WO2024082768A1 - 取暖设备的温控方法及其装置、取暖设备、存储介质 - Google Patents
取暖设备的温控方法及其装置、取暖设备、存储介质 Download PDFInfo
- Publication number
- WO2024082768A1 WO2024082768A1 PCT/CN2023/110327 CN2023110327W WO2024082768A1 WO 2024082768 A1 WO2024082768 A1 WO 2024082768A1 CN 2023110327 W CN2023110327 W CN 2023110327W WO 2024082768 A1 WO2024082768 A1 WO 2024082768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- heating
- heating device
- ambient temperature
- preset
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 354
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000007613 environmental effect Effects 0.000 claims description 84
- 238000004590 computer program Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D13/00—Electric heating systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1096—Arrangement or mounting of control or safety devices for electric heating systems
Definitions
- the present disclosure relates to the technical field of household appliances, and in particular to a temperature control method and device for a heating device, a heating device, and a storage medium.
- the temperature control accuracy of heating equipment lies in the temperature sensing components inside the heating equipment.
- the components inside the heating equipment are always inside the fuselage, and it is not easy to monitor the external ambient temperature, resulting in a temperature difference between the internal temperature of the fuselage and the external ambient temperature. Therefore, how to improve the heating equipment's sensitivity to ambient temperature and enhance the heating equipment's ability to control the environment to achieve precise temperature control is of great significance to increasing the comfort of the heating equipment.
- the present invention discloses a temperature control method for a heating device, a device thereof, a heating device, and a storage medium to solve the technical problem that the existing heating device cannot accurately sense the ambient temperature and cannot achieve accurate temperature control.
- a temperature control method for a heating device comprising: determining the environmental state of the space where the heating device is currently located according to the environmental temperature obtained during the heating process of the heating device; judging whether the environmental temperature meets the preset stop heating condition; and stopping the heating device when the environmental temperature meets the preset stop heating condition.
- the heating restart conditions of the heating device in the current space are determined according to the environmental conditions, and when the heating restart conditions are met, the heating device is controlled to restart heating.
- the environmental state includes a high temperature environment and a low temperature environment.
- the environmental state of the space where the heating equipment is currently located is determined based on the ambient temperature obtained during the heating process of the heating equipment, including: after the ambient temperature obtained during the heating process of the heating equipment reaches the temperature setting value of the heating equipment, if the ambient temperature continues to be higher than the temperature setting value of the heating equipment, and the difference between the ambient temperature and the temperature setting value is greater than a preset first temperature threshold, it is determined that the environmental state of the space where the heating equipment is currently located is a high temperature environment; otherwise, it is determined that the environmental state of the space where the heating equipment is currently located is a low temperature environment.
- judging whether the ambient temperature satisfies a preset condition for stopping heating includes: when the ambient temperature is greater than or equal to a temperature setting value of the heating device, judging that the ambient temperature satisfies the preset condition for stopping heating.
- the method also includes: when the ambient temperature is lower than the temperature setting value of the heating device, and the difference between the temperature setting value and the ambient temperature is lower than a preset second temperature threshold, keeping the heating device running.
- the method also includes: when the ambient temperature is lower than the temperature setting value of the heating device, and the difference between the temperature setting value and the ambient temperature is greater than or equal to a preset second temperature threshold, increasing the operating gear of the heating device.
- the environmental state includes a high temperature environment and a low temperature environment.
- the heating restart condition of the heating device in the current space is determined according to the environmental state, including: when the environmental state is a high temperature environment, the heating restart condition of the heating device in the current space is: the ambient temperature is lower than the temperature setting value of the heating device, and the difference between the temperature setting value and the ambient temperature is greater than or equal to a preset third temperature threshold; when the environmental state is a low temperature environment, the heating restart condition of the heating device in the current space is: the ambient temperature is lower than the temperature setting value of the heating device and the difference between the temperature setting value and the ambient temperature is greater than or equal to the preset third temperature threshold, or the heating device stops working for a period of time greater than the preset shutdown time threshold.
- a temperature control device for a heating device comprising: an ambient state determination module configured to determine the ambient temperature according to the ambient temperature obtained during the heating process of the heating device; The environmental status of the space where the heating device is currently located; a judgment module, configured to judge whether the environmental temperature meets the preset heating stop condition; a control module, configured to determine the heating restart condition of the heating device in the current space according to the environmental status when the environmental temperature meets the preset heating stop condition, and control the heating device to restart heating when the heating restart condition is met.
- the environmental state determination module is configured to, after the ambient temperature obtained during the heating process of the heating device reaches the temperature setting value of the heating device, if the ambient temperature continues to be higher than the temperature setting value of the heating device, and the difference between the ambient temperature and the temperature setting value is greater than a preset first temperature threshold, then it is determined that the environmental state of the space where the heating device is currently located is a high temperature environment; otherwise, it is determined that the environmental state of the space where the heating device is currently located is a low temperature environment.
- the controller includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor executes the computer program, the steps of the temperature control method of the heating device as described above are implemented.
- the equipment body includes a heating device, a fan and a temperature sensing device arranged near the fan wheel.
- the temperature sensing device is used to detect the ambient temperature and upload the ambient temperature detection value to the controller.
- the present disclosure also proposes a computer-readable storage medium on which a computer program is stored.
- the computer program is controlled by a processor, the steps of the temperature control method of the heating device are implemented.
- the disclosed embodiments propose a temperature control method for a heating device and its device, heating device, and storage medium.
- the method determines the environmental state of the space in which the heating device is currently located according to the environmental temperature obtained during the heating process of the heating device.
- the heating restart condition of the heating device in the current space is determined according to the environmental state, and when the heating restart condition is met, the heating device is controlled to restart the heating, so that the heating device adopts different heating restart conditions corresponding to different environmental states to perform temperature control, thereby improving the heating device's ability to control the environmental temperature, achieving the effect of precise temperature control, and solving the technical problem that the existing heating device cannot perform precise temperature control based on the environmental temperature.
- FIG1 is a schematic diagram of the internal temperature of a heating device after the heating stops
- FIG2 is a schematic diagram of the ambient temperature during the heating process of the heating device
- FIG3 is a flow chart of a temperature control method for a heating device according to an embodiment of the present disclosure
- FIG4 is a schematic diagram of an environmental temperature test under a low temperature environment according to an embodiment of the present disclosure
- FIG5 is a schematic diagram of an environmental temperature test under a high temperature environment according to an embodiment of the present disclosure
- FIG6 is a flowchart showing a specific implementation of a temperature control method for a heating device according to an embodiment of the present disclosure
- FIG. 7 is a structural diagram of a temperature control device for a heating device in an embodiment of the present disclosure.
- heating equipment such as electric heaters with fan
- PTC Physical Temperature Coefficient, semiconductor materials or components with large positive temperature coefficient
- the heating equipment diffuses heat faster, thereby rapidly raising the temperature of the environment.
- the heating equipment heats the ambient temperature based on the predetermined heating time. When the ambient temperature reaches the set temperature, the heating equipment stops working, and the heating element and the wind wheel stop working.
- the temperature change inside the fuselage is shown in Figure 1.
- the horizontal axis represents the count of the collection points, that is, the elapsed time
- the vertical axis represents the temperature inside the fuselage that changes with time.
- 1-95 means that the machine records 95 points, and the machine records one point every three seconds.
- 1-95 represents the temperature change within 95*3 seconds.
- the internal temperature of the heating equipment cannot be dissipated from the fuselage, causing the external ambient temperature to drop to a lower temperature.
- the internal temperature of the fuselage still rises first and then drops. Therefore, after the heating work is stopped, it takes a long time for the internal temperature of the fuselage to drop to the same as the ambient temperature, which causes the technical defect of the heating equipment's insufficient ability to control the ambient temperature.
- the ambient temperature changes, as shown in Figure 2, the horizontal axis represents the count of the collection point, that is, the elapsed time, and the vertical axis represents the ambient temperature changing over time.
- the test results for existing heating equipment show that the ambient temperature after the set temperature fluctuates greatly: the set temperature is 18°C, but the actual ambient temperature fluctuates between 20.2°C and 11.5°C, the temperature control "precision" is not high, and the user experience is poor. Therefore, after the heating equipment reaches the set temperature, the heat dissipated inside the fuselage is slow and the residual heat causes the internal temperature to rise, while the ambient temperature drops rapidly after the heating equipment stops heating. A large temperature difference is formed between the internal temperature of the fuselage and the external environment, resulting in the internal temperature of the fuselage taking longer to cool down than the external environment. When the external environment temperature is very low, the internal temperature of the fuselage is still high, causing the temperature sensing components inside the fuselage to be insensitive to the external environment and have little effect.
- the present invention senses the ambient temperature by changing the position of the temperature sensing component inside the fuselage, and proposes a temperature control method for a heating device. After the user sets the temperature, the temperature sensing component is used to sense the ambient temperature. Components sense the surrounding environment and operate in two functional logics.
- FIG3 schematically shows a flow chart of a temperature control method for a heating device according to an embodiment of the present disclosure.
- the temperature control method for a heating device according to an embodiment of the present disclosure includes the following steps:
- the fan and the heating element of the heating device operate simultaneously.
- the environmental state is determined by the following method: after the environmental temperature obtained during the heating process of the heating device reaches the temperature setting value of the heating device, if the environmental temperature is continuously higher than the temperature setting value of the heating device, and the difference between the environmental temperature and the temperature setting value is greater than a preset first temperature threshold, the environmental state of the space where the heating device is currently located is determined to be a high temperature environment, otherwise, the environmental state of the space where the heating device is currently located is determined to be a low temperature environment.
- the temperature setting value of the heating device is pre-set by the user according to the heating demand.
- the preset first temperature threshold may be 3°C.
- the heating device continuously heats for a preset heating time to reach the set temperature. If the temperature is always higher than the set temperature during the heating operation, and the temperature is greater than the set temperature by 3°C, it is in high temperature mode, otherwise it is in low temperature mode.
- the present disclosure runs for a short period of time and determines that the ambient temperature is 3°C higher than the set temperature. The fact that the temperature can rise by 3°C in a short period of time indicates that the environment is easy to heat, and that the external environment is in a high temperature environment with good heat preservation effect.
- the current environmental state is considered to be a high temperature environment. If the temperature rises slowly after heating for a period of time, it indicates that the external environment is in a low temperature, and the current environmental state is considered to be a low temperature environment.
- the heating restart condition of the above-mentioned heating device in the current space is determined according to the above-mentioned ambient state, and when the above-mentioned heating restart condition is met, the above-mentioned heating device is controlled to restart heating.
- a temperature control method for a heating device proposed in an embodiment of the present disclosure determines the environmental state of the space in which the above-mentioned heating device is currently located according to the environmental temperature obtained during the heating process of the heating device; when the environmental temperature meets the preset heating stop condition, the heating restart condition of the heating device in the current space is determined according to the environmental state, and when the above-mentioned heating restart condition is met, the heating device is controlled to restart heating, so that the heating device adopts corresponding different heating restart conditions to perform temperature control under different environmental states, thereby improving the heating device's ability to control the environmental temperature, achieving the effect of precise temperature control, and solving the technical problem that the existing heating device cannot perform precise temperature control based on the environmental temperature.
- the above-mentioned ambient temperature is the temperature after compensating the ambient temperature detection value according to the preset compensation temperature. It can be understood that the above-mentioned ambient temperature is the difference between the ambient temperature detection value detected by the temperature sensing component and the compensation temperature. Since the internal temperature of the fuselage is higher than the external temperature, a higher temperature difference is formed, so it is necessary to preset the compensation temperature to compensate the ambient temperature detection value to obtain the actual ambient temperature value. Among them, the preset compensation temperature has a value range of 0-8°C.
- the residual heat in the body causes the internal temperature to be high, resulting in a large temperature difference between the inside and outside.
- the residual heat interferes with the components inside the body, and the external ambient temperature cannot be felt.
- the fan is turned on for heat dissipation, cold air will be blown in a low-temperature environment, which is an unreasonable design.
- the disclosed embodiment proposes the logic of simultaneous operation of the fan and the heating element, which is as follows: after a period of time Y, the heating device is forced to run under load, that is, the fan and the heating element are turned on at the same time; after the fan and the heating element are turned on at the same time, the fan rotates to bring the external ambient temperature into the body, so that the internal components of the heating device can quickly sense the external temperature; thereby judging that when the external temperature is high, the heating device stops running under load; when the temperature is low, the heating device continues to run under load until the ambient temperature reaches the set temperature.
- this logic only uses time for judgment, continuous forced load operation will cause the temperature to continue to rise in a high-temperature environment with good thermal insulation effect.
- the disclosed embodiment will turn on the heating device.
- the space is divided into two environments: high temperature environment and low temperature environment.
- the heating restart conditions of the heating equipment in the current space are determined according to the environmental conditions to achieve precise temperature control.
- the heating restart condition of the above-mentioned heating device in the current space is determined according to the above-mentioned environmental state, including: when the above-mentioned environmental state is a high temperature environment, the heating restart condition of the above-mentioned heating device in the current space is: the above-mentioned environmental temperature is lower than the temperature setting value of the heating device, and the difference between the above-mentioned temperature setting value and the above-mentioned environmental temperature is greater than or equal to a preset third temperature threshold.
- the heating restart condition of the above-mentioned heating device in the current space is determined according to the above-mentioned environmental state, and also includes: when the above-mentioned environmental state is a low temperature environment, the heating restart condition of the above-mentioned heating device in the current space is: the above-mentioned ambient temperature is lower than the temperature setting value of the heating device and the difference between the above-mentioned temperature setting value and the above-mentioned ambient temperature is greater than or equal to a preset third temperature threshold, or the duration of the heating device stopping working is greater than the preset shutdown duration threshold.
- the heating equipment is heated by a fan and a heating device, wherein the heating device is a heating element, the preset third temperature threshold may be 2-3°C, such as 2°C, and the preset shutdown time threshold may be 3-7min, such as 5min; in a low temperature environment, after the heating equipment reaches the set temperature, the startup conditions may be satisfied that the shutdown time is greater than 5 minutes and the startup is forced to start or the ambient temperature is less than the set temperature by 2°C, and forced restart may be achieved if any one of the conditions is met; in a high temperature environment, after the heating equipment reaches the set temperature, the startup condition may only be that the ambient temperature is less than the set temperature by 2°C before it can be restarted.
- the preset third temperature threshold may be 2-3°C, such as 2°C
- the preset shutdown time threshold may be 3-7min, such as 5min
- the above Y time represents the preset heating time for the heating device to continue working, which can be 3 minutes; the preset shutdown time threshold can be 3-7 minutes, such as 5 minutes; the above preset first temperature threshold can be 2-3°C, such as 3°C.
- the actual ambient temperature (Tenvironment-Tcompensation) obtained is ⁇ Tsetting, indicating that the actual ambient temperature reaches the set value, and the temperature compensation is between 0-8°C; when the 3-minute time is up, if Tsetting ⁇ actual ambient temperature ⁇ (Tsetting + 3°C), the fan and the heating element stop running; after a certain period of time after the fan and the heating element stop running, when the actual ambient temperature is detected to be ⁇ (Tsetting-2°C), or after stopping running for 5 minutes, the fan and the heating element resume working to eliminate the high temperature difference between the internal temperature of the fuselage and the ambient temperature after the heating device stops running, so as to achieve the purpose of precise temperature control.
- the actual ambient temperature obtained is ⁇ Tsetting, indicating that the actual ambient temperature reaches the set value; when the 3 minutes are up, if the actual ambient temperature is > (Tsetting + 3°C), the fan and the heating element stop running; after a certain period of time after the fan and the heating element have stopped running, when the actual ambient temperature is detected to be ⁇ (Tsetting - 2°C), the fan and the heating element resume working to eliminate the high temperature difference between the internal temperature of the fuselage and the ambient temperature after the heating equipment stops running, thereby achieving the purpose of precise temperature control.
- Tsetting represents the temperature setting value
- the above-mentioned Tenvironment represents the ambient temperature detection value
- Tcompensation represents the compensation temperature
- the actual ambient temperature ambient temperature detection value - compensation temperature. Since the internal temperature of the fuselage is higher than the external temperature, there is a compensation temperature.
- the above-mentioned compensation temperature is the data obtained from the test. In actual applications, the test parameters can be freely set as needed to obtain the compensation temperature, and the present disclosure does not make specific limitations on this.
- the external environment temperature under low temperature environment can achieve accurate temperature control, and the temperature fluctuates between the set temperatures; the external environment temperature under high temperature environment can also achieve accurate temperature control, and the temperature fluctuates between the set temperatures.
- the horizontal axis represents the count of the collection points, that is, the elapsed time
- the vertical axis represents the ambient temperature that changes with time.
- 1-72 means that the machine records 72 points, and the machine records one point every three seconds.
- 1-72 represents the temperature change within 72*3 seconds.
- judging whether the above-mentioned ambient temperature satisfies the preset stop heating condition further includes: when the above-mentioned ambient temperature is less than the temperature setting value, and the difference between the above-mentioned temperature setting value and the above-mentioned ambient temperature is less than the preset second temperature threshold, the ambient temperature does not meet the preset stop heating condition at this time, and the heating device needs to be kept running.
- the preset second temperature threshold can be the same as the preset third temperature threshold.
- the above-mentioned preset second temperature threshold can be 2°C.
- (Tsetting-2°C) ⁇ actual ambient temperature ⁇ Tsetting it means that the actual ambient temperature has not reached the set value, heating still needs to be continued, and the fan and heating element remain in operation.
- judging whether the above-mentioned ambient temperature satisfies the preset condition for stopping heating also includes: when the above-mentioned ambient temperature is lower than the temperature setting value, and the difference between the above-mentioned temperature setting value and the above-mentioned ambient temperature is greater than or equal to the preset second temperature threshold, at this time, the above-mentioned ambient temperature does not satisfy the preset condition for stopping heating, and the current heating gear cannot meet the heating demand, and it is necessary to increase the operating gear of the heating equipment.
- the above-mentioned preset second temperature threshold can be 2°C.
- T setting - 2°C the actual ambient temperature is less than (T setting - 2°C)
- the operating gear of the heating equipment needs to be increased to improve the heating efficiency so that the ambient temperature can quickly rise to the set value.
- the temperature control method of the heating device disclosed in the present invention is explained clearly below through some specific embodiments. As shown in Figure 6, after starting up, the heating device is running, heating is performed through the load (fan + heating element), the temperature sensing element continuously detects the ambient temperature, and two operating modes are performed for two temperature environments, the high temperature environment operates in step B, and the low temperature environment operates in step A;
- Step 1 When the load (fan + heating element) works for 3 consecutive minutes and the actual ambient temperature (Tenvironment-Tcompensation) is detected to be ⁇ Tsetting, the temperature is judged when the 3min time is up:
- Step 2 When the actual ambient temperature (Tenvironment-Tcompensation) ⁇ (Tsetting-2°C) or the load is turned off for 5 minutes, all loads (fans + heating elements) resume working, the display remains unchanged, and step 1 is executed;
- Step 3 When the actual ambient temperature (Tenvironment-Tcompensation) ⁇ (Tsetting-2°C), all loads (fan + heating element) resume working, the display remains unchanged, and execute step 1.
- FIG. 7 is a structural diagram of a temperature control device for a heating device in an embodiment of the present disclosure. As shown in FIG. 7 , the device includes a functional module for implementing the temperature control method for the heating device in the above embodiment, specifically including:
- the environment state determination module 201 is configured to determine the environment state of the space where the heating device is currently located according to the environment temperature obtained during the heating process of the heating device;
- the judging module 202 is configured to judge whether the above-mentioned ambient temperature satisfies a preset heating stop condition
- the control module 203 is configured to determine the heating restart condition of the heating device in the current space according to the above-mentioned environmental state when the above-mentioned ambient temperature meets the preset stopping heating condition, and control the above-mentioned heating device to restart heating when the above-mentioned heating restart condition is met.
- the heating restart condition of the above-mentioned heating device in the current space is: the above-mentioned environmental temperature is lower than the temperature setting value of the heating device, and the difference between the above-mentioned temperature setting value and the above-mentioned environmental temperature is greater than or equal to the preset third temperature threshold;
- the heating restart condition of the above-mentioned heating device in the current space is: the above-mentioned environmental temperature is lower than the temperature setting value of the heating device and the difference between the above-mentioned temperature setting value and the above-mentioned environmental temperature is greater than or equal to the preset third temperature threshold, or the duration of the heating device stopping working is greater than the preset shutdown duration threshold.
- the above-mentioned environmental state determination module is configured to, after the ambient temperature acquired during the heating process of the heating device reaches the temperature setting value of the heating device, if the above-mentioned ambient temperature continues to be higher than the temperature setting value of the heating device, and the difference between the above-mentioned ambient temperature and the above-mentioned temperature setting value is greater than the preset first temperature threshold, then it is determined that the environmental state of the space where the above-mentioned heating device is currently located is a high temperature environment; otherwise, it is determined that the environmental state of the space where the above-mentioned heating device is currently located is a low temperature environment.
- the judgment module 202 is specifically configured to determine that the ambient temperature meets the preset heating stop condition when the ambient temperature is higher than the temperature setting value.
- the judgment module 202 is further configured to determine that the ambient temperature does not meet the preset stop heating condition when the ambient temperature is less than the temperature setting value, and the difference between the temperature setting value and the ambient temperature is less than the preset second temperature threshold, and the control module 203 controls the heating device to keep running; when the ambient temperature is less than the temperature setting value, and the difference between the temperature setting value and the ambient temperature is greater than or equal to the preset second temperature threshold, it is determined that the ambient temperature does not meet the preset stop heating condition, and the control module 203 increases the operating gear of the heating device.
- the control module 203 increases the operating gear of the heating device.
- the present disclosure also proposes a computer-readable storage medium on which a computer program is stored.
- the computer program is controlled by a processor, the steps of the temperature control method for the heating device described above are implemented.
- the temperature control method of the above-mentioned heating device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the present disclosure implements all or part of the processes in the above-mentioned embodiment method, and can also be completed by instructing the relevant hardware through a computer program.
- the above-mentioned computer program can be stored in a computer-readable storage medium, and the computer program can implement the steps of the above-mentioned various method embodiments when controlled by the processing device.
- the above-mentioned computer program includes computer program code
- the above-mentioned computer program code can be in source code form, object code form, controllable file or some intermediate form.
- the above-mentioned computer-readable medium may include: any entity or device capable of carrying the above-mentioned computer program code, recording medium, U disk, mobile hard disk, disk, optical disk, computer storage device, read-only storage device (ROM, Read-Only Memory), random access storage device (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium.
- ROM Read-Only Memory
- RAM Random Access Memory
- electric carrier signal telecommunication signal and software distribution medium.
- the content contained in the above-mentioned computer-readable medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer-readable media do not include electric carrier signals and telecommunication signals.
- the embodiment of the present disclosure further provides a heating device, including a device body and a controller, wherein the controller includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor executes the computer program, the steps of the temperature control method for the heating device are implemented.
- the device body includes a heating device, a fan, and a temperature sensing device arranged near the wind wheel of the fan, and the temperature sensing device is used to detect the ambient temperature and upload the ambient temperature detection value to the controller.
- the temperature sensing device can be a temperature sensing bag, which is arranged near the wind wheel of the fan of the heating device. When the fan is in working state, the temperature sensing bag is arranged next to the wind wheel of the electric heater fan, so that the external ambient temperature brought into the fuselage by the wind wheel can be felt at close range, thereby improving the accuracy of the temperature sensing bag in detecting the external ambient temperature, and providing a guarantee for realizing the "precise" temperature control of the heating device. In actual applications, different temperature sensing devices can be used to detect the ambient temperature as needed, and the present disclosure does not make specific limitations on this.
- the disclosed embodiments propose a temperature control method for a heating device and its device, a heating device, and a storage medium.
- the method detects the ambient temperature by a temperature sensing device arranged near the wind wheel of a fan; determines the environmental state of the space where the heating device is currently located according to the ambient temperature obtained during the heating process of the heating device; when the ambient temperature meets the preset heating stop condition, determines the heating restart condition of the heating device in the current space according to the environmental state, and controls the heating device to restart heating when the heating restart condition is met, thereby enabling the heating device to control the temperature of the surrounding environment within the set temperature range under different environmental conditions, improves the heating device's ability to control the ambient temperature, achieves the technical effect of precise temperature control, and improves the heating comfort of the heating device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Temperature (AREA)
Abstract
本公开提供一种取暖设备的温控方法及其装置、取暖设备、存储介质,取暖设备,上述方法包括:根据在取暖设备加热过程中获取到的环境温度确定上述取暖设备当前所处空间的环境状态;判断上述环境温度是否满足预设的停止加热条件;当上述环境温度满足预设的停止加热条件时,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,并在满足上述加热重启条件时,控制上述取暖设备重启加热。本公开能够使取暖设备在不同环境状态下采用对应不同的加热重启条件进行温度控制,提升了取暖设备对环境温度的掌控能力,达到精准温控的效果,解决了现有取暖设备无法基于环境温度进行精准温控的技术问题。
Description
交叉引用
本公开引用于2022年10月20日提交的专利名称为“取暖设备的温控方法及其装置、取暖设备、存储介质”的第202211284654.2号中国专利申请,其通过引用被全部并入本公开。
本公开涉及家用电器技术领域,尤其是涉及一种取暖设备的温控方法及其装置、取暖设备、存储介质。
如今,人们对取暖设备的使用频率日渐增长,相关取暖设备的产品市场占有量也逐步上升,用户对于取暖设备控温效果的要求也逐步要求精准。公知的是,取暖设备的控温精度在于取暖设备内部的感温元器件,然而取暖设备内部的元器件始终在机身内部,不容易监控外界环境温度,导致机身内部温度与外界环境温度之间形成温度差。因此,如何提高取暖设备对环境温度的感应,提升取暖设备对环境掌控能力,以实现精准温控,对增大取暖设备的舒适性具有重要意义。
发明内容
本公开提出了一种取暖设备的温控方法及其装置、取暖设备、存储介质,以解决现有取暖设备无法对环境温度进行精准感应,不能实现精准温控的技术问题。
本公开的一个方面,提出了一种取暖设备的温控方法,方法包括:根据在取暖设备加热过程中获取到的环境温度确定取暖设备当前所处空间的环境状态;判断环境温度是否满足预设的停止加热条件;当环境温度满足预设的停止
加热条件时,根据环境状态确定取暖设备在当前所处空间的加热重启条件,并在满足加热重启条件时,控制取暖设备重启加热。
进一步地,环境状态包括高温环境和低温环境,根据在取暖设备加热过程中获取到的环境温度确定取暖设备当前所在空间的环境状态,包括:在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若环境温度持续高于取暖设备的温度设定值,且环境温度与温度设定值的差值大于预设的第一温度阈值,判定取暖设备当前所在空间的环境状态为高温环境,否则判定取暖设备当前所在空间的环境状态为低温环境。
进一步地,判断环境温度是否满足预设的停止加热条件,包括:当环境温度大于或等于取暖设备的温度设定值时,判定环境温度满足预设的停止加热条件。
进一步地,方法还包括:当环境温度小于取暖设备的温度设定值,且温度设定值与环境温度的差值小于预设的第二温度阈值时,保持取暖设备运行。
进一步地,方法还包括:当环境温度小于取暖设备的温度设定值,且温度设定值与环境温度的差值大于或等于预设的第二温度阈值时,增大取暖设备的运行档位。
进一步地,环境状态包括高温环境和低温环境,根据环境状态确定取暖设备在当前所处空间的加热重启条件包括:当环境状态为高温环境时,取暖设备在当前所处空间的加热重启条件为:环境温度小于取暖设备的温度设定值,且温度设定值与环境温度的差值大于或等于预设的第三温度阈值;当环境状态为低温环境时,取暖设备在当前所处空间的加热重启条件为:环境温度小于取暖设备的温度设定值且温度设定值与环境温度的差值大于或等于预设的第三温度阈值,或,取暖设备停止工作的时长大于预设的停机时长阈值。
进一步地,环境温度为根据预设的补偿温度对环境温度检测值进行补偿后的温度。本公开的另一个方面,提出了一种取暖设备的温控装置,装置包括:环境状态确定模块,配置为根据在取暖设备加热过程中获取到的环境温度确定
取暖设备当前所处空间的环境状态;判断模块,配置为判断环境温度是否满足预设的停止加热条件;控制模块,配置为当环境温度满足预设的停止加热条件时,根据环境状态确定取暖设备在当前所处空间的加热重启条件,并在满足加热重启条件时,控制取暖设备重启加热。
进一步地,环境状态确定模块,配置为在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若环境温度持续高于取暖设备的温度设定值,且环境温度与温度设定值的差值大于预设的第一温度阈值,则判定取暖设备当前所在空间的环境状态为高温环境,否则判定取暖设备当前所在空间的环境状态为低温环境。
本公开的又一个方面,还提出了一种取暖设备,包括设备本体和控制器,控制器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上取暖设备的温控方法的步骤。
进一步地,设备本体包括加热装置、风机以及设置在风机的风轮附近的感温装置,感温装置用于检测环境温度,并将环境温度检测值上传控制器。
此外,本公开还提出了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器控制时实现如上取暖设备的温控方法的步骤。
本公开实施例提出的一种取暖设备的温控方法及其装置、取暖设备、存储介质,根据在取暖设备加热过程中获取到的环境温度确定取暖设备当前所处空间的环境状态;当环境温度满足预设的停止加热条件时,根据环境状态确定取暖设备在当前所处空间的加热重启条件,并在满足加热重启条件时,控制取暖设备重启加热,使取暖设备在不同环境状态下采用对应不同的加热重启条件进行温度控制,提升了取暖设备对环境温度的掌控能力,达到精准温控的效果,解决了现有取暖设备无法基于环境温度进行精准温控的技术问题。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,附图仅用于示出在一些实施方式中的目的,而并不认为是对本公开的限制。
图1为取暖设备停止加热后内部温度情况示意图;
图2为取暖设备加热过程中环境温度情况示意图;
图3为本公开实施例中一种取暖设备的温控方法的流程图;
图4为本公开实施例中低温环境下环境温度测试情况示意图;
图5为本公开实施例中高温环境下环境温度测试情况示意图;
图6为本公开实施例中一种取暖设备的温控方法的具体实现流程图;
图7为本公开实施例中一种取暖设备的温控装置结构图。
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“上述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在上述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
本技术领域技术人员可以理解,除非另外定义,这里在使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与相关技术的上下文中的意义一致的意义,并且除非被特定定义,否
则不会用理想化或过于正式的含义来解释。
实际应用中,取暖设备,如暖风机电暖器,主要通过风机转动实现热量对流,将PTC(PositiveTemperatureCoefficient,正温度系数很大的半导体材料或元器件),即发热体的热量带出,从而使环境加热。在风机的作用下,取暖设备扩散热量速度加快,进而迅速地提升环境的温度。然而,在使用的过程中,用户设定温度后,取暖设备基于预定加热时长对环境温度进行加热,当环境温度达到设定温度时,取暖设备停止工作,此时发热体以及风轮停止工作。机身内部温度变化,如图1所示,横坐标表示采集点的计数,即经过的时间,纵坐标表示随时间变化的机身内部温度,举例说明1-95代表着机器记录了95个点数,而机器为每三秒记录一个点,1-95就代表着95*3秒时间内温度的变化。随着风机停止转动的时间变化,发热体仍然具有较高的温度无法向环境散热,致使取暖设备内部环境出现温度上升的情况。
由于停止加热后,取暖设备内部温度散不出机身,导致外界环境温度下降至较低温度。而机身内部温度仍然是先上升后再下降,因此在停止加热工作后,机身内部温度要下降到与环境温度相同,则需要很长时间,由此造成取暖设备对环境温度掌控能力不足的技术缺陷。环境温度变化,如图2所示,横坐标表示采集点的计数,即经过的时间,纵坐标表示随时间变化的环境温度。针对现有取暖设备的测试结果显示,在设定温度后的环境温度上下波动范围较大:设定温度为18℃,但实际环境温度波动范围在20.2℃-11.5℃之间,温控“精准度”不高,用户体验差。因此,在取暖设备到达设定温度后,机身内部散热缓慢的同时又有余热导致内部温度上升,而环境温度在取暖设备停止加热后迅速下降,机身内部与外界环境温度形成了较高的温差,导致机身内部需要比外界环境更长时间降温,当外界环境温度很低时,机身内部温度仍较高,造成机身内部感温元器件对外界环境感温不灵敏,作用不大的困扰。
为弥补上述技术缺陷,本公开通过改变机身内部感温元器件设置的位置感知环境温度,并提出一种取暖设备的温控方法,在用户设定温度后,通过感温
元器件感受周围环境状态分为两种功能逻辑运行,一种为高温模式:环境温度高时,室内保温效果好,即运行高温模式逻辑,取暖设备则需要达到设定温度X或温度范围后强制重启加热;一种为低温模式:取暖设备重新工作需要达到设定温度X或温度范围,或到达Y时间后强制重启加热(满足其中任意条件即可),提高取暖设备在不同环境状态的“精准”控温能力,用户在设定温度后,取暖设备能“精准”把控将周围环境控制在设定温度内,达到“精准”控温。
图3示意性示出了本公开实施例提出的取暖设备的温控方法流程图,如图3所示,本公开实施例提出的取暖设备的温控方法包括如下步骤:
S11、根据在取暖设备加热过程中获取到的环境温度确定上述取暖设备当前所处空间的环境状态。其中,环境状态可以包括高温环境和低温环境。
其中,取暖设备加热过程中,取暖设备的风机和发热体同时运行。
在本公开实施例中,环境状态通过如下方法判定:在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若上述环境温度持续高于取暖设备的温度设定值,且上述环境温度与上述温度设定值的差值大于预设的第一温度阈值,判定上述取暖设备当前所在空间的环境状态为高温环境,否则判定上述取暖设备当前所在空间的环境状态为低温环境。其中,取暖设备的温度设定值由用户根据取暖需求预先设定。
在具体的实施例中,预设的第一温度阈值可以为3℃,取暖设备持续加热预设加热时长后到达设定温度,加热运行过程中若温度一直高于设定温度,且温度大于设定温度3℃时则为高温模式,反之则为低温模式。本公开通过一小段时间的运行,判断环境温度高于设定温度3℃,短时间温度能升温3℃即表示环境容易加热,也表示外界环境处于高温环境,保温效果好,则认为当前环境状态为高温环境。若加热一段时间,温度上升缓慢即表示外界环境处于低温,则认为当前环境状态为低温环境。
S12、判断上述环境温度是否满足预设的停止加热条件。
在本公开实施例中,当上述环境温度高于对应的温度设定值时,判定上述
环境温度满足预设的停止加热条件。
S13、当上述环境温度满足预设的停止加热条件时,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,并在满足上述加热重启条件时,控制上述取暖设备重启加热。
本公开实施例提出的一种取暖设备的温控方法,根据在取暖设备加热过程中获取到的环境温度确定上述取暖设备当前所处空间的环境状态;当环境温度满足预设的停止加热条件时,根据环境状态确定取暖设备在当前所处空间的加热重启条件,并在满足上述加热重启条件时,控制取暖设备重启加热,使取暖设备在不同环境状态下采用对应不同的加热重启条件进行温度控制,提升了取暖设备对环境温度的掌控能力,达到精准温控的效果,解决了现有取暖设备无法基于环境温度进行精准温控的技术问题。
本实施例中,上述环境温度为根据预设的补偿温度对环境温度检测值进行补偿后的温度。可以理解的是,上述环境温度为感温元器件检测到的环境温度检测值与补偿温度的差值。由于机身内部温度比外界温度高形成较高的温差,因此需要预设补偿温度对环境温度检测值进行补偿,以获取实际的环境温度值。其中,预设的补偿温度的取值范围为0-8℃之间。
在实际应用中,取暖设备到达设定温度停止加热后,由于机身有余热加持,致使内部温度高而导致内外温差大,余热干扰着机身内部的元器件,感受不到外界环境温度。此时若仅仅开启风机散热将会导致低温环境下吹冷风,设计不合理。由此,本公开实施例提出风机和发热体同时运行的逻辑,具体如下:取暖设备经过一段时间Y后强制负载运行,即同时开启风机和发热体;在风机和发热体同时开启后,风机转动将外界环境温度带入机身内部,使取暖设备内部元器件快速感知外界温度;从而进行判断外界温度高时,取暖设备停止负载运行;温度低时,取暖设备持续负载运行至环境温度达到设定温度。但由于此逻辑仅仅采用时间进行判断,持续强制负载运行,将会导致在保温效果好的高温环境下,温度持续上升。为克服该逻辑存在的问题,本公开实施例将取暖设备
所在空间区分为两种环境:高温环境和低温环境,根据环境状态确定取暖设备在当前所处空间的加热重启条件,以实现精准温控。
在本公开实施例中,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,包括:当上述环境状态为高温环境时,上述取暖设备在当前所处空间的加热重启条件为:上述环境温度小于取暖设备的温度设定值,且上述温度设定值与上述环境温度的差值大于或等于预设的第三温度阈值。
在本公开实施例中,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,还包括:当上述环境状态为低温环境时,上述取暖设备在当前所处空间的加热重启条件为:上述环境温度小于取暖设备的温度设定值且上述温度设定值与上述环境温度的差值大于或等于预设的第三温度阈值,或,取暖设备停止工作的时长大于预设的停机时长阈值。
在一些具体的实施例中,取暖设备通过风机和加热装置进行加热,其中,加热装置为发热体,预设的第三温度阈值可以为2-3℃,如2℃,预设的停机时长阈值可以为3-7min,如5min;低温环境下,取暖设备到达设定温度后,启动的条件满足停机时长大于5min后强制启动或环境温度小于设定温度2℃强制启动,满足其中任一条即可强制重启;高温环境下,取暖设备到达设定温度后,启动的条件只能是环境温度小于设定温度2℃才可重新启动。
在一些具体实施例中,低温环境下,上述Y时间表示取暖设备持续工作预设的加热时长,可以为3min;预设的停机时长阈值可以为3-7min,如5min;上述预设的第一温度阈值可以为2-3℃,如3℃。在风机和发热体连续运行3min的过程中,获取到的实际环境温度(T环境-T补偿)≥T设定,表示实际环境温度达到设定值,温度补偿在0-8℃之间;在3min时间到时,若T设定≤实际环境温度≤(T设定+3℃),风机和发热体停止运行;在风机和发热体停止运行经过一定的时间后,检测到实际环境温度≤(T设定-2℃)时,或停止运行5min后,风机和发热体恢复工作,以消除取暖设备停止运行后机身内部与环境温度形成的较高温差,实现精准温控的目的。
在一些具体实施例中,高温环境下,在风机和发热体连续运行3min的过程中,获取到的实际环境温度≥T设定,表示实际环境温度达到设定值;在3min时间到时,若实际环境温度>(T设定+3℃),风机和发热体停止运行;在风机和发热体停止运行经过一定的时间后,检测到实际环境温度≤(T设定-2℃)时,风机和发热体恢复工作,以消除取暖设备停止运行后机身内部与环境温度形成的较高温差,实现精准温控的目的。
其中,T设定表示温度设定值;上述T环境表示环境温度检测值;T补偿表示补偿温度,实际环境温度=环境温度检测值-补偿温度,由于机身内部温度比外界温度高,因此存在补偿温度,上述补偿温度为测试所得数据,实际应用中,可根据需要自由设定测试参数以得到该补偿温度,本公开对此不作具体限定。
需要注意的是,当取暖设备到达设定温度后停止加热工作,显示界面的温度值显示不变。
如图4-图5所示,经测试,低温环境下测试外界环境温度实现控温精准,温度在设定温度之间波动;高温环境下测试外界环境温度也能够实现控温精准,温度在设定温度之间波动。其中,横坐标表示采集点的计数,即经过的时间,纵坐标表示随时间变化的环境温度,举例说明,1-72代表着机器记录了72个点数,而机器为每三秒记录一个点,1-72就代表着72*3秒时间内温度的变化。
在本公开实施例中,判断上述环境温度是否满足预设的停止加热条件,还包括:当上述环境温度小于温度设定值,且上述温度设定值与上述环境温度的差值小于预设的第二温度阈值时,此时环境温度不满足预设的停止加热条件,需要保持取暖设备运行。预设的第二温度阈值可以和预设的第三温度阈值取相同值。
在具体的实施例中,上述预设的第二温度阈值可以为2℃,当(T设定-2℃)<实际环境温度<T设定时,表示实际环境温度未达到设定值,仍需继续加热,风机和发热体保持运行状态。
在本公开实施例中,判断上述环境温度是否满足预设的停止加热条件,还包括:当上述环境温度小于温度设定值,且上述温度设定值与上述环境温度的差值大于或等于预设的第二温度阈值时,此时上述环境温度不满足预设的停止加热条件,而且当前加热档位不能满足加热需求,需要增大取暖设备的运行档位。
在具体的实施例中,上述预设的第二温度阈值可以为2℃,当实际环境温度<(T设定-2℃)时,表示实际环境温度远未达到设定值,需要增大取暖设备的运行档位,以提升加热效率,以使环境温度快速升温至设定值。
下面通过一些具体实施例对本公开取暖设备的温控方法进行清楚的解释说明。如图6所示,开机后,取暖设备运行,通过负载(风机+发热体)进行加热,感温元件持续检测环境温度,针对两种温度环境进行运行两种模式,高温环境运行步骤B,低温环境运行A;
步骤1:当负载(风机+发热体)工作连续3分钟检测到实际环境温度(T环境-T补偿)≥T设定,在3min时间到时,进行温度判断:
A.当T设定≤实际环境温度(T环境-T补偿)≤(T设定+3℃),关闭所有负载(风机+发热体),执行步骤2。
B.实际环境温度(T环境-T补偿)>(T设定+3℃)时,关闭所有负载(风机+发热体),执行步骤3。
②步骤2:当实际环境温度(T环境-T补偿)≤(T设定-2℃)时或负载关闭5分钟后,所有负载(风机+发热体)恢复工作,显示不变,执行步骤1;
③步骤3:当实际环境温度(T环境-T补偿)≤(T设定-2℃)时,所有负载(风机+发热体)恢复工作,显示不变,执行步骤1。
④当(T设定-2℃)<实际环境温度(T环境-T补偿)<T设定时,负载(风机+发热体)保持当前状态。
对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开实施例并不受所描述的动作顺序的限制,
因为依据本公开实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例,所涉及的动作并不一定是本公开实施例所需要的。
图7为本公开实施例中一种取暖设备的温控装置结构图,如图7所示,上述装置包括用于实现如上实施例上述取暖设备的温控方法的功能模块,具体包括:
环境状态确定模块201,配置为根据在取暖设备加热过程中获取到的环境温度确定上述取暖设备当前所处空间的环境状态;
判断模块202,配置为判断上述环境温度是否满足预设的停止加热条件;
控制模块203,配置为当上述环境温度满足预设的停止加热条件时,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,并在满足上述加热重启条件时,控制上述取暖设备重启加热。
具体的,本公开实施例中,当上述环境状态为高温环境时,上述取暖设备在当前所处空间的加热重启条件为:上述环境温度小于取暖设备的温度设定值,且上述温度设定值与上述环境温度的差值大于或等于预设的第三温度阈值;当上述环境状态为低温环境时,上述取暖设备在当前所处空间的加热重启条件为:上述环境温度小于取暖设备的温度设定值且上述温度设定值与上述环境温度的差值大于或等于预设的第三温度阈值,或,取暖设备停止工作的时长大于预设的停机时长阈值。
本公开实施例中,上述环境状态确定模块,配置为在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若上述环境温度持续高于取暖设备的温度设定值,且上述环境温度与上述温度设定值的差值大于预设的第一温度阈值,则判定上述取暖设备当前所在空间的环境状态为高温环境,否则判定上述取暖设备当前所在空间的环境状态为低温环境。
本实施例中,判断模块202,具体配置为当环境温度高于温度设定值时,判定上述环境温度满足预设的停止加热条件。
本实施例中,上述判断模块202,还配置为当环境温度小于温度设定值,且上述温度设定值与上述环境温度的差值小于预设的第二温度阈值时,判定上述环境温度不满足预设的停止加热条件,上述控制模块203控制取暖设备保持运行;当环境温度小于温度设定值,且上述温度设定值与上述环境温度的差值大于或等于预设的第二温度阈值时,判定上述环境温度不满足预设的停止加热条件,上述控制模块203增大取暖设备的运行档位。需要说明的是,本公开实施例提供的取暖设备的温控装置所涉及各功能模块的其他相应描述,可以参考图3所示方法实施例的对应描述,在此不再赘述。
此外,本公开还提出了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器控制时实现如上上述取暖设备的温控方法的步骤。
本实施例中,上述一种取暖设备的温控方法如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,上述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理设备控制时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,上述计算机程序代码可以为源代码形式、对象代码形式、可控制文件或某些中间形式等。上述计算机可读介质可以包括:能够携带上述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储设备、只读存储设备(ROM,Read-OnlyMemory)、随机存取存储设备(RAM,RandomAccessMemory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,上述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
此外,本公开实施例还提出了一种取暖设备,包括设备本体和控制器,上述控制器包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,
上述处理器执行上述计算机程序时实现如上上述取暖设备的温控方法的步骤。
本实施例中,设备本体包括加热装置、风机以及设置在上述风机的风轮附近的感温装置,上述感温装置用于检测环境温度,并将环境温度检测值上传上述控制器。其中,上述感温装置可以为感温包,通过感温包位置设置在取暖设备风机的风轮附近,在风机工作状态下,通过将感温包位置设置在电暖器暖风机的风轮旁边可以近距离地感受风轮所带进机身的外界环境温度,进而提高感温包检测外界环境温度的精准度,为实现取暖设备的“精准”控温提供保证。在实际应用中,可以根据需要采用不同的感温装置实现检测环境温度,本公开对此不做具体限定。
本公开实施例提出的一种取暖设备的温控方法及其装置、取暖设备、存储介质,通过设置在风机的风轮附近的感温装置检测环境温度;根据在取暖设备加热过程中获取到的环境温度确定上述取暖设备当前所处空间的环境状态;当上述环境温度满足预设的停止加热条件时,根据上述环境状态确定上述取暖设备在当前所处空间的加热重启条件,并在满足上述加热重启条件时,控制上述取暖设备重启加热,实现了使取暖设备在不同环境状态下将周围环境的温度控制在设定温度范围内,提升了取暖设备对环境温度的掌控能力,达到精准温控的技术效果,提升了取暖设备的制热舒适性。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (12)
- 一种取暖设备的温控方法,其特征在于,所述方法包括:根据在取暖设备加热过程中获取到的环境温度确定所述取暖设备当前所处空间的环境状态;判断所述环境温度是否满足预设的停止加热条件;当所述环境温度满足预设的停止加热条件时,根据所述环境状态确定所述取暖设备在当前所处空间的加热重启条件,并在满足所述加热重启条件时,控制所述取暖设备重启加热。
- 根据权利要求1所述的方法,其特征在于,所述环境状态包括高温环境和低温环境,所述根据在取暖设备加热过程中获取到的环境温度确定所述取暖设备当前所在空间的环境状态,包括:在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若所述环境温度持续高于取暖设备的温度设定值,且所述环境温度与所述温度设定值的差值大于预设的第一温度阈值,判定所述取暖设备当前所在空间的环境状态为高温环境,否则判定所述取暖设备当前所在空间的环境状态为低温环境。
- 根据权利要求1所述的方法,其特征在于,判断所述环境温度是否满足预设的停止加热条件,包括:当所述环境温度大于或等于取暖设备的温度设定值时,判定所述环境温度满足预设的停止加热条件。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:当所述环境温度小于取暖设备的温度设定值,且所述温度设定值与所述环境温度的差值小于预设的第二温度阈值时,保持取暖设备运行。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:当所述环境温度小于取暖设备的温度设定值,且所述温度设定值与所述环境温度的差值大于或等于预设的第二温度阈值时,增大取暖设备的运行档位。
- 根据权利要求1所述的方法,其特征在于,所述环境状态包括高温环境和低温环境,根据所述环境状态确定所述取暖设备在当前所处空间的加热重启条件包括:当所述环境状态为高温环境时,所述取暖设备在当前所处空间的加热重启条件为:所述环境温度小于取暖设备的温度设定值,且所述温度设定值与所述环境温度的差值大于或等于预设的第三温度阈值;当所述环境状态为低温环境时,所述取暖设备在当前所处空间的加热重启条件为:所述环境温度小于取暖设备的温度设定值且所述温度设定值与所述环境温度的差值大于或等于预设的第三温度阈值,或,取暖设备停止工作的时长大于预设的停机时长阈值。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述环境温度为根据预设的补偿温度对环境温度检测值进行补偿后的温度。
- 一种取暖设备的温控装置,其特征在于,所述装置包括:环境状态确定模块,配置为根据在取暖设备加热过程中获取到的环境温度确定所述取暖设备当前所处空间的环境状态;判断模块,配置为判断所述环境温度是否满足预设的停止加热条件;控制模块,配置为当所述环境温度满足预设的停止加热条件时,根据所述环境状态确定所述取暖设备在当前所处空间的加热重启条件,并在满足所述加热重启条件时,控制所述取暖设备重启加热。
- 根据权利要求8所述的装置,其特征在于,所述环境状态确定模块,配置为在取暖设备加热过程中获取到的环境温度达到取暖设备的温度设定值后,若所述环境温度持续高于取暖设备的温度设定值,且所述环境温度与所述温度设定值的差值大于预设的第一温度阈值,则判定所述取暖设备当前所在空间的环境状态为高温环境,否则判定所述取暖设备当前所在空间的环境状态为低温环境。
- 一种取暖设备,其特征在于,包括设备本体和控制器,所述控制器包括 存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-7任一项所述方法的步骤。
- 根据权利要求10所述的取暖设备,其特征在于,设备本体包括加热装置、风机以及设置在所述风机的风轮附近的感温装置,所述感温装置用于检测环境温度,并将环境温度检测值上传所述控制器。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器控制时实现如权利要求1-7任一项所述方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211284654.2A CN115597101B (zh) | 2022-10-20 | 2022-10-20 | 取暖设备的温控方法及其装置、取暖设备、存储介质 |
CN202211284654.2 | 2022-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082768A1 true WO2024082768A1 (zh) | 2024-04-25 |
Family
ID=84848843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/110327 WO2024082768A1 (zh) | 2022-10-20 | 2023-07-31 | 取暖设备的温控方法及其装置、取暖设备、存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115597101B (zh) |
WO (1) | WO2024082768A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115597101B (zh) * | 2022-10-20 | 2024-06-07 | 珠海格力电器股份有限公司 | 取暖设备的温控方法及其装置、取暖设备、存储介质 |
CN117341435B (zh) * | 2023-12-05 | 2024-02-20 | 深圳和而泰汽车电子科技有限公司 | 域控制器的控制方法、域控制器与汽车 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072561A (zh) * | 2011-02-16 | 2011-05-25 | 宁波锦海模具塑膠有限公司 | 一种暖风机的控制方法 |
CN103557596A (zh) * | 2013-07-26 | 2014-02-05 | 宁波奥克斯空调有限公司 | 一种暖风机的控制方法 |
CN106440232A (zh) * | 2016-10-31 | 2017-02-22 | 广东美的制冷设备有限公司 | 一种低温制热控制方法、控制器及空调器 |
CN109539500A (zh) * | 2018-10-18 | 2019-03-29 | 青岛海尔空调器有限总公司 | 制热设备及其节能保温控制方法 |
CN111853915A (zh) * | 2020-07-08 | 2020-10-30 | 北京圣福来科技有限公司 | 一种加热器的室内温度智能控制系统 |
CN113091318A (zh) * | 2021-03-29 | 2021-07-09 | 青岛海尔空调器有限总公司 | 一种暖风机及其控制方法、计算机可读存储介质 |
CN213656887U (zh) * | 2020-07-08 | 2021-07-09 | 北京圣福来科技有限公司 | 一种加热器的室内温度智能控制系统 |
CN113587356A (zh) * | 2021-06-02 | 2021-11-02 | 宁波奥克斯电气股份有限公司 | 空调制热防憋死的控制方法、装置及空调器 |
CN115597101A (zh) * | 2022-10-20 | 2023-01-13 | 珠海格力电器股份有限公司(Cn) | 取暖设备的温控方法及其装置、取暖设备、存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197387A (ja) * | 1987-10-09 | 1989-04-14 | Matsushita Electric Works Ltd | 電気暖房装置 |
CA2590028C (en) * | 2006-05-18 | 2012-11-27 | Dimplex North America Limited | Electric heating device |
JP5170534B2 (ja) * | 2008-02-20 | 2013-03-27 | 株式会社ノーリツ | 熱源装置 |
JP2013002781A (ja) * | 2011-06-21 | 2013-01-07 | Panasonic Corp | 面状採暖具 |
CN204987214U (zh) * | 2015-08-03 | 2016-01-20 | 王桂永 | 温控热风暖气 |
CN112413719B (zh) * | 2020-11-27 | 2022-03-01 | 珠海格力电器股份有限公司 | 取暖器控制方法、装置、计算机设备和存储介质 |
-
2022
- 2022-10-20 CN CN202211284654.2A patent/CN115597101B/zh active Active
-
2023
- 2023-07-31 WO PCT/CN2023/110327 patent/WO2024082768A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072561A (zh) * | 2011-02-16 | 2011-05-25 | 宁波锦海模具塑膠有限公司 | 一种暖风机的控制方法 |
CN103557596A (zh) * | 2013-07-26 | 2014-02-05 | 宁波奥克斯空调有限公司 | 一种暖风机的控制方法 |
CN106440232A (zh) * | 2016-10-31 | 2017-02-22 | 广东美的制冷设备有限公司 | 一种低温制热控制方法、控制器及空调器 |
CN109539500A (zh) * | 2018-10-18 | 2019-03-29 | 青岛海尔空调器有限总公司 | 制热设备及其节能保温控制方法 |
CN111853915A (zh) * | 2020-07-08 | 2020-10-30 | 北京圣福来科技有限公司 | 一种加热器的室内温度智能控制系统 |
CN213656887U (zh) * | 2020-07-08 | 2021-07-09 | 北京圣福来科技有限公司 | 一种加热器的室内温度智能控制系统 |
CN113091318A (zh) * | 2021-03-29 | 2021-07-09 | 青岛海尔空调器有限总公司 | 一种暖风机及其控制方法、计算机可读存储介质 |
CN113587356A (zh) * | 2021-06-02 | 2021-11-02 | 宁波奥克斯电气股份有限公司 | 空调制热防憋死的控制方法、装置及空调器 |
CN115597101A (zh) * | 2022-10-20 | 2023-01-13 | 珠海格力电器股份有限公司(Cn) | 取暖设备的温控方法及其装置、取暖设备、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN115597101B (zh) | 2024-06-07 |
CN115597101A (zh) | 2023-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024082768A1 (zh) | 取暖设备的温控方法及其装置、取暖设备、存储介质 | |
CN102949081B (zh) | 一种烹饪电器的加热控制方法 | |
CN103279155B (zh) | 一种温度控制系统 | |
WO2019001483A1 (zh) | 电动汽车动力电池温度控制方法及装置 | |
WO2019024241A1 (zh) | 新风机及其防冷风控制方法和装置 | |
CN106679076B (zh) | 变频器功率模块温度控制方法和控制装置 | |
CN106354046A (zh) | 智能功率模块的控制方法和装置 | |
WO2020015304A1 (zh) | 一种电饭煲及其煮粥控制方法、装置 | |
CN107209537A (zh) | 具有在计算机关闭状态下冷却备用电源部的风扇控制电路的计算机用电源供给装置及运行方法 | |
WO2016095402A1 (zh) | 制冷装置和制冷装置的冷水温度控制方法 | |
CN108594898A (zh) | 烤箱温控方法、装置及计算机可读存储介质 | |
CN107464578A (zh) | 一种硬盘自动加热控制系统和方法 | |
CN112346501A (zh) | 用于电子设备低温启动的加热系统 | |
US11479495B2 (en) | Actuating mechanism control method for glass plate tempering process | |
CN111174250A (zh) | 一种用于吸油烟机自动清洗过程中水泵的控制方法 | |
AU2018312663B2 (en) | Method for controlling discharging of glass plate in glass plate tempering technology process | |
CN112135375B (zh) | 微波烹饪装置及其控制方法和控制装置 | |
CN112656209B (zh) | 一种干烧检测方法、装置及存储介质 | |
CN113465402A (zh) | 降低烧结炉的炉温差异的控制方法和控制系统 | |
WO2018045785A1 (zh) | 基于峰谷用电的热泵热水机组及其控制方法和控制系统 | |
CN103353397B (zh) | 硅油风扇离合器的离合试验方法及试验系统 | |
CN109782822A (zh) | 一种应用于低温敏感设备的温度控制方法 | |
WO2021204117A1 (zh) | 家用电器的控制方法、家用电器及计算机可读存储介质 | |
CN110388663A (zh) | 电磁烹饪器具及其检测方法 | |
KR101466861B1 (ko) | 스팀오븐의 대류팬 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23878764 Country of ref document: EP Kind code of ref document: A1 |