WO2021022975A1 - 一种控制方法、装置、设备及计算机可读存储介质 - Google Patents

一种控制方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021022975A1
WO2021022975A1 PCT/CN2020/101512 CN2020101512W WO2021022975A1 WO 2021022975 A1 WO2021022975 A1 WO 2021022975A1 CN 2020101512 W CN2020101512 W CN 2020101512W WO 2021022975 A1 WO2021022975 A1 WO 2021022975A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
moving speed
electronic device
damper
determined
Prior art date
Application number
PCT/CN2020/101512
Other languages
English (en)
French (fr)
Inventor
王润发
邹丁山
罗进
吴汝林
李益爱
叶永信
康建珂
王锐
Original Assignee
广东美的环境电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910725845.XA external-priority patent/CN112344428B/zh
Priority claimed from CN201910726649.4A external-priority patent/CN112344564B/zh
Priority claimed from CN201911038203.9A external-priority patent/CN112747353B/zh
Application filed by 广东美的环境电器制造有限公司 filed Critical 广东美的环境电器制造有限公司
Publication of WO2021022975A1 publication Critical patent/WO2021022975A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • This application relates to the field of household appliances, and relates to but not limited to a control method, device, equipment, and computer-readable storage medium.
  • heaters are divided into quartz heaters, electric wire heaters, and fan heaters.
  • fan heaters are becoming more and more popular with users, but the existing fan heaters are too single in control and use, lacking intelligence and safety and reliability, especially for the control of the air outlet of the heater. Simply open or close the damper through the switch button of the device.
  • the air door of the air outlet is immediately opened outward at a uniform speed, and the warm air blown out at the beginning is often low in temperature and the user experience is poor; when the machine is turned off, the air door of the air outlet is immediately closed inward at a uniform speed. If the internal temperature of the fan heater is too high or the air volume is too large, when the damper is closed, there will still be a lot of heat or air volume inside the machine, which may damage the internal components of the machine and affect the overall service life of the machine.
  • the embodiments of the present application provide a control method, device, equipment, and computer-readable storage medium.
  • the embodiment of the present application provides a control method, the method includes:
  • the operation instruction being used to trigger the electronic device to turn on or off;
  • the damper is controlled to move at the moving speed.
  • An embodiment of the present application provides a control device, which includes:
  • a receiving module configured to receive an operation instruction, the operation instruction is used to trigger the electronic device to turn on or off;
  • the first determining module is configured to determine the operating parameters of the electronic device according to the operation instruction
  • a second determining module configured to determine the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter
  • the first control module is configured to control the damper to move at the moving speed.
  • An embodiment of the present application provides a control device, and the control device at least includes:
  • a memory configured to store a computer program that can be run on the processor
  • the steps of the control method are realized when the computer program is executed by the processor.
  • the embodiment of the present application provides a computer-readable storage medium in which computer-executable instructions are stored, and the computer-executable instructions are configured to execute the steps of the aforementioned control method.
  • the embodiments of this application provide the control methods, devices, equipment, and computer-readable storage media provided in the embodiments of this application.
  • the operating parameters of the electronic device such as internal ambient temperature, Output power
  • the technical solution provided by this application will open the damper at a faster speed when it is determined that the output power is large after receiving the startup operation, so that the user can quickly feel the cold or warm air, and when the internal temperature is low , Open the damper at a relatively slow speed, so that the cold air is converted into warm air before blowing out, which can provide users with a comfortable indoor environment and improve the user experience; when the shutdown operation is received, it will be based on the internal temperature or output power , Controlling the opening and closing speed of the fan can reduce the residual heat or air volume inside the electronic equipment, thereby improving the safety of the electronic equipment and extending the service life of the machine.
  • FIG. 1 is a schematic diagram of an implementation flow of a control method provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of another implementation process of the control method provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another implementation process of the control method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of another implementation process of the control method provided by the embodiment of the application.
  • FIG. 5 is a schematic diagram of an implementation process of a control opening work step according to an opening area provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of an implementation process for determining the mapping relationship between the open area interval and the heating level provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of another implementation process for determining the mapping relationship between the open area interval and the heating level provided by an embodiment of the application;
  • FIG. 8 is a schematic diagram of a state in which the door of the heater provided by an embodiment of the application is opened when it receives an opening instruction
  • FIG. 9 is a graph showing a variation curve of the angle of the fan door and the PTC heating gear provided by an embodiment of the application.
  • FIG. 11 is another curve diagram of the angle of the fan door and the PTC heating gear provided by the embodiment of the application.
  • FIG. 12 is a schematic diagram of an implementation process of heating control steps provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another implementation process of the heating control step provided by the embodiment of the application.
  • FIG. 14 is a schematic flowchart of a fan detection step provided by an embodiment of this application.
  • 15 is a schematic diagram of an implementation flow of heating control steps provided by an embodiment of the application.
  • 16 is a schematic diagram of the composition structure of a control device in an embodiment of the application.
  • FIG. 17 is a schematic diagram of the composition structure of a control device according to an embodiment of the application.
  • first ⁇ second ⁇ third is only used to distinguish similar objects. Represents a specific order of objects. Understandably, “first ⁇ second ⁇ third” can be interchanged in a specific order or sequence when allowed, so that the embodiments of the application described here can be excluded from It is implemented in an order other than that shown or described.
  • the embodiment of the application first provides a control method applied to an electronic device, and the electronic device can be any one of a heater, a heating and cooling fan or a heating and cooling heater, a cooling and heating fan, and a heater.
  • the control method provided by the embodiment of the present application may be implemented by a computer program, and when the computer program is executed, each step in the method provided by the embodiment of the present application is completed.
  • the computer program may be executed by a processor in the control device.
  • Fig. 1 is a schematic diagram of an implementation flow of a control method provided by an embodiment of the application. As shown in Fig. 1, the method includes the following steps:
  • step S101 the electronic device receives an operation instruction, and the operation instruction is used to trigger the electronic device to turn on or off.
  • the operation instruction for turning on or off the electronic device can be triggered under various requirements or scenarios, for example, it can be triggered by a button or touch key provided on the electronic device, or it can be triggered by a smart device.
  • the application (App, Application) installed on the terminal is triggered by a switch signal sent to the electronic device, and it can also be triggered by receiving a switch signal sent by a remote control.
  • the operations that can trigger the switch machine include: gesture sliding operation, voice command operation or specific key operation, etc., which are not limited here.
  • Step S102 The electronic device determines the operating parameter of the electronic device according to the operation instruction.
  • the determined operating parameters of the electronic device include at least one of the following: output power in warm air mode, output power in cold air mode, and internal ambient temperature.
  • the output power of the electronic device in the heating mode can be determined by obtaining the heating gear of the heating element in the heating mode, or it can be determined by detecting the current and voltage of the heating element when it is working.
  • the heating element may be a positive temperature coefficient (PTC) heating element.
  • PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency, and is an electric heating with automatic constant temperature and power saving. element.
  • the output power of the electronic equipment in the cold air mode can be determined by obtaining the wind speed gear of the fan in the cold air mode, or by detecting the current and voltage of the fan when the fan is working, and also by obtaining the speed of the fan.
  • the internal environmental temperature of the electronic device can be determined by obtaining the temperature measured by a temperature sensor provided inside the electronic device. In the embodiments of the present application, the method of determining the operating parameters of the electronic device is not limited.
  • Step S103 The electronic device determines the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter.
  • the moving speed at which the air door of the electronic device is opened is determined.
  • the moving speed of the air door of the electronic device is determined.
  • the operating instructions and operating parameters are preset with corresponding moving speeds. After the operating instructions and operating parameters are acquired, the moving speeds can be determined according to the preset corresponding relationship. In the embodiments of the present application, the corresponding relationship may be set by the manufacturer at the time of delivery, or may be set by the user during use.
  • the processor of the electronic device may determine the moving speed of the damper of the electronic device through a preset algorithm according to the operation instruction and the operating parameter.
  • the opening or closing of the damper can be controlled by controlling the stepping motor, and further, the moving speed of the damper when opening or closing can be controlled by controlling the stepping speed of the stepping motor. Therefore, when the moving speed is determined, it is equivalent to determining the stepping speed of the stepping motor.
  • the moving speed can be set to three gears of high gear, medium gear and low gear. In other embodiments, two gears, a high gear and a low gear, can also be set, which is not limited here. For example: electronic equipment has three gears of high, medium and low moving speed.
  • the speed corresponding to high gear is 3 milliseconds (ms, millisecond)-4ms/beat
  • the speed corresponding to middle gear is 4ms-6ms/beat
  • the speed corresponding to low gear is 6ms-8ms/beat.
  • it can also be set to other speeds.
  • Step S104 the electronic device controls the damper to move at the moving speed.
  • the electronic device controls the air door to move at the moving speed, that is, controls the stepping motor to move at a step speed corresponding to the moving speed, thereby controlling the air door to move. For example, when it is determined that the moving speed of the damper is high, the stepper motor is controlled to move at the speed corresponding to the high. When it is determined that the moving speed of the air door is a low gear, the stepping motor is controlled to move at a speed corresponding to the low gear.
  • the control method provided by the embodiments of the present application determines the operating parameters of the electronic device (such as the internal ambient temperature, the output power of the electronic device) when receiving the switch operation of the electronic device, and controls the electronic device according to the switch operation and operating parameters The moving speed of the throttle.
  • the technical solution provided by this application receives the power-on operation, when it is determined that the output power is large, the damper is opened at a faster speed, so that the user can quickly feel the cold or warm air, when the internal temperature is low
  • the air door is opened at a relatively slow speed, so that the cold air is converted into warm air and then blown out, which can provide users with a comfortable indoor environment and improve user experience.
  • the shutdown operation is received, the internal electronic equipment can be reduced. Residual heat or air volume, thereby improving the safety of electronic equipment, thereby extending the service life of the machine.
  • FIG. 2 is a schematic diagram of another implementation process of the control method provided by the embodiment of the application. As shown in FIG. 2, the control method includes:
  • Step S201 The electronic device receives an operation instruction, and the operation instruction is used to trigger the electronic device to turn on or off.
  • Step S202 The electronic device obtains the working mode of the electronic device according to the operation instruction.
  • the working mode of the electronic device includes: a warm air mode and a cold air mode.
  • Step S203 The electronic device determines the operating parameter corresponding to the working mode.
  • the determined operating parameter when the working mode is the warm air mode, may include: heating power or internal ambient temperature of the electronic device.
  • the determined operating parameter includes: output power.
  • the determined operating parameter when the working mode is the cold air mode and the operation instruction is used to trigger the shutdown of the electronic device, the determined operating parameter includes: output power or internal temperature of the electronic device.
  • Step S204 The electronic device determines the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter.
  • the moving speed of the damper when the startup operation is received, the moving speed of the damper may be further determined according to the heating power or output power in the operating parameters.
  • the heating power or output power in the operating parameters if the heating power or output power in the operating parameters is large, that is, when the cooling or heating gear set by the user is high, in order to cool or heat as quickly as possible, the determined movement speed of the damper is also relatively high. Fast; if the heating power or output power in the operating parameters is small, that is, when the cooling or heating gear set by the user is low, it means that the user does not particularly need rapid cooling or heating, then the movement of the air door is determined The speed can be relatively slow.
  • the moving speed of the damper can also be determined according to the internal temperature of the device in the operating parameters. Among them, if the internal temperature of the equipment in the operating parameters is high, in order to let the user feel the warm air as soon as possible, the determined air door moving speed is also relatively fast; if the internal temperature of the equipment in the operating parameters is low, in order to prevent The low-temperature air blows toward the user, and the determined air door moves relatively slowly.
  • the moving speed of the damper when the shutdown operation is received, can be determined according to the power in the operating parameters (heating power or output power in cold wind mode) or the internal temperature of the device, where, if the power is large or the internal temperature of the device Higher, in order to reduce the residual heat or air volume inside the machine, the determined air door moving speed is relatively slow; if the power is low or the internal equipment temperature is low, at this time, in order to complete the shutdown operation as soon as possible, the determined air door moving speed Also relatively fast.
  • Step S205 the electronic device controls the damper to move at the moving speed.
  • control method further includes:
  • step S206 the electronic device determines whether the damper has moved to a preset position.
  • the preset position includes: a position when the damper is fully opened, or a position when the damper is closed.
  • Step S207 the electronic device controls the damper to stop moving.
  • the electronic device controls the stop of the damper by controlling the stop of the stepper motor.
  • the control method provided by the embodiment of the present application determines the operation mode of the electronic device (such as warm air mode or cold air mode) by receiving the power-on or shutdown operation of the electronic device, and controls the electronic device damper by determining the operating parameters in different modes The speed of movement.
  • the technical solution provided by this application will open the damper at a faster speed when it is determined that the output power is large when the power-on operation is received, so that the user can quickly feel the cold or warm air.
  • the control opens the damper at a relatively slow speed, so that the cold air is converted into warm air and then blown out, which can provide users with a comfortable indoor environment and improve the user experience.
  • the shutdown operation is received, the internal heat of the electronic device can be reduced Or the air volume remains, thereby improving the safety of electronic equipment and extending the service life of the machine.
  • step S204 the electronic device determines the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter
  • step S204 can be implemented through the following steps:
  • step S204A1 when it is determined that the warm air mode is working at the first heating power, it is determined that the moving speed of the damper is the first moving speed.
  • Step S204A2 when it is determined that the warm air mode is working at the second heating power, the moving speed of the damper is determined to be the second moving speed, wherein the first output power is greater than the second output power, and the first A moving speed is greater than the second moving speed.
  • the output power of the warm air mode is large, it means that the electronic device heats up faster. Therefore, it can be determined that the moving speed of the air door is relatively fast, so that the warm air is output to the inside of the electronic device as soon as possible, so that the user can compare Feel the warm breeze quickly. If the heating power of the warm air mode is small and the heating speed is slow, it can be determined that the moving speed of the air door is relatively slow. When the air door is fully opened, the air inside the device will be heated for a longer time to convert the cold air into warm air. Improve the user experience.
  • step S204 can be implemented through the following steps:
  • Step S204B1 When it is determined that the internal temperature of the electronic device is the first temperature, it is determined that the moving speed of the air door is the first moving speed.
  • the internal temperature of the electronic device may be obtained through a temperature sensor inside the electronic device.
  • Step S204B2 when it is determined that the internal temperature of the electronic device is the second temperature, the movement speed of the air door is determined to be the second movement speed, wherein the first temperature is greater than the second temperature, and the first movement speed is greater than the second temperature.
  • the second moving speed when it is determined that the internal temperature of the electronic device is the second temperature, the movement speed of the air door is determined to be the second movement speed, wherein the first temperature is greater than the second temperature, and the first movement speed is greater than the second temperature. The second moving speed.
  • the determined movement speed of the air door is also relatively fast, so that the warm air is output to the electronic device as soon as possible. If the internal temperature is low, at this time, in order to prevent the lower temperature air from blowing to the user, make sure that the moving speed of the air door is relatively slow. When the air door is fully opened, the air inside the device will be heated for a longer time to convert the cold air In order to enhance the user experience.
  • step S204 can be implemented through the following steps:
  • step S204C1 when it is determined that the warm air mode operates at the first heating power, it is determined that the moving speed of the damper is the third moving speed.
  • Step S204C2 When it is determined that the heating mode is operating at the second heating power, it is determined that the moving speed of the air door is a fourth moving speed, wherein the first heating power is greater than the second heating power, and the first heating power is greater than the second heating power. Three moving speed is greater than the fourth moving speed.
  • the determined air door moving speed when the electronic device is to be turned off in the warm air mode, if the heating power of the warm air mode is high, in order to reduce the residual heat or air volume inside the device, the determined air door moving speed is relatively slow. The heat and air volume inside the electronic device are dissipated more, so as to improve the safety of the electronic device and prolong the service life of the electronic device. If the output power of the warm air mode is low, in order to complete the shutdown operation as soon as possible, the determined air door moving speed is relatively fast.
  • step S204 can be implemented through the following steps:
  • Step S204D1 When the internal temperature of the electronic device is the first temperature, it is determined that the moving speed of the air door is the fourth moving speed.
  • Step S204D2 when it is detected that the internal temperature of the electronic device is the second temperature, it is determined that the moving speed of the air door is the third moving speed, wherein the first temperature is greater than the second temperature, and the third moving speed is greater than The fourth moving speed.
  • the third movement speed may be the same as or different from the first movement speed
  • the fourth movement speed may be the same as or different from the second movement speed, which is not limited here.
  • the internal temperature of the electronic device is determined. If the internal temperature of the electronic device is relatively high, in order to reduce the residual heat inside the device, determine the air door The moving speed is relatively slow, so that more heat inside the electronic device is dissipated, the safety of the use of the electronic device is improved, and the service life of the electronic device is prolonged. If the internal temperature of the electronic device is low, in order to complete the shutdown operation as soon as possible, the determined air door moving speed is relatively fast.
  • step S204 can be implemented through the following steps:
  • step S204E1 when it is determined that the cold wind mode operates at the first output power, it is determined that the moving speed of the damper is the third moving speed.
  • Step S204E2 When it is determined that the cold wind mode is operating at the second output power, it is determined that the moving speed of the damper is the fourth moving speed, where the first output power is greater than the second output power, and the third moving The speed is greater than the fourth moving speed.
  • the determined movement speed of the air door is relatively fast, so that the user can feel the cold air faster. Improve the user experience.
  • step S204 can be implemented through the following steps:
  • Step S204F1 When it is determined that the first output power of the cold wind mode is working, it is determined that the moving speed of the damper is the fourth moving speed.
  • the first output power corresponding to the cold air mode can be determined by determining the output power of the fan
  • Step S204F2 When it is determined that the cold wind mode is working at the second output power, it is determined that the moving speed of the damper is a third moving speed, wherein the first output power is greater than the second output power, and the third moving speed is greater than The fourth moving speed.
  • the output power of the cold air mode is large, that is, when the wind speed of the fan is large, it is determined that the moving speed of the air door is relatively slow, so as to reduce the residual air volume inside the device and improve the safety of using the electronic device. Extend the service life of electronic equipment.
  • FIG. 3 is a schematic diagram of another implementation process of the control method provided by the embodiment of the application. As shown in FIG. 3, the control method includes:
  • step S301 the user turns on the cooling and heating fan.
  • step S302 the cooling and heating fan determines its own operating mode.
  • the operation mode of the cooling and heating fan includes a heating mode and a cooling mode.
  • step S303 to step S306 are executed.
  • step S307 to step S310 are executed.
  • step S303 the cooling and heating fan determines the heating gear or the internal temperature of the cooling and heating fan.
  • step S304 the cooling and heating fan adjusts and controls the operating speed of the stepping motor of the air door according to the heating gear or the internal temperature.
  • the heating gear in the warm air mode is further detected and judged, if the heating gear is high (heating load power is 2000 watts (w, watt) or more) or If the internal temperature of the heating and cooling fan is above 35°C, quickly (the stepping motor runs at a speed of 3ms-4ms/beat) open the air door of the heating and cooling fan; if the heating gear is in the middle gear (the heating load power is between 1000w and 2000w) or If the internal temperature of the heating and cooling fan is between 35°C and 30°C, it is normal (the stepping motor runs at a speed of 4ms-6ms/beat).
  • step S305 the cooling and heating fan determines whether the air door is opened to a set angle.
  • step S306 when the damper is opened to the set angle, step S306 is executed, and when the damper is not opened to the set angle, step S304 is executed.
  • step S306 the cooling and heating fan controls the stepping motor to stop moving.
  • Step S307 the cooling and heating fan determines the wind speed gear.
  • step S308 the cooling and heating fan adjusts the operating speed of the stepping motor controlling the air door according to the wind speed gear.
  • the wind speed gear in the cold wind mode is further detected and judged. If the wind speed gear is the high-end wind speed (the fan speed is 1300 revolutions (r, Rotational)/minute (min, minute) above), then quickly (the stepper motor runs at a speed of 3ms-4ms/beat) to open the air door; if the wind speed gear is in the middle wind speed (the fan speed is 1000r/min-1300r/min), it is normal (step motor Open the air door at a speed of 4ms-6ms/beat); if the wind speed is a low speed (fan speed is 800r/min-1000r/min), open the air door slowly (stepping motor runs at a speed of 6ms-8ms/beat) .
  • the wind speed gear is the high-end wind speed (the fan speed is 1300 revolutions (r, Rotational)/minute (min, minute) above), then quickly (the stepper motor runs at a speed of 3ms-4ms/beat) to open the air door; if the wind speed gear is
  • step S309 the cooling and heating fan determines whether the air door is opened to a set angle.
  • step S310 the cooling and heating fan controls the stepping motor to stop moving.
  • step S310 when the damper is opened to the set angle, step S310 is executed, and when the damper is not opened to the set angle, step S308 is executed.
  • the heating and cooling fan when the heating and cooling fan is turned on in the warm air mode, the heating gear in the warm air mode or the temperature inside the machine is detected and judged, and the control is adjusted according to the detected heating gear or the temperature inside the machine
  • the operating speed of the stepping motor when the damper is opened so that the cold air is converted into warm air and then blown out, thereby achieving a heating effect, improving the comfort of the indoor environment, and enhancing the user experience.
  • the cooling and heating fan when the cooling and heating fan is turned on in the cold air mode, the wind speed gear of the fan is detected and judged, and the operation speed of the stepping motor that opens the air door is adjusted and controlled according to the detected wind speed gear, thereby adjusting the cooling and heating fan In order to achieve the cooling effect, improve the comfort of the indoor environment and enhance the user experience.
  • FIG. 4 is a schematic diagram of another implementation process of the control method provided by the embodiment of the application. As shown in FIG. 4, the control method includes:
  • step S401 the user turns off the cooling and heating fans.
  • step S402 the cooling and heating fan determines its own operating mode.
  • the operation mode of the cooling and heating fan includes a heating mode and a cooling mode.
  • step S403 to step S406 are executed.
  • step S407 to step S410 are executed.
  • step S403 the cooling and heating fan determines the heating gear or the internal temperature of the cooling and heating fan.
  • step S404 the cooling and heating fan adjusts and controls the operating speed of the stepping motor of the air door according to the heating gear or the internal temperature.
  • the operating mode of the heating and cooling fan is in the warm air mode, further check and determine the heating position in the heating mode or the internal temperature of the machine. If the heating position is high (heating load power is above 2000w) or the internal temperature of the heating and cooling fan is 35 If the temperature is above °C, slowly (the stepping motor runs at a speed of 6ms-8ms/beat) close the air door of the heating and cooling fan; if the heating gear is in the middle range (heating load power is between 1000w and 2000w) or the internal ambient temperature of the heating and cooling fan is 35 To 30°C, normally (stepping motor runs at a speed of 4ms-6ms/beat) close the air door of the heating and cooling fan; if the heating gear is low (heating load power is below 1000w) or the internal ambient temperature of the heating and cooling fan is 25 Below °C, quickly (stepping motor runs at a speed of 3ms-4ms/beat) close the air door of the cooling and heating fan.
  • step S405 the cooling and heating fan determines whether the air door is closed.
  • step S406 when the damper is closed, step S406 is executed, and when the damper is not closed, step S404 is executed.
  • Step S406 the cooling and heating fan controls the stepping motor to stop moving.
  • step S407 the cooling and heating fan determines the wind speed gear or the internal temperature of the cooling and heating fan.
  • step S408 the cooling and heating fan adjusts the operating speed of the stepping motor that controls the air door according to the wind speed gear.
  • the wind speed gear in the cooling mode or the internal ambient temperature of the cooling and heating fan is further detected and judged. If the wind speed is high (the fan speed is above 1300r/min) or the cooling and heating If the internal temperature of the fan is above 35°C, then slowly (stepping motor runs at a speed of 6ms-8ms/beat) close the air door of the cooling and heating fan; if the wind speed is in the middle gear (the fan speed is 1000r/min-1300r/min) or heating and cooling If the internal temperature of the fan is between 35 and 30°C, it is normal (stepping motor runs at a speed of 4ms-6ms/beat) to close the air door of the cooling and heating fan; if the wind speed is low (the fan speed is 800r/min-1000r/min) ) Or if the internal temperature of the cooling and heating fan is below 25°C, quickly (the stepping motor runs at a speed of 3ms-4ms
  • step S409 the cooling and heating fan determines whether the air door is closed.
  • step S410 when the damper is closed, step S410 is executed, and when the damper is not closed, step S408 is executed.
  • step S410 the cooling and heating fan controls the stepping motor to stop moving.
  • the heating position of the heating and cooling fans or the internal temperature of the machine is detected and judged, and the step of opening the air door is adjusted and controlled according to the detected heating position or the internal temperature of the machine. Enter the motor speed to ensure that the heat generated inside the machine is discharged in time, which greatly reduces the residual heat inside the machine, improves the safety of the machine, and extends the service life of the machine.
  • the wind speed gear of the cooling and heating fans or the temperature inside the machine are detected and judged, and the step of opening the air door is adjusted and controlled according to the detected wind speed gear or the internal temperature of the machine. Enter the motor speed to ensure that the heat or air volume generated inside the machine is discharged in time, which greatly reduces the residual heat or air volume inside the machine, improves the safety of the machine, and extends the service life of the machine.
  • step S104 the step of "starting work according to the control of the opening area" is further included, as shown in FIG. 5
  • the application embodiment provides a schematic flow chart of the control opening step according to the opening area.
  • the control step according to the opening area includes:
  • Step S501 Obtain the opening area of the damper during the opening process.
  • the opening area of the air door during the opening process is obtained in real time, so as to lay the foundation for the electronic device to enter the corresponding working state based on the opening area in the subsequent steps .
  • the opening area of the air door during the opening process can be obtained by setting a stepping motor on the air door.
  • the ring control motor can drive the stepper motor to rotate a fixed angle in the set direction according to the pulse signal received by the stepper driver, that is, the rotation of the stepper motor runs step by step at a fixed angle, so by setting the step on the damper
  • the inlet motor can achieve the purpose of obtaining the opening angle of the damper in real time during the opening process of the damper, so as to determine the opening area of the damper based on the opening angle of the damper obtained in real time.
  • Step S502 Determine a working parameter corresponding to the open area, where the working parameter includes at least heating power.
  • the operating parameter corresponding to the open area may be heating power
  • the heating power corresponding to the open area may be determined by setting a relay and a thyristor in the electronic device, and the relay is selected to determine the heating corresponding to the open area Power
  • the relay is an automatic switching element with isolation function and an "automatic switch” that can use a small current to control large current operation, can control a circuit with a large power, and can also play an automatic adjustment in the circuit.
  • the functions of safety protection and conversion circuit, etc. therefore, the accuracy and reliability of using a relay to determine the heating power corresponding to the opening area can also be guaranteed.
  • the thyristor is a high-power electrical component, it can also be called a thyristor. It has the advantages of small size, high efficiency, and long life, and can be used as a high-power drive device in an automatic control system to achieve low-power controls The purpose of controlling high-power equipment, so the use of thyristor can also accurately and quickly determine the heating power corresponding to the open area.
  • Step S503 Control itself to work based on the working parameters.
  • controlling itself to work based on the operating parameters can be considered as the electronic device working based on the heating power corresponding to the opening area of the damper, so as to realize the electronic device heating based on the different switching areas obtained during the opening process of the damper with different heating power
  • the work avoids the time consumption of the electronic device before starting to heat up after the air door is fully opened, and effectively improves the heat output speed of the electronic device.
  • the electronic device obtains the opening area of the damper in real time when opening the damper based on the opening instruction received by the electronic device, and controls itself to work based on the working parameters when the working parameter corresponding to the opening area is determined, thereby avoiding traditional electronic devices.
  • step S502 when the operating parameters include at least heating power, correspondingly, step S502 can be implemented through the following steps:
  • Step S5021 Determine the heating level corresponding to the open area based on the mapping relationship between the open area interval and the heating level.
  • the mapping relationship between the open area interval and the heating level can be determined by the control method of the relay and the heating principle of the thyristor.
  • the heating principle of the thyristor can be considered to be adjusted by the conduction angle of the thyristor, The voltage changes accordingly to adjust the heating power process;
  • the control method of the relay can be considered to be determined based on the control system of the relay, and the control system of the relay has the advantages of simple structure, low cost and simple principle, so the control of the relay is used
  • the method has strong operability and high ease of realization.
  • each heating level to correspond to an opening area interval, and the upper limit of each opening area interval is less than or equal to the maximum opening area of the damper, for example, setting the maximum opening area of the damper It is 600cm 2
  • level 0 heating means that the electronic device does not perform heating work
  • [ 150cm 2 , 300cm 2 ) corresponds to level 1 heating
  • [300cm 2 , 450cm 2 ) corresponds to level 2 heating
  • [450cm 2 , 600cm 2 ) corresponds to level 3 heating, of which 150cm 2 , 300cm 2 , 450cm 2 are each heating level It corresponds to the upper limit of the area interval and can be set manually.
  • [0, 50cm 2 ) When using the heating principle of thyristor to determine the mapping relationship between the open area interval and the heating level, you can set [0, 50cm 2 ) to correspond to 0 level heating, and 0 level heating means that the electronic device does not perform heating work, [50cm 2 , 100cm 2 ) corresponds to level 1 heating, [100cm 2 , 150cm 2 ) corresponds to level 2 heating, [150cm 2 , 200cm 2 ) corresponds to level 3 heating, [200cm 2 , 250cm 2 ) corresponds to level 4 heating, [250cm 2 , 300cm 2) corresponding to five heated, [300cm 2, 350cm 2) corresponding to six heating, [350cm 2, 400cm 2) corresponding to the seven heating, [400cm 2, 450cm 2) corresponds to eight heating, [450cm 2, 500cm 2 ) Corresponds to 9 levels of heating, [500cm 2 , 550cm 2 ) corresponds to 10 levels
  • Step S5022 Determine the heating power corresponding to the heating level.
  • the electronic device can quickly match the electronic device based on the open area obtained in real time during the opening process of the damper Which level of heating power is currently used for work; for example, when it is determined that the currently obtained opening area is 445cm 2 , based on the mapping relationship between the opening area interval and the heating level, it can be determined that 445cm 2 is an 8 heating level, and the electronic device controls The heating power corresponding to the 8-level heating level is used for heating, so that the electronic device can use different heating powers based on different opening areas during the opening process of the air door.
  • control method of the relay and the heating method of the thyristor are used to determine the mapping relationship between the opening area of the air door of the electronic device and the heating level, so as to realize that the electronic device can be based on itself during the opening process of the air door.
  • the real-time opening area is used for the purpose of heating work with different heating powers, which effectively improves the speed at which the electronic device performs work.
  • mapping relationship between the open area interval and the heating level in step S5021 can be implemented by executing the following steps:
  • Step S1 Determine the number of heating levels of the damper during the opening process based on the preset number of heating elements.
  • the heating element can be regarded as a relay, and when the relay is used to achieve multi-level heating, the maximum number of relays that can be set or accommodated in the electronic device can be preset. For example, three relays can be set in the electronic device, each relay Corresponds to a heating level. For example, when there are 3 relays in the electronic device, there are 3 heating levels accordingly.
  • Relay 1 corresponds to level 1 heating
  • Relay 2 corresponds to level 2 heating
  • Relay 3 corresponds to level 3 heating
  • Each heating level realizes multi-level heating when the electronic device controls the opening process of its own air door.
  • Step S2 Obtain the maximum opening area of the damper.
  • the maximum opening area of the air door can be considered as the opening area of the air door corresponding to the air door of the electronic device when it is fully opened, and it can be determined based on the opening area range of the air door of the electronic device, where the opening of the air door of the electronic device
  • the area range can be considered as the different opening area corresponding to the air door of an electronic device from fully closed to fully open. For example, when [0,600cm 2 ] is the opening area range of the air door of an electronic device, 600cm 2 is the size of the electronic device The maximum opening area of the damper.
  • Step S3 Based on the number of heating levels and the maximum open area, determine an open area interval corresponding to the number of heating levels.
  • the opening area of the air door of the electronic device that changes in real time during the opening process and the maximum value of the air door are used.
  • the opening area can determine the opening area interval of the damper corresponding to each heating level, that is, you can set the opening area of the damper within a certain range corresponding to each relay.
  • Step S4 Establish a mapping relationship between the open area interval and the heating level.
  • the mapping relationship between the opening area interval and the heating level in the United States can be established.
  • [0, 150cm 2 ) corresponds to level 0 heating
  • level 0 heating also means that the heating power is 0, so the electronic device does not perform heating work at this time
  • [150cm 2 , 300cm 2 ) corresponds to relay 1 and uses level 1 heating
  • [300cm 2 , 450cm 2 ) corresponds to relay 2 and uses level 2 heating
  • [450cm 2 , 600cm 2 ) Corresponding to relay 3 and using three-level heating, so that the electronic device can use different heating levels to heat with the real-time change of the opening area of its own damper, so that it can complete its own heating work when the damper of the electronic device is fully opened.
  • a relay is set in the electronic device to determine the mapping relationship between the opening area of the air door and the heating level during the opening process, so as to realize that the electronic device is based on different openings during the opening process of the air door.
  • the purpose of opening the area to perform different degrees of heating work not only avoids the time consumption of traditional electronic equipment waiting for its damper to be fully opened before starting to work, but also can effectively increase the speed of electronic equipment performing work.
  • mapping relationship between the open area interval and the heating level in step S5021 can also be implemented by executing the following steps:
  • Step S11 Determine the opening area change curve of the damper based on the change in the movement rate of the damper during the opening process; wherein the opening area change curve represents the heating power corresponding to different opening times of the damper during the opening process .
  • the movement rate of the damper of the electronic device during the opening process can be considered to be slow first, then faster and then faster or faster. Slow and then slower and slower, which can determine the opening area change curve of the damper of the electronic device in the opening process within 10s.
  • Step S12 Determine the mapping relationship between the opening area interval of the damper and the heating level based on the opening area change curve.
  • the opening area change curve it is possible to determine how fast the opening area of the air door changes with time during the opening process. For example, when the air door of an electronic device is set to be slow, then fast and then faster and faster during the opening process, the air door In the first a second, the opening area changes slowly. From the a second to the 10th second, the opening area of the damper changes faster and faster.
  • the heating power change corresponding to the slower opening area is not very obvious, but the change The heating power change corresponding to the faster and faster opening area is obvious. Therefore, a curve fitting algorithm can be used to determine the heating curve that fits the opening area change curve; wherein, the heating curve represents the damper
  • the heating power corresponding to different opening times during the opening process, a is a natural number greater than 0 and less than 10.
  • the opening area change curve is determined by the movement rate change of the air door of the electronic device during the opening process, and the mapping relationship between the opening area interval of the air door and the heating level is determined based on the opening area change curve, so as to achieve
  • the movement rate of the air door of the electronic device changes during the opening process, the purpose of quickly determining the heating level based on the opening area obtained in real time, which effectively improves the flexibility and accuracy of the heating work of the air door of the electronic device during the opening process.
  • step S501 can be implemented by executing the following steps:
  • Step S5011 when it is determined that the damper is opened based on the received opening instruction, the opening angle of the damper during the opening process is acquired.
  • the electronic device when the air door is a fan door, when the electronic device opens the air door based on the received opening instruction, it can record the opening angle of the air door in real time through its own stepping motor or processor to provide a basis for determining the opening area in subsequent steps.
  • Step S5012 Determine the opening area of the damper during the opening process based on the opening angle.
  • the corresponding opening area may be determined in real time based on the opening angle of the damper during the opening process, or the opening of the damper during the opening process may be determined in real time based on the corresponding relationship between the opening angle and the opening area of the damper stored in advance.
  • the area is not limited here.
  • the opening area of the sash window during the opening process can be determined based on the opening angle of the sash window during the opening process, which effectively improves the accuracy and reliability of determining the opening area.
  • the subsequent steps provide a guarantee for determining the accuracy and reliability of the operating parameters based on the opening area.
  • This embodiment further provides a control method, which is applied to a heater to solve the problem of slow heat output of the heater with its own air door.
  • the air door of the heater is mainly closed by two doors from the middle to The process of opening both sides, and the opening process takes about 10 seconds.
  • the existing heater with its own air door waits for the two doors to be fully opened before the thermistor starts heating, and then the fan starts to blow out, resulting in a slow heat output. ; But the heating starts before the door is opened, and the heat generated will melt the door, so it cannot start heating before the door is opened; and if you consider that the warm air can be made within 10 seconds of opening the door Blow it out, and the user experience will be better.
  • this embodiment further provides a control method, which includes two thermistor heating methods.
  • the door of the heater since the door of the heater (same as the air door in the above embodiments) receives an opening command, it usually includes three states: fully closed 801, door starts to open 802, and door fully opened 803. Therefore, in this embodiment, it is possible to consider setting a relay in the heater to achieve the purpose of heating the heater in different positions during the opening process of the fan door; since the number of relays in the existing heater is 3, And taking into account the time consumption caused by the traditional heater must wait for the door to be fully opened before it can start heating, it can be divided into 3 levels for heating during the opening of the door of the heater, set each relay to correspond to a heating level, and consider The traditional heater has to wait until the door is fully opened to start heating. It can be divided into three levels to heat during the opening of the door of the heater to achieve a step effect.
  • FIG. 9 is a curve diagram of the change of the fan door angle and the PTC heating gear in the embodiment of the application.
  • the abscissa represents the door angle
  • the ordinate represents the PTC heating gear
  • the curve 901 is the change curve of the door angle
  • the curve 902 is the PTC heating curve
  • the curve 902 is the PTC heating curve fitted to the curve 901.
  • the heating process is divided into three levels during the opening process of the fan door of the heater: the opening angle of the fan door is at [0°, 30° ) Corresponds to level 0 heating, that is, heating is not performed when the opening angle of the door is in the interval [0°, 30°), and heating is corresponding to level 1 when the opening angle of the door is in the interval [30°, 60°), that is When the door is in the interval of [30°, 60°), the heater uses the heating power corresponding to the first gear for heating; when the opening angle of the door is in the interval of [60°, 90°), it corresponds to the second stage of heating, which is the door’s When the opening angle is in the range of [60°, 90°), the heater uses the heating power corresponding to the second level for heating.
  • the heater uses the heating power corresponding to the 3 levels; in this way, the purpose of heating to different degrees during the opening of the door of the heater is achieved, so as to achieve heating with a stepped effect; among them, 30°, 60°, and 90° are the boundary switching angle values for switching gears.
  • the boundary switching angle value can be selected in the interval [0°, 120°] according to actual conditions.
  • the fan of the heater in this embodiment The maximum opening angle of the door corresponds to the maximum opening area of the damper in the foregoing embodiment.
  • the fan door in this embodiment corresponds to the air door in the previous embodiment.
  • the fan door of the heater in this embodiment is divided into three stages for heating during the opening process, which is similar to the previous implementation.
  • the process of establishing the mapping relationship between the open area interval and the heating level to determine the operating parameter corresponding to the open area corresponds.
  • the principle of thyristor heating is to use pulse width modulation (PWM, Pulse-Width Modulation) signal control to achieve multi-level heating.
  • pulse width modulation is an analog control method, it modulates the transistor base according to changes in the corresponding load.
  • the bias of the gate or MOS (Metal Oxide Semiconductor) gate can realize the change of the transistor or MOS conduction time, so as to realize the change of the output of the switching regulated power supply, and the pulse width modulation method can make the output voltage of the power supply It remains constant when the working conditions change. Therefore, the pulse width of the pulse width modulation used in this embodiment can be refined to many levels, so that multiple heating levels can be controlled. In the process of opening the door of the heater, it is divided into multiple stages to heat, which can achieve the gradual heating effect.
  • FIG. 10 is another curve diagram of the fan door angle and the PTC heating gear in the embodiment of the application, and
  • the abscissa represents the door angle
  • the ordinate represents the PTC heating gear
  • the curve 21 is the change curve of the door angle
  • the curve 22 is the PTC heating curve
  • the curve 22 is the PTC heating fitted to the curve 21 curve.
  • the heating process is divided into 11 levels during the opening process of the door of the heater:
  • the opening angle of the door is in the interval of [0°, 10°) to correspond to the 0-level heating, that is, the heating is not performed when the opening angle of the door is in the interval of [0°, 10°);
  • the heater uses the heating power corresponding to the first level for heating
  • the heater uses the heating power corresponding to the second level for heating
  • the heater uses the heating power corresponding to the 3 levels for heating;
  • the heater uses the heating power corresponding to the 4 levels for heating;
  • the heater uses the heating power corresponding to the 5 levels for heating;
  • the heater uses the heating power corresponding to the 6 levels for heating;
  • the heater uses the heating power corresponding to the 7 levels for heating;
  • the heater uses the heating power corresponding to the 8 levels for heating;
  • the heater uses the heating power corresponding to the 9 levels for heating;
  • the heater uses the heating power corresponding to the 10 levels for heating;
  • the heater uses the heating power corresponding to the 11 levels for heating; Among them, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110, °120° are the boundary switching angle values of shifting gears, the boundary The switching angle value can be selected in the interval of [0°, 120°] according to the actual situation.
  • the heating process is divided into 11 steps during the opening process of the fan door of the heater, and the working parameter corresponding to the opening area is determined after establishing the mapping relationship between the opening area interval and the heating level in the previous embodiment The process is corresponding.
  • Fig. 11 is another change curve chart of the angle of the middle door and the PTC heating gear position provided in this embodiment.
  • the curve 31 is the change curve of the open area of the door
  • the curve in Fig. 11 32 is a PTC heating curve fitted to curve 31.
  • the fan door of the heater When the maximum opening angle of the fan door of the heater is 120°, the fan door of the heater is opened slowly, then faster and then faster and faster. It takes 10s to set the door to fully open.
  • the door of the heater When the movement rate changes during the opening process, the heating process is divided into 11 levels:
  • the opening speed of the door is slow from 0s to 4s, and it is getting faster and faster from 5s to 10s.
  • the opening angle of the door is in the range of [0°, 5°)
  • the heater uses the heating power corresponding to the first gear for heating;
  • the heater uses the heating power corresponding to the second level for heating
  • the heater uses the heating power corresponding to the 3 levels for heating;
  • the heater uses the heating power corresponding to the 4 levels for heating;
  • the heater uses the heating power corresponding to the 5 levels for heating;
  • the heater uses the heating power corresponding to the 6 levels for heating;
  • the heater uses the heating power corresponding to the 7th gear for heating;
  • the heater uses the heating power corresponding to the 8 levels for heating;
  • the heater uses the heating power corresponding to the 9 levels for heating;
  • the heater uses the heating power corresponding to the 10 levels for heating;
  • the heater uses the heating power corresponding to the 11 levels for heating; Among them, 5°, 11°, 17°, 25°, 36°, 45°, 51°, 62°, 74°, 87°, 101° are the boundary switching angle values of shifting gears, and the boundary switching angle values It can be selected in the interval of [0°, 120°] according to the actual situation.
  • the heating process is divided into 11 levels when the movement rate of the fan door of the heater in this embodiment changes during the opening process, and the opening area is determined to correspond to the mapping relationship in the foregoing embodiment.
  • the process of heating level is corresponding.
  • two multi-stage heating methods using relay control heating and thyristor control heating are adopted. After the opening angle of the fan door of the heater increases gradually, the opening of the fan door gradually increases from small to large.
  • the heating method of the heater is gradually changed from low power to high power, so as to complete the heating work when the door of the heater is fully opened, which avoids the time consumption of the traditional heater that needs to wait for the door to be fully opened before starting to work. , Effectively improve the hot air speed of the heater, and improve the user experience.
  • the method when the working mode of the electronic device is the warm air mode, after step S104, the method further includes a heating control step.
  • FIG. 12 is a step of heating control provided by an embodiment of the application. The implementation process diagram is shown in Figure 12:
  • Step S41 when it is detected that the opening of the air door is completed and the heating element is located at a preset working position, the fan is controlled to start.
  • the air outlet of the heating control device is connected with the opening and closing door. Therefore, detecting whether the air opening is open can be realized by detecting whether the opening and closing door is open. When it is detected that the opening and closing door is open, the opening of the air outlet can be confirmed. In other embodiments, it is also possible to determine whether the air outlet is open by detecting changes in air pressure in the air duct. In this application, there is no limitation on the implementation of detecting whether the air outlet is open.
  • the heating element may be a PTC heating element.
  • the PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency, and is an electric heating element with automatic constant temperature and power saving.
  • position sensors can be set in the working position and the non-working position respectively. Then, the position sensor in the working position and the position sensor in the non-working position can be used to detect whether the heating element is in the working position or in the non-working position. It can detect whether the heating element is in the preset working position.
  • the fan may be arranged between the air outlet and the heating element, so that the air heated by the heating element flows out from the air outlet.
  • the heating element can also be arranged between the fan and the air outlet, that is, the fan can be arranged on the side of the heating element and the air outlet. At this time, the air flowing in from the air inlet passes through the heating element. Flow out from the air outlet.
  • Step S42 When the heating control device detects that the fan has been started, it controls the heating element to start to realize heating.
  • the detection of whether the fan has been started can be detected by detecting whether the input voltage of the fan is normal, or by detecting whether the pressure in the air duct is greater than or equal to the air duct pressure value during normal operation, or by detecting the fan speed To determine whether the fan has finished starting. If it is detected that the fan has been started up, the heating element is controlled to heat at this time.
  • controlling the heating element to start to realize heating can be achieved by the following steps:
  • Step S421 Detect the pressure in the air duct of the fan to obtain a first pressure value.
  • Step S422 comparing the magnitude of the first pressure value with a preset value to obtain a comparison result; the preset value is the pressure value in the air duct when the fan is working normally.
  • the preset value may be set by the manufacturer at the factory.
  • the comparison result shows that the first pressure value is greater than the preset value, go to step S423; when the comparison result shows that the first pressure value is less than or equal to the preset value, it means that the fan has not started normally and the heating body cannot be started at this time to avoid heat Can not be released in time, causing safety accidents.
  • Step S423 When the comparison result indicates that the first pressure value is greater than the preset value, it is determined that the fan has been started up.
  • step S424 the heating element is controlled to start to realize heating.
  • the fan when it is detected that the air outlet is open and the heating element is located at the preset working position, the fan is controlled to start, and when the fan is detected to be started, the heating element is controlled to enable heating; in this way, the heat generated by the heating body is Driven by the fan, it will be discharged along the open air duct, which can ensure that the heat generated by the heating body is discharged in time, greatly reducing the internal heat residue of the machine, improving the safety of the machine, and extending the service life of the machine.
  • FIG. 13 is a schematic diagram of another implementation process of the heating control step according to the embodiment of the application.
  • the heating control step includes:
  • Step S43 receiving an operation instruction for starting the heating function.
  • the operation instruction to start the heating function can be triggered under various needs or scenarios, for example, it can be triggered by a button or touch key set on itself, or it can be triggered by an application (App, Application) installed on a smart terminal
  • the heating signal sent to the heating control device may be triggered by the heating signal sent by the remote controller.
  • the operations that can trigger the heating signal here include: gesture sliding operations, voice command operations, or specific key operations. There is no limitation here.
  • Step S44 Based on the operation instruction, it is detected whether the tuyere is open and whether the heating element is located at a preset working position.
  • step S44 whether the air outlet is open can be determined by detecting whether the switch door connected to the air outlet is open, and whether the heating element is located at the preset working position can be determined by the position sensor arranged in the working position.
  • step S45 when it is detected that the air outlet is not opened and/or it is detected that the heating element is not located at the working position, step S45 is executed; when it is detected that the air outlet is opened and the heating element is detected to be at the preset working position Step S41A is executed.
  • step S45 a timer is started.
  • Step S46 It is determined whether the timing duration reaches a first duration threshold.
  • the first duration threshold may be set by the manufacturer at the factory, and the manufacturer determines the first duration threshold by measuring the duration of the heating element moving from the reset zone to the working position. If the maximum time from the reset zone to the working position is 30 seconds (s, second), the first time threshold can be set to 30s at this time. It can also be set by the user, and the specific duration of the first duration threshold is not limited, and can be set according to actual conditions. For example, in some embodiments, the first duration threshold may be 30s set by the manufacturer, and in other embodiments, it may also be 1 minute set by the user.
  • timing duration reaches the first duration threshold, proceed to step S48; if the timing duration does not reach the first duration threshold, proceed to step S47.
  • Step S47 detecting whether the air outlet is open and detecting whether the heating element is in the working position at every first interval.
  • the first interval duration may be set by the manufacturer at the factory, or may be set by the user.
  • the first duration threshold can be a multiple of the first interval duration, and the first interval duration can be determined according to the first duration threshold. For example, if the first duration threshold is set to 30s, the first interval duration can be set Set to 5s, then within the first duration threshold, multiple detections can be performed. If it is detected that the air outlet is open and the heating element is at the working position, then go to step S49, and if it is detected that the air outlet is not open and the heating element is not at the working position, then go to step S46.
  • Step S48 It is judged whether the air outlet is open and/or whether the heating element is located in the working position.
  • step S41B is executed.
  • step S49 is executed, and after step S49 is executed, step S41A is executed, and the process ends.
  • Step S49 turning off the motor controlling the air outlet switch and turning off the motor controlling the heating element.
  • the opening or closing of the air outlet is realized by controlling the stepping motor to drive the opening and closing door, and the movement of the heating element is controlled by controlling the AC motor to realize the movement of the heating element.
  • the timing duration reaches the first duration threshold, and it is determined that the air outlet is not opened and/or the heating element is not in the working position, then it can be determined that the air outlet has failed to open and/or the heating element moving device has failed, At this time, in order to save power or not to burn out the motor, the stepping motor that controls the air outlet switch and the AC motor that controls the heating element are turned off.
  • Step S41A output alarm information.
  • the output alarm information can be used to remind the user in a variety of ways. It can be alarmed by indicator lights or by sound, such as cellular alarm information, or by sound and indicator lights. To make an alarm, the embodiment of this application does not limit the alarm information.
  • Step S41B control the fan to start.
  • step S41C it is detected that the fan has been started up, and the heating element is controlled to start to realize heating.
  • the detection is performed in a certain period within a preset time, and the air outlet is not detected within the preset time.
  • the motor that controls the air outlet switch and the motor that controls the heating element are turned off, and an alarm is issued. Therefore, the user can promptly remind when the device fails during use, and can avoid safety accidents to a certain extent.
  • FIG. 14 is a schematic flowchart of the fan detection step provided in the embodiment of the application. As shown in FIG. 14, the process It includes the following steps:
  • step S51 it is detected whether the fan has finished starting.
  • step S42 or step S41C is executed; if the heating control device detects that the fan has not been started up, then step S52 is executed.
  • step S52 a timer is started.
  • Step S53 It is judged whether the timing duration reaches a second duration threshold.
  • step S55 If the timing duration reaches the second duration threshold, proceed to step S55; if the timing duration does not reach the second duration threshold, proceed to step S54.
  • the second duration threshold may be set by the manufacturer at the factory, or may be set by the user himself.
  • the specific duration of the second duration threshold is not limited and can be set according to actual conditions.
  • the manufacturer may set the second duration threshold to 30s, and in other embodiments, the user may set the second duration threshold to 1 minute.
  • Step S54 Detect whether the fan is started every second interval.
  • the second interval duration may be set by the manufacturer at the factory, or may be set by the user himself, and the second interval duration may be determined according to the second duration threshold.
  • the second duration threshold can be a multiple of the second interval duration. For example, if the second duration threshold is set to 30s, the second interval duration can be set to 5s. Then within the second duration threshold, you can Perform multiple tests.
  • step S42 if the heating control device detects that the fan has been started up, it executes step S42 or step S41C. In FIG. 14, only step S41C is shown. If it is not detected that the fan is started, step S53 is executed.
  • step S55 the heating control device judges whether the fan has finished starting.
  • the heating control device determines that the fan has been started up, and then executes step S42 or step S41C. The entire heating control process is completed.
  • the heating control device determines that the fan has not been started up, and then executes step S56.
  • Step S56 Turn off the power supply that controls the switch of the fan.
  • Step S57 output alarm information.
  • the alarm is performed by sound, such as a buzzer alarm.
  • the test when it is detected that the fan has not been started up, the test is performed in a certain period within a preset time, and when the fan is not detected to start within the preset time, the power supply that controls the switch of the fan is turned off, and Call the police. Therefore, the user can promptly remind when the device fails during use, and can avoid safety accidents to a certain extent.
  • FIG. 15 is a schematic diagram of an implementation flow of the heating control steps provided by the embodiments of the application. As shown in FIG. 15, when controlling the heating by the heating and cooling heater, the following steps need to be performed:
  • step S61 the heating and cooling device detects whether the switch door is opened and whether the PTC heating body is rotated to a designated position.
  • step S62 If the door has been opened and the PTC heating body rotates to the specified position, turn off the stepper motor that controls the door and the AC motor that controls the PTC, and then go to step S62. Otherwise, continue to cycle detection for one minute. If it is not turned on or the PTC heating body does not rotate to the specified position, the stepping motor that controls the opening and closing door and the AC motor that controls the PTC are turned off, and an alarm signal for machine failure is issued.
  • Step S62 the heating and cooling heater performs fan detection.
  • step S63 is executed. Otherwise, continue to cycle for one minute, if the fan has not started within one minute, an alarm signal for machine failure will be issued
  • step S63 the PTC heater is controlled by the heating and cooling device to start heating.
  • the embodiment of the application provides a heating control method.
  • the PTC heating body rotates to a specified position, and the fan is turned on to supply air, the heat generated by the PTC heating body will be driven by the fan to follow the open wind. This can ensure that the heat generated by the PTC heating body is discharged in time, which greatly reduces the residual heat inside the machine, improves the safety of the machine, and extends the service life of the machine.
  • the embodiments of the present application provide a control device, which includes each unit included and each module included in each unit, which can be implemented by a processor in a computer device; of course, it can also be specifically
  • the processor can be a central processing unit (CPU, Central Processing Unit), a microprocessor (MPU, Microprocessor Unit), a digital signal processor (DSP, Digital Signal Processing), or on-site Programmable gate array (FPGA, Field Programmable Gate Array), etc.
  • CPU Central Processing Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processing
  • FPGA Field Programmable Gate Array
  • the device 70 includes a receiving module 71, a first determining module 72, a second determining module 73, and a control module 74. among them:
  • the receiving module 71 is configured to receive an operation instruction configured to trigger the electronic device to be turned on or off.
  • the first determining module 72 is configured to determine the operating parameters of the electronic device according to the operation instruction.
  • the second determining module 73 is configured to determine the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter.
  • the first control module 74 is configured to control the damper to move at the moving speed.
  • the first determining module 72 includes:
  • the obtaining part is configured to obtain the working mode of the electronic device according to the operation instruction.
  • the first determining part is configured to determine the output power in the warm air mode or the internal temperature of the electronic device when the working mode is the warm air mode.
  • the second determining part is configured to determine the output power in the cold air mode when the working mode is the cold air mode and the operation instruction is configured to trigger the booting of the electronic device.
  • the second determining module 73 when the operation instruction is configured to trigger the booting of the electronic device, includes:
  • the third determining part is configured to determine that the moving speed of the damper is the first moving speed when it is determined that the warm air mode operates at the first output power.
  • the fourth determining part is configured to determine that the moving speed of the damper is the second moving speed when it is determined that the warm air mode operates at the second output power, wherein the first output power is greater than the first output power Two output power, the first moving speed is greater than the second moving speed.
  • the second determining module 73 when the operation instruction is configured to trigger the booting of the electronic device, includes:
  • the fifth determining part is configured to determine that the moving speed of the damper is the first moving speed when it is determined that the internal temperature of the electronic device in the warm air mode is the first temperature.
  • the sixth determining part is configured to determine that the moving speed of the air door is the second moving speed when it is detected that the internal temperature of the electronic device in the warm air mode is the second temperature, wherein the first temperature is greater than the first temperature Two temperatures, the first moving speed is greater than the second moving speed.
  • the second determining module 73 when the operation instruction is configured to trigger shutdown of the electronic device, includes:
  • the seventh determining part is configured to determine that the moving speed of the damper is the third moving speed when it is determined that the warm air mode operates at the first output power.
  • the eighth determining part is configured to determine that the moving speed of the damper is a fourth moving speed when it is determined that the warm air mode works at the second output power, wherein the first output power is greater than the second output power , The third moving speed is greater than the fourth moving speed.
  • the second determining module 73 when the operation instruction is configured to trigger shutdown of the electronic device, includes:
  • the ninth determining part is configured to determine that the moving speed of the damper is the fourth moving speed when it is determined that the internal temperature of the electronic device is the first temperature.
  • the tenth determining part is configured to determine that the moving speed of the air door is a third moving speed when it is determined that the internal temperature of the electronic device is a second temperature, wherein the first temperature is greater than the second temperature, and the third The moving speed is greater than the fourth moving speed.
  • the second determining module 73 when the operation instruction is configured to trigger the booting of the electronic device, includes:
  • the eleventh determining part is configured to determine that the moving speed of the damper is the third moving speed when it is determined that the cold wind mode operates at the third output power.
  • the twelfth determining part is configured to determine that the moving speed of the damper is the fourth moving speed when it is determined that the cold wind mode is working at the fourth output power, wherein the third output power is greater than the fourth output power, so The third moving speed is greater than the fourth moving speed.
  • the second determining module 73 when the operation instruction is configured to trigger shutdown of the electronic device, includes:
  • the thirteenth determining part is configured to determine that the moving speed of the damper is the fourth moving speed when it is determined that the cold wind mode is working at the third output power;
  • the fourteenth determining part is configured to determine that the moving speed of the damper is the third moving speed when it is determined that the cold wind mode is operating at the fourth output power, wherein the third output power is greater than the fourth output power, so The third moving speed is greater than the fourth moving speed.
  • control device 70 further includes:
  • the acquiring module is configured to control the opening of the opening and closing door that has at least the heat insulation function when it is determined that the opening instruction is received, and to acquire the opening area of the opening and closing door during the opening process.
  • the third determining module is configured to determine the operating parameters corresponding to the opening area.
  • the second control module is configured to control itself to work based on the working parameters.
  • the third determining module is further configured to determine the heating level corresponding to the opening area based on the mapping relationship between the opening area interval and the heating level;
  • the third determining module is further configured to determine the heating power corresponding to the heating level.
  • the third determining module is further configured to determine the number of heating levels of the door opening and closing process based on the preset number of heating elements.
  • the obtaining module is further configured to obtain the maximum opening area of the open and close door.
  • the third determining module is further configured to determine an open area interval corresponding to the number of heating levels based on the number of heating levels and the maximum open area.
  • control device 70 further includes an establishment module configured to establish a mapping relationship between the opening area interval and the heating level.
  • the third determining module is further configured to determine the opening area change curve of the opening and closing door based on the movement rate change during the opening process of the opening and closing door; wherein, the opening area change curve represents The heating power corresponding to different opening times during the opening and closing of the door.
  • the third determining module is further configured to determine the mapping relationship between the opening area interval of the door opening and closing and the heating level based on the opening area change curve.
  • the third determination module is further configured to use a curve fitting algorithm to determine a heating curve that fits the opening area change curve; wherein, the heating curve indicates that the opening and closing door is opening. The heating power corresponding to different opening times in the process.
  • the establishing module is further configured to, based on the heating power corresponding to different opening times during the opening and closing process of the door, and the heating power corresponding to different opening areas during the opening and closing process of the door, A mapping relationship between the opening area interval and the heating level of the opening and closing door during the opening process is established.
  • control device 70 further includes:
  • the third control module is configured to control the fan to start when it is detected that the air outlet is opened and the heating element is located at a preset working position;
  • the fourth control module when detecting that the fan has been started, controls the heating element to start to realize heating.
  • control device 70 further includes:
  • the first starting module is configured to start a timer when it is detected that the air outlet is not opened and/or it is detected that the heating element is not located in the working position;
  • the first detection module is configured to detect whether the air outlet is open and the heating element is located at the working position at every first interval before the timing duration of the timer reaches a first duration threshold;
  • the first closing module is configured to determine that when the timing duration reaches the first duration threshold, and the air outlet is not opened and/or the heating element is not in the working position, turn off the switch that controls the air outlet A motor and turning off the motor controlling the heating element;
  • the first output module is configured to output alarm information.
  • the third control module is further configured to determine that when the air outlet is open and the heating element is in the working position before the timing duration reaches the first duration threshold, control all The fan starts;
  • the first closing module is also configured to close the motor that controls the air outlet switch and the motor that controls the heating element.
  • control device 70 further includes:
  • the second starting module is configured to start a timer to count when it is detected that the fan has not finished starting;
  • the second detection module is configured to detect whether the fan has completed starting at every second interval before the timing duration of the counter reaches a second duration threshold
  • a second shutdown module configured to determine that the timing duration reaches the second duration threshold, and the fan has not completed starting, turn off the power supply that controls the switch of the fan;
  • the second output module is configured to output alarm information.
  • the fourth control module includes:
  • the obtaining part is configured to detect the pressure in the air duct of the fan to obtain the first pressure value
  • the comparison part is configured to compare the magnitude of the first pressure value with a preset value to obtain a comparison result;
  • the preset value is the pressure value in the air duct when the fan is working normally;
  • the fifteenth determining part is configured to determine that the fan has been started up when the comparison result indicates that the first pressure value is greater than the preset value
  • the control part is configured to control the activation of the heating element to realize heating.
  • control device embodiment is similar to the description of the foregoing method embodiment, and has similar beneficial effects as the method embodiment.
  • technical details not disclosed in the device embodiments of this application please refer to the description of the method embodiments of this application for understanding.
  • FIG. 17 is a schematic diagram of the composition structure of the control device in an embodiment of the application.
  • the control device 80 at least includes: a memory 81, a communication bus 82, and Processor 83, where:
  • the memory 81 is used to store control programs.
  • the communication bus 82 is used to implement a communication connection between the processor 83 and the memory 81.
  • the processor 83 is configured to execute a control program stored in the memory 81 to implement the steps of the control method described in any of the foregoing embodiments.
  • this embodiment further provides a computer storage medium, the computer storage medium stores a control program, and when the control program is executed by a processor, the steps of the control method as described in any one of the foregoing embodiments are implemented. .
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the embodiments of the present application can all be integrated into one processing unit, or each unit can be individually used as a unit, or two or more units can be integrated into one unit;
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program can be stored in a computer readable storage medium.
  • the execution includes The steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a mobile storage device, a read only memory (ROM, Read Only Memory), a magnetic disk, or an optical disk.
  • the above-mentioned integrated unit of this application is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for Make an AC execute all or part of the method described in each embodiment of this application.
  • the aforementioned storage media include: removable storage devices, ROMs, magnetic disks or optical disks and other media that can store program codes.
  • the embodiments of the present application disclose a control method, device, equipment, and computer-readable storage medium.
  • the method includes: receiving an operation instruction, the operation instruction being used to trigger the boot or shutdown of an electronic device; according to the operation instruction, Determine the operating parameter of the electronic device; determine the moving speed of the damper of the electronic device according to the operation instruction and the operating parameter; control the damper to move at the moving speed. It can reduce the residual heat or air volume inside the electronic equipment, thereby improving the safety of the electronic equipment and extending the service life of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种控制方法,包括:接收一操作指令,操作指令用于触发电子设备开机或关机;根据操作指令,确定电子设备的运行参数;根据操作指令和运行参数,确定电子设备的风门的移动速度;控制风门以移动速度移动。还提供了一种控制装置、设备及计算机可读存储介质。可以为用户提供舒适的室内环境,提升了用户使用体验,且提高了电子设备的使用安全性,延长了机器使用寿命。

Description

一种控制方法、装置、设备及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201910725845.X、申请日为2019年08月07日,申请号为201910726649.4、申请日为2019年08月07日和申请号为201911038203.9、申请日为2019年10月29日的三份中国专利申请提出,并要求该三份中国专利申请的优先权,该三份中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及家用电器领域,涉及但不限于一种控制方法、装置、设备及计算机可读存储介质。
背景技术
当前,取暖器分别有石英取暖器、电热丝取暖器、暖风机取暖器几大类。其中,暖风机取暖器越来越受用户欢迎,但现有的暖风机取暖器产品在控制使用上过于单一,缺乏智能性与安全可靠性,尤其对于暖风机的出风口风门的控制上,只是简单的通过设备的开关机按键对风门进行开启或者关闭。现有技术中,在开机时,出分口的风门立刻匀速向外打开,刚开始吹出来的暖风往往温度较低,用户体验较差;关机时,出风口的风门立刻匀速向内闭合,若暖风机取暖器内部温度过高或风量过大,风门闭合时,机器内部依然会存留较多热量或风量,存在破坏机器内部元器件的隐患,从而影响机器整体使用寿命问题。
发明内容
本申请实施例提供一种控制方法、装置、设备及计算机可读存储介质。
本申请实施例提供一种控制方法,所述方法包括:
接收一操作指令,所述操作指令用于触发电子设备开机或关机;
根据所述操作指令,确定所述电子设备的运行参数;
根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度;
控制所述风门以所述移动速度移动。
本申请实施例提供一种控制装置,所述控制装置包括:
接收模块,配置为接收一操作指令,所述操作指令用于触发电子设备开机或关机;
第一确定模块,配置为根据所述操作指令,确定所述电子设备的运行参数;
第二确定模块,配置为根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度;
第一控制模块,配置为控制所述风门以所述移动速度移动。
本申请实施例提供一种控制设备,所述控制设备至少包括:
处理器;以及
存储器,配置为存储可在所述处理器上运行的计算机程序;
其中,所述计算机程序被处理器执行时实现所述的控制方法的步骤。
本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述所述的控制方法的步骤。
本申请实施例提供本申请实施例中提供的控制方法、装置、设备及计算机可读存储介质,接收到电子设备的开关机操作时,确定电子设备的运行参数(比如内部环境温度,电子设备的输出功率),根据开关机操作和运行参数来控制电子设备的风门的移动速度。如此,本申请提供的技术方案在接收到开机操作,当确定输出功率较大时,以较快的速度打开风门,以使得用户能较快地感受到冷风或暖风,当内部温度较低时,以相对较慢地速度打开风门,以使得冷风转化成暖风后再吹出,进而 可以为用户提供舒适的室内环境,提升了用户使用体验;当接收到关机操作时,根据内部温度或输出功率,控制风机开关门速度,可以减少电子设备内部的热量或风量残留,进而提高电子设备的使用安全性,延长机器使用寿命。
附图说明
图1为本申请实施例提供的控制方法的一种实现流程示意图;
图2为本申请实施例提供的控制方法的另一种实现流程示意图;
图3为本申请实施例提供的控制方法的再一种实现流程示意图;
图4为本申请实施例提供的控制方法的再一种实现流程示意图;
图5为本申请实施例提供的根据开启面积的控制开启工作步骤的实现流程示意图;
图6为本申请实施例提供的确定开启面积区间与加热级别之间的映射关系的一种实现流程示意图;
图7为本申请实施例提供的确定开启面积区间与加热级别之间的映射关系的另一种实现流程示意图;
图8为本申请实施例提供的暖风机的扇门接收到开启指令时执行开启的状态示意图;
图9为本申请实施例提供的扇门角度与PTC加热档位的一种变化曲线图;
图10为本申请实施例提供的扇门角度与PTC加热档位的又一变化曲线图;
图11为本申请实施例提供的扇门角度与PTC加热档位的再一变化曲线图;
图12为本申请实施例提供的加热控制步骤的一种实现流程示意图;
图13为本申请实施例提供的加热控制步骤的另一种实现流程示意图;
图14为本申请实施例提供的风机检测步骤的一种流程示意图;
图15为本申请实施例提供的加热控制步骤的一种实现流程示意图;
图16为本申请实施例中控制装置的组成结构示意图;
图17为本申请实施例控制设备的组成结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
如果申请文件中出现“第一/第二”的类似描述则增加以下的说明,在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
本申请实施例首先提供一种控制方法,应用于电子设备,该电子设备可以是取 暖器、冷暖空调扇或冷暖取暖器、冷暖风机、暖风机中的任意一种。本申请实施例提供的控制方法可以通过计算机程序来实现,该计算机程序在执行的时候,完成本申请实施例提供的方法中各个步骤。在一些实施例中,该计算机程序可以被控制设备中的处理器执行。图1为本申请实施例提供的控制方法的一种实现流程示意图,如图1所示,所述方法包括以下步骤:
步骤S101,电子设备接收一操作指令,所述操作指令用于触发电子设备开机或关机。
本申请实施例中,该电子设备的开机或关机的操作指令可以在各种需求或场景下被触发,例如,可以是通过设置于电子设备上的按钮或触控键触发,也可以是通过智能终端上安装的应用程序(App,Application)发送给电子设备的开关机信号而触发,还可以是通过接收到遥控器发送的开关机信号而触发。这里能够触发开关机的操作包括:手势滑动操作、语音指令操作或特定的按键操作等,在此不做限定。
步骤S102,电子设备根据所述操作指令,确定所述电子设备的运行参数。
本申请实施例中,确定的电子设备的运行参数至少包括以下之一:暖风模式下的输出功率、冷风模式下的输出功率、内部的环境温度。本申请实施例中,电子设备暖风模式下的输出功率可以通过获取暖风模式下加热元件的加热档位来确定,也可以检测加热元件工作时的电流和电压来确定。本申请实施例中,加热元件可以采用热敏电阻(PTC,Positive Temperature Coefficient)加热元件,该PTC加热元件具有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热元件。电子设备冷风模式下的输出功率可以通过获取冷风模式下风机的风速档位来确定,也可以检测风机工作时的电流和电压来确定,还可以获取风机的转速来确定。电子设备内部环境温度可以通过获取电子设备内部设置的温度传感器测量的温度来确定。本申请实施例中,确定电子设备的运行参数的方式不做限定。
步骤S103,电子设备根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度。
本申请实施例中,当操作指令是开机时,确定所述电子设备的风门开启的移动速度。当操作指令时关机时,确定所述电子设备的风门闭合的移动速度。
在一些实施例中,所述操作指令和运行参数预设有对应的移动速度,当获取了操作指令和运行参数后,可以根据预设的对应关系,确定移动速度。本申请实施例中,该对应关系可以是厂商出厂时设置的,也可以是用户在使用中设置的。
在一些实施例中,电子设备的处理器可根据所述操作指令和所述运行参数通过预设的算法来确定所述电子设备的风门的移动速度。
本申请实施例中,可以通过控制步进电机来控制风门的打开或闭合,进一步地,可以通过控制步进电机的步进速度来控制风门打开或闭合时的移动速度。因此,当确定了移动速度时相当于确定了步进电机的步进速度。本申请实施例中,移动速度可以设置高档、中档和低档三个档位。在另一些实施例中,也可以设置高档和低档两个档位,在此不做限定。例如:电子设备有高档、中档、低档三种档位的移动速度。高档对应的速度为3毫秒(ms,millisecond)-4ms/拍,中档对应的速度为4ms-6ms/拍,低档对应的速度为6ms-8ms/拍,当然也可以设置成其他的速度。
步骤S104,电子设备控制所述风门以所述移动速度移动。
本申请实施例中,电子设备控制所述风门以所述移动速度移动也就是控制步进电机以移动速度对应的步进速度移动,从而控制风门移动。例如,当确定风门的移动速度为高档时,控制步进电机以高档对应的速度来移动。当确定风门的移动速度为低档时,控制步进电机以低档对应的速度来移动。
本申请实施例提供的控制方法,当接收到电子设备的开关机操作时,确定电子设备的运行参数(比如内部环境温度,电子设备的输出功率),根据开关机操作和运行参数来控制电子设备的风门的移动速度。如此,本申请提供的技术方案在接收到开机操作时,当确定输出功率较大时,以较快的速度打开风门,以使得用户能较快地感受到冷风或暖风,当内部温度较低时,以相对较慢地速度打开风门,以使得冷风转化成暖风后再吹出,进而可以为用户提供舒适的室内环境,提升了用户体验,当接收到关机操作时,可以减少电子设备内部的热量或风量残留,进而提高电子设备的使用安全性,从而延长机器使用寿命。
本申请实施例再提供一种控制方法,应用于电子设备,图2为本申请实施例提供的控制方法的另一种实现流程示意图,如图2所示,所述控制方法包括:
步骤S201,电子设备接收一操作指令,所述操作指令用于触发电子设备开机或关机。
步骤S202,电子设备根据所述操作指令,获取所述电子设备的工作模式。
本申请实施例中,电子设备的工作模式包括:暖风模式和冷风模式。
步骤S203,电子设备确定所述工作模式对应的运行参数。
本申请实施例中,当所述工作模式为暖风模式时,确定运行参数可以包括:加热功率或所述电子设备的内部环境温度。当所述工作模式为冷风模式且所述操作指令用于触发所述电子设备开机时,确定的运行参数包括:输出功率。当所述工作模式为冷风模式且所述操作指令用于触发所述电子设备关机时,确定的运行参数包括:输出功率或所述电子设备的内部温度。
步骤S204,电子设备根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度。
本申请实施例中,当接收开机操作时,可以进一步根据运行参数中的加热功率或输出功率确定风门的移动速度。其中,若运行参数中的加热功率或输出功率较大,也即用户设定的制冷或制热的档位较高时,为了尽快制冷或制热,那么确定出的风门的移动速度也相对较快;若运行参数中的加热功率或输出功率较小,也即用户设定的制冷或制热的档位较低时,说明用户不是特别需要快速制冷或制热,那么确定出的风门的移动速度可以相对较慢。
在一些实施例中,当电子设备是以暖风模式工作时,还可以根据运行参数中的设备内部温度确定风门的移动速度。其中,若运行参数中的设备内部温度较高,为了尽快地让用户感觉到暖风,那么确定出的风门移动速度也相对较快;若运行参数中的设备内部温度较低,为了不让较低温度的空气吹向用户,那么确定出的风门移动速度也相对较慢。
在一些实施例中,当接收关机操作时,可以根据运行参数中的功率(加热功率或冷风模式下的输出功率)或设备内部温度确定风门的移动速度,其中,若功率较大或设备内部温度较高,为了减少机器内部热量或风量的残余,那么确定出的风门移动速度相对较慢;若功率较小或内部设备温度较低,此时为了尽快完成关机操作,那么确定出的风门移动速度也相对较快。
步骤S205,电子设备控制所述风门以所述移动速度移动。
在一些实施例中,所述控制方法还包括:
步骤S206,电子设备判断风门是否移动至预设位置。
在本申请实施例中,所述预设位置包括:风门打开完全时的位置,或风门闭合的位置。当判断风门没有移动至预设位置时,执行步骤S205;当风门移动至预设位 置时,执行步骤S207。
步骤S207,电子设备控制风门停止移动。
本申请实施例中,电子设备通过控制步进电机的停止来控制风门停止运动。
本申请实施例提供的控制方法,通过接收到电子设备的开机或关机操作,确定电子设备运行的模式(如暖风模式或冷风模式),通过确定不同模式下的运行参数,来控制电子设备风门的移动速度。本申请提供的技术方案在接收到开机操作时,当确定输出功率较大时,以较快的速度打开风门,以使得用户能较快地感受到冷风或暖风,当内部温度较低时,控以相对较慢地速度打开风门,以使得冷风转化成暖风后再吹出,进而可以为用户提供舒适的室内环境,提升了用户体验,当接收到关机操作时,可以减少电子设备内部的热量或风量残留,进而提高电子设备的使用安全性,从而延长机器使用寿命。
在一些实例中,上述的步骤S204“电子设备根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度”可以通过以下方式实现:
当所述操作指令用于触发电子设备开机,且电子设备工作模式为暖风模式时,步骤S204可以通过以下步骤实现:
步骤S204A1,当确定所述暖风模式以第一加热功率工作时,确定所述风门的移动速度为第一移动速度。
步骤S204A2,当确定所述暖风模式以第二加热功率工作时,确定所述风门的移动速度为第二移动速度,其中,所述第一输出功率大于所述第二输出功率,所述第一移动速度大于所述第二移动速度。
本申请实施例中,若暖风模式的输出功率大,说明电子设备取暖速度较快,因此可以确定出风门的移动速度相对较快,以使暖风尽快的输出电子设备内部,使用户能较快地感受到暖风。若暖风模式的加热功率较小,加热速度慢,因此可以确定出风门的移动速度相对较慢,当风门完全打开时,设备内部的空气加热时间更长,以使冷风转换成暖风,以提升用户的使用体验。
当所述操作指令用于触发电子设备开机,且电子设备工作模式为暖风模式时,步骤S204可以通过以下步骤实现:
步骤S204B1,当确定所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第一移动速度。
本申请实施例中,所述电子设备内部温度可以通过电子设备内部的温度传感器获取。
步骤S204B2,当确定所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第二移动速度,其中,所述第一温度大于第二温度,所述第一移动速度大于所述第二移动速度。
本申请实施例中,若内部温度比较高,为了尽快地让用户感觉到暖风,那么确定出的风门的移动速度也相对较快,以使暖风尽快地输出电子设备。若内部温度较低,此时为了不让较低温度的空气吹向用户,那么确定出风门的移动速度相对较慢,当风门完全打开时,设备内部的空气加热时间更长,以使冷风转换成暖风,以提升用户的使用体验。
当所述操作指令用于触发电子设备关机,且电子设备工作模式为暖风模式时,步骤S204可以通过以下步骤实现:
步骤S204C1,当确定所述暖风模式以第一加热功率工作时,确定所述风门的移 动速度为第三移动速度。
步骤S204C2,当确定所述暖风模式以第二加热功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第一加热功率大于所述第二加热功率,所述第三移动速度大于所述第四移动速度。
本申请实施例中,在暖风模式下,要关闭电子设备时,若暖风模式的加热功率较高,为了减少设备内部热量或风量的残余,那么确定出的风门移动速度相对较慢,以使电子设备内部的热量和风量散发的更多,以提高了电子设备使用的安全性,延长了电子设备使用寿命。若暖风模式的输出功率较低,为了尽快完成关机操作,那么确定出的风门移动速度也相对较快。
当所述操作指令用于触发电子设备关机,步骤S204可以通过以下步骤实现:
步骤S204D1,当所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第四移动速度。
步骤S204D2,当检测到所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第三移动速度,其中,所述第一温度大于第二温度,所述第三移动速度大于所述第四移动速度。
本申请实施例中,所述第三移动速度可以和第一移动速度相同,也可以不相同,所述第四移动速度可以和第二移动速度相同,也可以不相同,在此不做限定。
本申请实施例中,不管是暖风模式还是冷风模式下,要关闭电子设备时,确定电子设备内部温度,若电子设备内部环境温度较高,为了减少设备内部热量的残余,那么确定出的风门移动速度相对较慢,以使电子设备内部的热量散发的更多,提高了电子设备使用的安全性,延长了电子设备使用寿命。若电子设备内部环境温度较低,为了尽快完成关机操作,那么确定出的风门移动速度也相对较快。
当所述操作指令用于触发电子设备开机,且电子设备工作模式为冷风模式时,步骤S204可以通过以下步骤实现:
步骤S204E1,当确定所述冷风模式以第一输出功率工作时,确定所述风门的移动速度为第三移动速度。
步骤S204E2,当确定所述冷风模式以第第二出功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第一输出功率大于第二输出功率,所述第三移动速度大于所述第四移动速度。
本申请实施例中,若冷风模式的输出功率大,也即用户设定的制冷档位较高,那么确定出的风门的移动速度也相对较快,以使用户能较快地感受到冷风,提升了用户的使用体验。
当所述操作指令用于触发电子设备关机,且确定运行模式为冷风模式时,步骤S204可以通过以下步骤实现:
步骤S204F1,当确定所述冷风模式第一输出功率工作时,确定所述风门的移动速度为第四移动速度。
本申请实施例中,确定冷风模式对应的第一输出功率可以通过确定风机的输出功率来确定
步骤S204F2,确定所述冷风模式以第二输出功率工作时,确定所述风门的移动速度为第三移动速度,其中,所述第一输出功率大于第二输出功率,所述第三移动速度大于所述第四移动速度。
本申请实施例中,若冷风模式的输出功率较大,也即风机风速较大时,确定所 述风门的移动速度较慢,以减少设备内部残余的风量,提高了电子设备使用的安全性,延长电子设备使用寿命。
本申请实施例再提供一种控制方法,应用于冷暖风机,图3为本申请实施例提供的控制方法的再一种实现流程示意图,如图3所示,所述控制方法包括:
步骤S301,用户开启冷暖风机。
步骤S302,冷暖风机判断自身运行模式。
本申请实施例中,冷暖风机运行模式包括暖风模式和冷风模式。
本申请实施例中,当自身运行模式为暖风模式时,执行步骤S303至步骤S306。当自身运行模式为冷风模式时,执行步骤S307至步骤S310。
步骤S303,冷暖风机确定加热档位或冷暖风机内部温度。
步骤S304,冷暖风机根据加热档位或内部温度调节控制风门的步进电机的运转速度。
本申请实施例中,若冷暖风机运行模式为暖风模式,则进一步检测判断暖风模式下的加热档位,如果加热档位为高档(加热负载功率为2000瓦特(w,watt)以上)或者冷暖风机内部环境温度为35℃以上,就快速(步进电机以3ms-4ms/拍的速度运转)打开冷暖风机的风门;如果加热档位为中档(加热负载功率为1000w-2000w之间)或者冷暖风机内部环境温度为35℃至30℃之间,就正常(步进电机以4ms-6ms/拍的速度运转)打开冷暖风机的风门;如果加热档位为低档(加热负载功率为1000w以下)或者冷暖风机内部环境温度为25℃以下,就缓慢(步进电机以6ms-8ms/拍的速度运转)打开冷暖风机风门。
步骤S305,冷暖风机判断风门是否打开到设定的角度。
本申请实施例中,当风门打开到设定的角度,执行步骤S306,当风门没有打开到设定的角度,执行步骤S304。
步骤S306,冷暖风机控制步进电机停止运动。
步骤S307,冷暖风机确定风速档位。
步骤S308,冷暖风机根据风速档位调节控制风门的步进电机的运转速度。
本申请实施例中,若冷暖风机运行模式为冷风模式,则进一步检测判断冷风模式下的风速档位,如果风速档位为高档风速(风机转速为1300转(r,Rotational)/分钟(min,minute)以上),就快速(步进电机以3ms-4ms/拍的速度运转)打开风门;如果风速档位为中档风速(风机转速为1000r/min-1300r/min),就正常(步进电机以4ms-6ms/拍的速度运转)打开风门;如果风速档为低档风速(风机转速为800r/min-1000r/min),就缓慢(步进电机以6ms-8ms/拍的速度运转)打开风门。
步骤S309,冷暖风机判断风门是否打开到设定的角度。
步骤S310,冷暖风机控制步进电机停止运动。
本申请实施例中,当风门打开到设定的角度,执行步骤S310,当风门没有打开至设定的角度,执行步骤S308。
本申请实施例提供的控制方法,当暖风模式下开启冷暖风机时,检测判断暖风模式下的加热档位或者机器内部的温度,根据检测到的加热档位或机器内部的温度,调节控制打开风门步进电机运转速度,以此使得冷风转化成暖风后再吹出,从而达到取暖效果,提高室内环境的舒适度,增强用户体验感。
本申请实施例提供的控制方法,当冷风模式下开启冷暖风机时,检测判断风机的风速档位,根据检测到的风速档位,调节控制打开风门的步进电机运转速度,以此调节冷暖风机的出风量,从而达到冷风效果,提高室内环境的舒适度,增强用户 体验感。
本申请实施例再提供一种控制方法,应用于冷暖风机,图4为本申请实施例提供的控制方法的再一种实现流程示意图,如图4所示,所述控制方法包括:
步骤S401,用户关闭冷暖风机。
步骤S402,冷暖风机判断自身运行模式。
本申请实施例中,冷暖风机运行模式包括暖风模式和冷风模式。
本申请实施例中,当自身运行模式为暖风模式时,执行步骤S403至步骤S406。当自身运行模式为冷风模式时,执行步骤S407至步骤S410。
步骤S403,冷暖风机确定加热档位或冷暖风机内部温度。
步骤S404,冷暖风机根据加热档位或内部温度调节控制风门的步进电机的运转速度。
若冷暖风机运行模式为暖风模式,则进一步检测判断暖风模式下的加热档位或者机器内部的温度,如果加热档位为高档(加热负载功率为2000w以上)或者冷暖风机内部环境温度为35℃以上,就缓慢(步进电机以6ms-8ms/拍的速度运转)闭合冷暖风机的风门;如果加热档位为中档(加热负载功率为1000w-2000w之间)或者冷暖风机内部环境温度为35至30℃之间,就正常(步进电机以4ms-6ms/拍的速度运转)闭合冷暖风机的风门;如果加热档位为低档(加热负载功率为1000w以下)或者冷暖风机内部环境温度为25℃以下,就快速(步进电机以3ms-4ms/拍的速度运转)闭合冷暖风机的风门。
步骤S405,冷暖风机判断风门是否关闭。
本申请实施例中,当风门完成关闭,执行步骤S406,当风门没有关闭,执行步骤S404。
步骤S406,冷暖风机控制步进电机停止运动。
步骤S407,冷暖风机确定风速档位或冷暖风机内部温度。
步骤S408,冷暖风机根据风速档位调节控制风门的步进电机的运转速度。
本申请实施例中,若冷暖风机运行模式为冷风模式,则进一步检测判断冷风模式下的风速档位或者冷暖风机内部环境温度,如果风速档位为高档(风机转速为1300r/min以上)或者冷暖风机内部环境温度为35℃以上,就缓慢(步进电机以6ms-8ms/拍的速度运转)闭合冷暖风机风门;如果风速档位为中档(风机转速为1000r/min-1300r/min)或者冷暖风机内部环境温度为35至30℃之间,就正常(步进电机以4ms-6ms/拍的速度运转)闭合冷暖风机风门;如果风速档位为低档(风机转速为800r/min-1000r/min)或者冷暖风机内部环境温度为25℃以下,就快速(步进电机以3ms-4ms/拍的速度运转)闭合冷暖风机风门。
步骤S409,冷暖风机判断风门是否关闭。
本申请实施例中,当风门完成关闭,执行步骤S410,当风门没关闭,执行步骤S408。
步骤S410,冷暖风机控制步进电机停止运动。
本申请实施例提供的控制方法,当暖风模式下关闭冷暖风机时,检测判断冷暖风机加热档位或机器内部的温度,根据检测到的加热档位或机器内部温度,调节控制打开风门的步进电机运转速度,以此确保机器内部产生的热量及时排出,大大减少了机器内部热量残留,提高了机器使用安全性,延长了机器使用寿命。
本申请实施例提供的控制地方法,当冷风模式下关闭冷暖风机时,检测判断冷暖风机风速档位或机器内部的温度,根据检测到的风速档位或机器内部温度,调节 控制打开风门的步进电机运转速度,以此确保机器内部产生的热量或风量及时排出,大大减少了机器内部热量或风量残留,提高了机器使用安全性,延长了机器使用寿命。
当所述电子设备的工作模式为暖风模式且所述操作指令用于触发所述电子设备开机时,在步骤S104之后还包括“根据开启面积的控制开启工作”的步骤,以图5为本申请实施例提供的根据开启面积的控制开启工作步骤的流程示意图,如图5所示,所述根据开启面积的控制步骤包括:
步骤S501:获取所述风门在开启过程中的开启面积。
这里,为了避免等待电子设备的风门完全开启后才开始加热所造成的时间耗费,实时获取风门在开启过程中的开启面积,以为后续步骤中电子设备基于所述开启面积进入对应的工作状态奠定基础。
在实际处理过程中,所述风门在开启过程中的开启面积可以通过在所述风门上设置步进电机来获取,这是由于步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,可以根据步进驱动器接收到的脉冲信号驱动步进电机按照设定方向转动一个固定角度,即步进电机的旋转是以固定的角度一步一步运行的,因此通过在风门上设置步进电机可以实现在风门的开启过程中实时获取风门的开启角度的目的,从而基于实时获取的风门的开启角度确定风门的开启面积。
步骤S502:确定所述开启面积对应的工作参数,其中所述工作参数至少包括加热功率。
这里,所述开启面积对应的工作参数可以是加热功率,并且所述开启面积对应的加热功率可以通过在电子设备中设置继电器和可控硅来确定,选择继电器来确定所述开启面积对应的加热功率,是考虑到继电器是具有隔离功能的自动开关元件以及是能够用小电流去控制大电流运作的“自动开关”,可以控制很大功率的电路,并且也能够在电路中起着自动调节、安全保护和转换电路等作用,因此使用继电器去确定所述开启面积对应的加热功率的准确性和可靠性也能够得到保障。
并且,由于可控硅是一种大功率电器元件,也可以称为晶闸管,具有体积小、效率高、寿命长等优点,并且在自动控制系统中可以作为大功率驱动器件来实现用小功率控件控制大功率设备的目的,因此利用可控硅也能够准确、快速地确定所述开启面积对应的加热功率。
步骤S503:控制自身基于所述工作参数进行工作。
这里,控制自身基于所述工作参数进行工作可以认为是电子设备基于风门的开启面积对应的加热功率进行工作,以此实现电子设备基于风门在开启过程中获取的不同开关面积进行不同加热功率的加热工作,避免了电子设备在其风门完全开启后才开始加热所导致的时间耗费,有效提高了电子设备的出热速度。
本申请实施例通过电子设备基于自身接收的开启指令开启风门时实时获取风门的开启面积,并且在确定出所述开启面积对应的工作参数时控制自身基于所述工作参数进行工作,避免了传统电子设备需等待其风门完全开启后才能开始工作而产生的时间耗费,有效提高了电子设备执行工作的速度。
在一些实施例中,当所述工作参数至少包括加热功率时,对应地,步骤S502可以通过以下步骤实现:
步骤S5021:基于开启面积区间与加热级别之间的映射关系,确定所述开启面积对应的加热级别。
这里,所述开启面积区间与加热级别之间的映射关系可以利用继电器的控制方式和可控硅的加热原理确定,可控硅的加热原理可以认为是通过可控硅的导通角被调整,电压随之改变,从而来调整加热功率的过程;继电器的控制方式可以认为是基于继电器的控制系统确定的,并且继电器的控制系统具有结构简单、成本低、原理简单等优点,因此使用继电器的控制方式确定开启面积区间与加热级别之间的映射关系时可操作性强、易实现性也高。
在实际处理过程中,设置每一个加热级别分别对应一个开启面积区间,每一个开启面积区间的上限值都小于或者等于所述风门的最大开启面积,比如,设定所述风门的最大开启面积是600cm 2,当利用继电器的控制方式确定开启面积区间与加热级别之间的映射关系时,可以设定[0,150cm 2)对应0级加热,0级加热表示电子设备不执行加热工作,[150cm 2,300cm 2)对应1级加热,[300cm 2,450cm 2)对应2级加热,[450cm 2,600cm 2)对应3级加热,其中,150cm 2、300cm 2、450cm 2是每个加热级别对应面积区间的上限值,并且是可以人为设置的。
而当利用可控硅的加热原理确定开启面积区间与加热级别之间的映射关系时,可以设定[0,50cm 2)对应0级加热,0级加热表示电子设备不执行加热工作,[50cm 2,100cm 2)对应1级加热,[100cm 2,150cm 2)对应2级加热,[150cm 2,200cm 2)对应3级加热,[200cm 2,250cm 2)对应4级加热,[250cm 2,300cm 2)对应5级加热,[300cm 2,350cm 2)对应6级加热,[350cm 2,400cm 2)对应7级加热,[400cm 2,450cm 2)对应8级加热,[450cm 2,500cm 2)对应9级加热,[500cm 2,550cm 2)对应10级加热,[550cm 2,6000cm 2)对应11级加热;其中,50cm 2、100cm 2、150cm 2、200cm 2、250cm 2、300cm 2、350cm 2、400cm 2、450cm 2、500cm 2、550cm 2、600cm 2是每个加热级别对应面积区间的上限值,并且也是可以人为设置的。
步骤S5022:确定所述加热级别对应的加热功率。
这里,当利用继电器的控制方式或可控硅的加热原理确定出开启面积区间与加热级别之间的映射关系时,电子设备基于风门在开启过程中实时获取的开启面积,能够快速匹配出电子设备当前使用哪个级别的加热功率进行工作;比如当确定出当前获得的开启面积为445cm 2,基于开启面积区间与加热级别之间的映射关系可以确定445cm 2为8级加热级别,此时电子设备控制自身进行8级加热级别对应的加热功率进行加热,以此实现电子设备在自身风门的开启过程中基于不同的开启面积能够使用不同的加热功率进行工作。
本实施例中通过使用继电器的控制方式和可控硅的加热方式确定电子设备的风门的开启面积区间与加热级别之间的映射关系,以此实现电子设备在执行风门的开启过程中能够基于自身实时获取的开启面积来采用不同的加热功率进行加热工作的目的,有效提高了电子设备执行工作的速度。
在一些实施例中,如图6所示,步骤S5021中的开启面积区间与加热级别之间的映射关系,可以通过执行以下步骤实现:
步骤S1:基于自身预设的加热元件个数,确定所述风门在开启过程中的加热级别个数。
这里,加热元件可以认为是继电器,并且在利用继电器实现多级加热时,可以预先设定电子设备中能够设置或容纳的继电器最多个数,比如可以在电子设备中设置3个继电器,每个继电器对应一个加热级别,比如当电子设备中可以设置有3个继电器时,那么相应就有3个加热级别,继电器1对应1级加热, 继电器2对应2级加热,继电器3对应3级加热,并且3个加热级别是在电子设备控制其自身风门的开启过程中实现多级加热的。
步骤S2:获取所述风门的最大开启面积。
这里,所述风门的最大开启面积可以认为是电子设备的风门在完全打开时所对应的风门的开启面积,可以基于电子设备的风门的开启面积范围确定,其中,所述电子设备的风门的开启面积范围可以认为是电子设备的风门从完全闭合时开始开启至完全打开时对应的不同开启面积,比如[0,600cm 2]为电子设备的风门的开启面积范围时,600cm 2即为电子设备的风门的最大开启面积。
步骤S3:基于所述加热级别个数和所述最大开启面积,确定与加热级别个数对应的开启面积区间。
这里,由于加热级别个数是基于电子设备自身设置的继电器个数确定的,每个继电器对应一个加热级别,那么,利用电子设备的风门在开启过程中实时变化的开启面积和所述风门的最大开启面积,可以确定与每个加热级别对应的风门的开启面积区间,即可以设定每个继电器对应一定范围内风门的开启面积,比如,设定所述风门的最大开启面积是600cm 2,可以设定[0,150cm 2)对应0级加热,0级加热表示电子设备不执行加热工作,[150cm 2,300cm 2)对应1级加热,[300cm 2,450cm 2)对应2级加热,[450cm 2,600cm 2)对应3级加热,从而电子设备在自身风门的开启过程中能够基于开启面积的实时变化确定进行加热工作的加热级别。
步骤S4:建立开启面积区间与加热级别之间的映射关系。
这里,当每个加热级别对应的开启面积区间确定时,可以建立美国开启面积区间与加热级别之间的映射关系,比如[0,150cm 2)对应0级加热,0级加热也表示加热功率为0,因此此时电子设备不执行加热工作,[150cm 2,300cm 2)对应继电器1且使用1级加热,[300cm 2,450cm 2)对应继电器2且使用2级加热,[450cm 2,600cm 2)对应继电器3且使用3级加热,以此使得电子设备随着自身风门的开启面积的实时变化能够使用不同的加热级别进行加热,从而能够在电子设备的风门完全打开时完成自身的加热工作。
本实施例中,通过在电子设备中设置继电器的方式来确定自身风门在开启过程中的开启面积区间与加热级别之间的映射关系,以此实现电子设备在其风门的开启过程中基于不同的开启面积进行不同程度的加热工作的目的,不仅避免了传统电子设备需等待其风门完全开启后才能开始工作而产生的时间耗费,而且还能够有效提高电子设备执行工作的速度。
在一些实施例中,如图7所示,步骤S5021中的开启面积区间与加热级别之间的映射关系,还可以通过执行以下步骤实现:
步骤S11:基于所述风门在开启过程中的移动速率变化,确定所述风门的开启面积变化曲线;其中,所述开启面积变化曲线表征所述风门在开启过程中不同的开启时间对应的加热功率。
这里,如果设定电子设备的风门从关闭时开启至完全开启需要10s时间,那么电子设备的风门在开启过程中的运动速率变化可以认为是先慢后快再越来越快或者是先快后慢再越来越慢,由此可以确定出10s时间内电子设备的风门在开启过程中的开启面积变化曲线。
步骤S12:基于所述开启面积变化曲线,确定所述风门的开启面积区间与加热级别之间的映射关系。
这里,基于所述开启面积变化曲线,可以确定风门在开启过程中开启面积随时间变化的快慢程度,比如,设定电子设备的风门在开启过程中先慢后快再越来越快时,风门在前a秒内的开启面积变化较缓慢,从第a秒至第10秒的时间内风门的开启面积变化越来越快,变化较缓慢的开启面积对应的加热功率变化不是很明显,而变化越来越快的开启面积对应的加热功率变化就很明显,因此,可以利用曲线拟合算法来确定与所述开启面积变化曲线相拟合的加热曲线;其中,所述加热曲线表征所述风门在开启过程中不同的开启时间对应的加热功率,a为大于0且小于10的自然数。
基于所述风门在开启过程中不同的开启时间对应的加热功率,以及所述风门在开启过程中不同的开启面积对应的加热功率,建立所述风门在开启过程中的开启面积区间与加热级别之间的映射关系。
本实施例中通过电子设备的风门在开启过程中的运动速率变化确定开启面积变化曲线,并基于所述开启面积变化曲线再确定风门的开启面积区间与加热级别之间的映射关系,以此实现电子设备的风门在开启过程中的运动速率变化时基于实时获得的开启面积快速确定出加热级别的目的,有效提高了电子设备的风门在开启过程中进行加热工作的灵活性和准确性。
在一些实施例中,步骤S501的过程可以通过执行以下步骤实现:
步骤S5011:确定自身基于接收到的开启指令开启所述风门时,获取所述风门在开启过程中的开启角度。
这里,当所述风门为扇门时,电子设备基于接收到的开启指令开启风门时,可以通过自身设置的步进电机或者处理器实时记录风门的开启角度,以为后续步骤确定开启面积提供依据。
步骤S5012:基于所述开启角度,确定所述风门在开启过程中的开启面积。
这里,可以基于风门在开启过程的开启角度实时确定对应的开启面积,也可以基于事先存储的风门在开启过程中的开启角度与开启面积的对应关系实时确定出所述风门在开启过程中的开启面积,此处不做限定。
本实施例中通过限定电子设备的风门为扇窗时可以基于扇窗在开启过程中的开启角度确定扇窗在开启过程中的开启面积,有效提高了确定开启面积的准确性和可靠性,以为后续步骤基于所述开启面积确定工作参数的准确可靠性提供保障。
本实施例再提供一种控制方法,应用于暖风机中,用以解决现有自带风门的暖风机出热速度慢的问题,考虑到暖风机的风门主要是由两扇门从中间闭合到两边打开的过程,并且打开过程需要近10秒左右,现有自带风门的暖风机是等待两扇门完全打开之后热敏电阻才开始加热,之后风机才开始出风,导致出热速度很慢;但是在扇门打开之前就开始加热,产生的热量会将扇门融化,所以也不能在扇门打开前就开始加热;而如果考虑在打开扇门的10秒左右时间内能让暖风也吹出来,用户体验会更好。
基于此,本实施例再提供一种控制方法,所述方法包括两种热敏电阻的加热方式。
(一)继电器控制的加热方式
由图8可以看出,由于暖风机的扇门(同上述各个实施例中的风门)接收到开启指令时通常包括完全关闭801、扇门开始开启802和扇门完全打开803这 三种状态,因此本实施例中可以考虑通过在暖风机中设置继电器来实现所述暖风机在扇门的开启过程中进行不同档位加热的目的;由于现有暖风机中设置继电器的个数为3个,并且考虑到传统暖风机必须等待扇门完全打开时才能开始加热所造成的时间耗费,可以在暖风机的扇门开启过程中划分3档来加热,设置每个继电器对应一个加热档位,并且考虑到传统暖风机必须等待扇门完全打开时才能开始加热所造成的时间耗费,可以在暖风机的扇门开启过程中划分三档来加热,从而达到梯级效果。
利用继电器的加热方式在暖风机的扇门开启过程划分档位的过程示意图可以参照图9,图9为本申请实施例中扇门角度与PTC加热档位的一种变化曲线图,并且在图9中,横坐标表示扇门角度,纵坐标表示PTC加热档位,曲线901为扇门角度的变化曲线,曲线902为PTC的加热曲线,曲线902是与曲线901相拟合的PTC加热曲线。
由图9可以看出,暖风机的扇门的最大开启角度为120°时,暖风机的扇门开启过程中划分三档来加热的过程为:扇门的开启角度处于[0°,30°)时对应0档加热,即扇门的开启角度处于[0°,30°)区间时不执行加热,当扇门的开启角度处于[30°,60°)区间时对应1档加热,也就是扇门处于[30°,60°)区间时暖风机使用1档对应的加热功率进行加热;当扇门的开启角度处于[60°,90°)区间时对应2档加热,也就是扇门的开启角度处于[60°,90°)区间时暖风机使用2档对应的加热功率进行加热,当扇门的开启角度处于[90°,120°)区间时对应3档加热,也就是扇门的开启角度处于[90°,120°)区间时暖风机使用3档对应的加热功率;以此实现在暖风机的扇门开启过程中进行不同程度加热的目的,从而达到阶梯效果的加热;其中,30°、60°、90°为切换档位的边界切换角度值,所述边界切换角度值可以在[0°,120°]区间内根据实际情况选取,本实施例中所述暖风机的扇门的最大开启角度,与前述实施例中的所述风门的最大开启面积对应。
在实际处理过程中,本实施例中的扇门与前述实施例中的所述风门对应,本实施例中的所述暖风机的扇门开启过程中划分3档来加热的过程,与前述实施例中建立开启面积区间与加热级别之间的映射关系后确定所述开启面积对应的工作参数的过程是对应的。
(二)可控硅控制的加热方式
通过可控硅加热的原理是使用脉冲宽度调制(PWM,Pulse-Width Modulation)信号控制来实现多级加热的,由于脉冲宽度调制是一种模拟控制方式,是根据相应载荷的变化来调制晶体管基极或MOS管(MOS,Metal Oxide Semiconductor)栅极的偏置,实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变,并且脉冲宽度调制方式能使电源的输出电压在工作条件变化时保持恒定,因此本实施例中使用脉冲宽度调制的脉宽可细化到很多个等级,从而可以控制多档加热。在暖风机的开门过程中划分多档来加热,能够达到渐热效果。
利用可控硅的加热原理在暖风机的扇门开启过程划分档位的过程示意图可以参照图10,图10为本申请实施例中扇门角度与PTC加热档位的又一变化曲线图,并且在图10中,横坐标表示扇门角度,纵坐标表示PTC加热档位,曲线21为扇门角度的变化曲线,曲线22为PTC的加热曲线,曲线22是与曲线21相拟合的PTC加热曲线。
由图10可以看出,扇门的开启角度越大,对应的加热档位越高,并且曲线21是线性递增的,可以认为扇门的开启速度是匀速的,曲线22是使用脉冲宽度 调制信号控制PTC的通电时间,以生成n个的加热档位,n为整数,比如生成11个加热档位时,可以通过设置脉冲宽度调制信号的占空比来控制控制PTC的通电时间,以生成11个加热档位,在曲线22上均匀采集11个点,从而确定曲线22上的11个加热档位。
当暖风机的扇门的最大开启角度为120°时,暖风机的扇门开启过程中划分11档来加热的过程为:
可以设定扇门的开启角度处于[0°,10°)区间时对应0档加热,即扇门的开启角度处于[0°,10°)区间时不执行加热;
当扇门的开启角度处于[10°,20°)区间时对应1档加热,也就是扇门处于[10°,20°)区间时暖风机使用1档对应的加热功率进行加热;
当扇门的开启角度处于[20°,30°)区间时对应2档加热,也就是扇门的开启角度处于[20°,30°)区间时暖风机使用2档对应的加热功率进行加热;
当扇门的开启角度处于[30°,40°)区间时对应3档加热,也就是扇门的开启角度处于[30°,40°)区间时暖风机使用3档对应的加热功率进行加热;
当扇门的开启角度处于[40°,50°)区间时对应4档加热,也就是扇门处于[40°,50°)区间时暖风机使用4档对应的加热功率进行加热;
当扇门的开启角度处于[50°,60°)区间时对应5档加热,也就是扇门的开启角度处于[50°,60°)区间时暖风机使用5档对应的加热功率进行加热;
当扇门的开启角度处于[60°,70°)区间时对应6档加热,也就是扇门的开启角度处于[60°,70°)区间时暖风机使用6档对应的加热功率进行加热;
当扇门的开启角度处于[70°,80°)区间时对应7档加热,也就是扇门的开启角度处于[70°,80°)区间时暖风机使用7档对应的加热功率进行加热;
当扇门的开启角度处于[80°,90°)区间时对应8档加热,也就是扇门处于[80°,90°)区间时暖风机使用8档对应的加热功率进行加热;
当扇门的开启角度处于[90°,100°)区间时对应9档加热,也就是扇门的开启角度处于[90°,100°)区间时暖风机使用9档对应的加热功率进行加热;
当扇门的开启角度处于[100°,110°)区间时对应10档加热,也就是扇门的开启角度处于[100°,110°)区间时暖风机使用10档对应的加热功率进行加热;
当扇门的开启角度处于[110°,120°)区间时对应11档加热,也就是扇门的开启角度处于[110°,120°)区间时暖风机使用11档对应的加热功率进行加热;其中,10°、20°、30°、40°、50°、60°、70°、80°、90°、100°、110、°120°为切换档位的边界切换角度值,所述边界切换角度值可以在[0°,120°]区间内根据实际情况选取。
本实施例中所述暖风机的扇门开启过程中划分11档来加热的过程,与前述实施例中的建立开启面积区间与加热级别之间的映射关系后确定所述开启面积对应的工作参数的过程是对应的。
在实际处理过程中,可以设置暖风机的扇门在开启过程中的运动速率变化,比如先快后慢再越来越慢,或者先慢后快再越来越快,由此确定出扇门的开启面积变化曲线,图11为本实施例提供中扇门角度与PTC加热档位的再一变化曲线图,在图11中,曲线31为扇门的开启面积变化曲线,图11中的曲线32是与曲线31相拟合的PTC加热曲线。
由图11可以看出,曲线31是由于扇门在开启过程中的快慢持续时间不同而非匀速递增的,因此,如果在与曲线31相拟合而得到的曲线32上均匀采集n 个点时,曲线32上形成的n个加热档位中每个档位对应的角度区间和持续时间是不同的;其中,n为整数。
当暖风机的扇门的最大开启角度为120°时,设置暖风机的扇门在开启过程中先慢后快再越来越快,设置扇门完全打开用了10s时间,暖风机的扇门开启过程中运动速率发生变化时划分11档来加热的过程为:
扇门在第0s至第4s时开启速度慢,从第5s至第10s越来越快,可以设定扇门的开启角度处于[0°,5°)区间时对应0档加热,即扇门的开启角度处于[0°,5°)区间时不执行加热;
当扇门的开启角度处于[5°,11°)区间时[5°,11°)暖风机使用1档对应的加热功率进行加热;
当扇门的开启角度处于[11°,17°)区间时对应2档加热,也就是扇门的开启角度处于[11°,17°)区间时暖风机使用2档对应的加热功率进行加热;
当扇门的开启角度处于[17°,25°)区间时对应3档加热,也就是扇门的开启角度处于[17°,25°)区间时暖风机使用3档对应的加热功率进行加热;
当扇门的开启角度处于[25°,36°)区间时对应4档加热,也就是扇门处于[25°,36°)区间时暖风机使用4档对应的加热功率进行加热;
当扇门的开启角度处于[36°,45°)区间时对应5档加热,也就是扇门的开启角度处于[36°,45°)区间时暖风机使用5档对应的加热功率进行加热;
当扇门的开启角度处于[45°,51°)区间时对应6档加热,也就是扇门的开启角度处于[45°,51°)区间时暖风机使用6档对应的加热功率进行加热;
当扇门的开启角度处于[51°,62°)区间时对应7档加热,也就是扇门的开启角度处于[51°,62°)区间时暖风机使用7档对应的加热功率进行加热;
当扇门的开启角度处于[62°,74°)区间时对应8档加热,也就是扇门处于[62°,74°)区间时暖风机使用8档对应的加热功率进行加热;
当扇门的开启角度处于[74°,87°)区间时对应9档加热,也就是扇门的开启角度处于[74°,87°)区间时暖风机使用9档对应的加热功率进行加热;
当扇门的开启角度处于[87°,101°)区间时对应10档加热,也就是扇门的开启角度处于[87°,101°)区间时暖风机使用10档对应的加热功率进行加热;
当扇门的开启角度处于[101°,120°)区间时对应11档加热,也就是扇门的开启角度处于[101°,120°)区间时暖风机使用11档对应的加热功率进行加热;其中,5°、11°、17°、25°、36°、45°、51°、62°、74°、87°、101°为切换档位的边界切换角度值,所述边界切换角度值可以在[0°,120°]区间内根据实际情况选取。
在实际处理过程中,本实施例中的所述暖风机的扇门开启过程中运动速率发生变化时划分11档来加热的过程,与前述实施例中确定映射关系时再确定所述开启面积对应的加热级别的过程是对应的。
在本实施例中,通过使用继电器控制加热和可控硅控制加热的两种多级加热方式,采用在暖风机的扇门打开角度逐渐变大后,扇门的开启逐渐从小变大的过程中暖风机的加热从低功率逐渐变高功率的加热方式,从而达到在暖风机的扇门完全打开时完成加热工作,避免了传统暖风机需等待其风门完全开启后才能开始工作而产生的时间耗费,有效提高了暖风机的出热风速度,提高了用户体验。
在一些实施例中,当所述电子设备的工作模式为暖风模式时,在步骤S104之后,所述方法还包括加热控制的步骤,图12为本申请实施例提供的加热控制的步骤一种实现流程示意图,如图12所示:
步骤S41,当检测到风门开启完成且检测到加热元件位于预设的工作位置时,控制风机启动。
本申请实施例中,加热控制设备的出风口与开关门是连通的,因此检测出风口是否开启可以通过检测开关门是否打开来实现,当检测到开关门打开时,即可确认出风口开启。在另一些实施例中,也可通过检测风道内气压的变化确定出风口是否打开。在本申请中,对检测出风口是否开启的实现方式不做限定。
本申请实施例中,加热元件可以采用PTC加热元件,该PTC加热元件具有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热元件。
本申请实施例中,可以分别在工作位置和非工作位置设置位置传感器,那么,可以通过工作位置的位置传感器和非工作位置的位置传感器检测发热件是在工作位置还是在非工作位置,由此可实现检测加热元件是否在预设的工作位置。
本申请实施例中,可以是所述风机设置于在出风口与加热元件之间,使加热元件加热的空气从出风口流出。在另一些实施例中,还可以是加热元件设置于风机和出风口之间,也就是说风机可以设置于安装在加热元件及出风口一侧,此时,将进风口流入的空气经过加热元件从出风口流出。
本申请实施例中,当检测到出风口开启完成且检测到加热元件位于预设的工作位置时,确定已达到启动风机的条件,此时控制风机启动。
步骤S42,当加热控制设备检测到所述风机已完成启动,控制所述加热元件启动以实现加热。
本申请实施例中,检测风机是否已完成启动,可以通过检测风机的输入电压是否正常,也可以通过检测风道内的压力是否大于或等正常工作时的风道压力值,还可以通过检测风机转速来确定风机是否已完成启动。如果检测到风机已完成启动,此时就控制加热元件加热。
在一些实施例中,步骤S42,当检测到所述风机已完成启动,控制所述加热元件启动以实现加热可通过以下步骤实现:
步骤S421,检测所述风机的风道内压力,得到第一压力值。
步骤S422,比较所述第一压力值与预设值的大小,得到比较结果;所述预设值为所述风机正常工作时风道内压力值。
本申请实施例中,所述预设值可以是厂家在出厂时设置的。当比较结果表明第一压力值大于预设值时,进入步骤S423;当比较结果表明第一压力值小于或者等于预设值时,说明风机没有正常启动,此时不能启动加热体,以避免热量不能及时散出,造成安全事故。
步骤S423,所述比较结果表明所述第一压力值大于所述预设值时,确定所述风机已完成启动。
本申请实施例中,当检测到风机的第一压力值大于预设值时,表明风机已完成启动。
步骤S424,控制所述加热元件启动,以实现加热。
通过上述控制方法,当检测到出风口开启且加热元件位于预设的工作位置时,控制风机启动,当检测到风机完成启动,才控制加热元件启用以实现加热;如此,加热体产生的热量就会在风机送风驱动下,沿着打开的风道排出,这样可以保证加热体产生的热量及时排出,大大减少了机器内部热量残留,提高了机器使用安全性, 延长了机器使用寿命。
基于上述的实施例,图13为本申请实施例加热控制步骤的另一种实现流程示意图,如图13所示,所述加热控制步骤包括:
步骤S43,接收启动加热功能的操作指令。
该启动加热功能的操作指令可以在各种需求或场景下被触发,例如,可以是通过设置于自身的按钮或触控键触发,也可以是通过智能终端上安装的应用程序(App,Application)发送给加热控制设备的加热信号而触发,还可以是通过接收到遥控器发送的加热信号而触发。这里能够触发加热信号的操作包括:手势滑动操作、语音指令操作或特定的按键操作等。在此不做限定。
步骤S44,基于所述操作指令,检测出风口是否开启且检测加热元件是否位于预设的工作位置。
这里,步骤S44在实现时,可以通过检测与出风口相连的开关门是否开启来确定出风口是否开启,可以通过设置于工作位置的位置传感器来确定加热元件是否位于预设的工作位置。
在本申请实施例中,当检测到出风口未开启和/或检测到加热元件未位于所述工作位置时执行步骤S45;当检测到出风口开启且检测到加热元件位于预设的工作位置时执行步骤S41A。
步骤S45,启动计时器计时。
步骤S46,判断所述计时时长是否达到第一时长阈值。
本申请实施例中,第一时长阈值可以是厂家在出厂时设置的,厂家通过测定加热元件从复位区移动到工作位置的时长,来确定第一时长阈值。如从复位区移动到工作位置的最大时长为30秒(s,second),此时就可以设置第一时长阈值为30s。也可以是用户自己设置的,对第一时长阈值具体的时长不做限定,可根据实际情况进行设定。例如,在一些实施例中,第一时长阈值可以是厂家设置的30s,在另一些实施例中,还可以是用户设置的1分钟。
如果计时时长达到第一时长阈值,则进入步骤S48;如果计时时长没有达到第一时长阈值,则进入步骤S47。通过设置第一时长阈值,可以避免因加热元件在移动到工作位置的途中而导致的误关闭问题。
步骤S47,以每间隔第一间隔时长检测所述出风口是否开启并检测加热元件是否处于工作位置。
本申请实施例中,所述第一间隔时长可以是厂家在出厂时设置的,也可以是用户自己设置的。在实际应用过程中,第一时长阈值可以是第一间隔时长的倍数,可以根据第一时长阈值来确定第一间隔时长,比如,设置第一时长阈值为30s,此时可以将第一间隔时长设置成5s,那么在第一时长阈值内,可以进行多次检测。如果检测所述出风口开启且所述加热元件位于所述工作位置,则进入步骤S49,如果检测所述出风口未开启且所述加热元件未位于所述工作位置则进入步骤S46。
步骤S48,判断所述出风口是否开启和/或所述加热元件是否位于所述工作位置。
本申请实施例中,如果出风口开启且所述加热元件位于所述工作位置时,则执行S49,在执行完S49后,执行步骤S41B。
如果出风口未开启和/或所述加热元件未位于所述工作位置时,则执行步骤S49,在执行完步骤S49后,执行步骤S41A,并结束流程。
步骤S49,关闭控制所述出风口开关的电机和关闭控制所述加热元件的电机。
本申请实施例中,通过控制步进电机带动开关门开启或关闭以实现出风口开启 或关闭,通过控制交流电机控制加热元件移动以实现加热元件移动。当计时时长达到所述第一时长阈值,确定所述出风口未开启和/或所述加热元件未位于所述工作位置,那么可以判断出风口开启出现故障和/或加热元件移动装置出现故障,此时为了省电或为了不使电机烧坏,关闭控制所述出风口开关的步进电机和关闭控制所述加热元件的交流电机。
步骤S41A,输出报警信息。
本申请实施例中,输出的报警信息可以通过多种方式来对用户进行提醒,可以通过指示灯来进行报警,也可以通过声音来进行报警,如蜂窝报警信息,还可以通过声音加指示灯来进行报警,本申请实施例不对报警信息进行限定。
步骤S41B,控制风机启动。
步骤S41C,检测到所述风机已完成启动,控制所述加热元件启动以实现加热。
通过上述加热控制方法,当检测到出风口未开启和/或检测到加热元件未位于所述工作位置时,在预设时间内以一定周期进行检测,在预设时间内没有检测到出风口未开启和/或检测到加热元件未位于所述工作位置时,关闭控制所述出风口开关的电机和关闭控制所述加热元件的电机,并进行报警。从而,用户在使用过程中,当设备出现故障时,能及时提醒,且能一定程度上避免出现安全事故。
在一些实施例中,在步骤S41或者在步骤S41B之后,还可以对风机是否完成启动进行检测,图14为本申请实施例提供的风机检测步骤的流程示意图,如图14所示,所述流程包括以下步骤:
步骤S51,检测所述风机是否完成启动。
本申请实施例中,若加热控制设备检测到风机已完成启动,则执行步骤S42或者步骤S41C;若加热控制设备检测到风机未完成启动,则执行步骤S52。
步骤S52,启动计时器计时。
步骤S53,判断所述计时时长是否达到第二时长阈值。
如果计时时长达到第二时长阈值,则进入步骤S55;如果计时时长没有达到第二时长阈值,则进入步骤S54。
本申请实施例中,第二时长阈值可以是厂家在出厂时设置的,也可以是用户自己设置的,对第二时长阈值具体的时长不做限定,可根据实际情况进行设定。例如,在一些实施例中,厂家可以将第二时长阈值设置30s,在另一些实施例中,用户可以将第二时长阈值设置成1分钟。
步骤S54,每间隔第二间隔时长检测所述风机是否启动。
本申请实施例中,所述第二间隔时长可以是厂家在出厂时设置的,也可以是用户自己设置的,可以根据第二时长阈值来确定第二间隔时长。在实际应用过程中,第二时长阈值可以是第二间隔时长的倍数,比如,设置第二时长阈值为30s,此时可以将第二间隔时长设置成5s,那么在第二时长阈值内,可以进行多次检测。
本申请实施例中,加热控制设备如果检测风机完成启动时执行步骤S42或者步骤S41C,在图14中,仅以步骤S41C示意。如果没有检测到风机启动,则执行步骤S53。
步骤S55,加热控制设备判断所述风机是否完成启动。
本申请实施例中,在第二时长阈值内,加热控制设备判断所述风机已完成启动,则执行步骤S42或者步骤S41C。整个加热控制过程完成。
本申请实施例中,在第二时长阈值内,加热控制设备判断所述风机没有完成启动,则执行步骤S56。
步骤S56,关闭控制所述风机开关的电源。
步骤S57,输出报警信息。
本申请实施例中,通过声音来进行报警,如蜂鸣报警。
通过上述的加热控制方法,当检测到风机未完成启动时,以预设时间内以一定周期进行检测,当预设时间内没有检测到风机启动时,关闭控制所述风机开关的电源,并进行报警。从而,用户在使用过程中,当设备出现故障时,能及时提醒,且能一定程度上避免出现安全事故。
图15为本申请实施例提供的加热控制步骤的一种实现流程示意图,如图15所示,控制冷暖取暖器加热取暖时,需要执行以下步骤:
步骤S61,冷暖取暖器检测开关门是否打开以及PTC加热体是否转动到指定位置。
若开关门已经打开且PTC加热体转动到指定位置,则关闭控制开关门的步进电机与控制PTC的交流电机,则执行步骤S62,否则,继续循环检测一分钟,如果一分钟内开关门依然没有打开或者PTC加热体没有转动到指定位置,则关闭控制开关门的步进电机与控制PTC的交流电机,同时发出机器故障的报警提示信号。
步骤S62,冷暖取暖器进行风机检测。
若检测到风机已经启动,并开始送风,则执行步骤S63。否则,继续循环检测一分钟,如果一分钟内风机还没有启动,则发出机器故障的报警提示信号
步骤S63,冷暖取暖器控制PTC加热体启动,以开始加热。
本申请实施例提供加热控制方法,开关门开启到合适角度、PTC加热体转动到指定位置以及风机开启送风时,PTC加热体产生的热量就会在风机送风驱动下,沿着打开的风道排出,这样可以保证PTC加热体产生的热量及时排出,大大减少了机器内部热量残留,提高了机器使用安全性,延长了机器使用寿命。
基于前述的实施例,本申请实施例提供一种控制装置,该装置包括所包括的各单元、以及各单元所包括的各模块,可以通过计算机设备中的处理器来实现;当然也可通过具体的逻辑电路实现;在实施的过程中,处理器可以为中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Microprocessor Unit)、数字信号处理器(DSP,Digital Signal Processing)或现场可编程门阵列(FPGA,Field Programmable Gate Array)等。
图16为本申请实施例中控制装置的组成结构示意图,如图16所示,所述装置70包括接收模块71、第一确定模块72、第二确定模块73、控制模块74。其中:
接收模块71,配置为接收一操作指令,所述操作指令配置为触发电子设备开机或关机。
第一确定模块72,配置为根据所述操作指令,确定所述电子设备的运行参数。
第二确定模块73,配置为根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度。
第一控制模块74,配置为控制所述风门以所述移动速度移动。
在一些实施例中,第一确定模块72包括:
获取部分,配置为根据所述操作指令,获取所述电子设备的工作模式。
第一确定部分,配置为当所述工作模式为暖风模式时,确定所述暖风模式下的输出功率或所述电子设备的内部温度。
第二确定部分,配置为当所述工作模式为冷风模式且所述操作指令配置为触发 所述电子设备开机时,确定所述冷风模式下的输出功率。
在一些实施例中,当所述操作指令配置为触发电子设备开机时,所述第二确定模块73包括:
第三确定部分,配置为当确定所述暖风模式以第一输出功率工作时,确定所述风门的移动速度为第一移动速度。
第四确定部分,配置为当确定到所述暖风模式以第二输出功率工作时,配置为确定所述风门的移动速度为第二移动速度,其中,所述第一输出功率大于所述第二输出功率,所述第一移动速度大于所述第二移动速度。
在一些实施例中,当所述操作指令配置为触发电子设备开机时,所述第二确定模块73包括:
第五确定部分,配置为当确定所述暖风模式下所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第一移动速度。
第六确定部分,配置为当检测到所述暖风模式下所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第二移动速度,其中,所述第一温度大于第二温度,所述第一移动速度大于所述第二移动速度。
在一些实施例中,当所述操作指令配置为触发电子设备关机时,所述第二确定模块73包括:
第七确定部分,配置为当确定所述暖风模式以第一输出功率工作时,配置为确定所述风门的移动速度为第三移动速度。
第八确定部分,配置为当确定所述暖风模式以第二输出功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第一输出功率大于所述第二输出功率,所述第三移动速度大于所述第四移动速度。
在一些实施例中,当所述操作指令配置为触发电子设备关机时,所述第二确定模块73包括:
第九确定部分,配置为当确定所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第四移动速度。
第十确定部分,配置为当确定所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第三移动速度,其中,所述第一温度大于第二温度,所述第三移动速度大于所述第四移动速度。
在一些实施例中,当所述操作指令配置为触发电子设备开机时,所述第二确定模块73包括:
第十一确定部分,配置为当确定所述冷风模式以第三输出功率工作时,确定所述风门的移动速度为第三移动速度。
第十二确定部分,配置为当确定所述冷风模式以第四输出功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第三输出功率大于第四输出功率,所述第三移动速度大于所述第四移动速度。
在一些实施例中,当所述操作指令配置为触发电子设备关机时,所述第二确定模块73包括:
第十三确定部分,配置为当确定所述冷风模式以第三输出功率工作时,确定所述风门的移动速度为第四移动速度;
第十四确定部分,配置为当确定所述冷风模式以第四输出功率工作时,确定所述风门的移动速度为第三移动速度,其中,所述第三输出功率大于第四输出功率,所述第三移动速度大于所述第四移动速度。
在一些实施例中,所述控制装置70还包括:
获取模块,配置为确定接收到开启指令时,控制自身至少具备隔热功能的开关门开启,并获取所述开关门在开启过程中的开启面积。
第三确定模块,配置为确定所述开启面积对应的工作参数。
第二控制模块,配置为控制自身基于所述工作参数进行工作。
在一些实施例中,所述第三确定模块还配置为,基于开启面积区间与加热级别之间的映射关系,确定所述开启面积对应的加热级别;
在一些实施例中,所述第三确定模块还配置为,确定所述加热级别对应的加热功率。
在一些实施例中,所述第三确定模块还配置为,基于自身预设的加热元件个数,确定所述开关门在开启过程中的加热级别个数。
在一些实施例中,所述获取模块还配置为,获取所述开关门的最大开启面积。
在一些实施例中,所述第三确定模块还配置为,基于所述加热级别个数和所述最大开启面积,确定与加热级别个数对应的开启面积区间。
在一些实施例中,所述控制装置70还包括建立模块,所述建立模块,配置为建立开启面积区间与加热级别之间的映射关系。
在一些实施例中,所述第三确定模块还配置为,基于所述开关门在开启过程中的运动速率变化,确定所述开关门的开启面积变化曲线;其中,所述开启面积变化曲线表征所述开关门在开启过程中不同的开启时间对应的加热功率。
在一些实施例中,所述第三确定模块还配置为,基于所述开启面积变化曲线,确定所述开关门的开启面积区间与加热级别之间的映射关系。
在一些实施例中,所述确定模块第三还配置为,利用曲线拟合算法,确定与所述开启面积变化曲线相拟合的加热曲线;其中,所述加热曲线表征所述开关门在开启过程中不同的开启时间对应的加热功率。
在一些实施例中,所述建立模块还配置为,基于所述开关门在开启过程中不同的开启时间对应的加热功率,以及所述开关门在开启过程中不同的开启面积对应的加热功率,建立所述开关门在开启过程中的开启面积区间与加热级别之间的映射关系。
在一些实施例中,所述控制装置70还包括:
第三控制模块,配置为当检测到出风口开启且检测到加热元件位于预设的工作位置时,控制风机启动;
第四控制模块,当检测到所述风机已完成启动,控制所述加热元件启动以实现加热。
在一些实施例中,所述控制装置70还包括:
第一启动模块,配置为当检测到出风口未开启和/或检测到加热元件未位于所述工作位置时,启动计时器计时;
第一检测模块,配置为在所述计时器的计时时长达到第一时长阈值之前,每间隔第一间隔时长检测所述出风口是否开启且所述加热元件位于所述工作位置;
第一关闭模块,配置为确定所述计时时长达到所述第一时长阈值,且所述出风口未开启和/或所述加热元件未位于所述工作位置时,关闭控制所述出风口开关的电机和关闭控制所述加热元件的电机;
第一输出模块,配置为输出报警信息。
在一些实施例中,所述第三控制模块,还配置为在所述计时时长达到所述第一时长阈值之前,确定所述出风口开启且所述加热元件位于所述工作位置时,控制所述风机启动;
所述第一关闭模块,还配置为关闭控制所述出风口开关的电机和关闭控制所述加热元件的电机。
在另一些实施例中,所述控制装置70还包括:
第二启动模块,配置为当检测到所述风机未完成启动时,启动计时器计时;
第二检测模块,配置为在所述计数器的计时时长达到第二时长阈值之前,以每间隔第二间隔时长检测所述风机是否完成启动;
第二关闭模块,配置为确定所述计时时长达到所述第二时长阈值,且所述风机未完成启动时,关闭控制所述风机开关的电源;
第二输出模块,配置为输出报警信息。
在一些实施例中,所述第四控制模块包括:
得到部分,配置为检测所述风机的风道内压力,得到第一压力值;
比较部分,配置为比较所述第一压力值与预设值的大小,得到比较结果;所述预设值为所述风机正常工作时风道内压力值;
第十五确定部分,配置为所述比较结果表明所述第一压力值大于所述预设值时,确定所述风机已完成启动;
控制部分,配置为控制所述加热元件启动,以实现加热。
以上控制装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
基于前述实施例的发明构思,本实施例提供一种控制设备,图17为本申请实施例控制设备的组成结构示意图,如图17所示,控制设备80至少包括:存储器81、通信总线82及处理器83,其中:
存储器81,用于存储控制程序。
通信总线82,用于实现处理器83和存储器81之间的通信连接。
处理器83,用于执行存储器81中存储的控制程序,以实现如前述实施例中任一个实施例所述的控制方法的步骤。
对应地,本实施例再提供一种计算机存储介质,所述计算机存储介质存储有控制程序,所述控制程序被处理器执行时实现如前述实施例中任一个实施例所述的控制方法的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质和设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限 定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台AC执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例公开了一种控制方法、装置、设备及计算机可读存储介质,所述方法包括:接收一操作指令,所述操作指令用于触发电子设备开机或关机;根据所述操作指令,确定所述电子设备的运行参数;根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度;控制所述风门以所述移动速度移动。可以减少电子设备内部的热量或风量残留,进而提高电子设备的使用安全性,延长机器使用寿命。

Claims (22)

  1. 一种控制方法,所述方法包括:
    接收一操作指令,所述操作指令用于触发电子设备开机或关机;
    根据所述操作指令,确定所述电子设备的运行参数;
    根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度;
    控制所述风门以所述移动速度移动。
  2. 根据权利要求1所述的控制方法,所述根据所述操作指令,确定所述电子设备的运行参数,包括:
    根据所述操作指令,获取所述电子设备的工作模式;
    当所述工作模式为暖风模式时,确定所述暖风模式下的加热功率或所述电子设备的内部温度;
    当所述工作模式为冷风模式且所述操作指令用于触发所述电子设备开机时,确定所述冷风模式下的输出功率;
    当所述工作模式为冷风模式且所述操作指令用于触发所述电子设备关机时,确定所述冷风模式下的输出功率或所述电子设备的内部温度。
  3. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备开机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述暖风模式以第一加热功率工作时,确定所述风门的移动速度为第一移动速度;
    当确定到所述暖风模式以第二加热功率工作时,确定所述风门的移动速度为第二移动速度,其中,所述第一加热功率大于所述第二加热功率,所述第一移动速度大于所述第二移动速度。
  4. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备开机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述暖风模式下所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第一移动速度;
    当检测到所述暖风模式下所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第二移动速度,其中,所述第一温度大于第二温度,所述第一移动速度大于所述第二移动速度。
  5. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备关机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述暖风模式以第一加热功率工作时,确定所述风门的移动速度为第三移动速度;
    当确定所述暖风模式以第二加热功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第一加热功率大于所述第二加热功率,所述第三移动速度大于所述第四移动速度。
  6. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备关机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述电子设备内部温度为第一温度时,确定所述风门的移动速度为第四移动速度;
    当确定所述电子设备内部温度为第二温度时,确定所述风门的移动速度为第三移动速度,其中,所述第一温度大于第二温度,所述第三移动速度大于所述第四移动速度。
  7. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备开机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述冷风模式以第一输出功率工作时,确定所述风门的移动速度为第三移动速度;
    当确定所述冷风模式以第二输出功率工作时,确定所述风门的移动速度为第四移动速度,其中,所述第一输出功率大于第二输出功率,所述第三移动速度大于所述第四移动速度。
  8. 根据权利要求2所述的控制方法,当所述操作指令用于触发电子设备关机时,根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度,包括:
    当确定所述冷风模式以第一输出功率工作时,确定所述风门的移动速度为第四移动速度;
    当确定所述冷风模式以第二输出功率工作时,确定所述风门的移动速度为第三移动速度,其中,所述第一输出功率大于第二输出功率,所述第三移动速度大于所述第四移动速度。
  9. 根据权利要求2所述控制方法,当所述电子设备的工作模式为暖风模式且所述操作指令用于触发所述电子设备开机时,所述方法还包括:
    获取所述风门在开启过程中的开启面积;
    确定所述开启面积对应的工作参数,所述工作参数至少包括加热功率;
    控制自身基于所述工作参数进行工作。
  10. 根据权利要求9中所述的方法,所述确定所述开启面积对应的工作参数,包括:
    基于开启面积区间与加热级别之间的映射关系,确定所述开启面积对应的加热级别;
    确定所述加热级别对应的加热功率。
  11. 根据权利要求10中所述的方法,所述方法还包括:
    基于自身预设的加热元件个数,确定所述风门在开启过程中的加热级别个数;
    获取所述风门的最大开启面积;
    基于所述加热级别个数和所述最大开启面积,确定与加热级别个数对应的开启面积区间;
    建立开启面积区间与加热级别之间的映射关系。
  12. 根据权利要求10中所述的方法,所述方法还包括:
    基于所述风门在开启过程中的移动速率变化,确定所述风门的开启面积变化曲线;其中,所述开启面积变化曲线表征所述风门在开启过程中不同的开启时间对应的加热功率;
    基于所述开启面积变化曲线,确定所述风门的开启面积区间与加热级别之间的映射关系。
  13. 根据权利要求12中所述的方法,所述基于所述开启面积变化曲线,确定所述风门的开启面积区间与加热级别之间的映射关系,包括:
    利用曲线拟合算法,确定与所述开启面积变化曲线相拟合的加热曲线;其中,所述加热曲线表征所述风门在开启过程中不同的开启时间对应的加热功率;
    基于所述风门在开启过程中不同的开启时间对应的加热功率,以及所述风门在开启过程中不同的开启面积对应的加热功率,建立所述风门的开启面积区间与加热级别之间的映射关系。
  14. 根据权利要求9中所述的方法,所述方法还包括:
    确定接收到电子设备开机时,获取所述风门在开启过程中的开启角度;
    基于所述开启角度,确定所述风门在开启过程中的开启面积。
  15. 根据权利要求2中所述的方法,当所述电子设备的工作模式为暖风模式时,所述方法还包括:
    当检测到风门开启完成且检测到加热元件位于预设的工作位置时,控制风机启动;
    当检测到所述风机已完成启动,控制所述加热元件启动以实现加热。
  16. 根据权利要求15所述的加热控制方法,所述方法还包括:
    当检测到风门未开启完成和/或检测到加热元件未位于所述工作位置时,启动计时器计时;
    在所述计时器的计时时长达到第一时长阈值之前,每间隔第一间隔时长检测所述风门是否开启且所述加热元件位于所述工作位置;
    确定所述计时时长达到所述第一时长阈值,且所述风门未开启和/或所述加热元件未位于所述工作位置时,关闭控制所述风门开关的电机和关闭控制所述加热元件的电机;
    输出报警信息。
  17. 根据权利要求15所述的加热控制方法,所述方法还包括:
    在所述计时时长达到所述第一时长阈值之前,确定所述风门开启且所述加热元件位于所述工作位置时,控制所述风机启动;
    关闭控制所述风门开关的电机和关闭控制所述加热元件的电机。
  18. 根据权利要求15所述的加热控制方法,所述方法还包括:
    当检测到所述风机未完成启动时,启动计时器计时;
    在所述计数器的计时时长达到第二时长阈值之前,以每间隔第二间隔时长检测所述风机是否完成启动;
    确定所述计时时长达到所述第二时长阈值,且所述风机未完成启动时,关闭控制所述风机开关的电源;
    输出报警信息。
  19. 根据权利要求15所述的加热控制方法,所述当检测到所述风机已完成启动,控制所述加热元件启动,以实现加热包括:
    检测所述风机的风道内压力,得到第一压力值;
    比较所述第一压力值与预设值的大小,得到比较结果;所述预设值为所述风机正常工作时风道内压力值;
    所述比较结果表明所述第一压力值大于所述预设值时,确定所述风机已完成启动;
    控制所述加热元件启动,以实现加热。
  20. 一种控制装置,所述控制装置包括:
    接收模块,配置为接收一操作指令,所述操作指令用于触发电子设备开机或关机;
    第一确定模块,配置为根据所述操作指令,确定所述电子设备的运行参数;
    第二确定模块,配置为根据所述操作指令和所述运行参数,确定所述电子设备的风门的移动速度;
    控制模块,配置为控制所述风门以所述移动速度移动。
  21. 一种控制设备,所述控制设备至少包括:
    处理器;以及
    存储器,配置为存储可在所述处理器上运行的计算机程序;
    其中,所述计算机程序被处理器执行时实现权利要求1至19任一项所述的控制方法的步骤。
  22. 一种计算机可读存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述权利要求1至19任一项所述的控制方法的步骤。
PCT/CN2020/101512 2019-08-07 2020-07-10 一种控制方法、装置、设备及计算机可读存储介质 WO2021022975A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910725845.XA CN112344428B (zh) 2019-08-07 2019-08-07 一种加热控制方法、装置、设备及计算机可读存储介质
CN201910726649.4A CN112344564B (zh) 2019-08-07 2019-08-07 一种控制方法及装置、设备和计算机存储介质
CN201910726649.4 2019-08-07
CN201910725845.X 2019-08-07
CN201911038203.9 2019-10-29
CN201911038203.9A CN112747353B (zh) 2019-10-29 2019-10-29 一种控制方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021022975A1 true WO2021022975A1 (zh) 2021-02-11

Family

ID=74503757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101512 WO2021022975A1 (zh) 2019-08-07 2020-07-10 一种控制方法、装置、设备及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2021022975A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113657210A (zh) * 2021-07-30 2021-11-16 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 矿井内风门控制方法、装置、设备及存储介质
CN115508630A (zh) * 2021-06-23 2022-12-23 芜湖美的智能厨电制造有限公司 抽油烟机检测方法、装置及抽油烟机
CN116088607A (zh) * 2023-01-17 2023-05-09 上海艾临科智能科技有限公司 面向储能装置的控温方法及装置、电子设备和存储介质
CN117956317A (zh) * 2024-03-27 2024-04-30 福州探索网络科技有限公司 一种视频接入网关

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057908A (ja) * 2004-08-20 2006-03-02 Fujitsu General Ltd 空気調和機
CN102563810A (zh) * 2012-01-17 2012-07-11 苏州智蝶科技有限公司 无线组网式空调节能控制器及其控制方法
CN104132424A (zh) * 2014-07-31 2014-11-05 广东美的集团芜湖制冷设备有限公司 空调器的控制方法和遥控器
CN105546756A (zh) * 2016-01-07 2016-05-04 珠海格力电器股份有限公司 空调控制方法和装置
CN107036260A (zh) * 2017-06-07 2017-08-11 青岛海信电子设备股份有限公司 一种空调控制方法及基站空调
CN107975915A (zh) * 2017-11-09 2018-05-01 广东美的暖通设备有限公司 空调器的控制方法、装置及计算机可读存储介质
CN108061365A (zh) * 2017-12-06 2018-05-22 广东美的制冷设备有限公司 辐射空调器的控制方法、辐射空调器、及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057908A (ja) * 2004-08-20 2006-03-02 Fujitsu General Ltd 空気調和機
CN102563810A (zh) * 2012-01-17 2012-07-11 苏州智蝶科技有限公司 无线组网式空调节能控制器及其控制方法
CN104132424A (zh) * 2014-07-31 2014-11-05 广东美的集团芜湖制冷设备有限公司 空调器的控制方法和遥控器
CN105546756A (zh) * 2016-01-07 2016-05-04 珠海格力电器股份有限公司 空调控制方法和装置
CN107036260A (zh) * 2017-06-07 2017-08-11 青岛海信电子设备股份有限公司 一种空调控制方法及基站空调
CN107975915A (zh) * 2017-11-09 2018-05-01 广东美的暖通设备有限公司 空调器的控制方法、装置及计算机可读存储介质
CN108061365A (zh) * 2017-12-06 2018-05-22 广东美的制冷设备有限公司 辐射空调器的控制方法、辐射空调器、及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508630A (zh) * 2021-06-23 2022-12-23 芜湖美的智能厨电制造有限公司 抽油烟机检测方法、装置及抽油烟机
CN113657210A (zh) * 2021-07-30 2021-11-16 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 矿井内风门控制方法、装置、设备及存储介质
CN113657210B (zh) * 2021-07-30 2023-11-07 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 矿井内风门控制方法、装置、设备及存储介质
CN116088607A (zh) * 2023-01-17 2023-05-09 上海艾临科智能科技有限公司 面向储能装置的控温方法及装置、电子设备和存储介质
CN116088607B (zh) * 2023-01-17 2023-10-13 上海艾临科智能科技有限公司 面向储能装置的控温方法及装置、电子设备和存储介质
CN117956317A (zh) * 2024-03-27 2024-04-30 福州探索网络科技有限公司 一种视频接入网关

Similar Documents

Publication Publication Date Title
WO2021022975A1 (zh) 一种控制方法、装置、设备及计算机可读存储介质
WO2021037138A1 (zh) 空调器预热控制方法、装置及空调器
WO2017041726A1 (zh) 风量调节装置及方法和空调柜机
CN103982986B (zh) 空调器及其舒适控制方法和装置
CN202177190U (zh) 具有人体感应控制的空调系统
CN105865032B (zh) 热水器及其控制装置和控制方法
CN104748465A (zh) 空调除霜控制方法、空调除霜控制装置和空调
CN110160229A (zh) 空调器的控制方法
WO2024082768A1 (zh) 取暖设备的温控方法及其装置、取暖设备、存储介质
TW200919935A (en) Constant-temperature frequency-converting module suitable for air-conditioning system
CN112128924A (zh) 一种空调器室外机的除霜控制方法及空调器
CN105902079B (zh) 一种智能电热毯
CN112344564B (zh) 一种控制方法及装置、设备和计算机存储介质
JP5965660B2 (ja) 扇風機
CN112344428B (zh) 一种加热控制方法、装置、设备及计算机可读存储介质
CN110476013B (zh) 具有集成式电加热器、风扇和控制器的顶灯或壁灯
KR102401654B1 (ko) 전기온풍기
JPS6138381B2 (zh)
CN210769429U (zh) 手持风扇
CN113883650A (zh) 空调器控制方法、装置、存储介质及空调器
CN112747353B (zh) 一种控制方法、装置及计算机可读存储介质
WO2021227800A1 (zh) 空调器除菌方法、空调器及存储介质
CN211084366U (zh) 智能遥控温控送风装置
JP2001059639A (ja) 空気調和装置
CN205656520U (zh) 一种双温控电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850806

Country of ref document: EP

Kind code of ref document: A1