿1121对应的圆弧端点(b1,b2)连线的中心b3与第二角孔12的中心b4之间的连线在平直边沿111所在直线上的投影记为第一投影S1,第一斜侧面336在基板部102所在的平面上的投影记为第二投影S2,第二投影S2在平直边沿111所在直线上的投影记为第三投影S3,第一投影S1和第三投影S3大致重合。
相应的,弧形连接部331的曲率与圆弧形边沿112对应圆弧的曲率大致相同。当流体从第二边道区域1012流动时,使得流体的流动路径相对平滑,有利于流体在拐角区域的分配效果。
如图3中所示,对一张板片101而言,两个第一角孔11均位于板片101的宽度方向上的一侧,对应地,两个第二角孔12均位于板片101的宽度方向上的另一侧。换句话说,两个第一角孔11位于板片101靠近较长的侧边的区域内,两个第二角孔12位于板片101靠近较短的侧边的区域内,这种方式即为单边流形式。
参考图7,在板片101长度方向上位于主换热区202两侧区域的至少一侧区域中,存在由第一角孔11和第二角孔12的中心连线至板片边沿所形成的区域,该区域可以记为第一导流区201,图7中以虚线框示意,第一导流区201的有效流通截面面积与第一边道区域1012的有效流通截面面积大致相当。这样,流体从第二角孔12进入板片后,第一导流区201与第一边道区域1012的有效流通截面面积没有较多突变,有利于流体进入第一边道区域1012的流动过程相对平顺,更有利于在板片上均匀分配。
第一导流区201还可以设置有数量相对较少的凸起元件204,该凸起元件204在板片正面形成凸起,同时在板片反面形成凹陷,该凸起元件204一方面可以增加板片靠近边沿部分的焊接强度,有利于增加板式换热器的整体强度,另一方面,凸起元件204能够加强换热流体的扰动,流体经过凸起元件204的时候会发生边界层的分离,增强换热。具体的,凸起元件204的压制形状在基板部上的映射形状可以为圆形、三角形、梯形、椭圆形或者多边形等形状。凸起元件204的数量不宜设置过多,有利于减小第一导流区201的流阻,尽量避免影响流体在板片101宽度方向上的分配。
除了适用于单边流方式的板片外,本申请的板片也可以适用对角流的方式,即两个第一角孔11呈对角设置,相应的,两个第二角孔12也为对角设置。图8针对适用对角流方式的两张板片101装配在一起时,流体在两张板片之间的流动路径进行示意。本申请的板片也可以适用U型回路流动方式,即两个第一角孔11位于板片101长度方向的一侧,两个第二角孔12位于板片101长度方向的另一侧,板片上还设置有凸筋等止挡结构,流体流动时沿类似U型回路的方式进行流动,图9针对适用U型回路方式的两张板片101装配在一起时,流体在两张板片之间的流动路径进行示意。
以上对本发明所提供板式换热器进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (15)

  1. 一种板式换热器,包括层叠设置的多张板片,所述多张板片包括至少一组相邻的第一板片和第二板片,所述第一板片的正面与所述第二板片的反面相对;所述板片包括基板部和主换热区,所述板片设有两个第一角孔和两个第二角孔;
    所述板片还具有环状凸起部和边沿凸起部;所述环状凸起部在板片正面相对于基板部凸起,所述第一角孔设于所述环状凸起部从而形成凸台孔;所述环状凸起部的侧壁与板片边沿之间具有能够供流体流动的间隙;所述边沿凸起部在板片正面相对于基板部凸起,所述边沿凸起部在板片反面同时形成边沿凹部,所述边沿凸起部位于所述第二角孔与板片边沿之间的第一边道区域;
    所述第一板片的第二角孔与所述第二板片的第一角孔相对应,且该两个角孔之间具有供流体流入或者流出该两张板片之间的间隙;第一板片的第一角孔与第二板片的第二角孔相对应,且第一板片的环状凸起部与第二板片第二角孔外围的板面密封连接;在第一板片位于环状凸起部与板片边沿之间的第二边道区域,第一板片的基板部至少部分与第二板片的边沿凹部相对;第一板片的边沿凸起部至少部分与第二板片环状凸起部外围的基板部相对。
  2. 根据权利要求1所述的板式换热器,其特征在于,所述板片的长宽比小于等于3。
  3. 根据权利要求1或2所述的板式换热器,其特征在于,在所述板片的正面,所述环状凸起部与所述边沿凸起部相对于基板部凸起的高度相同;在第二板片环状凸起部与板片边沿之间的第二边道区域,第一板片的边沿凸起部与第二板片的基板部密封连接,所述边沿凸起部和所述环状凸起部的顶部均设置有便于焊接的平面或者微曲面。
  4. 根据权利要求1至3任一所述的板式换热器,其特征在于,所述第二角孔设于所述基板部,所述第二角孔形成平面孔;所述边沿凸起部与所述第二角孔通过所述基板部间隔;所述边沿凸起部远离所述第二角孔的侧壁至少部分区域形成板片边沿,或者所述边沿凸起部与所述板片边沿之间通过所述基板部间隔。
  5. 根据权利要求4所述的板式换热器,其特征在于,所述板片的主换热区设有换热元件;在板片正面,所述换热元件相对于基板部凸起所述换热元件与所述基板部一体成型,所述换热元件在板片正面自所述基板部凸起,所述换热元件在板片反面相对于基板部形成凹坑。
  6. 根据权利要求5所述的板式换热器,其特征在于,在所述第二边道区域,所述边沿凸起部基于板片拐角呈弯曲形态,且所述边沿凸起部与所述换热元件相连接。
  7. 根据权利要求5所述的板式换热器,其特征在于,所述环状凸起部与所述换热元件之间通过基板部相间隔,所述环状凸起部的侧壁与所述换热元件的侧壁之间形成有供流体流动的流道。
  8. 根据权利要求7所述的板式换热器,其特征在于,所述流道与所述环状凸起部之间的最小间距大于等于1mm。
  9. 根据权利要求1所述的板式换热器,其特征在于,所述第一角孔和所述第二角孔均为椭圆形孔或者长圆形孔,所述第一角孔的长度方向和所述第二角孔的长度方向与板片宽度方向大致重合。
  10. 根据权利要求7所述的板式换热器,其特征在于,所述边沿凸起部包括弧形连接部、第一分部和第二分部,,所述弧形连接部连接于所述第一分部和所述第二分部之间,所述第一分部的末端形成第一端部,所述第二分部的末端形成第二端部,所述第一端部比所述第二端部远离所述主换热区;
    针对任一组相互靠近的第二角孔与边沿凸起部而言,所述第二角孔的外沿与所述第一端部最近的位置记为第一位置,所述第二角孔的外沿与所述第二端部最近的位置记为第二位置,所述第二角孔的外沿在所述第一位置至所述第二位置之间形成与所述边沿凸起部相对的第一外沿段,所述第一外沿段在所述第二角孔周向上的占比为1/4~1/2。
  11. 根据权利要求10所述的板式换热器,其特征在于,所述第一端部具有第一斜侧面,所述第一斜侧面自所述板片边沿相对于板片的长度方向倾斜设置,且所述边沿凸起部朝向所述第二角孔的侧面为弧形侧面,所述斜侧面与所述弧形侧面的交汇处以钝角夹角过渡。
  12. 根据权利要求11所述的板式换热器,其特征在于,在垂直于板片层叠方向的平面上,所述第二角孔的投影的边沿具有两个相平行的平直边沿以及相对于平直边沿对称的两个圆弧形边沿,所述圆弧形边沿连接所述两个平直边沿;
    两个圆弧形边沿中相对远离板片边沿的圆弧形边沿记为第一圆弧边沿,所述第一圆弧边沿的圆弧端点连线的中心与所述第二角孔的中心之间的连线在所述平直边沿所在直线上的投影记为第一投影,所述第一斜侧面在基板部所在的平面上的投影记为第二投影,所述第二投影在所述平直边沿所在直线上的投影记为第三投影,所述第一投影和所述第三投影大致重合。
  13. 根据权利要求1所述的板式换热器,其特征在于,两个所述第一角孔均位于板片的宽度方向上的一侧,两个所述第二角孔均位于所述板片的宽度方向上的另一侧。
  14. 根据权利要求13所述的板式换热器,其特征在于,在板片长度方向上位于主换热区两侧区域的至少一侧区域中,第一角孔和第二角孔的中心连线至板片边沿所形成的区域 的有效流通截面面积与所述第一边道区域的有效流通截面面积相等。
  15. 根据权利要求1所述的板式换热器,其特征在于,两个所述第一角孔对角设置,两个所述第二角孔对角设置;或者,两个所述第一角孔均位于板片长度方向上的一侧,两个所述第二角孔均位于板片长度方向上的另一侧。
PCT/CN2020/104656 2019-08-02 2020-07-24 板式换热器 WO2021023031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713496.XA CN112304131A (zh) 2019-08-02 2019-08-02 板式换热器
CN201910713496.X 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021023031A1 true WO2021023031A1 (zh) 2021-02-11

Family

ID=74486615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104656 WO2021023031A1 (zh) 2019-08-02 2020-07-24 板式换热器

Country Status (2)

Country Link
CN (1) CN112304131A (zh)
WO (1) WO2021023031A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587709A (zh) * 2021-08-02 2021-11-02 赤壁银轮工业换热器有限公司 一种具有新型凸台结构的换热器芯片
WO2022206792A1 (zh) * 2021-03-30 2022-10-06 浙江三花汽车零部件有限公司 一种换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271172A (ja) * 1995-03-31 1996-10-18 Hisaka Works Ltd プレート式熱交換器のプレート構造
US20010054501A1 (en) * 2000-05-03 2001-12-27 Reinhard Wehrmann Plate heat exchanger
JP2006183945A (ja) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp オイルクーラ
CN1833153A (zh) * 2003-08-01 2006-09-13 贝洱两合公司 热交换器及其制造方法
CN2886491Y (zh) * 2006-03-16 2007-04-04 山东北辰集团华润换热设备有限公司 板式换热器换热板
CN102084203A (zh) * 2008-06-13 2011-06-01 阿尔法拉瓦尔有限公司 热交换器
CN102288054A (zh) * 2011-06-27 2011-12-21 江苏宝得换热设备有限公司 等流量高效板式换热器
CN205690942U (zh) * 2016-06-08 2016-11-16 上海加冷松芝汽车空调股份有限公司 一种层叠钎焊板式换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025137A (ko) * 2002-02-26 2002-04-03 김진곤 판형열교환기의 내압구조
CN201795712U (zh) * 2010-04-26 2011-04-13 江苏宝得换热设备有限公司 换热器板片
CN104515422B (zh) * 2013-09-27 2017-10-31 浙江三花汽车零部件有限公司 翅片及具有该翅片的换热器
CN103776284B (zh) * 2014-02-12 2017-07-14 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
JP2016044896A (ja) * 2014-08-22 2016-04-04 株式会社ティラド 積層型熱交換器
CN107462093B (zh) * 2016-06-02 2020-09-25 杭州三花研究院有限公司 板式换热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271172A (ja) * 1995-03-31 1996-10-18 Hisaka Works Ltd プレート式熱交換器のプレート構造
US20010054501A1 (en) * 2000-05-03 2001-12-27 Reinhard Wehrmann Plate heat exchanger
CN1833153A (zh) * 2003-08-01 2006-09-13 贝洱两合公司 热交换器及其制造方法
JP2006183945A (ja) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp オイルクーラ
CN2886491Y (zh) * 2006-03-16 2007-04-04 山东北辰集团华润换热设备有限公司 板式换热器换热板
CN102084203A (zh) * 2008-06-13 2011-06-01 阿尔法拉瓦尔有限公司 热交换器
CN102288054A (zh) * 2011-06-27 2011-12-21 江苏宝得换热设备有限公司 等流量高效板式换热器
CN205690942U (zh) * 2016-06-08 2016-11-16 上海加冷松芝汽车空调股份有限公司 一种层叠钎焊板式换热器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206792A1 (zh) * 2021-03-30 2022-10-06 浙江三花汽车零部件有限公司 一种换热器
CN113587709A (zh) * 2021-08-02 2021-11-02 赤壁银轮工业换热器有限公司 一种具有新型凸台结构的换热器芯片

Also Published As

Publication number Publication date
CN112304131A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
JP5403472B2 (ja) プレート熱交換器
CN105793662B (zh) 具有改进的流动的热交换器
CN102395853B (zh) 板式热交换器
WO2021023031A1 (zh) 板式换热器
CN103868380A (zh) 一种板式热交换器
WO2022206792A1 (zh) 一种换热器
WO2022210924A1 (ja) 熱交換器
CN112414185B (zh) 板式换热器
CN114608368A (zh) 换热器
KR20110011516A (ko) 플레이트 열교환기
CN215930667U (zh) 一种板式换热器的换热板片和板式换热器
CN215639000U (zh) 一种板式换热器的换热板片及板式换热器
JP2007162974A (ja) 熱交換用プレート
CN216348022U (zh) 换热板片组
CN112414184A (zh) 板式换热器
CN112146484B (zh) 板式换热器
JP4317983B2 (ja) プレート型熱交換器
JP3670725B2 (ja) プレート式熱交換器
JP2015102279A (ja) オイルクーラ
JP4827909B2 (ja) プレート式熱交換器
CN113819789B (zh) 一种板式换热器的换热板片及板式换热器
CN111271996A (zh) 一种具有非对称通道的板式换热器
CN211953808U (zh) 一种具有非对称通道的板式换热器
CN212362927U (zh) 板式换热器
JP2004205057A (ja) プレート型熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849066

Country of ref document: EP

Kind code of ref document: A1