WO2021022954A1 - 铅酸电池的板栅以及铅酸电池 - Google Patents

铅酸电池的板栅以及铅酸电池 Download PDF

Info

Publication number
WO2021022954A1
WO2021022954A1 PCT/CN2020/099902 CN2020099902W WO2021022954A1 WO 2021022954 A1 WO2021022954 A1 WO 2021022954A1 CN 2020099902 W CN2020099902 W CN 2020099902W WO 2021022954 A1 WO2021022954 A1 WO 2021022954A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
grid
ribs
lead
battery
Prior art date
Application number
PCT/CN2020/099902
Other languages
English (en)
French (fr)
Inventor
朱效敏
Original Assignee
山东牛千里电源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910713856.6A external-priority patent/CN112310410A/zh
Priority claimed from CN201921251389.1U external-priority patent/CN210245618U/zh
Application filed by 山东牛千里电源科技有限公司 filed Critical 山东牛千里电源科技有限公司
Publication of WO2021022954A1 publication Critical patent/WO2021022954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of energy storage devices, and more specifically, this application relates to a grid of lead-acid batteries and lead-acid batteries.
  • Lead-acid batteries have the advantages of high safety and recyclability.
  • the plates of lead-acid batteries are usually divided into tube type plates and plate type plates. Due to its thinner thickness and lower resistivity, plate-type plates are widely used in lead-acid batteries.
  • the main disadvantage of the plate plate is that the specific energy of the lead-acid battery is lower.
  • Lead and lead alloys are the main materials of the plates in ordinary lead-acid batteries.
  • Lead is a heavy metal element, and its density is as high as 11.34g/cm 3 .
  • the patent application with application number CN201210107216.9 discloses a technical solution of using copper mesh as the main material of the grid current collector of lead-acid batteries. In order to avoid copper being corroded by the sulfuric acid electrolyte in the lead-acid battery, the copper mesh grid is still needed.
  • a layer of lead can be used as a grid for lead-acid batteries.
  • Lead has two major uses in lead-acid batteries.
  • One is the lead material that produces positive and negative active materials through a series of processes and finally through electrochemical reactions.
  • the main component of the positive active material is lead dioxide and the negative active material.
  • the main component is spongy lead; another type of lead and lead alloy are used as current collector materials such as grids, bus bars, and terminals.
  • the main function of this part of lead is to collect the charge and discharge charge of the active material, and act as a conductor to input or output the charge from the battery to assist the lead-acid battery active material to complete the charging and discharging process.
  • the amount of this part of lead and lead alloy affects the battery There is no substantial change in energy output capacity. Therefore, ways to increase the specific energy of lead-acid batteries generally include replacing metallic lead with low-density materials as the current collector of the active material or changing the formulation of the lead paste to increase the specific energy by increasing the utilization rate of the active material.
  • the patent application with application number CN201510208608.8 discloses a composite current collector as a base material to replace the traditional lead grid to increase the specific energy of lead-acid batteries.
  • the content of the application requires Coating a conductive adhesive transition layer and a conductive anticorrosive layer on the surface of the substrate;
  • the patent application for application number CN201610017413.X discloses a lead-acid battery that can be easily converted into a high specific energy lead-acid battery.
  • the density of the negative electrode paste is reduced to 4.1-4.15g/cm 3
  • the apparent density of the positive and negative electrode paste is 5%-15% lower than that of the normal lead-acid battery, which is a low apparent density
  • the lead paste has a higher porosity, which improves the active material utilization of the positive and negative electrodes and increases the specific energy of the battery.
  • the patent application with application number CN201510630972.3 discloses a method for manufacturing a high specific energy lead-acid battery, which reduces the quality of the grid and improves the oxidation degree of lead powder.
  • the utilization rate of active materials can be improved.
  • Improve the specific energy of lead-acid batteries by reducing the mass of inactive materials.
  • the patent application with the application number CN201510940669.3 discloses a structure in which the horizontal first rib and the vertical first rib are in a vertical direction, and the vertical first rib is extended into a tab; the patent application with the application number CN200680017715.1 The application discloses a grid structure in which the first vertical rib of the battery is not perpendicular to the first horizontal rib, and the vertical first rib is biased toward the position of the tab; the patent application for application number CN201310289855.6 discloses an expanded mesh structure The grid of this structure does not distinguish between horizontal first ribs and vertical first ribs. The first ribs that cross vertically and horizontally are at a certain angle to the direction of current in the tabs, and the grid of this structure There is no vertical border.
  • Existing grids usually include first ribs that are formed from the same metal material, such as horizontal first ribs and vertical first ribs. During the charge and discharge process of lead-acid batteries, the electric potential on the same horizontal first rib is similar. The current density in the first horizontal rib is much smaller than the current density in the first vertical rib.
  • the first horizontal rib exists The function of the grid is to keep the structure of the grid stable.
  • the first horizontal ribs and the first vertical ribs are woven into a mesh grid.
  • the grid is filled with positive and negative lead paste to form the positive and negative plates of the lead-acid battery. This grid has a large mass and a small energy storage mass ratio, which is not conducive to the lightweight of electronic products.
  • One purpose of this application is to provide a new technical solution for the grid of lead-acid batteries.
  • a grid of a lead-acid battery includes: a grid-shaped current collector, the grid-shaped current collector includes a plurality of first ribs extending in a predetermined direction and tabs, the tabs are connected with the first ribs; and a frame,
  • the frame includes a plurality of support bars and a frame connected together, the first ribs cross the support bars, the same ends of the plurality of first ribs are fastened to the bottom of the frame, and the first ribs
  • the bar is at least partially embedded in the support bar, the grid-shaped current collector is connected with the frame to form a grid structure in the middle of the grid, and the density of the frame is less than that of the grid-shaped current collector Density.
  • a plurality of the first ribs extend at the same end and are connected together to form a collection part, the end of the collection part forms the tabs, and the part other than the tabs of the collection part forms the Describe the second rib.
  • the lengths of a plurality of the first ribs are equal, and the collection portion protrudes outward from the frame along the extending direction of the first ribs;
  • the tabs protrude outward from the frame along the extending direction of the first rib, and the second rib is located in an area surrounded by the frame.
  • a plurality of the first ribs extend out of the frame at the same end, and the part extending out of the frame forms the tab.
  • the plurality of first ribs are divided into a first part and a second part along the extension direction, and a conducting part located between the first part and the second part, and a first part is attached to the first part.
  • An electrode active material, a second electrode active material is attached to the second part, the conductive part forms the tab, and the first part and the second part share the tab.
  • the first ribs and the supporting bars are multiple, each of the first ribs is connected to all the supporting bars, and each of the supporting bars is connected to all the first bars.
  • a rib forms a connection.
  • the frame includes a first frame and a second frame that are opposed to each other, the grid-shaped current collector is located between the first frame and the second frame, and the grid-shaped current collector is embedded in the The first frame and the second frame.
  • first frame and the second frame are both plastic, and are connected together by ultrasonic welding, and the first frame or the second frame is connected to the plurality of first ribs.
  • Energy-conducting ribs are formed at positions corresponding to the gaps between them.
  • the frame is integrally formed, the supporting bar is provided with a plurality of opening grooves in the extending direction of the supporting bar, a part of the plurality of opening grooves is opposite to the opening direction of the remaining part, and a plurality of The first ribs are respectively clamped into the plurality of opening grooves.
  • a groove is provided at a portion where the frame and the electrode active material are connected.
  • an end of the plurality of first ribs opposite to the tabs is provided with a cap protruding from the first ribs or bottoms for connecting two adjacent first ribs.
  • Rib, the cap head or the bottom rib is embedded in the bottom edge of the frame.
  • the material of the frame is plastic, rubber, resin, fiber, ceramic or glass.
  • the grid-shaped current collector is made of lead, lead alloy, copper wire wrapped in lead, aluminum wire or carbon nanotube fiber wire.
  • the grid-shaped current collector is formed by bending metal wire, integral stamping forming or casting forming.
  • a lead-acid battery includes: a battery tank, a cavity is formed in the battery tank, and one or more battery cells are arranged in the cavity.
  • the battery cells include a positive electrode plate, a negative electrode plate, and a positive electrode plate.
  • the separator between the positive electrode plate and the negative electrode plate, the positive electrode plate and the negative electrode plate include the grid provided in the present application, the tabs of a plurality of positive plates are electrically connected, and the tabs of a plurality of negative plates are electrically connected.
  • busbar has a plurality of sets of opposed first and second splints, the tabs are clamped between the first splint and the second splint, and Each of the positive plates and a plurality of the negative plates are electrically connected by the respective bus bars.
  • the cavity forms a plurality of isolation chambers arranged side by side, and a battery cell is arranged in each isolation chamber; a plurality of the battery cells are formed in series, and two adjacent battery cells are connected in series. A series connection is formed by the common bus bar.
  • the battery cover is provided with a sealant groove, and the sealant filled in the sealant groove seals the busbar in the battery cover.
  • the material of the bus bar is copper and copper alloy or aluminum and aluminum alloy.
  • a lead-acid battery includes: a battery tank, a plurality of isolation chambers in the battery tank, a battery cell is arranged in the isolation chamber, the battery cell includes a positive plate, a negative plate, and the positive plate and the negative plate
  • the separator between the two adjacent battery cells in the isolation chamber share the grid provided in this application, and the first battery cell is defined as the higher potential of the two adjacent battery cells.
  • the one with the lower electric potential is the second battery cell, wherein the first part of the grid is located in the isolation chamber where the first battery cell is located, serving as the negative electrode of the first battery cell; the second part of the grid is located The isolation chamber where the second battery cell is located serves as the positive electrode of the second battery cell, and the common tab is located in the isolation wall between the two isolation chambers.
  • the first rib of the grid has a current collecting function.
  • the support bars cross and connect with the first rib bars to form a grid structure.
  • the support bar plays a role of structural support.
  • the grid structure is used to attach the electrode active material.
  • the electrode active material is lead paste.
  • lead paste is coated or pressed onto the grid structure.
  • the density of the frame is smaller than the density of the grid-shaped current collector, and the grid has the characteristics of light weight.
  • the current density of the first rib near any support bar is evenly distributed, and even each first rib has a connected tab , It can effectively prevent the grid from being too high due to local current.
  • Fig. 1 is a schematic structural diagram of a grid plate according to an embodiment of the present disclosure.
  • Fig. 2 is a partial enlarged view along the line A-A in Fig. 1.
  • Fig. 3 is a partial enlarged view along the line B-B in Fig. 1.
  • Fig. 4 is a schematic view of Fig. 1 from another angle.
  • 5-6 are schematic diagrams of the structure of a grid-shaped current collector according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a frame according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a second type of frame according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a second type of grid plate according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a third grid-shaped current collector according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a third grid plate according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a fourth grid-shaped current collector according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic structural diagram of a fifth grid-shaped current collector according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a first type of bus bar connection provided on a battery cell according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a second type of bus bar connection provided on a battery cell according to an embodiment of the present disclosure.
  • Fig. 16 is a schematic structural diagram of a lead-acid battery according to an embodiment of the present disclosure.
  • Fig. 17 is a schematic structural diagram of a bus bar according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic top view of a first type of bus bar connection between lead-acid battery cells according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic cross-sectional structure diagram of each first rib extending out of the frame to form a plurality of tab grids according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic cross-sectional structure diagram of a first rib divided into a first part and a second part to form a bipolar grid according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of the bipolar plate structure made according to the bipolar grid of FIG. 20.
  • Fig. 22 is a schematic structural diagram of a lead-acid battery according to an embodiment of the present disclosure.
  • the grid includes a grid-shaped current collector and a frame.
  • the overall thickness of the grid is 0.5mm-12mm.
  • the thickness is the dimension perpendicular to the main surface of the grid.
  • the grid-shaped current collector is used for current collection.
  • the grid-shaped current collector includes a second rib 103a, a plurality of first ribs 101 extending in a predetermined direction, and tabs 102.
  • the extending direction of the plurality of first ribs 101 is parallel to the predetermined direction or substantially parallel to the predetermined direction.
  • the cross section of the first rib 101 is circular, semicircular, elliptical, trapezoidal, triangular, rectangular, etc.
  • a plurality of the first ribs 101 extend at the same end and are connected together to form the assembly 103.
  • the end of the collecting part 103 forms the tab 102, and the part of the collecting part 103 other than the tab 102 forms the second rib 103a.
  • the same ends of a plurality of the first ribs 101 are respectively connected to different parts of the second ribs 103a.
  • the second rib 103a is parallel to the horizontal direction
  • the first rib 101 is parallel to the vertical direction.
  • the second rib 103a is one or two.
  • One ends of the plurality of first ribs 101 are respectively connected with the second rib 103a, or the two ends of the plurality of first ribs 101 are respectively connected with the two second ribs 103a.
  • the grid-shaped current collector has a rectangular shape as a whole.
  • the connection of different parts means that the multiple first ribs 101 are arranged in sequence along the extending direction of the second rib 103a, and the multiple second ribs 103a do not converge at one point.
  • the tab 102 is connected to the second rib 103a.
  • the tab 102 is connected to the second rib 103a, and is connected to the tab 102 through the second rib 103a.
  • the tab 102 leads out multiple lines to connect to the multiple first ribs 101 respectively.
  • a plurality of lines together constitute the second rib 103a.
  • the thickness of the tab 102 is 0.2mm-8mm. This thickness range ensures that the tab has sufficient structural strength.
  • the grid-shaped current collector is made of lead, lead alloy, copper wire wrapped in lead, aluminum wire or carbon nanotube fiber wire.
  • the above-mentioned materials have good electrical conductivity and good sulfuric acid corrosion resistance.
  • it also includes lead-coated other high-strength fiber filaments to increase strength.
  • the frame includes a plurality of support bars 201 connected together.
  • the frame also includes enclosed borders.
  • the frame includes a top frame 202 at the upper part, a bottom frame 204 at the lower part, and two side frames 203 between the top frame 202 and the bottom frame 204.
  • the whole frame is rectangular.
  • the two ends of the support bar 201 are respectively connected to the two side frames 203.
  • the support bar 201 is parallel to the top frame 202.
  • the first rib 101 crosses the supporting bar 201. At least part of the first rib 101 is embedded in the support bar 201.
  • the grid-shaped current collector is connected to the frame to form a grid structure in the middle of the grid. The density of the frame is smaller than the density of the grid-shaped current collector.
  • the density of the frame is less than or equal to 5 g/cm 3 .
  • the density is much smaller than that of lead and lead alloys, so that the quality of the grid is effectively reduced.
  • the material of the frame is plastic, rubber, resin, fiber, ceramic or glass. The above materials have the characteristics of acid corrosion resistance.
  • the frame is formed by injection molding.
  • the thickness of the frame is 0.5mm-12mm. This thickness range makes the frame structural strength high.
  • the first rib 101 of the grid has a current collecting function.
  • the support bar 201 crosses and connects with the first rib 101 to form a grid structure.
  • the support bar 201 functions as a structural support.
  • the grid structure is used to attach the electrode active material.
  • the electrode active material is lead paste. During production, lead paste is coated or pressed onto the grid structure.
  • the tab 102 is located at the same end of the extending direction of the first ribs 101.
  • the existing grids are all the same metal materials, such as lead, lead alloys, etc., in a grid structure formed in a crisscross pattern.
  • the tab 102 is located at one end of the grid, such as one end of a longitudinal rib, the longitudinal direction is the vertical direction.
  • the current in the longitudinal ribs and the transverse ribs is not uniform.
  • the current of the longitudinal ribs is much larger than the current of the transverse ribs, and the horizontal direction is the horizontal direction.
  • the lateral ribs mainly play the role of structural support.
  • replacing the transverse ribs with materials with low density (such as support bars 201), on the one hand, can still ensure a good current collection effect for the grid, and on the other hand can effectively reduce the overall quality of the grid. , Improve the energy storage quality ratio of lead-acid batteries.
  • the grid-shaped current collector includes a winding metal wire.
  • the portion of the metal wire extending in the main direction is the plurality of first ribs 101.
  • the main direction is consistent with the extending direction of the first rib 101.
  • the metal wire is lead wire, lead alloy wire, or the like. Starting from one end of the metal wire, it is repeatedly wound to form a grid-like current collector with a planar structure.
  • the plurality of first ribs 101 are parallel to each other and have the same spacing. This makes the grid current more uniform.
  • the method of winding and forming makes the processing and production of the grid-shaped current collector easy, low processing cost, high processing precision, and suitable for mass production.
  • this processing method does not need to separately provide components such as the second rib 103a and the tab 102.
  • a plurality of the first ribs 101 extend at the same end and are gathered together to form a gathering part 103.
  • the end of the collecting part 103 forms the tab 102.
  • the part of the collecting part 103 other than the tab 102 forms the second rib 103a.
  • the end of the collecting portion 103 is extruded to form a tab 102 of a predetermined shape to facilitate connection with the bus bar.
  • the lengths of the plurality of first ribs 101 are equal.
  • the first rib 101 is parallel to the long side of the rectangle.
  • the collection portion 103 protrudes outward from the frame along the extending direction of the first rib 101.
  • the collection part 103 protrudes from the top frame 202.
  • the lengths of the first ribs 101 are the same, and the reaction areas of the plurality of electrode plates formed after coating the electrode active material are equal, which ensures the reliability of the electrode plates.
  • the tab 102 protrudes outward from the frame along the extending direction of the first rib 101.
  • the part of the frame other than the tab 102 is located in the area surrounded by the frame. For example, this part is located inside the top frame 202, and only the tab 102 protrudes from the top frame 202.
  • This arrangement can reduce the embedding of the electrode active material in the groove of the second rib 103a during the coating process, and also reduces the risk of short circuit between the second ribs 103a of adjacent electrode plates.
  • the grid-shaped current collector is formed by stamping (as shown in FIG. 12) or casting (as shown in FIG. 13).
  • the second rib 103a, the first rib 101, and the tab 102 are integrally formed and do not need to be connected separately.
  • the above-mentioned molding methods can form an integrated grid-shaped current collector, which is suitable for mass production.
  • the frame includes a first frame 209 and a second frame 210 that are arranged oppositely.
  • the grid-shaped current collector is located between the first frame 209 and the second frame 210.
  • the grid-shaped current collector is embedded in the first frame 209 and/or the second frame 210.
  • the first frame 209 and the second frame 210 both include a frame and a support bar 201 located in the frame.
  • a recess structure 205 is formed on the first frame 209 and/or the second frame 210.
  • the second rib 103a and the first rib 101 of the grid-shaped current collector are clamped into the recessed structure 205.
  • the first frame 209 and the second frame 210 are fixedly connected together in a manner of facing each other. In this example, the first frame 209 and the second frame 210 can effectively protect the grid-shaped current collector.
  • the first frame 209 and the second frame 210 are both plastic, and are connected together by ultrasonic welding.
  • Energy-conducting ribs 206 are formed on the peripheral frame of the second frame 210 and the positions corresponding to the gaps between the plurality of first ribs 101.
  • the energy guiding ribs 206 are strip-shaped protrusions protruding outward in the direction of the contact surface with the frame 209.
  • the energy guiding rib 206 is located on the frame and the supporting bar 201.
  • the cross section of the energy guiding rib 206 is triangular, trapezoidal, and the like.
  • the supporting bar 201 is provided with a plurality of opening grooves in the extending direction of the supporting bar 201.
  • the opening direction of a part of the plurality of opening grooves is opposite to that of the remaining part.
  • the opening direction of the first opening groove 205a faces one surface of the frame.
  • the opening direction of the second opening groove 205b faces the other surface of the frame.
  • the plurality of first ribs 101 are respectively clamped into the plurality of opening grooves. That is, a part of the first rib 101 is clamped into the first opening groove 205a, and another part of the first rib 101 is clamped into the second opening groove 205b. This arrangement enables the frame to be clamped between the plurality of first ribs 101, and the structural strength of the grid is high.
  • the open groove is circular.
  • the diameter of the circle is equivalent to the diameter of the first rib 101.
  • the size of the open end of the open groove is 1.5 to 1.8 times the radius of the open groove. Since the size of the open end is smaller than the diameter of the first rib 101, the first rib 101 can be effectively prevented from escaping from the open groove.
  • the opening directions of the adjacent opening grooves are opposite.
  • the plurality of first ribs 101 are arranged in the first opening groove 205a and the second opening groove 205b at intervals, which makes the clamping effect of the plurality of first ribs 101 on the frame stronger.
  • the plurality of first ribs 101 are located on different planes.
  • the first ribs 101 located in the plurality of first opening grooves 205a are on the same plane, and the first ribs 101 located in the second opening grooves 205b are on another plane.
  • This arrangement makes full use of the space perpendicular to the main surface of the rectangle. Compared with the manner in which the plurality of first ribs 101 are all located on the same plane, this manner makes the electrode active material less likely to fall off and can be more firmly attached to the grid structure.
  • the thickness of the first rib 101 is 20% to 80% of the thickness of the support bar 201. Within this range, the structural strength of the support bar 201 is high, and the structural strength of the formed grid is high.
  • a limited slot is provided on the top frame 202.
  • the second rib 103a is locked into the limiting groove.
  • the limiting groove can effectively limit the position of the second rib 103a and prevent the second rib 103a from moving along the main surface.
  • the thickness of the first rib 101 is 25%-100% of the thickness of the second rib 103a.
  • the first rib 101 plays a role of structural support and requires strong structural strength.
  • the thickness of the second rib 103a is greater than the thickness of the first rib 101, which can ensure that the current density from the second rib 103a to the tab 102 does not decrease.
  • an end of the plurality of first ribs 101 opposite to the second rib 103a is provided with protruding from the first rib
  • the frame includes a bottom frame 204 connected to the plurality of support bars 201.
  • a card slot 208 is provided on the bottom frame 204. The cap head 104b or the bottom rib 104a is locked into the slot 208.
  • the position of the first rib 101 can be effectively limited, and the grid-like current collector can be prevented from moving soundly relative to the frame.
  • the head 104a is perpendicular to both sides of the first rib 101.
  • the cap head 104a and the first rib 101 form a T-shaped structure.
  • the cross-sectional area of the hat head 104a is 1.5-5 times the cross-sectional area of the first rib 101. This makes the fixing of the cap head 104a and the card slot 208 stronger.
  • a groove is provided in a portion of the frame connected to the electrode active material.
  • the groove can increase the contact area between the frame, the first rib 101 and the electrode active material, so that the connection between the frame and the electrode active material is stronger.
  • the groove is the first groove 207a formed in the direction measured in the through hole enclosed by the frame frame and the support bar 201 and the first rib 101, or in the frame frame and the support bar 201
  • a plurality of second grooves 207b designed at intervals are intermittently provided on the contact surface with the electrode active material.
  • the second groove 207b is perpendicular to the extension direction of the supporting bar or frame bar where it is located.
  • the cross section of the groove is triangular, rectangular, trapezoidal, semicircular, etc., which can be selected by those skilled in the art according to actual needs.
  • a grid is divided into two regions.
  • the plurality of first ribs 101 are divided into a first part S1 and a second part S2 along the extending direction, and a conducting part located between the first part S1 and the second part S2.
  • the extension direction is the direction in which the first rib 101 extends in the axial direction.
  • a first electrode active material is attached to the first portion S1, and a second electrode active material is attached to the second portion S2. That is, by disposing different electrode active materials in different parts, different regions can form different electrodes.
  • the first electrode active material is the positive electrode active material 301; the second electrode active material is the negative electrode active material 302.
  • the electrode active material is not attached to the conductive portion.
  • the conductive portion forms the tab 102, and the first part S1 and the second part S2 share the tab 102.
  • the electrode where the first part S1 is located and the electrode where the second part S2 is located are conducted through the common tab 102.
  • the overall structure is equivalent to connecting two tabs 102 of the grid as shown in FIG. 19 to form a common tab.
  • FIG. 21 discloses a bipolar plate structure formed after the grid shown in FIG. 20 is coated with a positive electrode active material 301 and a negative electrode active material 302.
  • the first part S1 and the second part S2 serve as electrodes for different battery cells.
  • the second portion S2 and the negative electrode active material 302 serve as the negative electrode of one battery cell
  • the first portion S1 and the positive electrode active material 301 serve as the positive electrode of another battery cell adjacent to the battery cell.
  • the arrangement of the common tab 102 makes the connection between different battery cells stronger, and the overall strength of the lead-acid battery is higher.
  • one or more battery cells can be arranged in each isolation chamber.
  • a plurality of battery cells arranged side by side can be connected in series in a manner that the negative electrode and the positive electrode are sequentially connected through the bipolar plate.
  • the first rib 101 and the supporting bar 201 are both multiple, each of the first ribs 101 is connected to all the supporting bars 201, and each of the supporting bars 201 It forms a connection with all the first ribs 101.
  • This arrangement makes each first rib 101 and each support bar 201 form a connection, and the structural strength of the grid is higher.
  • a lead-acid battery is provided. As shown in Figures 14-16, the lead-acid battery includes a battery slot A1, and a cavity is formed in the battery slot A1. One or more battery cells are arranged in the cavity.
  • the battery cell includes a positive plate B01, a negative plate B02, and a separator B03 located between the positive plate B01 and the negative plate B02.
  • the separator B03 can prevent a short circuit between the adjacent positive plate B02 and the negative plate B01.
  • the positive plate B01 and the negative plate B02 include the grid provided in the present application.
  • the tabs of the plurality of positive plates B01 are electrically connected, and the tabs of the plurality of negative plates B02 are electrically connected.
  • the tabs of the multiple positive plates B02 after electrical connection form the positive busbars of the battery cells.
  • the tabs of the multiple negative plates B01 that are electrically connected form the negative busbars of the battery cells.
  • the lead-acid battery has the characteristics of light weight and high energy storage mass ratio.
  • the lead-acid battery cell further includes a bus bar.
  • the busbar has a plurality of sets of first clamping plates 401 and second clamping plates 402 arranged oppositely.
  • the bus bar includes a connecting plate and a plurality of groups of first splints 401 and second splints 401 arranged on one surface of the connecting plate in parallel.
  • the tab 102 is clamped between the first splint 401 and the second splint 402, and a plurality of the positive plates B01 and a plurality of the negative plates B02 are respectively formed by the respective bus bars. connection.
  • the bus bar connects the tabs of the positive plates B01 of the multiple battery cells of the battery cells in parallel, and connects the tabs of the multiple negative plates B02 in parallel.
  • the two clamping plates 401, 402 can effectively clamp the tabs and protect the tabs.
  • the material of the return drain may be but not limited to metal materials such as copper and aluminum.
  • the cavity forms a plurality of isolation chambers arranged side by side, such as six.
  • a battery cell is arranged in each isolation chamber.
  • the battery cell includes the plurality of battery cells.
  • a plurality of the battery cells are formed in series.
  • Two adjacent battery cells are connected in series through a common bus bar A3.
  • the bus bar A3 spans the third isolation chamber and the fourth isolation chamber.
  • the bus bar A31 straddles the fourth isolation chamber and the fifth isolation chamber.
  • the negative electrode of the third battery cell C3 and the positive electrode C4 of the fourth battery cell share the same bus bar A3.
  • the negative electrode of the fourth battery cell C4 and the positive electrode C5 of the fifth battery cell share a bus bar A31.
  • a positive pole A6 and a negative pole A5 are provided outside the battery tank A1, and the positive pole A6 is electrically connected to the busbar of the lead-acid battery as the positive electrode through a metal sheet, so The negative pole A5 is electrically connected to the bus bar serving as the negative electrode of the lead-acid battery through a metal sheet.
  • the positive and negative electrodes of the combined lead-acid battery are correspondingly connected to the positive pole A6 and the negative pole A5 provided outside the battery tank A1. In this way, the charge in the battery can be led to the outside of the battery slot A1 so as to connect the wires during use.
  • the tab 102, the pole B05 and the bus bar can be welded into a whole by common welding technology, for example Through the mold cavity welding molding, casting molding method. This setting method can continue to use the original lead-acid battery production equipment and technology.
  • the lead-acid battery also includes a battery cover.
  • a sealing glue groove is arranged on the battery cover. The sealant is filled in the sealant groove to seal the busbar in the battery cover.
  • the straight opening of the battery tank A1 is sealed with a sealant to seal the bus bar. It can prevent the bus bar from being corroded by the sulfuric acid in the lead-acid battery.
  • the sealant has the function of bonding the battery tank and the battery cover and protecting the bus bar and other components.
  • the lead-acid battery includes a battery slot.
  • a plurality of isolation chambers for example, 6 isolation chambers, are provided in the battery tank.
  • a plurality of battery cells for example, four battery cells, are arranged in the isolation chamber.
  • the battery cell includes a positive plate B011, a negative plate B012, and a separator B013 located between the positive plate B011 and the negative plate B012.
  • the battery cells of two adjacent isolated chambers share the grid as shown in FIG. 20.
  • the first battery cell F1 is defined as the higher potential of the two adjacent battery cells.
  • the first battery cell F1 is located in the top isolation chamber.
  • the one with the lower potential is the second battery cell F2.
  • the second battery cell F2 is immediately adjacent to the top isolation chamber.
  • the positive electrode D1 of the lead-acid battery extends outward from the side wall of the first isolation chamber.
  • the negative electrode D2 extends outward from the side wall of the low-end isolation chamber.
  • the first part of the grid is located in the isolation chamber where the first battery cell F1 is located, and serves as the negative electrode of the first battery cell F1.
  • the second part is located in the isolation chamber where the second battery cell F2 is located, and serves as the positive electrode of the second battery cell F2.
  • the common tab is located in the partition wall B014 between the two isolation chambers.
  • the separation wall B014 and the common tab 102 form a seal.
  • Those skilled in the art can use the common sealing method in the art to seal the common tab 102 and the partition wall B014.
  • the first battery cell and the second battery cell are not limited to the two shown in the figure, and may also be any two adjacent battery cells.
  • the grid can connect two battery cells in series, which makes the structure of the lead-acid battery simpler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本申请涉及一种铅酸电池的板栅以及铅酸电池。该板栅包括:格栅状集流体,所述格栅状集流体包括多条沿预定方向延伸的第一筋条以及极耳,所述极耳与所述第一筋条连接;以及框架,所述框架包括连接在一起的多个支撑条和边框,所述第一筋条与所述支撑条交叉,多条第一筋条的同一端分别与框架底边扣紧,所述第一筋条至少局部嵌入所述支撑条内,所述格栅状集流体与所述框架形成连接,以在所述板栅的中部形成网格结构,所述框架的密度小于所述格栅状集流体的密度。

Description

铅酸电池的板栅以及铅酸电池 技术领域
本申请涉及储能装置技术领域,更具体地,本申请涉及一种铅酸电池的板栅以及铅酸电池。
背景技术
铅酸电池具有安全性高,可循环利用等优点。铅酸电池的极板通常分为管式极板和板式极板。板式极板因厚度较薄、电阻率更低,故广泛应用在铅酸电池中。板式极板的主要缺点是使铅酸电池的比能量较低。
铅及铅合金是普通铅酸电池中极板主要材质。铅属于重金属元素,其密度高达11.34g/cm 3。申请号CN201210107216.9的申请专利申请公开了一种用铜网做铅酸电池板栅集流体主材的技术方案,为了避免铜被铅酸电池中的硫酸电解质腐蚀,仍需要在铜网板栅的表面包覆一层铅才能作为铅酸电池用板栅。
铅在铅酸电池中有两大类用途,一类是铅通过一系列工艺,最后通过电化学反应生成正、负极活性物的铅材料,正极活性物质主要成分是二氧化铅,负极活性物质的主要成分是海绵状铅;另一类铅及铅合金是作为板栅、汇流排、端子等集流体的材料。这部分铅的主要功能是收集活性物质的充放电电荷,并作为导体将电荷从电池中输入或输出,协助铅酸电池活性物质完成充电和放电过程,这部分铅及铅合金的用量多少对电池的能量输出能力没有实质性改变。因此提高铅酸电池比能量的方式一般包括用低密度的材质替代金属铅做活性物质的集流体或改变铅膏的配方,以提高活性物质利用率的方式提高比能量。
申请号CN201510208608.8的申请专利申请公开了一种用复合集流体做基材替代传统的铅板栅实现提升铅酸电池比能量,为避免集流体在酸性环境中的腐蚀,该申请内容中需要在基材表面涂覆导电粘结剂过渡层和导 电防腐层;申请号CN201610017413.X的申请专利申请公开了一种易化成高比能量铅酸蓄电池,正极铅膏的视密度为4.0-4.15g/cm 3,负极铅膏的密度降低为4.1-4.15g/cm 3,正负极铅膏的视密度比普通铅酸电池的正负极铅膏视密度低5%-15%,低视密度的铅膏孔隙率更高,因而提升了正负极的活性物质利用率和提高了电池的比能量。
申请号CN201510630972.3的申请专利申请公开了一种高比能量铅酸电池的制作方法,通过降低板栅质量,提高铅粉氧化度。通过向铅膏中添加导电碳纤维和石墨烯等方式,来提高活性物质利用率。通过降低非活性物质质量的方式,来提高铅酸电池的比能量。
申请号CN201510940669.3的申请专利申请公开了一种横第一筋条和竖第一筋条呈垂直方向,并将竖第一筋条延伸成极耳的结构;申请号CN200680017715.1的申请专利申请公开了一种电池竖第一筋条与横第一筋条不垂直,竖第一筋条偏向极耳位置的板栅结构;申请号CN201310289855.6的申请专利申请公开了一种扩展网结构的板栅,这种结构的板栅没有区分横第一筋条和竖第一筋条,纵横交叉的第一筋条分别与极耳中的电流方向呈一定角度,且这种结构的板栅没有竖边框。
现有板栅通常包括同一种金属材料成型的纵横交叉的第一筋条,例如,横第一筋条和竖第一筋条。铅酸电池在充放电过程中同一根横第一筋条上的电势相近,横第一筋条中通过的电流密度相对于竖第一筋条中的电流密度小很多,横第一筋条存在的作用是保持板栅的结构稳定,横第一筋条与竖第一筋条交织成网状栅格,栅格中分别填涂正、负铅膏形成铅酸电池的正、负极板。这种板栅的质量大,储能质量比小,不利于电子产品的轻量化。
因此,需要提供一种新的技术方案,以解决上述技术问题。
申请内容
本申请的一个目的是提供一种铅酸电池的板栅的新技术方案。
根据本申请的一个方面,提供了一种铅酸电池的板栅。该板栅包括:格栅状集流体,所述格栅状集流体包括多条沿预定方向延伸的第一筋条以 及极耳,所述极耳与所述第一筋条连接;以及框架,所述框架包括连接在一起的多个支撑条和边框,所述第一筋条与所述支撑条交叉,多条第一筋条的同一端分别与框架底边扣紧,所述第一筋条至少局部嵌入所述支撑条内,所述格栅状集流体与所述框架形成连接,以在所述板栅的中部形成网格结构,所述框架的密度小于所述格栅状集流体的密度。
可选地,多条所述第一筋条在同一端延伸并连接在一起,以形成集合部,所述集合部的末端形成所述极耳,所述集合部的极耳以外的部分形成所述第二筋条。
可选地,多条所述第一筋条的长度相等,所述集合部沿所述第一筋条的延伸方向向外凸出于所述框架;或者
所述极耳沿所述第一筋条的延伸方向向外凸出于所述框架,所述第二筋条位于所述框架包围的区域内。
可选地,多条所述第一筋条在同一端延伸出所述框架,延伸出所述框架的部分形成所述极耳。
可选地,多条所述第一筋条沿延伸方向分为第一部分和第二部分以及位于所述第一部分和所述第二部分之间的导通部,在所述第一部分附着有第一电极活性物质,在所述第二部分附着有第二电极活性物质,所述导通部形成所述极耳,所述第一部分和所述第二部分共用所述极耳。
可选地,所述第一筋条和所述支撑条均为多个,每个所述第一筋条与所有的所述支撑条形成连接,每个所述支撑条与所有的所述第一筋条形成连接。
可选地,所述框架包括相对设置的第一框架和第二框架,所述格栅状集流体位于所述第一框架和所述第二框架之间,所述格栅状集流体嵌入所述第一框架和所述第二框架内。
可选地,所述第一框架和所述第二框架均为塑料,且通过超声焊接连接在一起,在所述第一框架或所述第二框架的与所述多个第一筋条之间的间隙对应的部位形成有导能筋。
可选地,所述框架一体成型,所述支撑条在所述支撑条的延伸方向上设置有多个开口槽,多个所述开口槽中的一部分与其余部分的开口方向相 反,多个所述第一筋条分别卡入多个所述开口槽内。
可选地,所述框架与电极活性物质连接的部位设有凹槽。
可选地,在所述多条第一筋条与极耳相对的一端设置有凸出于所述第一筋条的帽头或者用于连接相邻的两个所述第一筋条的底筋,所述帽头或者所述底筋嵌入所述框架底边。
可选地,所述框架的材质为塑料、橡胶、树脂、纤维、陶瓷或者玻璃。
可选地,所述格栅状集流体的材质为铅、铅合金、铅内包覆铜丝、铝丝或碳纳米管纤维丝。
可选地,所述格栅状集流体为金属丝弯折成型、一体冲压成型或者铸造成型。
根据本公开的另一个方面,提供了一种铅酸电池。该电池包括:包括:电池槽,所述电池槽内形成腔体,在所述腔体内设置有一个或多个电池单体,所述电池单体包括正极板、负极板以及位于所述正极板和负极板之间的隔板,所述正极板和所述负极板包括本申请提供的板栅,多个所述正极板的极耳电连接,多个所述负极板的极耳电连接。
可选地,还包括汇流排,所述汇流排具有多组相对设置的第一夹板和第二夹板,所述极耳被夹持在所述第一夹板和所述第二夹板之间,多个所述正极板、多个所述负极板分别通过各自的所述汇流排形成电连接。
可选地,所述腔体形成多个并排设置的隔离腔室,在每个隔离腔室内设置有电池单体;多个所述电池单体形成串联,相邻的两个所述电池单体通过共用的所述汇流排形成串联。
可选地,还包括电池盖,所述电池盖上设置有密封胶槽,所述密封胶槽内填充的密封胶将所述汇流排密封在所述电池盖内。
可选地,所述汇流排的材质为铜及铜合金或者铝及铝合金。
根据本公开的第三方面,提供了一种铅酸电池。该电池包括:电池槽,所述电池槽内多个隔离腔室,在所述隔离腔室内设置有电池单体,所述电池单体包括正极板、负极板以及位于所述正极板和负极板之间的隔板,相邻的两个隔离腔室的电池单体共用本申请提供的所述的板栅,定义相邻的两个电池单体中电势较高的为第一电池单体,电势较低的一个为第二电池 单体,其中所述板栅第一部分位于所述第一电池单体所在的隔离腔室内,作为第一电池单体的负极;所述板栅第二部分位于所述第二电池单体所在的隔离腔室内,作为第二电池单体的正极,共用的所述极耳位于两个所述隔离腔室之间的隔离壁内。
本申请的一个技术效果在于,板栅的第一筋条具有集流的作用。支撑条与第一筋条交叉并相连,以形成网格结构。支撑条起到结构支撑的作用。网格结构用于附着电极活性物质。例如,电极活性物质为铅膏。在制作时,将铅膏涂覆或压合在网格结构上。所述框架的密度小于所述格栅状集流体的密度,该板栅具有质量轻的特点。
此外,由于多条所述第一筋条在每支撑条内均匀分布,故第一筋条在任一支撑条附近位置的电流密度分布均匀,甚至每根第一筋条都有相连的一个极耳,能有效地防止板栅由于局部电流过大造成局部温度过高。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本申请的实施例,并且连同说明书一起用于解释本申请的原理。
图1是根据本公开的一个实施例的栅板的结构示意图。
图2是图1中沿A-A线的局部放大图。
图3是图1中沿B-B线的局部放大图。
图4是图1另一个角度的示意图。
图5-6是根据本公开的一个实施例的格栅状集流体的结构示意图。
图7是根据本公开的一个实施例的框架的结构示意图。
图8是根据本公开的一个实施例的第二种框架的结构示意图。
图9是根据本公开的一个实施例的第二种栅板的结构示意图。
图10是根据本公开的一个实施例的第三种格栅状集流体的结构示意图。
图11是根据本公开的一个实施例的第三种栅板的结构示意图。
图12是根据本公开的一个实施例的第四种格栅状集流体的结构示意图。
图13是根据本公开的一个实施例的第五种格栅状集流体的结构示意图。
图14是根据本公开的一个实施例的电池单体上设置第一种汇流排连接的结构示意图。
图15是根据本公开的一个实施例的电池单体上设置第二种汇流排连接的结构构示意图。
图16是根据本公开的一个实施例的铅酸电池的结构示意图。
图17是根据本公开的一个实施例的汇流排的结构示意图。
图18是根据本公开的一个实施例的铅酸电池单体间设置第一种汇流排连接的俯视结构示意图。
图19是根据本公开的一个实施例的每个第一筋条延伸出框架形成多个极耳板栅的剖面结构示意图。
图20是根据本公开的一个实施例的第一筋条中分为第一部分和第二部分形成双极性板栅剖面结构示意图。
图21是根据图20双极性板栅制成的双极性极板结构示意图。
图22是根据本公开的一个实施例的铅酸电池的结构示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的 值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本公开的一个实施例,提供了一种铅酸电池的板栅。如图1所示,该板栅包括:格栅状集流体和框架。例如,板栅的整体厚度为0.5mm-12mm。其中,厚度为垂直于板栅的主表面的尺寸。
格栅状集流体用于集流。所述格栅状集流体包括第二筋条103a、多条沿预定方向延伸的第一筋条101以及极耳102。例如,多条第一筋条101的延伸方向平行于预定方向或者与预定方向基本平行。第一筋条101的横截面为圆形、半圆形、椭圆形、梯形、三角形、矩形等。例如,多条所述第一筋条101在同一端延伸并连接在一起,以形成集合部103。所述集合部103的末端形成所述极耳102,所述集合部103的极耳102以外的部分形成所述第二筋条103a。
多条所述第一筋条101的同一端分别与第二筋条103a的不同部位连接在一起。例如,第二筋条103a平行于水平方向,第一筋条101平行于竖直方向。第二筋条103a为一条或者两条。多条所述第一筋条101的一端分别与第二筋条103a形成连接,或者多条所述第一筋条101的两端分别与两条第二筋条103a形成连接。例如,格栅状集流体的整体呈矩形。不同部位连接是指,多条第一筋条101沿第二筋条103a的延伸方向依次设置,多个第二筋条103a不交汇于一点。
所述极耳102与所述第二筋条103a连接。例如,如图12、13所示,极耳102与第二筋条103a连接,通过第二筋条103a与极耳102连接。还可以是,如图5、6、10所示,极耳102引出多条线,以分别与多条第一筋条101连接。多条线共同构成第二筋条103a。例如,极耳102的厚度为0.2mm-8mm。该厚度范围保证极耳具有足够的结构强度。
可选地,所述格栅状集流体的材质为铅、铅合金、铅内包覆铜丝、铝丝或碳纳米管纤维丝。上述材料的导电性能,耐硫酸腐蚀性良好。在其他例子中,还包括铅包覆其它高强度纤维丝,以提高强度。
所述框架包括连接在一起的多个支撑条201。例如,如图7-8所示,框架还包括围合在一起的边框。边框包括位于上部的顶边框202、位于下部的底边框204,以及位于顶边框202和底边框204之间的两个侧边框203。框架的整体呈矩形。支撑条201的两端分别与两个侧边框203连接。支撑条201与顶边框202平行。
如图1、4所示,所述第一筋条101与所述支撑条201交叉。所述第一筋条101的至少局部嵌入所述支撑条201内。所述格栅状集流体与所述框架形成连接,以在所述板栅的中部形成网格结构。所述框架的密度小于所述格栅状集流体的密度。
在一个例子中,所述框架的密度小于或等于5g/cm 3。该密度远小于铅和铅合金的密度,从而使得板栅的质量有效地降低。例如,所述框架的材质为塑料、橡胶、树脂、纤维、陶瓷或者玻璃。上述材料具有耐酸性腐蚀的特点。例如,框架通过注塑的方式形成。
例如,框架的厚度为0.5mm-12mm。该厚度范围使得框架的结构强度高。
在该例子中,板栅的第一筋条101具有集流的作用。支撑条201与第一筋条101交叉并相连,以形成网格结构。支撑条201起到结构支撑的作用。网格结构用于附着电极活性物质。例如,电极活性物质为铅膏。在制作时,将铅膏涂覆或压合在网格结构上。所述极耳102位于所述多条第一筋条101的延伸方向的同一端。
此外,由于多条所述第一筋条101的同一端分别与第二筋条103a的不同部位连接在一起,故板栅各处的电流分布均匀,能有效地防止板栅由于局部电流过大造成局部温度过高。
本申请的申请人发现,现有的板栅均为同种金属材料,例如铅、铅合金等,纵横交错形成的网格结构。然而,由于极耳102位于板栅的一端,例如纵向筋条的一端,其中纵向为竖直方向。在工作时,纵向的筋条和横向的筋条中的电流不是均匀地。纵向筋条的电流远大于横向筋条的电流,其中横向为水平方向。而横向筋条主要起到结构支撑的作用。在本申请实施例中,将横向筋条换成密度小的材料(例如支撑条201),一方面对于板栅仍然能够保证良好的集流作用,另一方面能有效地降低板栅的整体质 量,提高铅酸电池的储能质量比。
在一个例子中,如图5所示,所述格栅状集流体包括迂回绕制的金属线。所述金属线的沿主方向延伸的部分为所述多条第一筋条101。主方向与第一筋条101的延伸方向一致。例如,金属线为铅丝、铅合金丝等。由金属线的一个端头开始经反复绕制,形成平面结构的格栅状集流体。优选地,多条第一筋条101相互平行,且间距相等。这使得板栅的电流更均匀。
绕制成型的方式使得格栅状集流体的加工、制作容易,加工成本低,加工精度高,适用于大规模生产。
此外,这种加工方式不需要单独设置第二筋条103a、极耳102等部件。
在一个例子中,如图1、4、5、6所示。多条所述第一筋条101在同一端延伸并集合在一起,以形成集合部103。所述集合部103的末端形成所述极耳102。所述集合部103的极耳102以外的部分形成所述第二筋条103a。例如图6所示,集合部103的末端经挤压形成设定形状的极耳102,以便于与汇流排连接。
在一个例子中,如图1所示,多条所述第一筋条101的长度相等。例如,第一筋条101平行于矩形的长边。所述集合部103沿所述第一筋条101的延伸方向向外凸出于所述框架。例如,集合部103凸出于顶边框202。在该例子中,第一筋条101的长度相等,在涂覆电极活性物质后形成的多个极板的反应面积相等,保证了极板的可靠性。
还可以是,如图10-11所示,所述极耳102沿所述第一筋条101的延伸方向向外凸出于所述框架。所述框架的所述极耳102以外的部分位于所述框架包围的区域内。例如,该部分位于顶边框202以内,仅极耳102凸出于顶边框202。这种设置方式能减少电极活性物质在涂敷过程中嵌入第二筋条103a的沟槽中,同时也降低了相邻的极板的第二筋条103a之间出现短路风险。
在其他示例中,所述格栅状集流体为冲压成型(如图12所示)或者铸造成型(如图13所示)。第二筋条103a、第一筋条101、极耳102是一体成型的,不需要单独进行连接。上述成型方式均能形成一体化的格栅状集流体,适用于大规模生产。
在一个例子中,如图4所示,所述框架包括相对设置的第一框架209和第二框架210。所述格栅状集流体位于所述第一框架209和所述第二框架210之间。所述格栅状集流体嵌入所述第一框架209和/或所述第二框架210内。
例如,第一框架209第二框架210均包括边框和位于边框内的支撑条201。在第一框架209和/或第二框架210上形成凹陷结构205。在进行安装时,格栅状集流体的第二筋条103a、第一筋条101卡入凹陷结构205中。第一框架209和第二框架210以正面相对的方式固定连接在一起。在该例子中,第一框架209和第二框架210能有效地保护格栅状集流体。
在一个例子中,如图7所示,所述第一框架209和所述第二框架210均为塑料,且通过超声焊接连接在一起。在所述第二框架210的四周边框及所述多个第一筋条101之间的间隙对应的部位形成有导能筋206。导能筋206在与框架209接触面方向向外凸出的条状凸起。导能筋206位于边框和支撑条201上。导能筋206的横截面为三角形、梯形等。在进行超声波焊接时,能量集中在导能筋206上,从而使导能筋206快速熔化。导能筋206有效地提高了第一框架209和第二框架210的焊接质量和焊接速度。
在一个例子中,如图8-9所示,所述支撑条201在所述支撑条201的延伸方向上设置有多个开口槽。多个所述开口槽中的一部分与其余部分的开口方向相反。例如,第一开口槽205a的开口方向朝向框架的一个表面。第二开口槽205b的开口方向朝向框架的另一个表面。多个所述第一筋条101分别卡入多个所述开口槽内。即一部分第一筋条101卡入第一开口槽205a内,另一部第一筋条101卡入第二开口槽205b内。这种设置方式使得框架被夹紧在多个第一筋条101之间,板栅的结构强度高。
例如,开口槽为圆形。圆形的直径与第一筋条101的直径相当。开口槽的开口端的尺寸为开口槽的半径的1.5倍-1.8倍。由于开口端的尺寸比第一筋条101的直径小,故能有效地防止第一筋条101从开口槽中脱离。
在一个例子中,相邻的所述开口槽的开口方向相反。在该例子中,多个第一筋条101间隔地设置在第一开口槽205a和第二开口槽205b内,这使得多个第一筋条101对于框架的夹紧作用更牢固。
在一个例子中,所述多个第一筋条101位于不同的平面上。例如,位于多个第一开口槽205a内的第一筋条101在同一平面上,位于第二开口槽205b内的第一筋条101位于另一个平面上。这种设置方式,充分利用了垂直于矩形的主表面的空间。相比于多个第一筋条101均位于同一平面的方式,这种方式使得电极活性物质不易发生脱落,能够更牢固的附着在网格结构上。
在一个例子中,所述第一筋条101的厚度为所述支撑条201的厚度的20%到80%。在该范围内,支撑条201的结构强度高,形成的板栅的结构强度高。
在一个例子中,在所述顶边框202上设置有限位槽。所述第二筋条103a卡入所述限位槽内。限位槽能有效地限定第二筋条103a的位置,防止第二筋条103a沿主表面移动。
在一个例子中,所述第一筋条101的厚度为所述第二筋条103a的厚度的25%~100%。在该例子中,第一筋条101起到结构支撑的作用,需要较强的结构强度。第二筋条103a的厚度比第一筋条101的厚度大,能够保证第二筋条103a到极耳102上的电流密度不减小。
在一个例子中,如图5-7、12-13所示,在所述多条第一筋条101的与所述第二筋条103a相对的一端设置有凸出于所述第一筋条101的帽头104a或者用于连接相邻的两个所述第一筋条101的底筋104b。所述框架包括与所述多个支撑条201连接的底边框204。在所述底边框204上设置有卡槽208。所述帽头104b或者所述底筋104a卡入所述卡槽208内。
在该例子中,通过设置底筋104b帽头104a以及卡槽208与第二筋条103a共同作用,能够有效地限定第一筋条101的位置,防止格栅状集流体相对于框架发声移动。
例如,帽头104a垂直于第一筋条101的两侧。帽头104a与第一筋条101形成T字形结构。例如,所述帽头104a的横截面积为所述第一筋条101的横截面积的1.5-5倍。这使得帽头104a与卡槽208的固定更牢固。
在一个例子中,在所述框架的与所述电极活性物质连接的部位设置有凹槽。凹槽能增大所述框架、第一筋条101与电极活性物质的接触面积, 使得框架与电极活性物质的连接更牢固。例如,如图2-3所示,凹槽为框架边框与支撑条201及第一筋条101围成的通孔内测的方向形成第一凹槽207a,或者在框架边框与支撑条201的与电极活性物质接触面上间断地设置多个间隔设计的第二凹槽207b。第二凹槽207b与所在支撑条或边框条的延伸方向垂直。凹槽的横截面为三角形、矩形、梯形、半圆形等,本领域技术人员可以根据实际需要进行选择。
在一个例子中,如图20-20所示,一个板栅分为两个区域。在该例子中,多条所述第一筋条101沿延伸方向分为第一部分S1和第二部分S2以及位于所述第一部分S1和所述第二部分S2之间的导通部。延伸方向即第一筋条101轴向延伸的方向。
在所述第一部分S1附着有第一电极活性物质,在所述第二部分S2附着有第二电极活性物质。即通过在不同的部分设置不同的电极活性物质,使得不同区域形成不同的电极。例如,第一电极活性物质为正极活性物质301;第二电极活性物质为负极活性物质302。导通部未附着电极活性物质。
所述导通部形成所述极耳102,所述第一部分S1和所述第二部分S2共用所述极耳102。第一部分S1所在的电极与第二部分S2所在的电极通过共用的极耳102导通。整体结构相当于两片图19所示的板栅的极耳102连接在一起,以成为共用的极耳。
图21揭示了图20所示的板栅涂覆正极活性物质301和负极活性物质302之后形成的双极性极板结构。
在组装到铅酸电池中时,第一部分S1和第二部分S2分别作为不同的电池单体的电极。例如,第二部分S2以及负极活性物质302作为一个电池单体的负极,第一部分S1以及正极活性物质301作为与上述电池单体相邻的另一电池单体的正极。通过这种设置方式,两个电池单体形成串联。由于共用的极耳102的存在,故两个电池单体之间不需要另外设置导通元件以进行导通。
此外,共用的极耳102的设置方式使得不同的电池单体之间的连接更牢固,铅酸电池的整体强度更高。
需要说明的是,每个隔离腔室内可以设置一个或者多个电池单体。多 个并排设置的电池单体可以通过该双极性极板,以负极-正极顺次连接的方式串联在一起。
在一个例子中,所述第一筋条101和所述支撑条201均为多个,每个所述第一筋条101与所有的所述支撑条201形成连接,每个所述支撑条201与所有的所述第一筋条101形成连接。这种设置方式,使得每个第一筋条101与每个支撑条201形成连接,板栅的结构强度更高。
根据本公开的另一个实施例,提供了一种铅酸电池。如图14-16所示,该铅酸电池包括:电池槽A1,电池槽A1内形成有腔体。在腔体内设置有一个或者多个电池单体。所述电池单体包括正极板B01、负极板B02以及位于所述正极板B01和负极板B02之间的隔板B03。隔板B03能够防止相邻的正极板B02和负极板B01间发生短路。所述正极板B01和所述负极板B02包括本申请提供的板栅。多个所述正极板B01的极耳电连接,多个所述负极板B02的极耳电连接。
如图14-16所示,电连接后的多个正极板B02的极耳,形成电池单体的正极汇流排。电连接后的多个负极板B01的极耳,形成电池单体的负极汇流排。该铅酸电池具有质量轻,储能质量比高的特点。
在一个例子中,如图17所示,铅酸电池单体还包括汇流排。所述汇流排具有多组相对设置的第一夹板401和第二夹板402。例如,汇流排包括连接板和并列设置在连接板的一个表面上的多组第一夹板401和第二夹板401。所述极耳102被夹持在所述第一夹板401和所述第二夹板402之间,多个所述正极板B01、多个所述负极板B02分别通过各自的所述汇流排形成电连接。汇流排将电池单体的多个电池单体的正极板B01的极耳并联在一起,将多个负极板B02的极耳并联在一起。两个夹板401,402既能有效地夹紧极耳又能对极耳起到保护作用。
可选地,回流排的材质可以是但不局限于铜、铝等金属材料。
在一个例子中,如图18所示,所述腔体形成多个并排设置的隔离腔室,例如六个。在每个隔离腔室内设置有电池单体。所述电池单体包括所述多个电池单体。多个所述电池单体形成串联。相邻的两个所述电池单体通过共用的汇流排A3形成串联。例如,汇流排A3横跨第三隔离腔室和第 四隔离腔室。汇流排A31横跨第四隔离腔室和第五隔离腔室。在该例子中,第三电池单体C3的负极与第四电池单体的正极C4共用一个汇流排A3。第四电池单体C4的负极与第五电池单体的正极C5共用一个汇流排A31。这种设置方式使得多个电池单体之间的串联变得容易。
在一个例子中,如图16所示,所述电池槽A1外设置有正极柱A6和负极柱A5,所述正极柱A6通过金属片电连接所述铅酸电池的作为正极的汇流排,所述负极柱A5通过金属片电连接所述铅酸电池的作为负极的汇流排。
在该例子中,将组合后的铅酸电池的正、负极对应连接在电池槽A1外设置的正极柱A6和负极柱A5上。这样,能够将电池内的电荷引到电池槽A1的外部,以便使用时连接导线。
例如,如图15所示,当板栅的框架材质是玻璃或陶瓷等耐等高温不变性材质时,所述极耳102、极柱B05与汇流排可通过常用的焊接技术熔接成一体,例如通过模腔烧焊成型、铸造成型的方式。这种设置方式,可以沿用原有的铅酸电池生产装备和工艺。
在一个例子中,铅酸电池还包括电池盖。所述电池盖上设置有密封胶槽。所述密封胶槽内填充的密封胶,以将所述汇流排密封在所述电池盖内。
在该例子中,通过密封胶密封电池槽A1的直口处,将汇流排密封。可以避免汇流排被铅酸电池内的硫酸腐蚀,密封胶起到了粘接电池槽和电池盖以及保护汇流排以及其他元件的作用。
根据本申请的第三个实施例,提供了一种铅酸电池。如图22所示,该铅酸电池包括电池槽。所述电池槽内设置有多个隔离腔室,例如,6个。在所述隔离腔室内设置有多个电池单体,例如4个。所述电池单体包括正极板B011、负极板B012以及位于所述正极板B011和负极板B012之间的隔板B013。相邻的两个隔离腔室的电池单体共用如图20所示的板栅。定义相邻的两个电池单体中电势较高的为第一电池单体F1。例如,第一电池单体F1位于顶端的隔离腔室。电势较低的一个为第二电池单体F2。例如,第二电池单体F2紧邻顶端的隔离腔室。该铅酸电池的正极D1从第一隔离腔室的侧壁向外延伸出。负极D2从低端隔离腔室的侧壁向外延伸出。
其中,板栅所述第一部分位于所述第一电池单体F1所在的隔离腔室内,作为第一电池单体F1的负极。所述第二部分位于所述第二电池单体F2所在的隔离腔室内,作为第二电池单体F2的正极。共用的所述极耳位于两个所述隔离腔室之间的隔离壁B014内。隔离壁B014与共用的极耳102之间形成密封。本领域技术人员可以采用本领域常用的密封方式将共用的极耳102与隔离壁B014进行密封。
第一电池单体和第二电池单体不限于图中所示的两个,还可以是任意相邻的两个电池单体。
在该例子中,该板栅能够将两个电池单体串联在一起,这使得铅酸电池的结构更简单。
虽然已经通过示例对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (20)

  1. 一种铅酸电池的板栅,其特征在于:包括:
    格栅状集流体,所述格栅状集流体包括多条沿预定方向延伸的第一筋条以及极耳,所述极耳与所述第一筋条连接;以及
    框架,所述框架包括连接在一起的多个支撑条和边框,所述第一筋条与所述支撑条交叉,多条第一筋条的同一端分别与框架底边扣紧,所述第一筋条至少局部嵌入所述支撑条内,所述格栅状集流体与所述框架形成连接,以在所述板栅的中部形成网格结构,所述框架的密度小于所述格栅状集流体的密度。
  2. 根据权利要求1所述的板栅,其特征在于:多条所述第一筋条在同一端延伸并连接在一起,以形成集合部,所述集合部的末端形成所述极耳,所述集合部的极耳以外的部分形成所述第二筋条。
  3. 根据权利要求1或2所述的板栅,其特征在于:多条所述第一筋条的长度相等,所述集合部沿所述第一筋条的延伸方向向外凸出于所述框架;或者
    所述极耳沿所述第一筋条的延伸方向向外凸出于所述框架,所述第二筋条位于所述框架包围的区域内。
  4. 根据权利要求1-3任一项所述的板栅,其特征在于:多条所述第一筋条在同一端延伸出所述框架,延伸出所述框架的部分形成所述极耳。
  5. 根据权利要求1-4任一项所述的板栅,其特征在于:多条所述第一筋条沿延伸方向分为第一部分和第二部分以及位于所述第一部分和所述第二部分之间的导通部,在所述第一部分附着有第一电极活性物质,在所述第二部分附着有第二电极活性物质,所述导通部形成所述极耳,所述第一部分和所述第二部分共用所述极耳。
  6. 根据权利要求1-5任一项所述的板栅,其特征在于:所述第一筋条和所述支撑条均为多个,每个所述第一筋条与所有的所述支撑条形成连接,每个所述支撑条与所有的所述第一筋条形成连接。
  7. 根据权利要求1-6任一项所述的板栅,其特征在于:所述框架包括相对设置的第一框架和第二框架,所述格栅状集流体位于所述第一框架和所述第二框架之间,所述格栅状集流体嵌入所述第一框架和所述第二框架内。
  8. 根据权利要求1-7任一项所述的板栅,其特征在于:所述第一框架和所述第二框架均为塑料,且通过超声焊接连接在一起,在所述第一框架或所述第二框架的与所述多个第一筋条之间的间隙对应的部位形成有导能筋。
  9. 根据权利要求1-8任一项所述的板栅,其特征在于:所述框架一体成型,所述支撑条在所述支撑条的延伸方向上设置有多个开口槽,多个所述开口槽中的一部分与其余部分的开口方向相反,多个所述第一筋条分别卡入多个所述开口槽内。
  10. 根据权利要求1-9任一项所述的板栅,其特征在于:所述框架与电极活性物质连接的部位设有凹槽。
  11. 根据权利要求1-10任一项所述的板栅,其特征在于:在所述多条第一筋条与极耳相对的一端设置有凸出于所述第一筋条的帽头或者用于连接相邻的两个所述第一筋条的底筋,所述帽头或者所述底筋嵌入所述框架底边。
  12. 根据权利要求1-11中的任意一项所述的板栅,其特征在于:所 述框架的材质为塑料、橡胶、树脂、纤维、陶瓷或者玻璃。
  13. 根据权利要求1-12中的任意一项所述的板栅,其特征在于:所述格栅状集流体的材质为铅、铅合金、铅内包覆铜丝、铝丝或碳纳米管纤维丝。
  14. 根据权利要求1-13中的任意一项所述的板栅,其特征在于:所述格栅状集流体为金属丝弯折成型、一体冲压成型或者铸造成型。
  15. 一种铅酸电池,其特征在于:包括:电池槽,所述电池槽内形成腔体,在所述腔体内设置有一个或多个电池单体,所述电池单体包括正极板、负极板以及位于所述正极板和负极板之间的隔板,所述正极板和所述负极板包括如权利要求1-4以及6-14中的任意一项所述的板栅,多个所述正极板的极耳电连接,多个所述负极板的极耳电连接。
  16. 根据权利要求15所述的铅酸电池,其特征在于:还包括汇流排,所述汇流排具有多组相对设置的第一夹板和第二夹板,所述极耳被夹持在所述第一夹板和所述第二夹板之间,多个所述正极板、多个所述负极板分别通过各自的所述汇流排形成电连接。
  17. 根据权利要求15或16所述的铅酸电池,其特征在于:所述腔体形成多个并排设置的隔离腔室,在每个隔离腔室内设置有电池单体;多个所述电池单体形成串联,相邻的两个所述电池单体通过共用的所述汇流排形成串联。
  18. 根据权利要求15-17任一项所述的铅酸电池,其特征在于:还包括电池盖,所述电池盖上设置有密封胶槽,所述密封胶槽内填充的密封胶,以将所述汇流排密封在所述电池盖内。
  19. 根据权利要求15-18任一项所述的铅酸电池,其特征在于:所述汇流排的材质为铜及铜合金或者铝及铝合金。
  20. 一种铅酸电池,其特征在于:包括:电池槽,所述电池槽内设置有多个隔离腔室,在所述隔离腔室内设置有电池单体,所述电池单体包括正极板、负极板以及位于所述正极板和负极板之间的隔板,相邻的两个隔离腔室的电池单体共用如权利要求5所述的板栅,定义相邻的两个电池单体中电势较高的为第一电池单体,电势较低的一个为第二电池单体,其中所述板栅第一部分位于所述第一电池单体所在的隔离腔室内,作为第一电池单体的负极;所述板栅第二部分位于所述第二电池单体所在的隔离腔室内,作为第二电池单体的正极,共用的所述极耳位于两个所述隔离腔室之间的隔离壁内。
PCT/CN2020/099902 2019-08-02 2020-07-02 铅酸电池的板栅以及铅酸电池 WO2021022954A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921251389.1 2019-08-02
CN201910713856.6 2019-08-02
CN201910713856.6A CN112310410A (zh) 2019-08-02 2019-08-02 铅酸电池的板栅以及铅酸电池
CN201921251389.1U CN210245618U (zh) 2019-08-02 2019-08-02 铅酸电池的板栅以及铅酸电池

Publications (1)

Publication Number Publication Date
WO2021022954A1 true WO2021022954A1 (zh) 2021-02-11

Family

ID=74503704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099902 WO2021022954A1 (zh) 2019-08-02 2020-07-02 铅酸电池的板栅以及铅酸电池

Country Status (1)

Country Link
WO (1) WO2021022954A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140735A (zh) * 2021-03-16 2021-07-20 风帆有限责任公司 蓄电池板栅及制备方法
CN113193175A (zh) * 2021-03-16 2021-07-30 风帆有限责任公司 铅酸蓄电池
CN113964328A (zh) * 2021-11-25 2022-01-21 超威电源集团有限公司 一种复合板栅组、铅酸蓄电池及其制作方法
WO2022257297A1 (zh) * 2021-06-07 2022-12-15 天能电池集团股份有限公司 一种增容式双极性蓄电池堆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964878A (en) * 1988-06-01 1990-10-23 Electrosource, Inc. Lead-acid rechargeable storage battery
CN1136715A (zh) * 1996-04-17 1996-11-27 中国轻工总会化学电源研究所 蓄电池电极板
CN2403130Y (zh) * 1999-11-09 2000-10-25 武汉银泰蓄电池有限公司 铅布铅酸蓄电池
JP2003346767A (ja) * 2002-05-30 2003-12-05 Matsushita Electric Ind Co Ltd 蓄電池用セパレータ及びそれを用いた鉛蓄電池
CN101694878A (zh) * 2009-10-14 2010-04-14 刘粤荣 一种用于铅蓄电池的混聚式集电体
CN105576250A (zh) * 2015-12-15 2016-05-11 超威电源有限公司 一种电池板栅
CN107069044A (zh) * 2017-04-12 2017-08-18 超威电源有限公司 一种长寿命铅酸蓄电池
CN110165224A (zh) * 2019-05-15 2019-08-23 佛山赛能新能源有限公司 一种长寿命极板及其制备方法
CN209675402U (zh) * 2019-05-15 2019-11-22 佛山赛能新能源有限公司 一种无横筋条的长寿命板栅
CN210245618U (zh) * 2019-08-02 2020-04-03 山东牛千里电源科技有限公司 铅酸电池的板栅以及铅酸电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964878A (en) * 1988-06-01 1990-10-23 Electrosource, Inc. Lead-acid rechargeable storage battery
CN1136715A (zh) * 1996-04-17 1996-11-27 中国轻工总会化学电源研究所 蓄电池电极板
CN2403130Y (zh) * 1999-11-09 2000-10-25 武汉银泰蓄电池有限公司 铅布铅酸蓄电池
JP2003346767A (ja) * 2002-05-30 2003-12-05 Matsushita Electric Ind Co Ltd 蓄電池用セパレータ及びそれを用いた鉛蓄電池
CN101694878A (zh) * 2009-10-14 2010-04-14 刘粤荣 一种用于铅蓄电池的混聚式集电体
CN105576250A (zh) * 2015-12-15 2016-05-11 超威电源有限公司 一种电池板栅
CN107069044A (zh) * 2017-04-12 2017-08-18 超威电源有限公司 一种长寿命铅酸蓄电池
CN110165224A (zh) * 2019-05-15 2019-08-23 佛山赛能新能源有限公司 一种长寿命极板及其制备方法
CN209675402U (zh) * 2019-05-15 2019-11-22 佛山赛能新能源有限公司 一种无横筋条的长寿命板栅
CN210245618U (zh) * 2019-08-02 2020-04-03 山东牛千里电源科技有限公司 铅酸电池的板栅以及铅酸电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140735A (zh) * 2021-03-16 2021-07-20 风帆有限责任公司 蓄电池板栅及制备方法
CN113193175A (zh) * 2021-03-16 2021-07-30 风帆有限责任公司 铅酸蓄电池
WO2022257297A1 (zh) * 2021-06-07 2022-12-15 天能电池集团股份有限公司 一种增容式双极性蓄电池堆
CN113964328A (zh) * 2021-11-25 2022-01-21 超威电源集团有限公司 一种复合板栅组、铅酸蓄电池及其制作方法

Similar Documents

Publication Publication Date Title
WO2021022954A1 (zh) 铅酸电池的板栅以及铅酸电池
CN107305942B (zh) 一种卷绕式负极片以及设有该负极片的电芯及锂浆料电池
CN210245618U (zh) 铅酸电池的板栅以及铅酸电池
JP5762537B2 (ja) 双極電極を有する角形単電池を有する組電池
JP5355929B2 (ja) 密閉型電池及びその製造方法
CN201122626Y (zh) 一种叠片式电池的极片及包括该极片的极芯和电池
CN101589487B (zh) 锂二次电池
CN112186269B (zh) 一种锂浆料电池的电芯
CN209571433U (zh) 二次电池以及电池模组
CN109687011B (zh) 一种叠片锂离子电池及其制作方法
CN212571269U (zh) 一种软包锂电池
CN111564638B (zh) 一种铅蓄电池用板栅及其制备方法
KR20110084977A (ko) 비수전해질 이차전지용 집전체, 전극, 및 비수전해질 이차전지, 및 그 제조방법
KR20160129571A (ko) 전극 조립체 및 이를 포함하는 이차전지
CN110165275A (zh) 电池及电池的制造方法
US8597817B2 (en) Bipolar battery and plate
CN112310410A (zh) 铅酸电池的板栅以及铅酸电池
CN209312934U (zh) 一种叠片锂离子电池
JP2022071868A (ja) ユニエレクトロ格子鉛蓄電池とその製造方法および性能
KR20080047165A (ko) 전극 조립체 및 이를 구비하는 이차전지
CN109326797B (zh) 一种铅蓄电池复合板栅及其制备方法
CN219180365U (zh) 锂离子电容器
CN204991877U (zh) 一种多极耳锂离子动力电池
CN217588983U (zh) 一种中间出极耳式正极片、电芯及电池
CN114725531A (zh) 一种阀控式铅酸蓄电池极群及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850380

Country of ref document: EP

Kind code of ref document: A1