WO2021022607A1 - 一种低功函导电复合电极、其制备和应用 - Google Patents

一种低功函导电复合电极、其制备和应用 Download PDF

Info

Publication number
WO2021022607A1
WO2021022607A1 PCT/CN2019/104671 CN2019104671W WO2021022607A1 WO 2021022607 A1 WO2021022607 A1 WO 2021022607A1 CN 2019104671 W CN2019104671 W CN 2019104671W WO 2021022607 A1 WO2021022607 A1 WO 2021022607A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite electrode
polymer
metal
preparation
solution
Prior art date
Application number
PCT/CN2019/104671
Other languages
English (en)
French (fr)
Inventor
周印华
孙露露
覃飞
王文
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021022607A1 publication Critical patent/WO2021022607A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of optoelectronic materials, and more specifically, relates to a low work function conductive composite electrode, preparation and application thereof.
  • optoelectronic devices have gradually become a research focus.
  • transparent electrodes play a very important role. It is used to collect and inject carriers, transmit photons, etc.
  • the most commonly used transparent electrodes include indium tin oxide (ITO), metal nanowires (gold, silver, etc.), and polymer conductive polymers (PEDOT:PSS, etc.), which have been successfully applied to various optoelectronic devices.
  • ITO indium tin oxide
  • metal nanowires gold, silver, etc.
  • PEDOT:PSS polymer conductive polymers
  • ITO electrodes require magnetron sputtering under vacuum, which requires high equipment requirements and a complicated preparation process; metal nanowire films have high roughness, which is not conducive to the preparation of subsequent device functional layers; PEDOT:PSS films have a relatively long wavelength range. Strong absorption is not conducive to the passage of photons.
  • these transparent electrodes have relatively high work functions. When they are used as cathodes, cathode interface materials are often required to modify the electrodes and reduce their work functions.
  • the present invention provides a low work function conductive composite electrode, its preparation and application, which is achieved by combining the amino-containing polymer with the metal ion and the metal nanowire in a solution system. Coordination blending occurs to obtain the low work function conductive transparent composite electrode of the present invention, thereby solving the technical problem of the lack of solution processing in the prior art for preparing low work function conductive transparent electrodes.
  • step (2) Mixing the first solution obtained in step (1) with the metal nanowire solution to cause the amino group in the polymer solution to undergo a coordination reaction with the metal nanowire to obtain a composite electrode precursor;
  • step (3) The composite electrode precursor solution obtained in step (2) is coated on the surface of the substrate, and the conductive composite electrode is obtained after drying.
  • the polymer molecules in the polymer solution are one or more of PEI, PEIE, PAAm, PAM and PFN.
  • the metal ion in the metal organic salt is one or more of Zn, Sn and Ti, and the anion of the metal organic salt is acetate ion and/or acetylacetone ion.
  • the metal nanowire is one or more of Ag nanowire, Cu nanowire and Au nanowire.
  • the mass ratio of the polymer, the metal organic salt, and the metal nanowire in the polymer solution is 1:(5-20):(2-10).
  • a conductive composite electrode prepared by the preparation method.
  • the composite electrode which is used as an electrode material for solar cells or light-emitting diodes.
  • a light emitting diode including the low work function conductive transparent composite electrode.
  • the low work function conductive transparent composite electrode provided by the present invention is a composite electrode obtained by the coordination reaction of amino groups in polymer molecules with metal ions and metal nanowires.
  • the composite electrode can be prepared in solution with low work function and filling At this stage, there is no gap in the preparation of low work function transparent cathodes by solution method.
  • the low work function conductive transparent composite electrode provided by the present invention does not require modification of the cathode interface material, can be directly used in the cathode of the optoelectronic device, and simplifies the device preparation process.
  • the low work function conductive transparent composite electrode provided by the present invention is formed by the coordination of polymer molecules, metal ions, and metal nanowires. The interaction of each part is strong. Compared with the traditional direct metal nanowire The wire is coated on the substrate to prepare the electrode.
  • the electrode material of the invention has strong contact force with the substrate and is not easy to fall off.
  • the low work function conductive transparent composite electrode of the present invention has a wide application range, can be processed in a solution, and is suitable for different (rigid, flexible) substrates and different types of optoelectronic devices.
  • the low work function conductive transparent composite electrode in the present invention has a simple preparation process, low work function, good electrical conductivity and high transparency.
  • the present invention is based on a common polymer material that can reduce the work function of the electrode, introduces metal ions and metal nanowires, and the amino groups in the polymer molecules coordinate with the metal ions and the metal nanowires at the same time to obtain the low Work function conductive transparent composite electrode.
  • the obtained composite electrode has low roughness, work function lower than 4.35 eV, and the light transmittance of the electrode is higher than 85% when the sheet resistance is 30 ohms. It can also be used as a cathode without adding cathode interface modification materials. In different optoelectronic devices.
  • Figure 1 is a preparation flow chart of a low work function conductive transparent composite electrode of the present invention
  • Figure 2 (a) a schematic diagram of the organic solar cell structure of the present invention, and Figure 2 (b) the current density-voltage (J-V) curve of the corresponding device structure;
  • Fig. 3(a) is a schematic diagram of the light emitting diode structure of the present invention, and Fig. 3(b) the EQE curve of the corresponding device structure.
  • the present invention provides a method for preparing a low work function conductive composite electrode, which includes the following steps:
  • step (2) Mixing the first solution obtained in step (1) with the metal nanowire solution to cause the amino group in the polymer solution to undergo a coordination reaction with the metal nanowire to obtain a composite electrode precursor;
  • step (3) The composite electrode precursor solution obtained in step (2) is coated on the surface of the substrate, and the conductive composite electrode is obtained after drying.
  • the polymer solution described in the present invention is a solution obtained by dissolving a polymer in an organic solvent.
  • the organic solvent only needs to be able to dissolve the polymer molecules of the present invention, for example, dimethoxyethanol, isopropanol and the like.
  • the metal nanowire solution of the present invention can be directly purchased and can also be configured according to needs.
  • the metal ion of the present invention is used to coordinate with the amino group in the polymer to improve the conductivity of the polymer.
  • the metal ion is one or more of zinc (Zn), tin (Sn), and titanium (Ti).
  • the anion of the metal organic salt is one or more of acetate ion and acetylacetone ion.
  • the metal nanowires of the present invention are used to further improve the conductivity of the composite electrode.
  • the metal nanowire is one or more of gold (Au), silver (Ag), and copper (Cu).
  • the mass ratio of the polymer, the metal organic salt, and the metal nanowire in the polymer solution is 1:(5-20):(2-10).
  • the mass ratio of polymer to metal nano-ion affects the conductivity of the composite electrode, and the mass ratio of polymer to metal nanowire affects the light transmittance and film-forming properties of the composite electrode.
  • the mass fraction of polymer in the composite electrode precursor solution is 0.05% to 0.1%, and the polymer mass fraction affects the conductivity and work function of the composite electrode.
  • the substrate used in the present invention is a transparent substrate, such as glass, and a flexible transparent substrate can also be used.
  • the present invention provides a low work function conductive transparent composite electrode, which is a composite electrode obtained by the coordination reaction of amino groups in polymer molecules with metal ions and metal nanowires, and its schematic diagram is shown in Figure 1.
  • the polymer molecule is an interface modification material containing an amino group; and the amino group undergoes a coordination reaction with the metal ion and the metal nanowire to obtain the composite electrode.
  • the novel low work function conductive transparent composite electrode provided by the present invention combines the advantages of amino polymers and metal nanowires, and the obtained composite electrode has low work function, good conductivity and high transparency.
  • the cathode in the prior art optoelectronic device needs to be modified with cathode interface materials to adjust the work function of the electrode itself, so as to effectively separate and inject electrons.
  • the present invention combines amino polymers, metal ions and metal nanowires, and they obtain conductive and transparent composite electrodes with low work function through coordination effects, which can be directly used as cathodes in optoelectronic devices.
  • the present invention provides a low work function conductive transparent composite electrode, which comprises a chelate compound of the amino group in the polymer molecule and the metal ion, and also comprises the amino group in the polymer molecule and the metal nanowire The chelate.
  • the conductive transparent composite electrode provided in the embodiments of the present invention has a work function lower than 4.35 eV, and is a low work function conductive transparent composite electrode.
  • the metal nanowire solution and the polymer solution containing amino groups were directly mixed to prepare the composite electrode. It was found that the conductivity of the mixed solution was greatly lower than that of the metal nanowire solution itself.
  • the polymer solution is first coordinated with the metal ion, and then mixed with the metal nanowire solution. It is found that the conductivity of the obtained electrode precursor solution is equivalent to that of the metal nanowire.
  • the polymer solution itself is not conductive, and after coordination with metal ions, the conductivity of the obtained first solution is enhanced.
  • the first solution When the first solution is further mixed and coordinated with the metal nanowire, it may be because the coordination ability of the polymer's amino group and the metal ion in step (1) is reduced, and the effect on the conductive node of the metal nanowire is small.
  • the electrical conductivity of the composite precursor solution is thereby ensured that the electrical conductivity of the composite electrode of the present invention is excellent.
  • the composite electrode due to the introduction of the interface modification material polymer, the composite electrode has a low work function.
  • the coordination effect of the metal ion and the amino polymer improves the conductivity of the amino polymer, and by controlling the metal nanowire and the coordinated polymer-metal ion chelate The ratio makes the prepared composite electrode low in roughness, which well solves the problem of high roughness of the traditional metal nanowire electrode film.
  • the present invention also provides the application of the composite electrode as an electrode material for solar cells or light-emitting diodes.
  • the present invention also provides a solar cell, comprising the low work function conductive transparent composite electrode of the present invention.
  • the present invention also provides a light emitting diode, which includes the low work function conductive transparent composite electrode of the present invention.
  • the preparation method of the low work function conductive transparent composite electrode of the present invention and the preparation method of the organic solar cell directly using it as the cathode are as follows:
  • Fig. 1 is a preparation flow chart of a low work function conductive transparent composite electrode of the present invention.
  • the composite electrode precursor solution was spin-coated on the cleaned glass slide at 2000 revolutions per minute, three layers were spin-coated, and then heated at 150°C for 10 minutes;
  • PBDB-T-2F Y6 solution was spin-coated on the above substrate (total concentration is 16 mg/ml, the mass ratio is 1:1.2, the solvent is chloroform), the rotation speed is 2500 rpm, the time is 60 seconds; then it is annealed at 100°C for 5 minutes; finally the device is moved to the vapor deposition chamber, and the vacuum pressure is less than 5* After 10 -7 Torr, 15nm MoO 3 and 100nm silver are thermally evaporated.
  • the work function of the composite electrode was tested by Kelvin probe, and the work function of the composite electrode prepared in this example was 4.3 eV.
  • the preparation method of the organic solar cell with the low work function conductive transparent composite electrode as the cathode and the cathode interface modification layer of the present invention is as follows:
  • Preparation of low work function conductive transparent composite electrode precursor first prepare a PEI solution with a mass fraction of 0.5%, the solvent is 2-methoxyethanol, and then add zinc acetate to make the quality of the polymer and the quality of zinc acetate It is 1:15, stirring for 2h until clear; then adding Ag nanowires to make the mass fraction of polymer PEI 0.05%, and the mass ratio of polymer to Ag nanowires is 1:4.
  • the work function of the composite electrode was tested by a Kelvin probe, and the work function of the composite electrode prepared in this example was 4.3 eV.
  • Preparation of low work function conductive transparent composite electrode precursor (polypropylene amine PAM as polymer): first prepare a 0.5% PAM solution with a mass fraction of 2-methoxyethanol, and then add zinc acetate to make The mass of the polymer and the mass of zinc acetate are 1:15, and the mixture is stirred for 2 hours to clear; then Ag nanowires are added to make the mass fraction of polymer PAM 0.05%, and the mass ratio of polymer to Ag nanowires is 1:4.
  • the work function of the composite electrode was tested by a Kelvin probe, and the work function of the composite electrode prepared in this example was 4.28 eV.
  • the work function of the composite electrode was tested by a Kelvin probe, and the work function of the composite electrode prepared in this example was 4.32 eV.
  • the work function of the composite electrode was tested by a Kelvin probe, and the work function of the composite electrode prepared in this example was 4.32 eV.
  • the preparation method of the light-emitting diode of the present invention is as follows:
  • Preparation of low work function conductive transparent composite electrode precursor first prepare a PEI solution with a mass fraction of 0.5%, the solvent is 2-methoxyethanol, and then add zinc acetate to make the quality of the polymer and the quality of zinc acetate It is 1:15, stirring for 2h until clear; then adding Ag nanowires to make the mass fraction of polymer PEI 0.05%, and the mass ratio of polymer to Ag nanowires is 1:4.
  • the composite electrode precursor was spin-coated on the cleaned glass sheet at 2000 revolutions per minute, three layers were spin-coated, and then heated at 150°C for 10 minutes; then a layer of zinc oxide film with a thickness of 100 nanometers was coated on the composite electrode at 150°C heating 10 minutes; in the above substrate solution was spin-coated CdSe, 2000 rpm / minute, 60 seconds; 100 deg.] C and then annealed 10 minutes; finally the devices were moved deposition compartment, the vacuum pressure of less than 5 * 10 - After 7 Torr, 10nm CBP, 10nm MoO 3 and 100nm silver are thermally evaporated.
  • the external quantum efficiency of the light-emitting diode prepared by the method of this example is shown in Figure 3(b).
  • the external quantum efficiency of the light-emitting diode reaches 13.2%.
  • the solvent is 2-methoxyethanol
  • Ag nanowires so that the mass fraction of polymer PEI is 0.05%, and the mass ratio of polymer to Ag nanowires is 1:4 .
  • the composite electrode precursor was spin-coated on the cleaned glass slide at 2000 revolutions per minute, and three layers were spin-coated. After spin coating, the square resistance of the composite electrode without metal ions was tested by a four-probe instrument. At this time, the resistance was greater than 10K ohms, which is no longer suitable for device electrodes.
  • the work function of the composite electrode was tested by a Kelvin probe, and the work function of the composite electrode prepared in this example was 4.6 eV.
  • the organic solar cell devices prepared by the method of this example are all short-circuited, mainly due to the high roughness of the Ag nanowires, which causes the contact between the upper and lower electrodes to cause a short circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种低功函导电复合电极、其制备和应用。将含有氨基的聚合物与金属离子和金属纳米线先后发生配位共混,获得低功函导电透明复合电极。基于常见的可降低电极功函数的聚合物材料,引入金属离子以及金属纳米线,聚合物分子中的氨基同时与金属离子和金属纳米线发生配位作用,得到该低功函导电透明复合电极。所得到的复合电极,粗糙度低,功函数低于4.35eV,方块电阻在30欧姆时电极的透光率高于85%,在不增加阴极界面修饰材料时,也能够作为阴极适用于不同光电器件中。

Description

一种低功函导电复合电极、其制备和应用 【技术领域】
本发明属于光电材料技术领域,更具体地,涉及一种低功函导电复合电极、其制备和应用。
【背景技术】
近年来,随着光电信息的高速发展,光电子器件也逐渐成为了人们的研究热点。在光电器件中,透明电极有着非常重要的作用。它被用来收集、注入载流子,传输光子等。
最常用的透明电极包括氧化铟锡(ITO)、金属纳米线(金、银等)、高分子导电聚合物(PEDOT:PSS等),它们已经被成功的应用于各种光电器件。
然而,ITO电极的制备需要在真空下磁控溅射,对设备要求高,制备过程复杂;金属纳米线薄膜粗糙度高,不利于后续器件功能层的制备;PEDOT:PSS薄膜在长波段有较强的吸收,不利于光子的通过。另外,这些透明电极的功函数都比较高,当用它们作为阴极时,往往需要阴极界面材料来修饰电极,降低它们的功函数。
另外,现阶段,可溶液加工低功函导电透明电极还处于空白。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种低功函导电复合电极、其制备和应用,其通过在溶液体系中,将含有氨基的聚合物与金属离子和金属纳米线先后发生配位共混,获得本发明低功函导电透明复合电极,由此解决现有技术缺乏溶液加工制备低功函导电透明电极的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种导电复合电极的制备方法,包含如下步骤:
(1)将含有氨基的聚合物溶液与金属有机盐混合,使所述聚合物溶液中的氨基与金属有机盐的金属离子发生配位反应,获得第一溶液;
(2)将步骤(1)所得第一溶液与金属纳米线溶液混合,使所述聚合物溶液中的氨基与金属纳米线发生配位反应,得到复合电极前驱液;
(3)将步骤(2)所得复合电极前驱液涂覆在基底表面,干燥后获得所述导电复合电极。
优选地,所述聚合物溶液中的聚合物分子为PEI、PEIE、PAAm、PAM和PFN中的一种或多种。
优选地,所述金属有机盐中的金属离子为Zn、Sn和Ti中的一种或多种,所述金属有机盐的阴离子为醋酸根离子和/或乙酰丙酮离子。
优选地,所述金属纳米线为Ag纳米线、Cu纳米线和Au纳米线中的一种或多种。
优选地,所述聚合物溶液中的聚合物、所述金属有机盐与所述金属纳米线的质量比为1:(5~20):(2~10)。
优选地,所述复合电极前驱液中聚合物的质量分数为0.05%~0.1%。
按照本发明的另一个方面,提供了一种所述的制备方法制备得到的导电复合电极。
按照本发明的另一个方面,提供了一种所述的复合电极的应用,用作太阳能电池或发光二极管的电极材料。
按照本发明的另一个方面,提供了一种太阳能电池,包括所述的低功函导电透明复合电极。
按照本发明的另一个方面,提供了一种发光二极管,包括所述的低功函导电透明复合电极。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明提供了一种低功函导电透明复合电极的制备方法,其通过 在溶液体系中,将含有氨基的聚合物与金属离子和金属纳米线先后发生配位共混获得本发明低功函导电透明复合电极,带有氨基的聚合物分子提供了低功函数的特性,金属离子的引入增加了聚合物分子本身的导电性,金属纳米线进一步增加了复合电极的导电性,将这种复合电极用作阴极时,无需额外增加阴极界面修饰层,能够很好的适用于各种光电器件中,由此解决了现阶段光电器件中可溶液制备的低功函透明电极欠缺的问题。相对于传统方法通过磁控溅射制备透明ITO电极,制备工艺简单且更易规模化。
(2)本发明提供的低功函导电透明复合电极,其为聚合物分子中的氨基与金属离子以及金属纳米线发生配位反应得到的复合电极,复合电极可溶液制备,功函数低,填补了现阶段缺乏溶液法制备低功函数透明阴极的空白。
(3)本发明提供的低功函导电透明复合电极,无需阴极界面材料的修饰,可以直接用于光电器件的阴极,简化了器件制备工艺。
(4)本发明提供的低功函导电透明复合电极,其通过聚合物分子与金属离子、金属纳米线的配位作用复合而成,各部分相互作用力强,相对于传统的直接将金属纳米线涂覆在基底上制得电极,本发明的电极材料与基底接触力强,不容易脱落。
(5)本发明中的低功函导电透明复合电极适用范围广,可溶液加工,适用于不同(刚性、柔性)基底以及不同种类的光电器件。
(6)本发明中的低功函导电透明复合电极制备工艺简单,功函数低,电导性好,透明度高。
(7)本发明基于常见的可降低电极功函数的聚合物材料,引入金属离子以及金属纳米线,聚合物分子中的氨基同时与金属离子和金属纳米线发生配位作用,得到所述的低功函导电透明复合电极。得到的复合电极,粗糙度低,功函数低于4.35eV,方块电阻在30欧姆时电极的透光率高于85%,在不增加阴极界面修饰材料时,也能够很好的作为阴极适用于不同光电器 件中。
【附图说明】
图1是本发明的一种低功函导电透明复合电极的制备流程图;
图2(a)本发明的有机太阳能电池结构一种示意图,图2(b)相应器件结构的电流密度-电压(J-V)曲线;
图3(a)本发明的发光二极管结构一种示意图,图3(b)相应器件结构的EQE曲线。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种低功函导电复合电极的制备方法,包括如下步骤:
(1)将含有氨基的聚合物溶液与金属有机盐混合,使所述聚合物溶液中的氨基与金属有机盐的金属离子发生配位反应,获得第一溶液;
(2)将步骤(1)所得第一溶液与金属纳米线溶液混合,使所述聚合物溶液中的氨基与金属纳米线发生配位反应,得到复合电极前驱液;
(3)将步骤(2)所得复合电极前驱液涂覆在基底表面,干燥后获得所述导电复合电极。
本发明所述的聚合物分子为含有氨基的界面修饰材料,在一些实施例中,所述聚合物为PEI(聚醚酰亚胺)、PEIE(聚乙氧基乙烯亚胺)、PAAm(聚丙烯酰胺)、PAM(聚丙烯胺)和PFN(poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fiuorene)-alt-2,7-(9,9-dioct ylfiuorene)])中的一种或多种。
本发明所述的聚合物溶液为将聚合物溶解于有机溶剂中得到的溶液。 有机溶剂只要能够溶解本发明所述的聚合物分子即可,比如可以为二甲氧基乙醇、异丙醇等。本发明所述的金属纳米线溶液可以直接购买得到,也可以根据需要自行配置。
本发明所述的金属离子用于与聚合物中的氨基相配位,提高聚合物的导电性。在一些实施例中,所述金属离子为锌(Zn)、锡(Sn)和钛(Ti)中的一种或多种。所述金属有机盐的阴离子为醋酸根离子和乙酰丙酮离子中的一种或多种。
本发明所述的金属纳米线用来进一步提高复合电极的导电性。在一些实施例中,所述金属纳米线为金(Au)、银(Ag)和铜(Cu)中的一种或多种。
一些实施例中,所述聚合物溶液中的聚合物、所述金属有机盐与所述金属纳米线的质量比为1:(5~20):(2~10)。聚合物与金属纳米离子质量比影响复合电极的导电性,聚合物与金属纳米线的质量比影响复合电极的透光性和成膜性。
一些实施例中,所述复合电极前驱液中聚合物的质量分数为0.05%~0.1%,聚合物质量分数大小影响复合电极的导电性和功函数。
本发明采用的基底为透明基底,比如玻璃,也可以采用柔性透明基底。
本发明提供的一种低功函导电透明复合电极,其为聚合物分子中的氨基与金属离子、金属纳米线发生配位反应得到的复合电极,其示意图如图1所示。所述聚合物分子为含有氨基的界面修饰材料;且所述氨基与所述金属离子以及所述金属纳米线发生配位反应,得到所述复合电极。本发明提供的新型的低功函导电透明复合电极,结合了氨基聚合物、金属纳米线的优点,得到的复合电极功函数低,导电性好,透明度高。
现有技术的光电器件中的阴极,需要用阴极界面材料修饰来调节电极本身的功函数,从而有效的分离、注入电子。本发明将氨基聚合物、金属离子和金属纳米线相结合,它们通过配位作用得到功函数低的导电透明复 合电极,可以直接用于光电器件中的阴极。
本发明提供的一种低功函导电透明复合电极,其包含所述聚合物分子中的氨基与所述金属离子的螯合物,也包含所述聚合物分子中的氨基与所述金属纳米线的螯合物。本发明实施例中提供的导电透明复合电极其功函数均低于4.35eV,为一种低功函导电透明复合电极。
本发明实验中曾将金属纳米线溶液与含有氨基的聚合物溶液直接混合以制备该复合电极,发现混合后的溶液其导电性相较于金属纳米线溶液本身大大降低,而当按照本发明的制备工艺,先将聚合物溶液与金属离子配位后,再与金属纳米线溶液混合,发现得到的电极前驱体溶液导电性与金属纳米线相当。而且聚合物溶液本身不导电,与金属离子配位后,得到的第一溶液导电性增强。第一溶液进一步与金属纳米线混合配位时,可能由于步骤(1)中聚合物的氨基与金属离子发生配位后,配位能力有所下降,对金属纳米线导电节点影响小,而确保了复合前驱体溶液的导电性,从而确保了本发明复合电极的导电性优异,同时由于界面修饰材料聚合物的引入,该复合电极功函数低。
本发明导电透明复合电极的制备中通过金属离子与氨基聚合物的配位作用,提高了氨基聚合物的导电能力,且通过控制金属纳米线和配位后的聚合物-金属离子螯合物的比例使得制备的复合电极粗糙度较低,很好地解决了传统金属纳米线电极薄膜的粗糙度高的问题。
本发明还提供了所述复合电极的应用,用作太阳能电池或发光二极管的电极材料。
本发明还提供了一种太阳能电池,包括本发明所述的低功函导电透明复合电极。
本发明还提供了一种发光二极管,其包括本发明所述的低功函导电透明复合电极。
以下为实施例:
实施例1
本发明所述的低功函导电透明复合电极的制备,以及将其直接作为阴极的有机太阳能电池制备方法如下:
(1)低功函导电透明复合电极前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:15,搅拌2h至澄清;然后加入Ag纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Ag纳米线的质量比为1:4。图1是本发明的一种低功函导电透明复合电极的制备流程图。
(2)复合电极为阴极的有机太阳能电池的制备:有机太阳能电池的结构如图2(a)。具体制备过程为,将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
利用本实例方法制备的有机太阳能电池的电流密度-电压如图2(b),Voltage代表电压,current density代表电流密度,开路电压V OC=0.82V,电流密度J SC=25.6mA cm -2,填充因子FF=0.72,效率PCE=15.1%。
通过开尔文探测试复合电极功函数,该实施例制得的复合电极的功函数为4.3eV。
实施例2
本发明所述的低功函导电透明复合电极作为阴极,并包含阴极界面修饰层的有机太阳能电池制备方法如下:
(1)低功函导电透明复合电极前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量 和醋酸锌的质量为1:15,搅拌2h至澄清;然后加入Ag纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Ag纳米线的质量比为1:4。
(2)复合电极为阴极的有机太阳能电池的制备:将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;然后在复合电极上涂覆一层50纳米的氧化锌,转速2000转/分钟,150℃下加热10分钟;在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
通过开尔文探针测试复合电极功函数,该实施例制得的复合电极的功函数为4.3eV。
实施例3
(1)低功函导电透明复合电极前驱液的准备(聚丙烯胺PAM作为聚合物):先配置质量分数为0.5%的PAM溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:15,搅拌2h至澄清;然后加入Ag纳米线,使聚合物PAM的质量分数为0.05%,聚合物与Ag纳米线的质量比为1:4。
(2)复合电极为阴极的有机太阳能电池的制备:将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;然后在复合电极上涂覆一层50纳米的氧化锌,转速2000转/分钟,150℃下加热10分钟;在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
通过开尔文探针测试复合电极功函数,该实施例制得的复合电极的功函数为4.28eV。
实施例4
(1)低功函导电透明复合电极前驱液的准备(锡作为金属离子):先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入氯化锡,使聚合物的质量和氯化锡的质量为1:15,搅拌2h至澄清;然后加入Ag纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Ag纳米线的质量比为1:4。
(2)复合电极为阴极的有机太阳能电池的制备:将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
通过开尔文探针测试复合电极功函数,该实施例制得的复合电极的功函数为4.32eV。
实施例5
(1)低功函导电透明复合电极前驱液的准备(金纳米线作为金属纳米线):先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:15,搅拌2h至澄清;然后加入Au纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Au纳米线的质量比为1:4。
(2)复合电极为阴极的有机太阳能电池的制备:将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10 分钟;在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
通过开尔文探针测试复合电极功函数,该实施例制得的复合电极的功函数为4.32eV。
实施例6
本发明所述的发光二极管的制备方法如下:
(1)低功函导电透明复合电极前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:15,搅拌2h至澄清;然后加入Ag纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Ag纳米线的质量比为1:4。
(2)发光二极管的制备:发光二极管的结构如图3(a),具体制备过程为,将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;然后在复合电极上涂覆一层100纳米厚度的氧化锌薄膜,150℃下加热10分钟;在上述基底上面旋涂CdSe溶液,转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的CBP,10nm的MoO 3和100nm的银。
利用本实例方法制备的发光二极管的外量子效率如图3(b)。发光二极管外量子效率达到13.2%。
对比例1
无金属离子的复合电极制备:
先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入Ag纳米线,使聚合物PEI的质量分数为0.05%,聚合物与Ag纳米线的质 量比为1:4。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层。旋涂后通过四探针仪器测试无金属离子的复合电极方块电阻,此时电阻大于10K欧姆,此电阻已经不适用于器件电极。
对比例2
单纯金属线作为电极制备有机太阳能电池:
(1)先配置质量分数为2mg/mL的银纳米线,震荡均匀备用。
(2)复合电极为阴极的有机太阳能电池的制备:将切割好的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂复合电极前驱液,2000转/分钟,旋涂三层,然后150℃下加热10分钟;在上述基地上旋涂0.5%质量分数的PEI溶液作为电子传输层,然后再在上述基底上旋涂PBDB-T-2F:Y6溶液(总浓度为16㎎/ml,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,时间60秒;然后100℃退火5分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发15nm的MoO 3和100nm的银。
通过开尔文探针测试复合电极功函数,该实施例制得的复合电极的功函数为4.6eV。
利用本实例方法制备的有机太阳能电池器件全部短路,主要是由于Ag纳米线粗糙度太高,导致上下电极接触造成短路现象。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种导电复合电极的制备方法,其特征在于,包括如下步骤:
    (1)将含有氨基的聚合物溶液与金属有机盐混合,使所述聚合物溶液中的氨基与金属有机盐的金属离子发生配位反应,获得第一溶液;
    (2)将步骤(1)所得第一溶液与金属纳米线溶液混合,使所述聚合物溶液中的氨基与金属纳米线发生配位反应,得到复合电极前驱液;
    (3)将步骤(2)所得复合电极前驱液涂覆在基底表面,干燥后获得所述导电复合电极。
  2. 如权利要求1所述的制备方法,其特征在于,所述聚合物溶液中的聚合物分子为PEI、PEIE、PAAm、PAM和PFN中的一种或多种。
  3. 如权利要求1所述的制备方法,其特征在于,所述金属有机盐中的金属离子为Zn、Sn和Ti中的一种或多种,所述金属有机盐的阴离子为醋酸根离子和/或乙酰丙酮离子。
  4. 如权利要求1所述的制备方法,其特征在于,所述金属纳米线为Ag纳米线、Cu纳米线和Au纳米线中的一种或多种。
  5. 如权利要求1所述的制备方法,其特征在于,所述聚合物溶液中的聚合物、所述金属有机盐与所述金属纳米线的质量比为1:(5~20):(2~10)。
  6. 如权利要求1所述的制备方法,其特征在于,所述复合电极前驱液中聚合物的质量分数为0.05%~0.1%。
  7. 如权利要求1至6任一项所述的制备方法制备得到的导电复合电极。
  8. 如权利要求7或8所述的复合电极的应用,其特征在于,用作太阳能电池或发光二极管的电极材料。
  9. 一种太阳能电池,其特征在于,包括如权利要求7所述的低功函导电透明复合电极。
  10. 一种发光二极管,其特征在于,包括如权利要求7所述的低功函导电透明复合电极。
PCT/CN2019/104671 2019-08-05 2019-09-06 一种低功函导电复合电极、其制备和应用 WO2021022607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910718853.1A CN112331739B (zh) 2019-08-05 2019-08-05 一种低功函导电透明复合电极、其制备和应用
CN201910718853.1 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021022607A1 true WO2021022607A1 (zh) 2021-02-11

Family

ID=74319694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104671 WO2021022607A1 (zh) 2019-08-05 2019-09-06 一种低功函导电复合电极、其制备和应用

Country Status (2)

Country Link
CN (1) CN112331739B (zh)
WO (1) WO2021022607A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106688B (zh) * 2021-12-22 2022-06-17 华中科技大学 防静电涂层材料的配置方法、防静电涂层及其形成方法
CN114716456B (zh) * 2022-04-06 2023-08-25 中南大学 小分子受体材料、无界面修饰层的有机太阳能电池及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292725A1 (en) * 2011-01-14 2012-11-22 Mark Greyson Christoforo Deposition and post-processing techniques for transparent conductive films
US20130174900A1 (en) * 2011-07-07 2013-07-11 Stion Corporation Nanowire enhanced transparent conductive oxide for thin film photovoltaic devices
CN105140408A (zh) * 2015-08-02 2015-12-09 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法
CN108269644A (zh) * 2017-01-04 2018-07-10 北京赛特超润界面科技有限公司 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327870B2 (ja) * 2014-01-29 2018-05-23 デクセリアルズ株式会社 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器
DK3623426T3 (en) * 2014-12-17 2023-07-03 Suzhou Inst Nano Tech & Nano Bionics Cas Polymer-metal compound composite ink and preparation method and use thereof
KR20170033725A (ko) * 2015-09-17 2017-03-27 가부시키가이샤 가네카 도전성 복합 재료 및 그 제조 방법
US10026995B2 (en) * 2016-01-15 2018-07-17 Nanotek Instruments, Inc. Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities
CN109238522A (zh) * 2018-09-21 2019-01-18 南开大学 一种可穿戴的柔性应力传感器及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292725A1 (en) * 2011-01-14 2012-11-22 Mark Greyson Christoforo Deposition and post-processing techniques for transparent conductive films
US20130174900A1 (en) * 2011-07-07 2013-07-11 Stion Corporation Nanowire enhanced transparent conductive oxide for thin film photovoltaic devices
CN105140408A (zh) * 2015-08-02 2015-12-09 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法
CN108269644A (zh) * 2017-01-04 2018-07-10 北京赛特超润界面科技有限公司 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法

Also Published As

Publication number Publication date
CN112331739B (zh) 2022-05-20
CN112331739A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
Jin et al. Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells
Cho et al. Impact of interfacial layers in perovskite solar cells
Ma et al. MgO nanoparticle modified anode for highly efficient SnO2‐based planar perovskite solar cells
Stewart et al. Solution-processed copper–nickel nanowire anodes for organic solar cells
KR101310051B1 (ko) 금속 나노선 및 전도성 고분자를 포함하는 투명 전도막의 제조방법
US9422628B2 (en) Process for improving the electrical and optical performance of a transparent electrically conductive material based on silver nanowires
Lin et al. A work-function tunable polyelectrolyte complex (PEI: PSS) as a cathode interfacial layer for inverted organic solar cells
CN105140411B (zh) 不含ito的qled及其制备方法
WO2018001372A1 (zh) 氧化镍薄膜及其制备方法、功能材料、薄膜结构的制作方法及电致发光器件
Li et al. Robust and Transient Write‐Once‐Read‐Many‐Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent
CN106233483B (zh) 太阳能电池及其制造方法
WO2021022607A1 (zh) 一种低功函导电复合电极、其制备和应用
Zhang et al. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode
KR101131564B1 (ko) 코어/쉘 금속산화물 나노입자를 이용한 효율적인 유기태양전지 및 이의 제조방법
Xie et al. Layer conductance reduction and failure analysis due to bending for superflexible perovskite solar cells
Zhang et al. A Self‐Assembled Vertical‐Gradient and Well‐Dispersed MXene Structure for Flexible Large‐Area Perovskite Modules
JP5444195B2 (ja) 多孔質体の染色方法
CN109935663B (zh) 一种复合材料薄膜的制备方法与qled器件
KR101112676B1 (ko) 나노입자 및 고전도성 유무기 복합 버퍼층을 도입한 대면적 고효율 유기태양전지 및 그 제조방법
KR20150048317A (ko) 고분자 지지층을 포함하는 염료감응 태양전지, 및 이의 제조 방법
CN105789453B (zh) 一种含氯取代基自组装小分子及用于提高电极功函的方法
CN110729406A (zh) 一种混合空穴注入层qled器件及其制备方法
JP6156797B2 (ja) 有機電子デバイス
JP2019521524A (ja) 有機−無機複合太陽電池用積層体の製造方法および有機−無機複合太陽電池の製造方法
CN109935698B (zh) 一种以In2Se3为空穴传输层的有机太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940901

Country of ref document: EP

Kind code of ref document: A1