WO2021020558A1 - Multilayer base material, multilayer film provided with said multilayer base material, multilayer body provided with said multilayer film, and packaging material provided with said multilayer body - Google Patents

Multilayer base material, multilayer film provided with said multilayer base material, multilayer body provided with said multilayer film, and packaging material provided with said multilayer body Download PDF

Info

Publication number
WO2021020558A1
WO2021020558A1 PCT/JP2020/029420 JP2020029420W WO2021020558A1 WO 2021020558 A1 WO2021020558 A1 WO 2021020558A1 JP 2020029420 W JP2020029420 W JP 2020029420W WO 2021020558 A1 WO2021020558 A1 WO 2021020558A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
multilayer base
film
layer
multilayer
Prior art date
Application number
PCT/JP2020/029420
Other languages
French (fr)
Japanese (ja)
Inventor
昌平 奥村
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019141727A external-priority patent/JP7331537B2/en
Priority claimed from JP2019180741A external-priority patent/JP7382020B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2021020558A1 publication Critical patent/WO2021020558A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings

Definitions

  • the present invention relates to a multilayer base material, a laminated film having the multilayer base material, a laminated body having the laminated film, and a packaging material having the laminated body.
  • a film made of polyester such as polyethylene terephthalate (hereinafter, also referred to as polyester film) is excellent in mechanical properties, chemical stability, heat resistance and transparency, and is inexpensive. Therefore, conventionally, a polyester film has been used as a base material constituting a laminate used for producing a packaging material.
  • the packaging material is required to have high oxygen barrier properties and gas barrier properties such as water vapor barrier properties.
  • gas barrier properties such as water vapor barrier properties.
  • it is widely practiced to form a vapor-deposited film containing alumina, silica, or the like on the surface of a polyester film (Patent Document 1).
  • the present inventors have considered using a polypropylene stretched film (hereinafter, also referred to as a stretched polypropylene film) instead of the conventional polyester film base material. As a result, the present inventors have found a new problem that even if a vapor-deposited film is formed on the surface of a stretched polypropylene film, a satisfactory gas barrier property cannot be obtained.
  • a polypropylene stretched film hereinafter, also referred to as a stretched polypropylene film
  • a packaging material using a laminated film in which a vapor-deposited film is provided on the stretched polypropylene film has a peculiarity not found in a conventional laminated film using a polyester film base material.
  • an object to be solved by the present invention is to provide a base material which is excellent in adhesion between layers with a thin-film deposition film and which can obtain a high gas barrier property when the thin-film deposition film is formed.
  • an object to be solved by the present invention is to provide a laminated film including the base material, a laminated body including the laminated film, and a packaging material including the laminated body.
  • the present inventors improve the adhesion of the vapor-deposited film formed on the surface resin layer. It was found that the gas barrier property is also improved.
  • the present inventors improve the adhesion of the vapor-deposited film formed on the coat layer and have gas barrier properties. We also obtained the finding that it would improve.
  • the present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
  • a multilayer base material provided with at least a polypropylene resin layer and a surface resin layer.
  • the multilayer base material has been stretched and has been stretched.
  • a multilayer base material in which the surface resin layer contains a resin material having a melting point of 180 ° C. or higher.
  • the multilayer base material according to [1] or [2], wherein the difference between the melting point of the resin material and the melting point of polypropylene contained in the polypropylene resin layer is 20 to 80 ° C.
  • the resin material is one or more resin materials selected from the group consisting of ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, nylon 6, nylon 6,6, MXD nylon and amorphous nylon.
  • the multilayer base material according to any one of 1] to [4].
  • a multilayer base material having at least a polypropylene resin layer and a coat layer.
  • the polypropylene resin layer has been stretched and has been stretched.
  • the multilayer base material according to any one of [1] to [7] and [13] and a vapor-deposited film made of an inorganic oxide are provided, and the vapor-deposited film is provided on the surface resin layer. Laminated film.
  • a laminated film comprising the multilayer base material according to any one of [8] to [13] and a vapor-deposited film made of an inorganic oxide, and having the vapor-deposited film on the coat layer.
  • the laminated film according to [14] or [15] wherein the inorganic oxide is silica or alumina.
  • a laminated body comprising the laminated film according to any one of [14] to [17] and a sealant layer.
  • the sealant layer is made of the same material as the polypropylene resin layer.
  • the laminate according to [18], wherein the same material is polypropylene.
  • a packaging material comprising the laminate according to [18] or [19].
  • a packaging material having excellent adhesion between layers of a polypropylene film and a vapor-deposited film and having high lamination strength can be produced, and a high gas barrier property can be obtained when the vapor-deposited film is formed.
  • a laminated film including the base material, a laminated body including the laminated film, and a packaging material including the laminated body can be provided.
  • multilayer base material according to the first embodiment of the present invention and the multilayer base material according to the second embodiment are also simply referred to as "multilayer base material".
  • multilayer base material the multilayer base material of the present invention will be described with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view showing a multilayer base material according to an embodiment of the present invention.
  • the multilayer base material 10 according to the first embodiment of the present invention includes a polypropylene resin layer 11 and a surface resin layer 12. Further, in one embodiment, as shown in FIG. 2, the multilayer base material 10 may further include an adhesive resin layer 13 between the polypropylene resin layer 11 and the surface resin layer 12.
  • the multilayer base material has been subjected to a stretching treatment, and the stretching treatment may be uniaxial stretching or biaxial stretching.
  • the draw ratio of the multilayer base material in the vertical direction (MD direction) and the horizontal direction (TD direction) is preferably 2 times or more and 15 times or less, and preferably 5 times or more and 13 times or less.
  • the draw ratio is preferably 15 times or less.
  • the surface resin layer included in the multilayer base material may be surface-treated.
  • the surface treatment method is not particularly limited, and for example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals. Examples include chemical treatment such as treatment.
  • the polypropylene resin layer is made of polypropylene and may have a single-layer structure or a multi-layer structure.
  • the polypropylene contained in the polypropylene resin layer may be a homopolymer, a random copolymer or a block copolymer.
  • the polypropylene homopolymer is a polymer containing only propylene
  • the polypropylene random copolymer is a polymer of propylene and other ⁇ -olefins other than propylene (for example, ethylene, butene-1, 4-methyl-1-pentene, etc.).
  • the polypropylene block copolymer is a polymer having a polymer block made of propylene and a polymer block made of ⁇ -olefin other than the above-mentioned propylene.
  • polypropylenes it is preferable to use a homopolymer or a random copolymer from the viewpoint of transparency. It is preferable to use a homopolymer when the rigidity and heat resistance of the packaging bag are important, and to use a random copolymer when the impact resistance and the like are important. Biomass-derived polypropylene and mechanically or chemically recycled polypropylene can also be used.
  • the polypropylene content in the polypropylene resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the polypropylene resin layer may contain a resin material other than polypropylene as long as the characteristics of the present invention are not impaired.
  • the resin material include polyolefins such as polyethylene, (meth) acrylic resins, vinyl resins, cellulose resins, polyamide resins, polyesters and ionomer resins.
  • the polypropylene resin layer can contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
  • the thickness of the polypropylene resin layer is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the polypropylene resin layer is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the polypropylene resin layer may have a printing layer on its surface.
  • the image formed on the print layer is not particularly limited, and represents characters, patterns, symbols, and combinations thereof.
  • the print layer can be formed on the substrate by using an ink derived from biomass. As a result, the environmental load can be reduced.
  • the method for forming the print layer is not particularly limited, and examples thereof include conventionally known printing methods such as a gravure printing method, an offset printing method, and a flexographic printing method.
  • the multilayer base material according to the first embodiment of the present invention includes a surface resin layer containing a resin material having a melting point of 180 ° C. or higher (hereinafter, also referred to as a high melting point resin material) on a polypropylene resin layer, and the surface resin.
  • a resin material having a melting point of 180 ° C. or higher hereinafter, also referred to as a high melting point resin material
  • a vapor-deposited film having high adhesion can be formed on the layer, and the gas barrier property can be improved.
  • the packaging material produced by using the multilayer base material of the present invention has high lamination strength.
  • the melting point of the high melting point resin material is more preferably 185 ° C. or higher, further preferably 190 ° C. or higher, and particularly preferably 205 ° C. or higher.
  • the melting point of the high melting point resin material is preferably 256 ° C. or lower, more preferably 260 ° C. or lower, and further preferably 250 ° C. or lower.
  • the melting point is measured in accordance with JIS K7121: 2012 (method for measuring transition temperature of plastics). Specifically, a DSC curve is measured at a heating rate of 10 ° C./min using a differential scanning calorimetry (DSC) device to determine the melting point.
  • DSC differential scanning calorimetry
  • the difference between the melting point of the high melting point resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is preferably 20 to 80 ° C, more preferably 20 to 60 ° C.
  • the difference between the melting point of the refractory resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is 20 ° C. or higher, the adhesion of the vapor-deposited film can be further improved, and the gas barrier.
  • the sex can be further improved.
  • the lamination strength of the packaging material can be further improved.
  • the difference between the melting point of the refractory resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is 80 ° C. or less, so that the film forming property of the multilayer base material is further improved. Can be done.
  • the refractory resin material preferably has a polar group.
  • the polar group refers to a group containing one or more heteroatoms, for example, an ester group, an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, a carbonyl group, a carboxylic acid anhydride group, and a sulfone group. , Thiol group and halogen group and the like.
  • a hydroxyl group, an ester group, an amino group, an amide group, a carboxyl group and a carbonyl group are preferable, and a hydroxyl group is more preferable.
  • the high melting point resin material can be used without particular limitation as long as the melting point is 180 ° C. or higher.
  • a resin material having a melting point of 180 ° C. or higher and having a polar group is particularly preferable, such as ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, nylon 6, nylon 6,6, MXD nylon, and amorphous nylon.
  • the amide resin of the above is preferable, and ethylene-vinyl alcohol copolymer and polyvinyl alcohol are particularly preferable.
  • the content of the refractory resin material in the surface resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the surface resin layer may contain a resin material other than the refractory resin material as long as the characteristics of the present invention are not impaired.
  • the surface resin layer may contain additives as long as the characteristics of the present invention are not impaired.
  • Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
  • the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material is preferably 1% or more and 10% or less, and is preferably 1% or more and 5% or less. Is more preferable.
  • the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material is 1% or more, the adhesion of the thin-film deposition film can be further improved, and the gas barrier property can be further improved.
  • the lamination strength of the packaging material can be further improved.
  • the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material to 10% or less, the film-forming property and processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
  • the thickness of the surface resin layer is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the thickness of the surface resin layer is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the multilayer base material according to the first embodiment of the present invention can be provided with an adhesive resin layer between the polypropylene resin layer and the surface resin layer, whereby the adhesion between these layers can be provided. Can be improved.
  • the adhesive resin layer can be formed by using an adhesive resin such as a polyether, a polyester, a silicone resin, an epoxy resin, a polyurethane, a vinyl resin, a phenol resin, a polyolefin, and an acid-modified product of a polyolefin.
  • an adhesive resin such as a polyether, a polyester, a silicone resin, an epoxy resin, a polyurethane, a vinyl resin, a phenol resin, a polyolefin, and an acid-modified product of a polyolefin.
  • an adhesive resin such as a polyether, a polyester, a silicone resin, an epoxy resin, a polyurethane, a vinyl resin, a phenol resin, a polyolefin, and an acid-modified product of a polyolefin.
  • the adhesive polypropylene commercially available polypropylene can be used, and for example, Admer series manufactured by Mitsui Chemicals, Inc. can be used.
  • the thickness of the adhesive resin layer is not particularly limited, but can be, for example, 1 ⁇ m or more and 15 ⁇ m or less. By setting the thickness of the adhesive resin layer to 1 ⁇ m or more, the adhesion between the polypropylene resin layer and the surface resin layer can be further improved. By setting the thickness of the adhesive layer to 15 ⁇ m or less, the processability of the multilayer base material can be improved.
  • the multilayer base material is a co-pressed film, and can be produced by forming a film by using a T-die method, an inflation method, or the like, forming a resin film, and then stretching the film.
  • a film by the inflation method the resin film can be stretched at the same time.
  • FIG. 3 is a schematic cross-sectional view showing a multilayer base material according to an embodiment of the present invention.
  • the multilayer base material 16 according to the second embodiment of the present invention includes a polypropylene resin layer 17 and a coat layer 18.
  • each layer included in the multilayer base material according to the second embodiment of the present invention will be described.
  • the polypropylene resin layer is made of polypropylene and may have a single-layer structure or a multi-layer structure.
  • the polypropylene resin layer is a film that has been stretched, and the stretching treatment may be uniaxial stretching or biaxial stretching.
  • the draw ratio of the polypropylene resin layer in the vertical direction (MD direction) and the horizontal direction (TD direction) is preferably 2 times or more and 15 times or less, and preferably 5 times or more and 13 times or less. By setting the draw ratio to 2 times or more, the strength and heat resistance of the polypropylene resin layer can be further improved. In addition, the printability on the polypropylene resin layer can be improved. Further, from the viewpoint of the breaking limit of the polypropylene resin layer, the draw ratio is preferably 15 times or less.
  • the polypropylene contained in the polypropylene resin layer may be a homopolymer, a random copolymer or a block copolymer.
  • the polypropylene homopolymer is a polymer containing only propylene
  • the polypropylene random copolymer is a polymer of propylene and other ⁇ -olefins other than propylene (for example, ethylene, butene-1, 4-methyl-1-pentene, etc.).
  • the polypropylene block copolymer is a polymer having a polymer block made of propylene and a polymer block made of ⁇ -olefin other than the above-mentioned propylene.
  • polypropylenes it is preferable to use a homopolymer or a random copolymer from the viewpoint of transparency. It is preferable to use a homopolymer when the rigidity and heat resistance of the packaging bag are important, and to use a random copolymer when the impact resistance and the like are important. Biomass-derived polypropylene and mechanically or chemically recycled polypropylene can also be used.
  • the polypropylene content in the polypropylene resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the polypropylene resin layer may contain a resin material other than polypropylene as long as the characteristics of the present invention are not impaired.
  • the resin material include polyolefins such as polyethylene, (meth) acrylic resins, vinyl resins, cellulose resins, polyamide resins, polyesters and ionomer resins.
  • the polypropylene resin layer can contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
  • the thickness of the polypropylene resin layer is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the polypropylene resin layer is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the polypropylene resin layer may have a printing layer on its surface.
  • the image formed on the print layer is not particularly limited, and represents characters, patterns, symbols, and combinations thereof.
  • the formation of the printing layer on the substrate can be performed using an ink derived from biomass. As a result, the environmental load can be reduced.
  • the method for forming the print layer is not particularly limited, and examples thereof include conventionally known printing methods such as a gravure printing method, an offset printing method, and a flexographic printing method.
  • the polypropylene resin layer may be surface-treated.
  • the surface treatment method is not particularly limited, and for example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals. Examples include chemical treatment such as treatment.
  • the multilayer base material according to the second embodiment of the present invention is provided with a coat layer containing a resin material having a polar group on a polypropylene resin layer, and a thin-film deposition film having high adhesion is formed on the coat layer. It is possible to improve the gas barrier property. Further, as will be described later, the packaging material produced by using the multilayer base material of the present invention has high lamination strength.
  • the coat layer contains a resin material having a polar group.
  • the polar group refers to a group containing one or more heteroatoms, for example, an ester group, an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, a carbonyl group, a carboxylic acid anhydride group, and a sulfone group. , Thiol group and halogen group and the like.
  • a carboxyl group, a carbonyl group, an ester group, a hydroxyl group and an amino group are preferable, and a carboxyl group and a hydroxyl group are more preferable.
  • the resin material having a polar group examples include ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol (PVA), polyester, polyethyleneimine, hydroxyl group-containing (meth) acrylic resin, nylon 6, nylon 6,6, MXD nylon, and the like. Amorphous nylon, polyurethane and the like are preferable, and hydroxyl group-containing (meth) acrylic resin, ethylene-vinyl alcohol copolymer and polyvinyl alcohol are particularly preferable.
  • the coat layer can be formed by using an aqueous emulsion or a solvent-based emulsion.
  • aqueous emulsion include polyamide-based emulsions, polyethylene-based emulsions, polyurethane-based emulsions, and the like, and specific examples of solvent-based emulsions include polyester-based emulsions.
  • the content of the resin material having a polar group in the coat layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the coat layer may contain a resin material other than the resin material having a polar group as long as the characteristics of the present invention are not impaired.
  • the coat layer may contain additives as long as the characteristics of the present invention are not impaired.
  • Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
  • the ratio of the thickness of the coat layer to the total thickness of the multilayer base material is preferably 1% or more and 20% or less, and preferably 3% or more and 10% or less. More preferred.
  • the ratio of the thickness of the coat layer to the total thickness of the multilayer base material is 1% or more, the adhesion of the vapor-deposited film can be further improved, and the gas barrier property can be further improved.
  • the lamination strength of the packaging material can be further improved.
  • the processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
  • the thickness of the coat layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the coat layer is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 5 ⁇ m or less.
  • the multilayer base material can be manufactured offline. Specifically, a resin composition containing polypropylene is formed into a film by using a T-die method, an inflation method, or the like to form a resin film, which is then stretched, and a coating liquid for forming a coat layer is applied onto the resin film.
  • a multilayer base material can be produced by applying and drying.
  • the multilayer base material can also be manufactured in-line. Specifically, a resin composition containing polypropylene is formed into a film by using a T-die method, an inflation method, or the like to form a resin film, then stretched in the vertical direction (MD direction) and coated on the resin film.
  • a multilayer base material can be produced by applying a layer-forming coating liquid, drying it, and then stretching it in the lateral direction (TD direction). In addition, you may perform stretching in the lateral direction first.
  • the laminated film 20 according to the third embodiment of the present invention includes the multilayer base material 10 according to the first embodiment and the thin-film film 21 containing an inorganic oxide, and is provided on the surface resin layer 12. Is provided with a vapor deposition film 21.
  • the laminated film 26 according to the fourth embodiment of the present invention includes the multilayer base material 16 according to the second embodiment and the vapor-deposited film 21 containing an inorganic oxide, and is provided on the coat layer 18.
  • a vapor deposition film 21 is provided.
  • the laminated film 20 and the laminated film 26 may further include a barrier coat layer 22 on the vapor-deposited film 21 as shown in FIG.
  • the laminated film according to the third embodiment of the present invention and the laminated film according to the fourth embodiment are also simply referred to as “laminated film”.
  • the laminated film according to the third embodiment of the present invention includes a thin-film film made of an inorganic oxide on the surface resin layer.
  • the laminated film according to the fourth embodiment of the present invention includes a vapor-deposited film made of an inorganic oxide on a coat layer.
  • the inorganic oxide examples include aluminum oxide (alumina), silicon oxide (silica), magsium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide.
  • silica and alumina are preferable. Further, silica is particularly preferable because it does not require an aging treatment after forming the vapor-deposited film.
  • the thickness of the vapor-deposited film is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less.
  • the thickness of the thin-film deposition film is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less.
  • the vapor deposition film can be formed by using a conventionally known method, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum vapor deposition method, a sputtering method and an ion plating method, and a plasma.
  • a physical vapor deposition method Physical Vapor Deposition method, PVD method
  • PVD method Physical Vapor Deposition method
  • CVD method chemical vapor deposition methods
  • chemical vapor deposition method such as chemical vapor deposition method, thermochemical vapor deposition method and photochemical vapor deposition method.
  • both the physical vapor deposition method and the chemical vapor deposition method can be used in combination to form a composite film composed of two or more layers of thin-film deposition films of different kinds of inorganic oxides.
  • the degree of vacuum deposition chamber, before introduction of oxygen preferably about 10 -2 ⁇ 10 -8 mbar, in the after introduction of oxygen, preferably about 10 -1 ⁇ 10 -6 mbar.
  • the amount of oxygen introduced differs depending on the size of the vapor deposition machine and the like.
  • an inert gas such as argon gas, helium gas, or nitrogen gas may be used as the carrier gas within a range that does not hinder.
  • the transport speed of the film can be about 10 to 800 m / min.
  • the surface of the thin-film deposition film is preferably subjected to the above surface treatment. Thereby, the adhesion with the adjacent layer can be improved.
  • the laminated film of the present invention can further include a barrier coat layer on the vapor-deposited film. Thereby, the oxygen barrier property and the water vapor barrier property of the laminated film can be improved.
  • the barrier coat layer is a polyamide such as ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol (PVA), polyacrylonitrile, nylon 6, nylon 6,6 and polymethoxylylen adipamide (MXD6). , Polyester, polyurethane, and gas barrier resins such as (meth) acrylic resins.
  • polyvinyl alcohol is preferable from the viewpoint of oxygen barrier property and water vapor barrier property. Further, by incorporating polyvinyl alcohol in the barrier coat layer, it is possible to effectively prevent the occurrence of cracks in the vapor-deposited film.
  • the content of the gas barrier resin in the barrier coat layer is preferably 50% by mass or more and 95% by mass or less, and more preferably 75% by mass or more and 90% by mass or less.
  • the barrier coat layer can contain the above additives as long as the characteristics of the present invention are not impaired.
  • the thickness of the barrier coat layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the barrier coat layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the barrier coat layer can be formed by dissolving or dispersing the gas barrier resin in water or a suitable solvent, applying the resin, and drying the resin.
  • the barrier coat layer can also be formed by applying a commercially available barrier coat agent and drying it.
  • the barrier coat layer is a metal obtained by polycondensing a mixture of a metal alkoxide and a water-soluble polymer by a sol-gel method in the presence of a sol-gel method catalyst, water, an organic solvent, or the like.
  • a gas barrier coating film containing at least one resin composition such as a hydrolyzate of an alkoxide or a hydrocondensate of a metal alkoxide.
  • the metal alkoxide is represented by the following general formula.
  • R 1 and R 2 represent organic groups having 1 to 8 carbon atoms, respectively
  • M represents a metal atom
  • n represents an integer of 0 or more
  • m represents an integer of 1 or more
  • n + m represents the valence of M.
  • metal atom M for example, silicon, zirconium, titanium, aluminum and the like can be used.
  • organic group represented by R 1 and R 2 include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group. Can be done.
  • the metal alkoxide satisfying the above general formula for example, tetramethoxysilane (Si (OCH 3) 4) , tetraethoxysilane (Si (OC 2 H 5) 4), tetra propoxy silane (Si (OC 3 H 7) 4 ), Tetrabutoxysilane (Si (OC 4 H 9 ) 4 ) and the like.
  • a silane coupling agent together with the above metal alkoxide.
  • the silane coupling agent known organic reactive group-containing organoalkoxysilanes can be used, but organoalkoxysilanes having an epoxy group are particularly preferable.
  • organoalkoxysilane having an epoxy group include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Be done.
  • the silane coupling agent is preferably used in the range of about 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the metal alkoxide.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer are preferable, and from the viewpoint of oxygen barrier property, water vapor barrier property, water resistance and weather resistance, it is preferable to use these in combination.
  • the content of the water-soluble polymer in the gas barrier coating film is preferably 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the metal alkoxide.
  • the content of the water-soluble polymer in the gas barrier coating film is preferably 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the metal alkoxide.
  • the thickness of the gas barrier coating film is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 50 ⁇ m or less. Thereby, the oxygen barrier property and the water vapor barrier property can be further improved while maintaining the recyclability.
  • the thickness of the gas barrier coating film By setting the thickness of the gas barrier coating film to 0.01 ⁇ m or more, the oxygen barrier property and the water vapor barrier property of the laminated film can be improved. In addition, it is possible to prevent the occurrence of cracks in the vapor-deposited film.
  • By setting the thickness of the gas barrier coating film to 100 ⁇ m or less, it is possible to improve the recyclability of the packaging material produced by using the laminated body of the laminated film of the present invention and the sealant layer made of polypropylene.
  • the gas barrier coating film is prepared by applying a composition containing the above materials by a conventionally known means such as a roll coating such as a gravure roll coater, a spray coating, a spin coating, dipping, a brush, a bar code, and an applicator, and the composition thereof.
  • the product can be formed by polycondensing the product by the sol-gel method.
  • the sol-gel method catalyst an acid or amine compound is suitable.
  • the amine compound a tertiary amine which is substantially insoluble in water and soluble in an organic solvent is preferable, and for example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, and trypentyl are preferable. Examples include amines.
  • the sol-gel method catalyst is preferably used in the range of 0.01 parts by mass or more and 1.0 parts by mass or less, and 0.03 parts by mass or more and 0.3 parts by mass or less per 100 parts by mass of the metal alkoxide. Is more preferable.
  • the amount of the sol-gel method catalyst By setting the amount of the sol-gel method catalyst to be 0.01 part by mass or more per 100 parts by mass of the metal alkoxide, the catalytic effect can be improved. Further, by setting the amount of the sol-gel method catalyst to be 1.0 part by mass or less per 100 parts by mass of the metal alkoxide, the thickness of the formed gas barrier coating film can be made uniform.
  • the composition may further contain an acid.
  • the acid is used as a sol-gel catalyst, mainly as a catalyst for hydrolysis of metal alkoxides, silane coupling agents and the like.
  • the acid for example, mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid are used.
  • the amount of the acid used is preferably 0.001 mol or more and 0.05 mol or less with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent.
  • the catalytic effect can be improved by setting the amount of the acid to be 0.001 mol or more with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent. Further, the thickness of the gas barrier coating film formed by setting the amount of acid used to 0.05 mol or less with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent. Can be made uniform.
  • the composition also contains water at a ratio of preferably 0.1 mol or more and 100 mol or less, more preferably 0.8 mol or more and 2 mol or less, based on 1 mol of the total molar amount of the metal alkoxide. Is preferable.
  • the water content By setting the water content to 0.1 mol or more with respect to 1 mol of the total molar amount of the metal alkoxide, the oxygen barrier property and the water vapor barrier property of the laminated film of the present invention can be improved. Further, by setting the water content to 100 mol or less with respect to 1 mol of the total molar amount of the metal alkoxide, the hydrolysis reaction can be carried out rapidly.
  • the above composition may contain an organic solvent.
  • the organic solvent for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol and the like can be used.
  • a composition is prepared by mixing a metal alkoxide, a water-soluble polymer, a sol-gel method catalyst, water, an organic solvent and, if necessary, a silane coupling agent.
  • the polycondensation reaction gradually proceeds in the composition.
  • the composition is applied and dried on the thin-film deposition film by the above-mentioned conventionally known method. By this drying, the polycondensation reaction of the metal alkoxide and the water-soluble polymer (and the silane coupling agent if the composition contains a silane coupling agent) further proceeds to form a layer of the composite polymer.
  • the gas barrier coating film can be formed by heating the composition at a temperature of, for example, 20 to 250 ° C., preferably 50 to 220 ° C. for 1 second to 10 minutes.
  • a printing layer may be formed on the surface of the barrier coat layer.
  • the method of forming the print layer and the like are as described above.
  • the laminated body 30 As shown in FIG. 6, the laminated body 30 according to the fifth embodiment of the present invention includes the laminated film 20 or 26 and the sealant layer 31.
  • the sealant layer can be formed of a resin material that can be fused to each other by heat. That is, in one embodiment, the sealant layer is a heat seal layer.
  • Resin materials that can be fused to each other by heat include, for example, polyolefins such as polyethylene, polypropylene, polybutene, methylpentene polymers and cyclic olefin copolymers. Specifically, low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), linear (linear) low-density polyethylene (LLDPE), and ethylene copolymerized using a metallocene catalyst.
  • LDPE low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • LLDPE linear low-density polyethylene
  • Examples thereof include ⁇ -olefin copolymers and polyethylene-propylene copolymers such as random or block copolymers of ethylene and propylene.
  • resin materials that can be fused to each other by heat include ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), and ethylene-ethyl acrylate copolymer (EEA).
  • Ethylene-Methylacetate copolymer Ethylene-Methylacetate copolymer (EMAA), Ethylene-Methyl methacrylate copolymer (EMMA), Ionomer resin, Heat-sealing ethylene-vinyl alcohol resin, Polyethylene as acrylic acid, Methacrylate, Maleic acid, Maleic anhydride , Acid-modified polyolefin modified with unsaturated carboxylic acid such as fumaric acid and itaconic acid, polyester such as polyethylene terephthalate (PET), polyvinyl acetate resin, poly (meth) acrylic resin, polyvinyl chloride resin, etc. Be done.
  • the sealant layer is preferably made of polypropylene from the viewpoint of recycling suitability of the packaging material produced by using the laminate.
  • the sealant layer can contain the above additives as long as the characteristics of the present invention are not impaired.
  • the sealant layer may have a single-layer structure or may have a multi-layer structure.
  • the thickness of the sealant layer is preferably 20 ⁇ m or more and 100 ⁇ m or less, and more preferably 30 ⁇ m or more and 70 ⁇ m or less.
  • the thickness of the sealant layer is preferably 20 ⁇ m or more and 100 ⁇ m or less, and more preferably 30 ⁇ m or more and 70 ⁇ m or less.
  • the packaging material according to the sixth embodiment of the present invention includes the above-mentioned laminate.
  • Examples of the packaging material include packaging products (packaging bags), lid materials, and laminated tubes.
  • Examples of the packaging bag include a standing pouch type, a side seal type, a two-way seal type, a three-way seal type, a four-way seal type, an envelope-attached seal type, a gassho-attached seal type (pillow seal type), a fold-attached seal type, and a flat-bottom seal.
  • Examples thereof include various types of packaging bags such as a mold, a square bottom seal type, and a gusset type.
  • FIG. 7 is a diagram briefly showing an example of the configuration of the standing pouch.
  • the standing pouch 40 is composed of a body portion (side sheet) 41 and a bottom portion (bottom sheet) 42.
  • the side sheet 41 and the bottom sheet 42 included in the standing pouch 40 may be made of the same member or may be made of different members.
  • the body portion 41 included in the standing pouch 40 can be formed by making a bag so that the heat seal layer included in the laminate of the present invention is the innermost layer.
  • two laminates of the present invention are prepared, these are laminated so that the heat seal layers face each other, and the heat seal layer is exposed to the outside from both ends of the laminated laminate. It can be formed by inserting two laminated bodies folded in a V shape and heat-sealing them so as to be. According to such a manufacturing method, a stand pouch having a body portion with a gusset 43 as shown in FIG. 8 can be obtained.
  • the bottom sheet 42 included in the standing pouch 40 can be formed by inserting the laminate of the present invention between the bag-made side sheets and heat-sealing. More specifically, the laminate of the present invention is folded into a V shape so that the heat seal layer is on the outside, and the V-shaped laminate is inserted between the bag-made side sheets to heat seal. By doing so, the bottom sheet 42 can be formed.
  • the heat seal can be performed by a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal.
  • the contents to be filled in the packaging material are not particularly limited.
  • the contents may be liquids, powders and gels. Further, the content may be food or non-food.
  • Example 1A Polyamide (manufactured by Ube Industries, Ltd., polyamide 6, melting point: 220 ° C.), adhesive resin (manufactured by Mitsui Chemicals, Inc., Admer QF500, maleic anhydride-modified polypropylene), and polypropylene (manufactured by Japan Polypropylene Corporation, After co-extruding with Novatec FL203D, melting point: 160 ° C.), a multilayer base material is prepared by stretching 5 times in the vertical direction (MD direction) and 10 times in the horizontal direction (TD direction) by a sequential biaxial stretching device. did.
  • MD direction vertical direction
  • TD direction horizontal direction
  • the multilayer base material produced as described above was provided with a surface resin layer made of polyamide, an adhesive resin layer made of an adhesive resin, and a polypropylene resin layer made of polypropylene, and had a total thickness of 20 ⁇ m.
  • the ratio of the thickness of the surface resin layer made of polyamide to the total thickness of the multilayer base material was 2%.
  • Example 2A The polyamide was changed to polyvinyl alcohol (manufactured by Japan Vam & Poval Co., Ltd., Poval JC-33, melting point: 200 ° C.) to form a surface resin layer, but the multilayer base material was the same as in Example 1A. Was produced.
  • Example 3A The multilayer substrate was prepared in the same manner as in Example 1A except that the polyamide was changed to an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., EVAL F171B, melting point: 183 ° C.) to form a surface resin layer. Made.
  • Example 4A A multilayer base material was prepared in the same manner as in Example 1A except that the polyamide was changed to a non-crystalline polyester (manufactured by Toyobo Co., Ltd., Byron RN-9300, melting point: 198 ° C.) to form a surface resin layer. did.
  • the oxygen permeability (cc / m 2 ⁇ day ⁇ atm) and the water vapor permeability (g / m 2 ⁇ day) were measured by the following methods, and the results are summarized in Table 1A.
  • Oxygen permeability Using an oxygen permeability measuring device (OX-TRAN2 / 20 manufactured by MOCON), set the test piece so that the base material layer surface is on the oxygen supply side, and set it at 23 ° C. relative to JIS K 7126. Oxygen permeability was measured in a humidity 90% RH environment.
  • a silica vapor deposition film and an alumina vapor deposition film were formed by the PVD method, and the oxygen permeability (cc / m 2 ⁇ day ⁇ atm) and the steam permeability (g / m 2 ⁇ day) were measured in the same manner. , Table 1A.
  • the lamination strength (N / 15 mm) between the film and the vapor-deposited film and the polypropylene film was measured using 90 ° peeling (T-shaped peeling method) at a peeling speed of 50 mm / min.
  • the measurement results are summarized in Table 1A.
  • An unstretched polypropylene film having a thickness of 40 ⁇ m was dry-laminated on the silica-deposited film and the alumina-deposited film formed by the PVD method to prepare a laminate, and the lamination strength was measured in the same manner as described above. The measurement results are summarized in Table 1A.
  • Example 1B A coating solution for forming a coat layer having the following composition was applied to the corona-treated surface of a 20 ⁇ m-thick biaxially stretched polypropylene film (ME-1 manufactured by Mitsui Chemicals Tohcello Corporation) on which one surface was corona-treated. After drying, a coat layer having a thickness of 0.5 ⁇ m was formed to obtain a multilayer base material.
  • Coating liquid composition for coating layer formation ⁇ Polyvinyl alcohol 5% by mass (Manufactured by Japan Vam & Poval Co., Ltd., VC-10, degree of polymerization 1000, degree of saponification 99.3 mol% or more) ⁇ Water 90% by mass ⁇ Isopropanol (IPA) 5% by mass
  • Example 2B A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 ⁇ m to obtain a multilayer base material.
  • Coating liquid composition for coating layer formation ⁇ EVOH 75% by mass (Made by Nissan Cima Co., Ltd., Eversolve # 10) ⁇ Water 12.5% by mass 1-Propanol 12.5% by mass
  • Example 3B A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 ⁇ m to obtain a multilayer base material.
  • Coating liquid composition for coating layer formation ⁇ Polyester 25% by mass (Made by Takamatsu Oil & Fat Co., Ltd., Pesresin S-680EA) -Ethyl acetate 75% by mass
  • Example 4B A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 ⁇ m to obtain a multilayer base material.
  • Coating liquid composition for coating layer formation ⁇ Polyethyleneimine 60% by mass (Epomin P-1000, manufactured by Nippon Shokubai Co., Ltd.) ⁇ Methanol 40% by mass
  • Example 5B A coating solution for forming a coating layer prepared as follows is applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coating layer having a thickness of 0.5 ⁇ m to obtain a multilayer base material. It was.
  • a hydroxyl group-containing (meth) acrylic resin (number average molecular weight 25,000, glass transition temperature 99 ° C., hydroxyl value 80 mgKOHL / g) is used in a mixed solvent of methyl ketone and ethyl acetate (mixing ratio 1: 1) to increase the solid content concentration.
  • the main agent was prepared by diluting to 10% by mass.
  • An ethyl acetate solution (solid content 75% by mass) containing tolylene diisocyanate was added as a curing agent to the main agent to obtain a solution for forming a coat layer.
  • the amount of the curing agent used was 10 parts by mass with respect to 100 parts by mass of the main agent.
  • Example 6B An aqueous polyamide emulsion solution was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 ⁇ m to obtain a multilayer base material.
  • Oxygen permeability Using an oxygen permeability measuring device (OX-TRAN2 / 20 manufactured by MOCON), set the test piece so that the base material layer surface is on the oxygen supply side, and set it at 23 ° C. relative to JIS K 7126. Oxygen permeability was measured in a humidity 90% RH environment.
  • a silica vapor deposition film and an alumina vapor deposition film were formed by the PVD method, and the oxygen permeability (cc / m 2 ⁇ day ⁇ atm) and the steam permeability (g / m 2 ⁇ day) were measured in the same manner. , Table 1B.
  • the lamination strength (N / 15 mm) between the vapor deposition film and the polypropylene film was measured using 90 ° peeling (T-shaped peeling method) at a peeling speed of 50 mm / min.
  • the measurement results are summarized in Table 1B.
  • An unstretched polypropylene film having a thickness of 40 ⁇ m was dry-laminated on the silica-deposited film and the alumina-deposited film formed by the PVD method to prepare a laminate, and the lamination strength was measured in the same manner as described above. The measurement results are summarized in Table 1B.
  • Multilayer base material according to the first embodiment 11 Polypropylene resin layer 12: Surface resin layer 13: Adhesive resin layer 16: Multilayer base material according to the second embodiment 17: Polypropylene resin layer 18: Coat layer 20: First Laminated film according to the third embodiment 21: Vapor film, 22: Barrier coat layer 26: Laminated film according to the fourth embodiment 30: Laminated body 31: Sealant layer 40: Standing pouch 41: Body (side sheet) 42: Bottom (bottom sheet) 43: Gazette

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

A multilayer base material according to the present invention is provided with at least a polypropylene resin layer and a surface resin layer. This multilayer base material has been stretched; and the surface resin layer contains a resin material having a melting point of 180°C or higher.

Description

多層基材、該多層基材を備える積層フィルム、該積層フィルムを備える積層体および該積層体を備える包装材料A multilayer base material, a laminated film having the multilayer base material, a laminate having the laminate film, and a packaging material having the laminate. 関連出願の相互参照Cross-reference of related applications
 本願は、2019年7月31日に出願された日本国特許出願2019-141732号、2019年7月31日に出願された日本国特許出願2019-141727号、および2019年9月30日に出願された日本国特許出願2019-180741号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。 This application is filed in Japanese Patent Application No. 2019-141732 filed on July 31, 2019, Japanese Patent Application No. 2019-141727 filed on July 31, 2019, and filed on September 30, 2019. It claims priority based on Japanese Patent Application No. 2019-180741, and the contents of the disclosure in its entirety are incorporated into the disclosure of the present specification by reference.
 本発明は、多層基材、該多層基材を備える積層フィルム、該積層フィルムを備える積層体および該積層体を備える包装材料に関する。 The present invention relates to a multilayer base material, a laminated film having the multilayer base material, a laminated body having the laminated film, and a packaging material having the laminated body.
 ポリエチレンテレフタレートなどのポリエステルからなるフィルム(以下、ポリエステルフィルムともいう)は、機械的特性、化学的安定性、耐熱性および透明性に優れると共に、安価である。そのため、従来、ポリエステルフィルムは、包装材料の作製に使用される積層体を構成する基材として使用されている。 A film made of polyester such as polyethylene terephthalate (hereinafter, also referred to as polyester film) is excellent in mechanical properties, chemical stability, heat resistance and transparency, and is inexpensive. Therefore, conventionally, a polyester film has been used as a base material constituting a laminate used for producing a packaging material.
 包装材料に充填される内容物によっては、包装材料には高い酸素バリア性および水蒸気バリア性などのガスバリア性が要求される。この要求を満たすべく、ポリエステルフィルム表面に、アルミナやシリカなどを含む蒸着膜を形成することが広く行われている(特許文献1)。 Depending on the contents to be filled in the packaging material, the packaging material is required to have high oxygen barrier properties and gas barrier properties such as water vapor barrier properties. In order to satisfy this requirement, it is widely practiced to form a vapor-deposited film containing alumina, silica, or the like on the surface of a polyester film (Patent Document 1).
 ところで、近年、ポリエステルフィルムに代わる樹脂材料が模索されており、ポリオレフィンフィルム、特にポリプロピレンフィルムの基材への適用が検討されている。 By the way, in recent years, a resin material to replace polyester film has been sought, and application of polyolefin film, especially polypropylene film, to a base material is being studied.
特開2005-053223号公報Japanese Unexamined Patent Publication No. 2005-053223
 本発明者らは、従来のポリエステルフィルム基材に代えて、ポリプロピレンの延伸フィルム(以下、延伸ポリプロピレンフィルムともいう)を使用することを検討した。その結果、本発明者らは、延伸ポリプロピレンフィルム表面に蒸着膜を形成しても、満足するガスバリア性を得ることができないという新たな課題を見出した。 The present inventors have considered using a polypropylene stretched film (hereinafter, also referred to as a stretched polypropylene film) instead of the conventional polyester film base material. As a result, the present inventors have found a new problem that even if a vapor-deposited film is formed on the surface of a stretched polypropylene film, a satisfactory gas barrier property cannot be obtained.
 そして、本発明者らが検討を進めたところ、該延伸ポリプロピレンフィルムに蒸着膜を設けた積層フィルムを使用した包装材料では、ポリエステルフィルム基材を使用する従来の積層フィルムには見られない特有の現象、即ち、延伸ポリプロピレンフィルムと蒸着膜との層間で剥離が生じていること、を見出し、その現象がガスバリア性を不十分なものとしているとの知見を得た。 Then, as a result of studies by the present inventors, a packaging material using a laminated film in which a vapor-deposited film is provided on the stretched polypropylene film has a peculiarity not found in a conventional laminated film using a polyester film base material. We found a phenomenon, that is, peeling occurred between the layers of the stretched polypropylene film and the vapor-deposited film, and obtained the finding that the phenomenon makes the gas barrier property insufficient.
 したがって、本発明の解決しようとする課題は、蒸着膜との層間の密着性に優れると共に、蒸着膜を形成した場合に高いガスバリア性が得られる、基材を提供することである。 Therefore, an object to be solved by the present invention is to provide a base material which is excellent in adhesion between layers with a thin-film deposition film and which can obtain a high gas barrier property when the thin-film deposition film is formed.
 また、本発明の解決しようとする課題は、該基材を備える積層フィルム、該積層フィルムを備える積層体、および該積層体を備える包装材料を提供することである。 Further, an object to be solved by the present invention is to provide a laminated film including the base material, a laminated body including the laminated film, and a packaging material including the laminated body.
 本発明者らは、延伸ポリプロピレンフィルム表面に、180℃以上の融点を有する樹脂材料を含む表面樹脂層を設けることにより、当該表面樹脂層上に形成される蒸着膜の密着性が改善されると共に、ガスバリア性も向上するとの知見を得た。 By providing a surface resin layer containing a resin material having a melting point of 180 ° C. or higher on the surface of the stretched polypropylene film, the present inventors improve the adhesion of the vapor-deposited film formed on the surface resin layer. It was found that the gas barrier property is also improved.
 また、本発明者らは、延伸ポリプロピレンフィルム表面に、極性基を有する樹脂材料を含むコート層を設けることにより、当該コート層上に形成される蒸着膜の密着性が改善されると共に、ガスバリア性も向上するとの知見を得た。本発明はかかる知見に基づき完成されたものである。即ち、本発明の要旨は以下のとおりである。 In addition, by providing a coat layer containing a resin material having a polar group on the surface of the stretched polypropylene film, the present inventors improve the adhesion of the vapor-deposited film formed on the coat layer and have gas barrier properties. We also obtained the finding that it would improve. The present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
[1] 少なくともポリプロピレン樹脂層と表面樹脂層とを備えた多層基材であって、
 前記多層基材は、延伸処理が施されており、
 前記表面樹脂層が、融点180℃以上の樹脂材料を含む、多層基材。
[2] 前記樹脂材料の融点が、265℃以下である、[1]に記載の多層基材。
[3] 前記樹脂材料の融点と、前記ポリプロピレン樹脂層に含まれるポリプロピレンの融点との差が、20~80℃である、[1]または[2]に記載の多層基材。
[4] 前記樹脂材料が極性基を有する、[1]~[3]のいずれか一項に記載の多層基材。
[5] 前記樹脂材料が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリエステル、ナイロン6、ナイロン6,6、MXDナイロンおよびアモルファスナイロンからなる群より選択される1以上の樹脂材料である、[1]~[4]のいずれか一項に記載の多層基材。
[6] 前記多層基材の総厚さに対する、前記表面樹脂層の厚さの割合が、1%以上10%以下である、[1]~[5]のいずれか一項に記載の多層基材。
[7] 前記多層基材が、共押フィルムである、[1]~[6]のいずれか一項に記載の多層基材。
[8] 少なくともポリプロピレン樹脂層とコート層とを備えた多層基材であって、
 前記ポリプロピレン樹脂層は、延伸処理が施されており、
 前記コート層が、極性基を有する樹脂材料を含む、多層基材。
[9] 前記多層基材の総厚さに対する、前記コート層の厚さの割合が、1%以上20%以下である、[8]に記載の多層基材。
[10] 前記コート層の厚さが、0.1μm以上10μm以下である、[8]または[9]に記載の多層基材。
[11] 前記樹脂材料が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリエステル、ポリエチレンイミン、水酸基含有(メタ)アクリル樹脂、ナイロン6、ナイロン6,6、MXDナイロン、アモルファスナイロンおよびポリウレタンからなる群より選択される1以上の樹脂材料である、[8]~[10]のいずれか一項に記載の多層基材。
[12] 前記コート層が、水系エマルジョンまたは溶剤系エマルジョンを用いて形成された層である、[8]~[11]のいずれか一項に記載の多層基材。
[13] 包装材料用途に用いられる、[1]~[12]のいずれか一項に記載の多層基材。
[14] [1]~[7]および[13]のいずれか一項に記載の多層基材と、無機酸化物からなる蒸着膜とを備え、前記表面樹脂層上に前記蒸着膜を備える、積層フィルム。
[15] [8]~[13]のいずれか一項に記載の多層基材と、無機酸化物からなる蒸着膜とを備え、前記コート層上に前記蒸着膜を備える、積層フィルム。
[16] 前記無機酸化物が、シリカまたはアルミナである、[14]または[15]に記載の積層フィルム。
[17] 前記蒸着膜上に、バリアコート層をさらに備える、[14]~[16]のいずれか一項に記載の積層フィルム。
[18] [14]~[17]のいずれか一項に記載の積層フィルムと、シーラント層とを備える、積層体。
[19] 前記シーラント層が、前記ポリプロピレン樹脂層と同一の材料により構成され、
 前記同一材料が、ポリプロピレンである、[18]に記載の積層体。
[20] [18]または[19]に記載の積層体を備える、包装材料。
[1] A multilayer base material provided with at least a polypropylene resin layer and a surface resin layer.
The multilayer base material has been stretched and has been stretched.
A multilayer base material in which the surface resin layer contains a resin material having a melting point of 180 ° C. or higher.
[2] The multilayer base material according to [1], wherein the resin material has a melting point of 265 ° C. or lower.
[3] The multilayer base material according to [1] or [2], wherein the difference between the melting point of the resin material and the melting point of polypropylene contained in the polypropylene resin layer is 20 to 80 ° C.
[4] The multilayer base material according to any one of [1] to [3], wherein the resin material has a polar group.
[5] The resin material is one or more resin materials selected from the group consisting of ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, nylon 6, nylon 6,6, MXD nylon and amorphous nylon. The multilayer base material according to any one of 1] to [4].
[6] The multilayer group according to any one of [1] to [5], wherein the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material is 1% or more and 10% or less. Material.
[7] The multilayer base material according to any one of [1] to [6], wherein the multilayer base material is a co-pressed film.
[8] A multilayer base material having at least a polypropylene resin layer and a coat layer.
The polypropylene resin layer has been stretched and has been stretched.
A multilayer base material in which the coat layer contains a resin material having a polar group.
[9] The multilayer base material according to [8], wherein the ratio of the thickness of the coat layer to the total thickness of the multilayer base material is 1% or more and 20% or less.
[10] The multilayer base material according to [8] or [9], wherein the thickness of the coat layer is 0.1 μm or more and 10 μm or less.
[11] The group consisting of an ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, polyethylene imine, hydroxyl group-containing (meth) acrylic resin, nylon 6, nylon 6,6, MXD nylon, amorphous nylon and polyurethane. The multilayer base material according to any one of [8] to [10], which is one or more resin materials selected from the above.
[12] The multilayer base material according to any one of [8] to [11], wherein the coat layer is a layer formed by using an aqueous emulsion or a solvent-based emulsion.
[13] The multilayer base material according to any one of [1] to [12], which is used for packaging material applications.
[14] The multilayer base material according to any one of [1] to [7] and [13] and a vapor-deposited film made of an inorganic oxide are provided, and the vapor-deposited film is provided on the surface resin layer. Laminated film.
[15] A laminated film comprising the multilayer base material according to any one of [8] to [13] and a vapor-deposited film made of an inorganic oxide, and having the vapor-deposited film on the coat layer.
[16] The laminated film according to [14] or [15], wherein the inorganic oxide is silica or alumina.
[17] The laminated film according to any one of [14] to [16], further comprising a barrier coat layer on the thin-film film.
[18] A laminated body comprising the laminated film according to any one of [14] to [17] and a sealant layer.
[19] The sealant layer is made of the same material as the polypropylene resin layer.
The laminate according to [18], wherein the same material is polypropylene.
[20] A packaging material comprising the laminate according to [18] or [19].
 本発明によれば、ポリプロピレンフィルムと蒸着膜との層間の密着性に優れ、高いラミネート強度を有する包装材料を作製することができ、蒸着膜を形成した場合に高いガスバリア性が得られる、基材を提供することができる。
 また、本発明によれば、該基材を備える積層フィルム、該積層フィルムを備える積層体、および該積層体を備える包装材料を提供することができる。
According to the present invention, a packaging material having excellent adhesion between layers of a polypropylene film and a vapor-deposited film and having high lamination strength can be produced, and a high gas barrier property can be obtained when the vapor-deposited film is formed. Can be provided.
Further, according to the present invention, it is possible to provide a laminated film including the base material, a laminated body including the laminated film, and a packaging material including the laminated body.
本発明の多層基材の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the multilayer base material of this invention. 本発明の多層基材の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the multilayer base material of this invention. 本発明の多層基材の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the multilayer base material of this invention. 本発明の積層フィルムの一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the laminated film of this invention. 本発明の積層フィルムの一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the laminated film of this invention. 本発明の積層体の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of the laminated body of this invention. 本発明の包装材料の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the packaging material of this invention. 本発明の包装材料の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the packaging material of this invention.
 以下、本発明の第1の実施形態による多層基材および第2の実施形態による多層基材をそれぞれ、単に「多層基材」とも記載する。以下、本発明の多層基材を、図面を参照しながら説明する。 Hereinafter, the multilayer base material according to the first embodiment of the present invention and the multilayer base material according to the second embodiment are also simply referred to as "multilayer base material". Hereinafter, the multilayer base material of the present invention will be described with reference to the drawings.
[第1の実施形態による多層基材]
 図1は、本発明の一実施形態による多層基材を示す模式断面図である。本発明の第1の実施形態による多層基材10は、図1に示すように、ポリプロピレン樹脂層11と、表面樹脂層12とを備える。
 また、一実施形態において、多層基材10は、図2に示すように、ポリプロピレン樹脂層11と、表面樹脂層12との間に、接着性樹脂層13をさらに備えることができる。
[Multilayer base material according to the first embodiment]
FIG. 1 is a schematic cross-sectional view showing a multilayer base material according to an embodiment of the present invention. As shown in FIG. 1, the multilayer base material 10 according to the first embodiment of the present invention includes a polypropylene resin layer 11 and a surface resin layer 12.
Further, in one embodiment, as shown in FIG. 2, the multilayer base material 10 may further include an adhesive resin layer 13 between the polypropylene resin layer 11 and the surface resin layer 12.
 多層基材は、延伸処理が施されており、該延伸処理は一軸延伸であってもよく、二軸延伸であってもよい。
 多層基材の縦方向(MD方向)および横方向(TD方向)への延伸倍率は、2倍以上15倍以下であることが好ましく、5倍以上13倍以下であることが好ましい。
 延伸倍率を2倍以上とすることにより、多層基材の強度および耐熱性をより向上することができる。また、多層基材への印刷適性を向上することができる。
 また、多層基材の破断限界という観点からは、延伸倍率は15倍以下であることが好ましい。
The multilayer base material has been subjected to a stretching treatment, and the stretching treatment may be uniaxial stretching or biaxial stretching.
The draw ratio of the multilayer base material in the vertical direction (MD direction) and the horizontal direction (TD direction) is preferably 2 times or more and 15 times or less, and preferably 5 times or more and 13 times or less.
By setting the draw ratio to 2 times or more, the strength and heat resistance of the multilayer base material can be further improved. In addition, the printability on a multilayer base material can be improved.
Further, from the viewpoint of the breaking limit of the multilayer base material, the draw ratio is preferably 15 times or less.
 また、多層基材が備える表面樹脂層は、表面処理が施されていてもよい。これにより、隣接する層との密着性を向上することができる。
 表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
Further, the surface resin layer included in the multilayer base material may be surface-treated. Thereby, the adhesion with the adjacent layer can be improved.
The surface treatment method is not particularly limited, and for example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals. Examples include chemical treatment such as treatment.
 以下、本発明の第1の実施形態による多層基材が備える各層について説明する。 Hereinafter, each layer included in the multilayer base material according to the first embodiment of the present invention will be described.
[ポリプロピレン樹脂層]
 ポリプロピレン樹脂層は、ポリプロピレンにより構成され、単層構造を有するものであっても、多層構造を有するものであってもよい。
[Polypropylene resin layer]
The polypropylene resin layer is made of polypropylene and may have a single-layer structure or a multi-layer structure.
 ポリプロピレン樹脂層に含まれるポリプロピレンは、ホモポリマー、ランダムコポリマーおよびブロックコポリマーのいずれであってもよい。
 ポリプロピレンホモポリマーとは、プロピレンのみの重合体であり、ポリプロピレンランダムコポリマーとは、プロピレンとプロピレン以外の他のα-オレフィン(例えばエチレン、ブテン-1、4-メチル-1-ペンテンなど)などとのランダム共重合体であり、ポリプロピレンブロックコポリマーとは、プロピレンからなる重合体ブロックと、上記したプロピレン以外の他のα-オレフィンからなる重合体ブロックを有する共重合体である。
 これらポリプロプロピレンの中でも、透明性の観点からは、ホモポリマーまたはランダムコポリマーを使用することが好ましい。包装袋の剛性や耐熱性を重視する場合にはホモポリマーを使用し、耐衝撃性などを重視する場合にはランダムコポリマーを使用することが好ましい。
 また、バイオマス由来のポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを使用することもできる。
The polypropylene contained in the polypropylene resin layer may be a homopolymer, a random copolymer or a block copolymer.
The polypropylene homopolymer is a polymer containing only propylene, and the polypropylene random copolymer is a polymer of propylene and other α-olefins other than propylene (for example, ethylene, butene-1, 4-methyl-1-pentene, etc.). It is a random copolymer, and the polypropylene block copolymer is a polymer having a polymer block made of propylene and a polymer block made of α-olefin other than the above-mentioned propylene.
Among these polypropylenes, it is preferable to use a homopolymer or a random copolymer from the viewpoint of transparency. It is preferable to use a homopolymer when the rigidity and heat resistance of the packaging bag are important, and to use a random copolymer when the impact resistance and the like are important.
Biomass-derived polypropylene and mechanically or chemically recycled polypropylene can also be used.
 ポリプロピレン樹脂層におけるポリプロピレンの含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The polypropylene content in the polypropylene resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
 本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、ポリプロピレン以外の樹脂材料を含んでいてもよい。樹脂材料としては、例えば、ポリエチレンなどのポリオレフィン、(メタ)アクリル樹脂、ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリエステルおよびアイオノマー樹脂などが挙げられる。
 また、本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、添加剤を含むことができる。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
The polypropylene resin layer may contain a resin material other than polypropylene as long as the characteristics of the present invention are not impaired. Examples of the resin material include polyolefins such as polyethylene, (meth) acrylic resins, vinyl resins, cellulose resins, polyamide resins, polyesters and ionomer resins.
In addition, the polypropylene resin layer can contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
 ポリプロピレン樹脂層の厚さは、10μm以上50μm以下であることが好ましく、10μm以上40μm以下であることがより好ましい。
 ポリプロピレン樹脂層の厚さを10μm以上とすることにより、多層基材の強度および耐熱性をより向上することができる。
 また、ポリプロピレン樹脂層の厚さを50μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。
The thickness of the polypropylene resin layer is preferably 10 μm or more and 50 μm or less, and more preferably 10 μm or more and 40 μm or less.
By setting the thickness of the polypropylene resin layer to 10 μm or more, the strength and heat resistance of the multilayer base material can be further improved.
Further, by setting the thickness of the polypropylene resin layer to 50 μm or less, the film-forming property and processability of the multilayer base material can be further improved.
 ポリプロピレン樹脂層は、その表面に印刷層を有していてもよい。印刷層に形成される画像は、特に限定されず、文字、柄、記号およびこれらの組み合わせなどが表される。
 基材への印刷層形成は、バイオマス由来のインキを用いて行うことができる。これにより、環境負荷を低減することができる。
 印刷層の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。
The polypropylene resin layer may have a printing layer on its surface. The image formed on the print layer is not particularly limited, and represents characters, patterns, symbols, and combinations thereof.
The print layer can be formed on the substrate by using an ink derived from biomass. As a result, the environmental load can be reduced.
The method for forming the print layer is not particularly limited, and examples thereof include conventionally known printing methods such as a gravure printing method, an offset printing method, and a flexographic printing method.
[表面樹脂層]
 本発明の第1の実施形態による多層基材は、ポリプロピレン樹脂層上に、180℃以上の融点を有する樹脂材料(以下、高融点樹脂材料ともいう)を含む表面樹脂層を備え、該表面樹脂層上には高い密着性を有する蒸着膜を形成することができ、ガスバリア性を向上することができる。
 また、後述するように、本発明の多層基材を使用して作製される包装材料は高いラミネート強度を有する。
[Surface resin layer]
The multilayer base material according to the first embodiment of the present invention includes a surface resin layer containing a resin material having a melting point of 180 ° C. or higher (hereinafter, also referred to as a high melting point resin material) on a polypropylene resin layer, and the surface resin. A vapor-deposited film having high adhesion can be formed on the layer, and the gas barrier property can be improved.
Further, as will be described later, the packaging material produced by using the multilayer base material of the present invention has high lamination strength.
 高融点樹脂材料の融点は、185℃以上であることがより好ましく、190℃以上であることがさらに好ましく、205℃以上であることが特に好ましい。
 高融点樹脂材料の融点を185℃以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 多層基材の製膜性という観点からは、高融点樹脂材料の融点は、265℃以下であることが好ましく、260℃以下であることがより好ましく、250℃以下であることがさらに好ましい。
 なお、融点は、JIS K7121:2012(プラスチックの転移温度測定方法)に準拠して測定する。具体的には、示差走査熱量測定(DSC)装置を用いて、10℃/分の昇温速度でDSC曲線を測定し、融点を求める。
The melting point of the high melting point resin material is more preferably 185 ° C. or higher, further preferably 190 ° C. or higher, and particularly preferably 205 ° C. or higher.
By setting the melting point of the high melting point resin material to 185 ° C. or higher, the adhesion of the thin-film deposition film can be further improved, and the gas barrier property can be further improved. In addition, the lamination strength of the packaging material can be further improved.
From the viewpoint of film forming property of the multilayer base material, the melting point of the high melting point resin material is preferably 256 ° C. or lower, more preferably 260 ° C. or lower, and further preferably 250 ° C. or lower.
The melting point is measured in accordance with JIS K7121: 2012 (method for measuring transition temperature of plastics). Specifically, a DSC curve is measured at a heating rate of 10 ° C./min using a differential scanning calorimetry (DSC) device to determine the melting point.
 表面樹脂層に含まれる高融点樹脂材料の融点と、ポリプロピレン樹脂層に含まれるポリプロピレンの融点との差は、20~80℃であることが好ましく、20~60℃であることがより好ましい。
 表面樹脂層に含まれる高融点樹脂材料の融点と、ポリプロピレン樹脂層に含まれるポリプロピレンの融点との差が、20℃以上であることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 また、表面樹脂層に含まれる高融点樹脂材料の融点と、ポリプロピレン樹脂層に含まれるポリプロピレンの融点との差が、80℃以下であることにより、多層基材の製膜性をより向上することができる。
The difference between the melting point of the high melting point resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is preferably 20 to 80 ° C, more preferably 20 to 60 ° C.
When the difference between the melting point of the refractory resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is 20 ° C. or higher, the adhesion of the vapor-deposited film can be further improved, and the gas barrier. The sex can be further improved. In addition, the lamination strength of the packaging material can be further improved.
Further, the difference between the melting point of the refractory resin material contained in the surface resin layer and the melting point of polypropylene contained in the polypropylene resin layer is 80 ° C. or less, so that the film forming property of the multilayer base material is further improved. Can be done.
 高融点樹脂材料は、極性基を有することが好ましい。
 本発明において、極性基とは、ヘテロ原子を1個以上含む基を指し、例えば、エステル基、エポキシ基、水酸基、アミノ基、アミド基、カルボキシル基、カルボニル基、カルボン酸無水物基、スルフォン基、チオール基およびハロゲン基などが挙げられる。
 これらの中でも、包装材料のラミネート強度の観点からは、水酸基、エステル基、アミノ基、アミド基、カルボキシル基およびカルボニル基が好ましく、水酸基がより好ましい。
The refractory resin material preferably has a polar group.
In the present invention, the polar group refers to a group containing one or more heteroatoms, for example, an ester group, an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, a carbonyl group, a carboxylic acid anhydride group, and a sulfone group. , Thiol group and halogen group and the like.
Among these, from the viewpoint of the lamination strength of the packaging material, a hydroxyl group, an ester group, an amino group, an amide group, a carboxyl group and a carbonyl group are preferable, and a hydroxyl group is more preferable.
 高融点樹脂材料は、融点が180℃以上であれば特に限定されることなく使用することができ、例えば、ビニル樹脂、ポリアミド、ポリイミド、ポリエステル、(メタ)アクリル樹脂、セルロース樹脂、ポリオレフィン樹脂およびアイオノマー樹脂などが挙げられる。 The high melting point resin material can be used without particular limitation as long as the melting point is 180 ° C. or higher. For example, vinyl resin, polyamide, polyimide, polyester, (meth) acrylic resin, cellulose resin, polyolefin resin and ionomer. Examples include resin.
 本発明においては、融点が180℃以上であり、極性基を有する樹脂材料が特に好ましく、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリエステル、ナイロン6、ナイロン6,6、MXDナイロン、アモルファスナイロンなどのアミド樹脂が好ましく、エチレン-ビニルアルコール共重合体及びポリビニルアルコールが特に好ましい。
 このような樹脂材料を使用することにより、表面樹脂層上に形成される蒸着膜の密着性を顕著に改善することができ、そのガスバリア性を効果的に向上することができる。
In the present invention, a resin material having a melting point of 180 ° C. or higher and having a polar group is particularly preferable, such as ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, nylon 6, nylon 6,6, MXD nylon, and amorphous nylon. The amide resin of the above is preferable, and ethylene-vinyl alcohol copolymer and polyvinyl alcohol are particularly preferable.
By using such a resin material, the adhesion of the thin-film deposition film formed on the surface resin layer can be remarkably improved, and the gas barrier property thereof can be effectively improved.
 表面樹脂層における高融点樹脂材料の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The content of the refractory resin material in the surface resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
 本発明の特性を損なわない範囲において、表面樹脂層は、高融点樹脂材料以外の樹脂材料を含んでいてもよい。
 また、本発明の特性を損なわない範囲において、表面樹脂層は、添加剤を含むことができる。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
The surface resin layer may contain a resin material other than the refractory resin material as long as the characteristics of the present invention are not impaired.
In addition, the surface resin layer may contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
 本発明の第1の実施形態において、多層基材の総厚さに対する、表面樹脂層の厚さの割合は、1%以上10%以下であることが好ましく、1%以上5%以下であることがより好ましい。
 多層基材の総厚さに対する、表面樹脂層の厚さの割合を、1%以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 また、多層基材の総厚さに対する、表面樹脂層の厚さの割合を、10%以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。また、後述するように、多層基材を用いた積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
In the first embodiment of the present invention, the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material is preferably 1% or more and 10% or less, and is preferably 1% or more and 5% or less. Is more preferable.
By setting the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material to 1% or more, the adhesion of the thin-film deposition film can be further improved, and the gas barrier property can be further improved. In addition, the lamination strength of the packaging material can be further improved.
Further, by setting the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material to 10% or less, the film-forming property and processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
 表面樹脂層の厚さは、0.1μm以上5μm以下であることが好ましく、0.1μm以上4μm以下であることがより好ましい。
 表面樹脂層の厚さを0.1μm以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 また、表面樹脂層の厚さを5μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。また、後述するように、多層基材を用いた積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
The thickness of the surface resin layer is preferably 0.1 μm or more and 5 μm or less, and more preferably 0.1 μm or more and 4 μm or less.
By setting the thickness of the surface resin layer to 0.1 μm or more, the adhesion of the thin-film deposition film can be further improved, and the gas barrier property can be further improved. In addition, the lamination strength of the packaging material can be further improved.
Further, by setting the thickness of the surface resin layer to 5 μm or less, the film-forming property and processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
[接着性樹脂層]
 一実施形態において、本発明の第1の実施形態による多層基材は、ポリプロピレン樹脂層と、表面樹脂層との間に、接着性樹脂層を備えることができ、これにより、これら層間の密着性を向上することができる。
[Adhesive resin layer]
In one embodiment, the multilayer base material according to the first embodiment of the present invention can be provided with an adhesive resin layer between the polypropylene resin layer and the surface resin layer, whereby the adhesion between these layers can be provided. Can be improved.
 接着性樹脂層は、ポリエーテル、ポリエステル、シリコーン樹脂、エポキシ樹脂、ポリウレタン、ビニル樹脂、フェノール樹脂、ポリオレフィン、およびポリオレフィンの酸変性物などの接着性樹脂を使用することにより形成することができる。
 上記した中でも、また、後述するように、多層基材を用いた積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性という観点からは、ポリオレフィンおよびこの酸変性物が好ましく、ポリプロピレンおよびこの酸変性物が特に好ましい。
 接着性ポリプロピレンとしては、市販されるものを使用することができ、例えば、三井化学(株)製、アドマーシリーズを使用することができる。
The adhesive resin layer can be formed by using an adhesive resin such as a polyether, a polyester, a silicone resin, an epoxy resin, a polyurethane, a vinyl resin, a phenol resin, a polyolefin, and an acid-modified product of a polyolefin.
Among the above, as will be described later, from the viewpoint of recycling suitability of the packaging material produced by using the laminate film using the multilayer base material and the sealant layer made of polypropylene, polyolefin and this acid The modified product is preferable, and polypropylene and this acid modified product are particularly preferable.
As the adhesive polypropylene, commercially available polypropylene can be used, and for example, Admer series manufactured by Mitsui Chemicals, Inc. can be used.
 接着性樹脂層の厚さは特に限定されるものではないが、例えば、1μm以上15μm以下とすることができる。接着性樹脂層の厚さを1μm以上とすることにより、ポリプロピレン樹脂層と、表面樹脂層との密着性をより向上することができる。接着層の厚さを15μm以下とすることにより、多層基材の加工適性を向上することができる。 The thickness of the adhesive resin layer is not particularly limited, but can be, for example, 1 μm or more and 15 μm or less. By setting the thickness of the adhesive resin layer to 1 μm or more, the adhesion between the polypropylene resin layer and the surface resin layer can be further improved. By setting the thickness of the adhesive layer to 15 μm or less, the processability of the multilayer base material can be improved.
 一実施形態において、多層基材は、共押フィルムであり、Tダイ法またはインフレーション法などを利用して製膜し、樹脂フィルムとした後、延伸することにより作製することができる。
 インフレーション法により製膜することにより、樹脂フィルムの延伸を同時に行うことができる。
In one embodiment, the multilayer base material is a co-pressed film, and can be produced by forming a film by using a T-die method, an inflation method, or the like, forming a resin film, and then stretching the film.
By forming a film by the inflation method, the resin film can be stretched at the same time.
[第2の実施形態による多層基材]
 図3は、本発明の一実施形態による多層基材を示す模式断面図である。本発明の第2の実施形態による多層基材16は、図3に示すように、ポリプロピレン樹脂層17と、コート層18とを備える。以下、本発明の第2の実施形態による多層基材が備える各層について説明する。
[Multilayer base material according to the second embodiment]
FIG. 3 is a schematic cross-sectional view showing a multilayer base material according to an embodiment of the present invention. As shown in FIG. 3, the multilayer base material 16 according to the second embodiment of the present invention includes a polypropylene resin layer 17 and a coat layer 18. Hereinafter, each layer included in the multilayer base material according to the second embodiment of the present invention will be described.
[ポリプロピレン樹脂層]
 ポリプロピレン樹脂層は、ポリプロピレンにより構成され、単層構造を有するものであっても、多層構造を有するものであってもよい。
[Polypropylene resin layer]
The polypropylene resin layer is made of polypropylene and may have a single-layer structure or a multi-layer structure.
 ポリプロピレン樹脂層は、延伸処理が施されたフィルムであり、該延伸処理は一軸延伸であってもよく、二軸延伸であってもよい。
 ポリプロピレン樹脂層の縦方向(MD方向)および横方向(TD方向)への延伸倍率は、2倍以上15倍以下であることが好ましく、5倍以上13倍以下であることが好ましい。
 延伸倍率を2倍以上とすることにより、ポリプロピレン樹脂層の強度および耐熱性をより向上することができる。また、ポリプロピレン樹脂層への印刷適性を向上することができる。
 また、ポリプロピレン樹脂層の破断限界という観点からは、延伸倍率は15倍以下であることが好ましい。
The polypropylene resin layer is a film that has been stretched, and the stretching treatment may be uniaxial stretching or biaxial stretching.
The draw ratio of the polypropylene resin layer in the vertical direction (MD direction) and the horizontal direction (TD direction) is preferably 2 times or more and 15 times or less, and preferably 5 times or more and 13 times or less.
By setting the draw ratio to 2 times or more, the strength and heat resistance of the polypropylene resin layer can be further improved. In addition, the printability on the polypropylene resin layer can be improved.
Further, from the viewpoint of the breaking limit of the polypropylene resin layer, the draw ratio is preferably 15 times or less.
 ポリプロピレン樹脂層に含まれるポリプロピレンは、ホモポリマー、ランダムコポリマーおよびブロックコポリマーのいずれであってもよい。
 ポリプロピレンホモポリマーとは、プロピレンのみの重合体であり、ポリプロピレンランダムコポリマーとは、プロピレンとプロピレン以外の他のα-オレフィン(例えばエチレン、ブテン-1、4-メチル-1-ペンテンなど)などとのランダム共重合体であり、ポリプロピレンブロックコポリマーとは、プロピレンからなる重合体ブロックと、上記したプロピレン以外の他のα-オレフィンからなる重合体ブロックを有する共重合体である。
 これらポリプロプロピレンの中でも、透明性の観点からは、ホモポリマーまたはランダムコポリマーを使用することが好ましい。包装袋の剛性や耐熱性を重視する場合にはホモポリマーを使用し、耐衝撃性などを重視する場合にはランダムコポリマーを使用することが好ましい。
 また、バイオマス由来のポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを使用することもできる。
The polypropylene contained in the polypropylene resin layer may be a homopolymer, a random copolymer or a block copolymer.
The polypropylene homopolymer is a polymer containing only propylene, and the polypropylene random copolymer is a polymer of propylene and other α-olefins other than propylene (for example, ethylene, butene-1, 4-methyl-1-pentene, etc.). It is a random copolymer, and the polypropylene block copolymer is a polymer having a polymer block made of propylene and a polymer block made of α-olefin other than the above-mentioned propylene.
Among these polypropylenes, it is preferable to use a homopolymer or a random copolymer from the viewpoint of transparency. It is preferable to use a homopolymer when the rigidity and heat resistance of the packaging bag are important, and to use a random copolymer when the impact resistance and the like are important.
Biomass-derived polypropylene and mechanically or chemically recycled polypropylene can also be used.
 ポリプロピレン樹脂層におけるポリプロピレンの含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The polypropylene content in the polypropylene resin layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
 本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、ポリプロピレン以外の樹脂材料を含んでいてもよい。樹脂材料としては、例えば、ポリエチレンなどのポリオレフィン、(メタ)アクリル樹脂、ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリエステルおよびアイオノマー樹脂などが挙げられる。
 また、本発明の特性を損なわない範囲において、ポリプロピレン樹脂層は、添加剤を含むことができる。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
The polypropylene resin layer may contain a resin material other than polypropylene as long as the characteristics of the present invention are not impaired. Examples of the resin material include polyolefins such as polyethylene, (meth) acrylic resins, vinyl resins, cellulose resins, polyamide resins, polyesters and ionomer resins.
In addition, the polypropylene resin layer can contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
 ポリプロピレン樹脂層の厚さは、10μm以上50μm以下であることが好ましく、10μm以上40μm以下であることがより好ましい。
 ポリプロピレン樹脂層の厚さを10μm以上とすることにより、多層基材の強度および耐熱性をより向上することができる。
 また、ポリプロピレン樹脂層の厚さを50μm以下とすることにより、多層基材の製膜性および加工適性をより向上することができる。
The thickness of the polypropylene resin layer is preferably 10 μm or more and 50 μm or less, and more preferably 10 μm or more and 40 μm or less.
By setting the thickness of the polypropylene resin layer to 10 μm or more, the strength and heat resistance of the multilayer base material can be further improved.
Further, by setting the thickness of the polypropylene resin layer to 50 μm or less, the film-forming property and processability of the multilayer base material can be further improved.
 ポリプロピレン樹脂層は、その表面に印刷層を有していてもよい。印刷層に形成される画像は、特に限定されず、文字、柄、記号およびこれらの組み合わせなどが表される。
 基材への印刷層の形成は、バイオマス由来のインキを用いて行うことができる。これにより、環境負荷を低減することができる。
 印刷層の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。
The polypropylene resin layer may have a printing layer on its surface. The image formed on the print layer is not particularly limited, and represents characters, patterns, symbols, and combinations thereof.
The formation of the printing layer on the substrate can be performed using an ink derived from biomass. As a result, the environmental load can be reduced.
The method for forming the print layer is not particularly limited, and examples thereof include conventionally known printing methods such as a gravure printing method, an offset printing method, and a flexographic printing method.
 また、ポリプロピレン樹脂層は、表面処理が施されていてもよい。これにより、コート層との密着性を向上することができる。
 表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
Further, the polypropylene resin layer may be surface-treated. Thereby, the adhesion with the coat layer can be improved.
The surface treatment method is not particularly limited, and for example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals. Examples include chemical treatment such as treatment.
[コート層]
 本発明の第2の実施形態による多層基材は、ポリプロピレン樹脂層上に、極性基を有する樹脂材料を含むコート層を備え、該コート層上には高い密着性を有する蒸着膜を形成することができ、ガスバリア性を向上することができる。
 また、後述するように、本発明の多層基材を使用して作製される包装材料は高いラミネート強度を有する。
[Coat layer]
The multilayer base material according to the second embodiment of the present invention is provided with a coat layer containing a resin material having a polar group on a polypropylene resin layer, and a thin-film deposition film having high adhesion is formed on the coat layer. It is possible to improve the gas barrier property.
Further, as will be described later, the packaging material produced by using the multilayer base material of the present invention has high lamination strength.
 コート層は、極性基を有する樹脂材料を含む。本発明において、極性基とは、ヘテロ原子を1個以上含む基を指し、例えば、エステル基、エポキシ基、水酸基、アミノ基、アミド基、カルボキシル基、カルボニル基、カルボン酸無水物基、スルフォン基、チオール基およびハロゲン基などが挙げられる。
 これらの中でも、包装材料のラミネート性の観点からは、カルボキシル基、カルボニル基、エステル基、水酸基およびアミノ基が好ましく、カルボキシル基および水酸基がより好ましい。
The coat layer contains a resin material having a polar group. In the present invention, the polar group refers to a group containing one or more heteroatoms, for example, an ester group, an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, a carbonyl group, a carboxylic acid anhydride group, and a sulfone group. , Thiol group and halogen group and the like.
Among these, from the viewpoint of the laminate property of the packaging material, a carboxyl group, a carbonyl group, an ester group, a hydroxyl group and an amino group are preferable, and a carboxyl group and a hydroxyl group are more preferable.
 極性基を有する樹脂材料としては、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール(PVA)、ポリエステル、ポリエチレンイミン、水酸基含有(メタ)アクリル樹脂、ナイロン6、ナイロン6,6、MXDナイロン、アモルファスナイロン、ポリウレタンなどが好ましく、水酸基含有(メタ)アクリル樹脂、エチレン-ビニルアルコール共重合体及びポリビニルアルコールが特に好ましい。
 このような樹脂材料を使用することにより、コート層上に形成される蒸着膜の密着性を顕著に改善することができ、そのガスバリア性を効果的に向上することができる。
Examples of the resin material having a polar group include ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol (PVA), polyester, polyethyleneimine, hydroxyl group-containing (meth) acrylic resin, nylon 6, nylon 6,6, MXD nylon, and the like. Amorphous nylon, polyurethane and the like are preferable, and hydroxyl group-containing (meth) acrylic resin, ethylene-vinyl alcohol copolymer and polyvinyl alcohol are particularly preferable.
By using such a resin material, the adhesion of the thin-film deposition film formed on the coat layer can be remarkably improved, and the gas barrier property thereof can be effectively improved.
 本発明において、コート層は、水系エマルジョンまたは溶剤系エマルジョンを用いて形成することができる。水系エマルジョンの具体例としては、ポリアミド系のエマルジョン、ポリエチレン系のエマルジョン、ポリウレタン系のエマルジョン等が挙げられ、溶剤系エマルジョンの具体例としては、ポリエステル系のエマルジョン等が挙げられる。 In the present invention, the coat layer can be formed by using an aqueous emulsion or a solvent-based emulsion. Specific examples of the aqueous emulsion include polyamide-based emulsions, polyethylene-based emulsions, polyurethane-based emulsions, and the like, and specific examples of solvent-based emulsions include polyester-based emulsions.
 コート層における極性基を有する樹脂材料の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The content of the resin material having a polar group in the coat layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
 本発明の特性を損なわない範囲において、コート層は、極性基を有する樹脂材料以外の樹脂材料を含んでいてもよい。
 また、本発明の特性を損なわない範囲において、コート層は、添加剤を含むことができる。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。
The coat layer may contain a resin material other than the resin material having a polar group as long as the characteristics of the present invention are not impaired.
In addition, the coat layer may contain additives as long as the characteristics of the present invention are not impaired. Additives include, for example, cross-linking agents, antioxidants, anti-blocking agents, slip agents, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and modifying resins. Can be mentioned.
 本発明の第2の実施形態において、多層基材の総厚さに対する、コート層の厚さの割合は、1%以上20%以下であることが好ましく、3%以上10%以下であることがより好ましい。
 多層基材の総厚さに対する、コート層の厚さの割合を、1%以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 また、多層基材の総厚さに対する、コート層の厚さの割合を、20%以下とすることにより、多層基材の加工適性をより向上することができる。また、後述するように、多層基材を用いた積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
In the second embodiment of the present invention, the ratio of the thickness of the coat layer to the total thickness of the multilayer base material is preferably 1% or more and 20% or less, and preferably 3% or more and 10% or less. More preferred.
By setting the ratio of the thickness of the coat layer to the total thickness of the multilayer base material to 1% or more, the adhesion of the vapor-deposited film can be further improved, and the gas barrier property can be further improved. In addition, the lamination strength of the packaging material can be further improved.
Further, by setting the ratio of the thickness of the coat layer to the total thickness of the multilayer base material to 20% or less, the processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
 コート層の厚さは、0.1μm以上10μm以下であることが好ましく、0.2μm以上5μm以下であることがより好ましい。
 コート層の厚さを0.1μm以上とすることにより、蒸着膜の密着性をより向上することができ、ガスバリア性をより向上させることができる。また、包装材料のラミネート強度をより向上することができる。
 また、コート層の厚さを10μm以下とすることにより、多層基材の加工適性をより向上することができる。また、後述するように、多層基材を用いた積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
The thickness of the coat layer is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.2 μm or more and 5 μm or less.
By setting the thickness of the coat layer to 0.1 μm or more, the adhesion of the thin-film deposition film can be further improved, and the gas barrier property can be further improved. In addition, the lamination strength of the packaging material can be further improved.
Further, by setting the thickness of the coat layer to 10 μm or less, the processability of the multilayer base material can be further improved. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminated film using the multilayer base material and the sealant layer made of polypropylene.
 本発明の第2の実施形態において、多層基材は、オフライン製造することができる。具体的には、ポリプロピレンを含む樹脂組成物を、Tダイ法またはインフレーション法などを利用して製膜し、樹脂フィルムとした後、延伸し、該樹脂フィルム上にコート層形成用塗工液を塗布、乾燥することにより、多層基材を作製することができる。
 また、本発明の第2の実施形態において、多層基材は、インライン製造することもできる。具体的には、ポリプロピレンを含む樹脂組成物を、Tダイ法またはインフレーション法などを利用して製膜し、樹脂フィルムとした後、縦方向(MD方向)に延伸し、該樹脂フィルム上にコート層形成用塗工液を塗布、乾燥した後、横方向(TD方向)に延伸することにより、多層基材を作製することができる。なお、横方向への延伸を先に行ってもよい。
In the second embodiment of the present invention, the multilayer base material can be manufactured offline. Specifically, a resin composition containing polypropylene is formed into a film by using a T-die method, an inflation method, or the like to form a resin film, which is then stretched, and a coating liquid for forming a coat layer is applied onto the resin film. A multilayer base material can be produced by applying and drying.
Further, in the second embodiment of the present invention, the multilayer base material can also be manufactured in-line. Specifically, a resin composition containing polypropylene is formed into a film by using a T-die method, an inflation method, or the like to form a resin film, then stretched in the vertical direction (MD direction) and coated on the resin film. A multilayer base material can be produced by applying a layer-forming coating liquid, drying it, and then stretching it in the lateral direction (TD direction). In addition, you may perform stretching in the lateral direction first.
[積層フィルム]
 本発明の第3の実施形態による積層フィルム20は、図4に示すように、第1の実施形態による多層基材10と、無機酸化物を含む蒸着膜21とを備え、表面樹脂層12上に、蒸着膜21が設けられている。
 本発明の第4の実施形態による積層フィルム26は、図4に示すように、第2の実施形態による多層基材16と、無機酸化物を含む蒸着膜21とを備え、コート層18上に、蒸着膜21が設けられている。
 また、一実施形態において、積層フィルム20および積層フィルム26は、図5に示すように、蒸着膜21上に、バリアコート層22をさらに備えることができる。
 以下、本発明の第3の実施形態による積層フィルムおよび第4の実施形態による積層フィルムをそれぞれ、単に「積層フィルム」とも記載する。
[Laminated film]
As shown in FIG. 4, the laminated film 20 according to the third embodiment of the present invention includes the multilayer base material 10 according to the first embodiment and the thin-film film 21 containing an inorganic oxide, and is provided on the surface resin layer 12. Is provided with a vapor deposition film 21.
As shown in FIG. 4, the laminated film 26 according to the fourth embodiment of the present invention includes the multilayer base material 16 according to the second embodiment and the vapor-deposited film 21 containing an inorganic oxide, and is provided on the coat layer 18. , A vapor deposition film 21 is provided.
Further, in one embodiment, the laminated film 20 and the laminated film 26 may further include a barrier coat layer 22 on the vapor-deposited film 21 as shown in FIG.
Hereinafter, the laminated film according to the third embodiment of the present invention and the laminated film according to the fourth embodiment are also simply referred to as “laminated film”.
 以下、積層フィルムが備える各層について説明する。なお、多層基材については上述したため、ここでは記載を省略する。 Hereinafter, each layer included in the laminated film will be described. Since the multilayer base material has been described above, the description thereof is omitted here.
[蒸着膜]
 本発明の第3の実施形態による積層フィルムは、表面樹脂層上に無機酸化物からなる蒸着膜を備える。本発明の第4の実施形態による積層フィルムは、コート層上に無機酸化物からなる蒸着膜を備える。これにより、積層フィルムのガスバリア性、具体的には、酸素バリア性および水蒸気バリア性を向上することができる。また、本発明の積層フィルムを用いて作製した包装材料に充填された内容物の質量減少を抑えることができる。
[Embedded film]
The laminated film according to the third embodiment of the present invention includes a thin-film film made of an inorganic oxide on the surface resin layer. The laminated film according to the fourth embodiment of the present invention includes a vapor-deposited film made of an inorganic oxide on a coat layer. Thereby, the gas barrier property of the laminated film, specifically, the oxygen barrier property and the water vapor barrier property can be improved. In addition, it is possible to suppress a decrease in mass of the contents filled in the packaging material produced by using the laminated film of the present invention.
 無機酸化物としては、例えば、酸化アルミニウム(アルミナ)、酸化珪素(シリカ)、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウムなどを挙げることができる。
 上記したなかでも、シリカおよびアルミナが好ましい。また、蒸着膜形成後のエージング処理が必要ないため、シリカが特に好ましい。
Examples of the inorganic oxide include aluminum oxide (alumina), silicon oxide (silica), magsium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide.
Among the above, silica and alumina are preferable. Further, silica is particularly preferable because it does not require an aging treatment after forming the vapor-deposited film.
 蒸着膜の厚さは、1nm以上150nm以下であることが好ましく、5nm以上60nm以下であることがより好ましく、10nm以上40nm以下であることがさらに好ましい。
 蒸着膜の厚さを1nm以上とすることにより、積層フィルムの酸素バリア性および水蒸気バリア性をより向上することができる。
 また、蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができる。さらに、後述するように、本発明の積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
The thickness of the vapor-deposited film is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less.
By setting the thickness of the thin-film deposition film to 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminated film can be further improved.
Further, by setting the thickness of the thin-film deposition film to 150 nm or less, it is possible to prevent the occurrence of cracks in the thin-film deposition film. Further, as will be described later, it is possible to improve the recyclability of the packaging material produced by using the laminate of the laminated film of the present invention and the sealant layer made of polypropylene.
 蒸着膜の形成は、従来公知の方法を用いて行うことができ、例えば、真空蒸着法、スパッタリング法およびイオンプレーティング法などの物理気相成長法(Physical Vapor Deposition法、PVD法)、並びにプラズマ化学気相成長法、熱化学気相成長法および光化学気相成長法などの化学気相成長法(Chemical Vapor Deposition法、CVD法)などを挙げることができる。 The vapor deposition film can be formed by using a conventionally known method, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum vapor deposition method, a sputtering method and an ion plating method, and a plasma. Examples thereof include chemical vapor deposition methods (Chemical Vapor Deposition method, CVD method) such as chemical vapor deposition method, thermochemical vapor deposition method and photochemical vapor deposition method.
 また、例えば、物理気相成長法と化学気相成長法の両者を併用して異種の無機酸化物の蒸着膜の2層以上からなる複合膜を形成して使用することもできる。蒸着チャンバーの真空度としては、酸素導入前においては、10-2~10-8mbar程度が好ましく、酸素導入後においては、10-1~10-6mbar程度が好ましい。なお、酸素導入量などは、蒸着機の大きさなどによって異なる。導入する酸素には、キャリアガスとしてアルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスを支障のない範囲で使用してもよい。フィルムの搬送速度は、10~800m/min程度とすることができる。 Further, for example, both the physical vapor deposition method and the chemical vapor deposition method can be used in combination to form a composite film composed of two or more layers of thin-film deposition films of different kinds of inorganic oxides. The degree of vacuum deposition chamber, before introduction of oxygen, preferably about 10 -2 ~ 10 -8 mbar, in the after introduction of oxygen, preferably about 10 -1 ~ 10 -6 mbar. The amount of oxygen introduced differs depending on the size of the vapor deposition machine and the like. As the oxygen to be introduced, an inert gas such as argon gas, helium gas, or nitrogen gas may be used as the carrier gas within a range that does not hinder. The transport speed of the film can be about 10 to 800 m / min.
 蒸着膜の表面は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 The surface of the thin-film deposition film is preferably subjected to the above surface treatment. Thereby, the adhesion with the adjacent layer can be improved.
[バリアコート層]
 本発明の積層フィルムは、蒸着膜上にバリアコート層をさらに備えることができる。これにより、積層フィルムの酸素バリア性および水蒸気バリア性を向上することができる。
[Barrier coat layer]
The laminated film of the present invention can further include a barrier coat layer on the vapor-deposited film. Thereby, the oxygen barrier property and the water vapor barrier property of the laminated film can be improved.
 一実施形態において、バリアコート層は、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール(PVA)、ポリアクリロニトリル、ナイロン6、ナイロン6,6およびポリメタキシリレンアジパミド(MXD6)などのポリアミド、ポリエステル、ポリウレタン、並びに(メタ)アクリル樹脂などのガスバリア性樹脂を含む。これらの中でも、酸素バリア性および水蒸気バリア性という観点から、ポリビニルアルコールが好ましい。また、バリアコート層にポリビニルアルコールを含有させることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。 In one embodiment, the barrier coat layer is a polyamide such as ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol (PVA), polyacrylonitrile, nylon 6, nylon 6,6 and polymethoxylylen adipamide (MXD6). , Polyester, polyurethane, and gas barrier resins such as (meth) acrylic resins. Among these, polyvinyl alcohol is preferable from the viewpoint of oxygen barrier property and water vapor barrier property. Further, by incorporating polyvinyl alcohol in the barrier coat layer, it is possible to effectively prevent the occurrence of cracks in the vapor-deposited film.
 バリアコート層におけるガスバリア性樹脂の含有量は、50質量%以上95質量%以下であることが好ましく、75質量%以上90質量%以下であることがより好ましい。バリアコート層におけるガスバリア性樹脂の含有量を50質量%以上とすることにより、積層フィルムの酸素バリア性および水蒸気バリア性をより向上することができる。 The content of the gas barrier resin in the barrier coat layer is preferably 50% by mass or more and 95% by mass or less, and more preferably 75% by mass or more and 90% by mass or less. By setting the content of the gas barrier resin in the barrier coat layer to 50% by mass or more, the oxygen barrier property and the water vapor barrier property of the laminated film can be further improved.
 バリアコート層は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 The barrier coat layer can contain the above additives as long as the characteristics of the present invention are not impaired.
 バリアコート層の厚さは、0.01μm以上10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。
 バリアコート層の厚さを0.01μm以上とすることにより、積層フィルムの酸素バリア性および水蒸気バリア性をより向上することができる。
 バリアコート層の厚さを10μm以下とすることにより、積層フィルムの加工適性を向上することができる。また、本発明の積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
The thickness of the barrier coat layer is preferably 0.01 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less.
By setting the thickness of the barrier coat layer to 0.01 μm or more, the oxygen barrier property and the water vapor barrier property of the laminated film can be further improved.
By setting the thickness of the barrier coat layer to 10 μm or less, the processability of the laminated film can be improved. Further, it is possible to improve the recyclability of the packaging material produced by using the laminated film of the present invention and the sealant layer made of polypropylene.
 バリアコート層は、上記ガスバリア性樹脂を水または適当な溶剤に、溶解または分散させ、塗布、乾燥することにより形成することができる。また、市販されるバリアコート剤を塗布、乾燥することによってもバリアコート層を形成することができる。 The barrier coat layer can be formed by dissolving or dispersing the gas barrier resin in water or a suitable solvent, applying the resin, and drying the resin. The barrier coat layer can also be formed by applying a commercially available barrier coat agent and drying it.
 また、他の実施形態において、バリアコート層は、金属アルコキシドと水溶性高分子との混合物を、ゾルゲル法触媒、水および有機溶剤などの存在下で、ゾルゲル法によって重縮合して得られる、金属アルコキシドの加水分解物または金属アルコキシドの加水分解縮合物などの樹脂組成物を少なくとも1種含むガスバリア性塗布膜である。
 このようなバリアコート層を蒸着膜上に設けることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。
In another embodiment, the barrier coat layer is a metal obtained by polycondensing a mixture of a metal alkoxide and a water-soluble polymer by a sol-gel method in the presence of a sol-gel method catalyst, water, an organic solvent, or the like. A gas barrier coating film containing at least one resin composition such as a hydrolyzate of an alkoxide or a hydrocondensate of a metal alkoxide.
By providing such a barrier coat layer on the thin-film deposition film, it is possible to effectively prevent the occurrence of cracks in the thin-film deposition film.
 一実施形態において、金属アルコキシドは、下記一般式で表される。
   R M(OR
 ただし、式中、R、Rは、それぞれ、炭素数1~8の有機基を表し、Mは金属原子を表し、nは0以上の整数を表し、mは1以上の整数を表し、n+mはMの原子価を表す。
In one embodiment, the metal alkoxide is represented by the following general formula.
R 1 n M (OR 2 ) m
However, in the formula, R 1 and R 2 represent organic groups having 1 to 8 carbon atoms, respectively, M represents a metal atom, n represents an integer of 0 or more, and m represents an integer of 1 or more. n + m represents the valence of M.
 金属原子Mとしては、例えば、珪素、ジルコニウム、チタンおよびアルミニウムなどを使用することができる。
 また、RおよびRで表される有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基およびi-ブチル基などのアルキル基を挙げることができる。
As the metal atom M, for example, silicon, zirconium, titanium, aluminum and the like can be used.
Examples of the organic group represented by R 1 and R 2 include alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group. Can be done.
 上記一般式を満たす金属アルコキシドとしては、例えば、テトラメトキシシラン(Si(OCH)、テトラエトキシシラン(Si(OC)、テトラプロポキシシラン(Si(OC)、テトラブトキシシラン(Si(OC)などが挙げられる。 The metal alkoxide satisfying the above general formula, for example, tetramethoxysilane (Si (OCH 3) 4) , tetraethoxysilane (Si (OC 2 H 5) 4), tetra propoxy silane (Si (OC 3 H 7) 4 ), Tetrabutoxysilane (Si (OC 4 H 9 ) 4 ) and the like.
 また、上記金属アルコキシドと共に、シランカップリング剤が使用されることが好ましい。
 シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができるが、特に、エポキシ基を有するオルガノアルコキシシランが好ましい。エポキシ基を有するオルガノアルコキシシランとしては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランおよびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
Further, it is preferable to use a silane coupling agent together with the above metal alkoxide.
As the silane coupling agent, known organic reactive group-containing organoalkoxysilanes can be used, but organoalkoxysilanes having an epoxy group are particularly preferable. Examples of the organoalkoxysilane having an epoxy group include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Be done.
 上記シランカップリング剤は、2種以上を使用してもよい。シランカップリング剤は、上記金属アルコキシドの合計量100質量部に対して、1~20質量部程度の範囲内で使用することが好ましい。 Two or more kinds of the above silane coupling agents may be used. The silane coupling agent is preferably used in the range of about 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the metal alkoxide.
 水溶性高分子としては、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が好ましく、酸素バリア性、水蒸気バリア性、耐水性および耐候性という観点からは、これらを併用することが好ましい。 As the water-soluble polymer, polyvinyl alcohol and ethylene-vinyl alcohol copolymer are preferable, and from the viewpoint of oxygen barrier property, water vapor barrier property, water resistance and weather resistance, it is preferable to use these in combination.
 ガスバリア性塗布膜における水溶性高分子の含有量は、金属アルコキシド100質量部に対して5質量部以上500質量部以下であることが好ましい。
 ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して5質量部以上とすることにより、積層フィルムの酸素バリア性および水蒸気バリア性をより向上することができる。また、ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して500質量部以下とすることにより、ガスバリア性塗布膜の製膜性を向上することができる。
The content of the water-soluble polymer in the gas barrier coating film is preferably 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the metal alkoxide.
By setting the content of the water-soluble polymer in the gas barrier coating film to 5 parts by mass or more with respect to 100 parts by mass of the metal alkoxide, the oxygen barrier property and the water vapor barrier property of the laminated film can be further improved. Further, by setting the content of the water-soluble polymer in the gas barrier coating film to 500 parts by mass or less with respect to 100 parts by mass of the metal alkoxide, the film forming property of the gas barrier coating film can be improved.
 ガスバリア性塗布膜の厚さは、0.01μm以上100μm以下であることが好ましく、0.1μm以上50μm以下であることがより好ましい。これにより、リサイクル性を維持しつつ、酸素バリア性および水蒸気バリア性をより向上することができる。
 ガスバリア性塗布膜の厚さを0.01μm以上とすることにより、積層フィルムの酸素バリア性および水蒸気バリア性を向上することができる。また、蒸着膜におけるクラックの発生を防止することができる。
 ガスバリア性塗布膜の厚さを100μm以下とすることにより、本発明の積層フィルムと、ポリプロピレンからなるシーラント層との積層体を用いて作製される包装材料のリサイクル適性を向上することができる。
The thickness of the gas barrier coating film is preferably 0.01 μm or more and 100 μm or less, and more preferably 0.1 μm or more and 50 μm or less. Thereby, the oxygen barrier property and the water vapor barrier property can be further improved while maintaining the recyclability.
By setting the thickness of the gas barrier coating film to 0.01 μm or more, the oxygen barrier property and the water vapor barrier property of the laminated film can be improved. In addition, it is possible to prevent the occurrence of cracks in the vapor-deposited film.
By setting the thickness of the gas barrier coating film to 100 μm or less, it is possible to improve the recyclability of the packaging material produced by using the laminated body of the laminated film of the present invention and the sealant layer made of polypropylene.
 ガスバリア性塗布膜は、上記材料を含む組成物を、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコード、アプリケータなどの従来公知の手段により、塗布し、その組成物をゾルゲル法により重縮合することにより形成させることができる。
 ゾルゲル法触媒としては、酸またはアミン系化合物が好適である。アミン系化合物としては、水に実質的に不溶であり、且つ有機溶剤に可溶な第3級アミンが好適であり、例えば、N,N-ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミンなどが挙げられる。これらの中でも、N,N-ジメチルベンジルアミンが好ましい。
 ゾルゲル法触媒は、金属アルコキシド100質量部当り、0.01質量部以上1.0質量部以下の範囲で使用することが好ましく、0.03質量部以上0.3質量部以下の範囲で使用することがより好ましい。
 ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、0.01質量部以上とすることにより、その触媒効果を向上することができる。また、ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、1.0質量部以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
The gas barrier coating film is prepared by applying a composition containing the above materials by a conventionally known means such as a roll coating such as a gravure roll coater, a spray coating, a spin coating, dipping, a brush, a bar code, and an applicator, and the composition thereof. The product can be formed by polycondensing the product by the sol-gel method.
As the sol-gel method catalyst, an acid or amine compound is suitable. As the amine compound, a tertiary amine which is substantially insoluble in water and soluble in an organic solvent is preferable, and for example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, and trypentyl are preferable. Examples include amines. Among these, N, N-dimethylbenzylamine is preferable.
The sol-gel method catalyst is preferably used in the range of 0.01 parts by mass or more and 1.0 parts by mass or less, and 0.03 parts by mass or more and 0.3 parts by mass or less per 100 parts by mass of the metal alkoxide. Is more preferable.
By setting the amount of the sol-gel method catalyst to be 0.01 part by mass or more per 100 parts by mass of the metal alkoxide, the catalytic effect can be improved. Further, by setting the amount of the sol-gel method catalyst to be 1.0 part by mass or less per 100 parts by mass of the metal alkoxide, the thickness of the formed gas barrier coating film can be made uniform.
 上記組成物は、さらに酸を含んでいてもよい。酸は、ゾルゲル法触媒、主として金属アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。
 酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、ならびに酢酸、酒石酸などの有機酸が用いられる。酸の使用量は、金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上0.05モル以下であることが好ましい。
 酸の使用量を金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上とすることにより、触媒効果を向上することができる。また、酸の使用量を金属アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.05モル以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
The composition may further contain an acid. The acid is used as a sol-gel catalyst, mainly as a catalyst for hydrolysis of metal alkoxides, silane coupling agents and the like.
As the acid, for example, mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid are used. The amount of the acid used is preferably 0.001 mol or more and 0.05 mol or less with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent.
The catalytic effect can be improved by setting the amount of the acid to be 0.001 mol or more with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent. Further, the thickness of the gas barrier coating film formed by setting the amount of acid used to 0.05 mol or less with respect to the total molar amount of the alkoxide content (for example, the silicate portion) of the metal alkoxide and the silane coupling agent. Can be made uniform.
 また、上記組成物は、金属アルコキシドの合計モル量1モルに対して、好ましくは0.1モル以上100モル以下、より好ましくは0.8モル以上2モル以下の割合の水を含んでなることが好ましい。
 水の含有量を金属アルコキシドの合計モル量1モルに対して、0.1モル以上とすることにより、本発明の積層フィルムの酸素バリア性および水蒸気バリア性を向上することができる。また、水の含有量を金属アルコキシドの合計モル量1モルに対して、100モル以下とすることにより、加水分解反応を速やかに行うことができる。
The composition also contains water at a ratio of preferably 0.1 mol or more and 100 mol or less, more preferably 0.8 mol or more and 2 mol or less, based on 1 mol of the total molar amount of the metal alkoxide. Is preferable.
By setting the water content to 0.1 mol or more with respect to 1 mol of the total molar amount of the metal alkoxide, the oxygen barrier property and the water vapor barrier property of the laminated film of the present invention can be improved. Further, by setting the water content to 100 mol or less with respect to 1 mol of the total molar amount of the metal alkoxide, the hydrolysis reaction can be carried out rapidly.
 また、上記組成物は、有機溶剤を含んでいてもよい。有機溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノールなどを用いることができる。 Further, the above composition may contain an organic solvent. As the organic solvent, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol and the like can be used.
 以下、ガスバリア性塗布膜の形成方法の一実施形態について以下に説明する。
 まず、金属アルコキシド、水溶性高分子、ゾルゲル法触媒、水、有機溶剤および必要に応じてシランカップリング剤などを混合し、組成物を調製する。該組成物中では次第に重縮合反応が進行する。
 次いで、蒸着膜上に、上記従来公知の方法により、該組成物を塗布、乾燥する。この乾燥により、金属アルコキシドおよび水溶性高分子(組成物が、シランカップリング剤を含む場合は、シランカップリング剤も)の重縮合反応がさらに進行し、複合ポリマーの層が形成される。
 最後に、該組成物を、例えば、20~250℃、好ましくは50~220℃の温度で、1秒~10分間加熱することにより、ガスバリア性塗布膜を形成することができる。
Hereinafter, an embodiment of a method for forming a gas barrier coating film will be described below.
First, a composition is prepared by mixing a metal alkoxide, a water-soluble polymer, a sol-gel method catalyst, water, an organic solvent and, if necessary, a silane coupling agent. The polycondensation reaction gradually proceeds in the composition.
Next, the composition is applied and dried on the thin-film deposition film by the above-mentioned conventionally known method. By this drying, the polycondensation reaction of the metal alkoxide and the water-soluble polymer (and the silane coupling agent if the composition contains a silane coupling agent) further proceeds to form a layer of the composite polymer.
Finally, the gas barrier coating film can be formed by heating the composition at a temperature of, for example, 20 to 250 ° C., preferably 50 to 220 ° C. for 1 second to 10 minutes.
 バリアコート層は、その表面に印刷層が形成されていてもよい。印刷層の形成方法などについては上記した通りである。 A printing layer may be formed on the surface of the barrier coat layer. The method of forming the print layer and the like are as described above.
[積層体]
 本発明の第5の実施形態による積層体30は、図6に示すように、上記積層フィルム20または26と、シーラント層31とを備える。
[Laminate]
As shown in FIG. 6, the laminated body 30 according to the fifth embodiment of the present invention includes the laminated film 20 or 26 and the sealant layer 31.
 以下、積層体が備える各層について説明する。なお、積層フィルムについては上述したため、ここでは積層フィルムの記載を省略する。 Hereinafter, each layer provided in the laminated body will be described. Since the laminated film has been described above, the description of the laminated film is omitted here.
[シーラント層]
 一実施形態において、シーラント層は、熱によって相互に融着し得る樹脂材料により形成することができる。すなわち一実施形態において、シーラント層は、ヒートシール層である。
 熱によって相互に融着し得る樹脂材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、メチルペンテンポリマーおよび環状オレフィンコポリマーなどのポリオレフィンが挙げられる。具体的には、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)、メタロセン触媒を利用して重合したエチレン・α-オレフィン共重合体、エチレンおよびプロピレンのランダムもしくはブロック共重合体等のエチレン-プロピレン共重合体が挙げられる。
 また、熱によって相互に融着し得る樹脂材料としては、例えば、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(EAA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン-メタクリル酸共重合体(EMAA)、エチレン-メタクリル酸メチル共重合体(EMMA)、アイオノマー樹脂、ヒートシール性エチレン-ビニルアルコール樹脂、ポリオレフィンをアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸で変性した酸変性ポリオレフィン、ポリエチレンテレフタレート(PET)などのポリエステル、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂なども挙げられる。
[Sealant layer]
In one embodiment, the sealant layer can be formed of a resin material that can be fused to each other by heat. That is, in one embodiment, the sealant layer is a heat seal layer.
Resin materials that can be fused to each other by heat include, for example, polyolefins such as polyethylene, polypropylene, polybutene, methylpentene polymers and cyclic olefin copolymers. Specifically, low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), linear (linear) low-density polyethylene (LLDPE), and ethylene copolymerized using a metallocene catalyst. Examples thereof include α-olefin copolymers and polyethylene-propylene copolymers such as random or block copolymers of ethylene and propylene.
Examples of resin materials that can be fused to each other by heat include ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), and ethylene-ethyl acrylate copolymer (EEA). , Ethylene-Methylacetate copolymer (EMAA), Ethylene-Methyl methacrylate copolymer (EMMA), Ionomer resin, Heat-sealing ethylene-vinyl alcohol resin, Polyethylene as acrylic acid, Methacrylate, Maleic acid, Maleic anhydride , Acid-modified polyolefin modified with unsaturated carboxylic acid such as fumaric acid and itaconic acid, polyester such as polyethylene terephthalate (PET), polyvinyl acetate resin, poly (meth) acrylic resin, polyvinyl chloride resin, etc. Be done.
 従来、基材とシーラント層とを異種の樹脂材料により構成した積層体が包装材料の作製に使用されている。しかしながら、使用済みの包装材料を回収した後、基材とシーラント層とを分離するのが困難であるため、この包装材料は積極的にはリサイクルされていないという現状がある。
 基材とシーラント層とを同一材料によって構成することにより、基材とシーラント層とを分離する必要がなく、そのリサイクル適正を向上することができる。すなわち、上記した樹脂材料の中でも、積層体を用いて作製した包装材料のリサイクル適性という観点からは、シーラント層は、ポリプロピレンから構成されることが好ましい。
Conventionally, a laminate in which a base material and a sealant layer are made of different resin materials has been used for producing a packaging material. However, since it is difficult to separate the base material and the sealant layer after collecting the used packaging material, the present situation is that this packaging material is not actively recycled.
By forming the base material and the sealant layer with the same material, it is not necessary to separate the base material and the sealant layer, and the recycling suitability thereof can be improved. That is, among the above-mentioned resin materials, the sealant layer is preferably made of polypropylene from the viewpoint of recycling suitability of the packaging material produced by using the laminate.
 本発明の特性を損なわない範囲において、シーラント層は、上記添加剤を含むことができる。 The sealant layer can contain the above additives as long as the characteristics of the present invention are not impaired.
 シーラント層は、単層構造を有するものであってもよく、多層構造を有するものであってもよい。 The sealant layer may have a single-layer structure or may have a multi-layer structure.
 シーラント層の厚さは、20μm以上100μm以下であることが好ましく、30μm以上70μm以下であることがより好ましい。
 シーラント層の厚さを20μm以上とすることにより、本発明の積層体を備える包装材料のラミネート強度をより向上することができる。
 また、シーラント層の厚さを100μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
The thickness of the sealant layer is preferably 20 μm or more and 100 μm or less, and more preferably 30 μm or more and 70 μm or less.
By setting the thickness of the sealant layer to 20 μm or more, the lamination strength of the packaging material including the laminate of the present invention can be further improved.
Further, by setting the thickness of the sealant layer to 100 μm or less, the processability of the laminate of the present invention can be further improved.
[包装材料]
 本発明の第6の実施形態による包装材料は、上記積層体を備える。包装材料としては、例えば、包装製品(包装袋)、蓋材およびラミネートチューブなどを挙げることができる。
[Packaging material]
The packaging material according to the sixth embodiment of the present invention includes the above-mentioned laminate. Examples of the packaging material include packaging products (packaging bags), lid materials, and laminated tubes.
 包装袋としては、例えば、スタンディングパウチ型、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、ガゼット型などの種々の形態の包装袋が挙げられる。 Examples of the packaging bag include a standing pouch type, a side seal type, a two-way seal type, a three-way seal type, a four-way seal type, an envelope-attached seal type, a gassho-attached seal type (pillow seal type), a fold-attached seal type, and a flat-bottom seal. Examples thereof include various types of packaging bags such as a mold, a square bottom seal type, and a gusset type.
 本発明の積層体を備える包装袋の一例である、スタンディングパウチについて説明する。図7は、スタンディングパウチの構成の一例を簡略に示す図である。図7に示すように、スタンディングパウチ40は、胴部(側面シート)41と、底部(底面シート)42とで構成されている。スタンディングパウチ40が備える、側面シート41と底面シート42とは、同一部材により構成されていてもよく、別部材により構成されていてもよい。 The standing pouch, which is an example of the packaging bag provided with the laminate of the present invention, will be described. FIG. 7 is a diagram briefly showing an example of the configuration of the standing pouch. As shown in FIG. 7, the standing pouch 40 is composed of a body portion (side sheet) 41 and a bottom portion (bottom sheet) 42. The side sheet 41 and the bottom sheet 42 included in the standing pouch 40 may be made of the same member or may be made of different members.
 一実施形態において、スタンディングパウチ40が備える胴部41は、本発明の積層体が備えるヒートシール層が最内層となるように製袋することにより形成することができる。
 他の実施形態において、側面シート41は、本発明の積層体を2枚準備し、これらをヒートシール層が向かい合うようにして重ね合わせ、重ね合わせた積層体の両端から、ヒートシール層が外側となるように、V字状に折った2枚の積層体を挿入し、ヒートシールすることにより形成することができる。このような作製方法によれば、図8に示すようなガゼット43付きの胴部を有するスタンドパウチとすることができる。
In one embodiment, the body portion 41 included in the standing pouch 40 can be formed by making a bag so that the heat seal layer included in the laminate of the present invention is the innermost layer.
In another embodiment, for the side sheet 41, two laminates of the present invention are prepared, these are laminated so that the heat seal layers face each other, and the heat seal layer is exposed to the outside from both ends of the laminated laminate. It can be formed by inserting two laminated bodies folded in a V shape and heat-sealing them so as to be. According to such a manufacturing method, a stand pouch having a body portion with a gusset 43 as shown in FIG. 8 can be obtained.
 また、一実施形態において、スタンディングパウチ40が備える底面シート42は、製袋された側面シートの間に本発明の積層体を挿入し、ヒートシールすることにより形成することができる。より具体的には、本発明の積層体をヒートシール層が外側となるようにV字状に折り、V字状に折った積層体を製袋された側面シートの間に挿入し、ヒートシールすることにより、底面シート42を形成することができる。 Further, in one embodiment, the bottom sheet 42 included in the standing pouch 40 can be formed by inserting the laminate of the present invention between the bag-made side sheets and heat-sealing. More specifically, the laminate of the present invention is folded into a V shape so that the heat seal layer is on the outside, and the V-shaped laminate is inserted between the bag-made side sheets to heat seal. By doing so, the bottom sheet 42 can be formed.
 ヒートシールは、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シールなどの公知の方法で行うことができる。 The heat seal can be performed by a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal.
 包装材料に充填される内容物は、特に限定されない。内容物は、液体、粉体およびゲル体であってもよい。また、内容物は、食品であっても、非食品であってもよい。 The contents to be filled in the packaging material are not particularly limited. The contents may be liquids, powders and gels. Further, the content may be food or non-food.
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1A]
 ポリアミド(宇部興産(株)製、ポリアミド6、融点:220℃)と、接着性樹脂(三井化学(株)製、アドマーQF500、無水マレイン酸変性ポリプロピレン)と、ポリプロピレン(日本ポリプロ(株)製、ノバテックFL203D、融点:160℃)とを共押出した後、逐次二軸延伸装置により、縦方向(MD方向)に5倍、横方向(TD方向)に10倍延伸して、多層基材を作製した。
 上記のようにして作製した多層基材は、ポリアミドからなる表面樹脂層と、接着性樹脂からなる接着性樹脂層と、ポリプロピレンからなるポリプロピレン樹脂層とを備え、総厚さ20μmであった。
 多層基材の総厚さに対するポリアミドからなる表面樹脂層の厚さの割合は、2%であった。
[Example 1A]
Polyamide (manufactured by Ube Industries, Ltd., polyamide 6, melting point: 220 ° C.), adhesive resin (manufactured by Mitsui Chemicals, Inc., Admer QF500, maleic anhydride-modified polypropylene), and polypropylene (manufactured by Japan Polypropylene Corporation, After co-extruding with Novatec FL203D, melting point: 160 ° C.), a multilayer base material is prepared by stretching 5 times in the vertical direction (MD direction) and 10 times in the horizontal direction (TD direction) by a sequential biaxial stretching device. did.
The multilayer base material produced as described above was provided with a surface resin layer made of polyamide, an adhesive resin layer made of an adhesive resin, and a polypropylene resin layer made of polypropylene, and had a total thickness of 20 μm.
The ratio of the thickness of the surface resin layer made of polyamide to the total thickness of the multilayer base material was 2%.
[実施例2A]
 ポリアミドを、ポリビニルアルコール(日本酢ビ・ポバール(株)製、ポバールJC-33、融点:200℃)に変更し、表面樹脂層を形成した以外は、実施例1Aと同様にして、多層基材を作製した。
[Example 2A]
The polyamide was changed to polyvinyl alcohol (manufactured by Japan Vam & Poval Co., Ltd., Poval JC-33, melting point: 200 ° C.) to form a surface resin layer, but the multilayer base material was the same as in Example 1A. Was produced.
[実施例3A]
 ポリアミドを、エチレン-ビニルアルコール共重合体(クラレ(株)製、エバール F171B、融点:183℃)に変更し、表面樹脂層を形成した以外は、実施例1Aと同様にして、多層基材を作製した。
[Example 3A]
The multilayer substrate was prepared in the same manner as in Example 1A except that the polyamide was changed to an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., EVAL F171B, melting point: 183 ° C.) to form a surface resin layer. Made.
[実施例4A]
 ポリアミドを、非結晶性ポリエステル(東洋紡(株)製、バイロン RN-9300、融点:198℃)に変更し、表面樹脂層を形成した以外は、実施例1Aと同様にして、多層基材を作製した。
[Example 4A]
A multilayer base material was prepared in the same manner as in Example 1A except that the polyamide was changed to a non-crystalline polyester (manufactured by Toyobo Co., Ltd., Byron RN-9300, melting point: 198 ° C.) to form a surface resin layer. did.
[比較例1A]
 ポリプロピレン(日本ポリプロ(株)製、ノバテックFL203D、融点:160℃)を押出した後、逐次二軸延伸装置により、縦方向(MD方向)に5倍、横方向(TD方向)に10倍延伸して、厚さ20μmの基材(ポリプロピレンフィルム)を作製した。
[Comparative Example 1A]
After extruding polypropylene (manufactured by Japan Polypropylene Corporation, Novatec FL203D, melting point: 160 ° C.), it is stretched 5 times in the vertical direction (MD direction) and 10 times in the horizontal direction (TD direction) by a sequential biaxial stretching device. A base material (polypropylene film) having a thickness of 20 μm was prepared.
<ガスバリア性評価>
 上記実施例において得られた多層基材および上記比較例において得られたポリプロピレンフィルムをテスト機内に配置し、該多層基材の表面樹脂層上、および該ポリプロピレンフィルム上に、バッチ式の平行平板CVD法によりシリカ蒸着膜を形成した。CVD法の蒸着条件は以下の通りとした。
(蒸着条件)
・投入電力 100W
・原料ガス ヘキサメチルジシロキサン(HMDSO)
・キャリアガス流量 Ar 3.0sccm
・酸素ガス流量 50sccm
・成膜圧力 15Pa
<Evaluation of gas barrier property>
The multilayer base material obtained in the above example and the polypropylene film obtained in the above comparative example are placed in a test machine, and a batch type parallel plate CVD is performed on the surface resin layer of the multilayer base material and on the polypropylene film. A silica vapor deposition film was formed by the method. The vapor deposition conditions of the CVD method were as follows.
(Evaporation conditions)
・ Input power 100W
・ Raw material gas Hexamethyldisiloxane (HMDSO)
・ Carrier gas flow rate Ar 3.0 sccm
・ Oxygen gas flow rate 50 sccm
・ Film formation pressure 15Pa
 蒸着膜形成後、酸素透過度(cc/m・day・atm)および水蒸気透過度(g/m・day)を、以下の方法により測定し、その結果を表1Aにまとめた。 After forming the vapor-deposited film, the oxygen permeability (cc / m 2 · day · atm) and the water vapor permeability (g / m 2 · day) were measured by the following methods, and the results are summarized in Table 1A.
[酸素透過度]
 酸素透過度測定装置(MOCON社製、OX-TRAN2/20)を用いて、試験片の基材層面が酸素供給側になるようにセットして、JIS K 7126に準拠して、23℃、相対湿度90%RH環境下における酸素透過度を測定した。
[Oxygen permeability]
Using an oxygen permeability measuring device (OX-TRAN2 / 20 manufactured by MOCON), set the test piece so that the base material layer surface is on the oxygen supply side, and set it at 23 ° C. relative to JIS K 7126. Oxygen permeability was measured in a humidity 90% RH environment.
[水蒸気透過度]
 水蒸気透過度測定装置(MOCON社製、PERMATRAN-w 3/33)を用いて、試験片の基材層面が水蒸気供給側になるようにセットして、JIS K 7129に準拠して、40℃、相対湿度90%RH環境下における水蒸気透過度を測定した。
[Water vapor permeability]
Using a water vapor permeability measuring device (MOCON, PERMATRAN-w 3/33), set the test piece so that the base material layer surface is on the water vapor supply side, and set it at 40 ° C. in accordance with JIS K 7129. The water vapor permeability in a 90% relative humidity RH environment was measured.
 また、テスト機内において、PVD法によりシリカ蒸着膜およびアルミナ蒸着膜を形成し、同様に酸素透過度(cc/m・day・atm)および水蒸気透過度(g/m・day)を測定し、表1Aにまとめた。 Further, in the test machine, a silica vapor deposition film and an alumina vapor deposition film were formed by the PVD method, and the oxygen permeability (cc / m 2 · day · atm) and the steam permeability (g / m 2 · day) were measured in the same manner. , Table 1A.
<ラミネート強度試験>
 上記ガスバリア性評価において、CVD法により形成したシリカ蒸着膜上に、厚さ40μmの未延伸ポリプロピレンフィルムをドライラミネートしてシーラント層を形成し、積層体を作製した。
 この積層体を15mm巾の短冊状にカットしたサンプルを、引張試験機((株)オリエンテック製、テンシロン万能材料試験機)を用いて、JIS K6854-2に準拠し、蒸着膜と表面樹脂層との間、および蒸着膜とポリプロピレンフィルムとの間のラミネート強度(N/15mm)を、剥離速度50mm/minで90°剥離(T字剥離法)を用いて測定した。測定結果を表1Aにまとめた。
 PVD法により形成したシリカ蒸着膜およびアルミナ蒸着膜上にも厚さ40μmの未延伸ポリプロピレンフィルムをドライラミネートし、積層体を作製し、上記同様に、ラミネート強度を測定した。測定結果を表1Aにまとめた。
<Laminate strength test>
In the above gas barrier property evaluation, an unstretched polypropylene film having a thickness of 40 μm was dry-laminated on the silica-deposited film formed by the CVD method to form a sealant layer, and a laminate was produced.
A sample obtained by cutting this laminate into strips with a width of 15 mm was used in a tensile tester (manufactured by Orientec Co., Ltd., Tencilon universal material tester) in accordance with JIS K6854-2, and the vapor deposition film and surface resin layer were used. The lamination strength (N / 15 mm) between the film and the vapor-deposited film and the polypropylene film was measured using 90 ° peeling (T-shaped peeling method) at a peeling speed of 50 mm / min. The measurement results are summarized in Table 1A.
An unstretched polypropylene film having a thickness of 40 μm was dry-laminated on the silica-deposited film and the alumina-deposited film formed by the PVD method to prepare a laminate, and the lamination strength was measured in the same manner as described above. The measurement results are summarized in Table 1A.
<製膜性評価>
 上記実施例および比較例において製膜時の樹脂の流れムラの発生の有無を目視により観察し、以下の評価基準に基づいて評価した。評価結果を表2Aにまとめた。
(評価基準)
AA:流れムラの発生が見られなかった。
BB:流れムラの発生が見られた。
<Evaluation of film forming property>
In the above Examples and Comparative Examples, the presence or absence of uneven resin flow during film formation was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Table 2A.
(Evaluation criteria)
AA: No uneven flow was observed.
BB: Occurrence of uneven flow was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例1B]
 一方の面がコロナ処理された、厚さ20μmの2軸延伸ポリプロピレンフィルム(三井化学東セロ(株)製、ME-1)のコロナ処理面に、下記組成のコート層形成用塗工液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
 コート層形成用塗工液組成
・ポリビニルアルコール                   5質量%
(日本酢ビ・ポバール(株)製、VC-10、重合度1000、ケン化度99.3モル%以上)
・水                           90質量%
・イソプロパノール(IPA)                5質量%
[Example 1B]
A coating solution for forming a coat layer having the following composition was applied to the corona-treated surface of a 20 μm-thick biaxially stretched polypropylene film (ME-1 manufactured by Mitsui Chemicals Tohcello Corporation) on which one surface was corona-treated. After drying, a coat layer having a thickness of 0.5 μm was formed to obtain a multilayer base material.
Coating liquid composition for coating layer formation ・ Polyvinyl alcohol 5% by mass
(Manufactured by Japan Vam & Poval Co., Ltd., VC-10, degree of polymerization 1000, degree of saponification 99.3 mol% or more)
・ Water 90% by mass
・ Isopropanol (IPA) 5% by mass
[実施例2B]
 上記2軸延伸ポリプロピレンフィルムのコロナ処理面に、下記組成のコート層形成用塗工液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
 コート層形成用塗工液組成
・EVOH                        75質量%
(日本シーマ(株)製、エバーソルブ#10)
・水                         12.5質量%
・1-プロパノール                  12.5質量%
[Example 2B]
A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 μm to obtain a multilayer base material.
Coating liquid composition for coating layer formation ・ EVOH 75% by mass
(Made by Nissan Cima Co., Ltd., Eversolve # 10)
・ Water 12.5% by mass
1-Propanol 12.5% by mass
[実施例3B]
 上記2軸延伸ポリプロピレンフィルムのコロナ処理面に、下記組成のコート層形成用塗工液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
 コート層形成用塗工液組成
・ポリエステル                      25質量%
(高松油脂(株)製、ペスレジンS-680EA)
・酢酸エチル                       75質量%
[Example 3B]
A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 μm to obtain a multilayer base material.
Coating liquid composition for coating layer formation ・ Polyester 25% by mass
(Made by Takamatsu Oil & Fat Co., Ltd., Pesresin S-680EA)
-Ethyl acetate 75% by mass
[実施例4B]
 上記2軸延伸ポリプロピレンフィルムのコロナ処理面に、下記組成のコート層形成用塗工液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
 コート層形成用塗工液組成
・ポリエチレンイミン                   60質量%
(日本触媒(株)製、エポミンP-1000)
・メタノール                       40質量%
[Example 4B]
A coating liquid for forming a coat layer having the following composition was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 μm to obtain a multilayer base material.
Coating liquid composition for coating layer formation ・ Polyethyleneimine 60% by mass
(Epomin P-1000, manufactured by Nippon Shokubai Co., Ltd.)
Methanol 40% by mass
[実施例5B]
 上記2軸延伸ポリプロピレンフィルムのコロナ処理面に、以下のようにして調製したコート層形成用塗工液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
[Example 5B]
A coating solution for forming a coating layer prepared as follows is applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coating layer having a thickness of 0.5 μm to obtain a multilayer base material. It was.
 水酸基含有(メタ)アクリル樹脂(数平均分子量25000、ガラス転移温度99℃、水酸基価80mgKOHL/g)を、メチルケトンと酢酸エチルとの混合溶剤(混合比1:1)を用いて、固形分濃度が10質量%となるまで希釈し、主剤を調製した。
 トリレンジイソシアネートを含有する酢酸エチル溶液(固形分75質量%)を硬化剤として、主剤に添加し、コート層形成用溶液を得た。なお、硬化剤の使用量は、主剤100質量部に対し、10質量部とした。
A hydroxyl group-containing (meth) acrylic resin (number average molecular weight 25,000, glass transition temperature 99 ° C., hydroxyl value 80 mgKOHL / g) is used in a mixed solvent of methyl ketone and ethyl acetate (mixing ratio 1: 1) to increase the solid content concentration. The main agent was prepared by diluting to 10% by mass.
An ethyl acetate solution (solid content 75% by mass) containing tolylene diisocyanate was added as a curing agent to the main agent to obtain a solution for forming a coat layer. The amount of the curing agent used was 10 parts by mass with respect to 100 parts by mass of the main agent.
[実施例6B]
 上記2軸延伸ポリプロピレンフィルムのコロナ処理面に、水系ポリアミドエマルジョン溶液を塗布、乾燥して、厚さ0.5μmのコート層を形成し、多層基材を得た。
[Example 6B]
An aqueous polyamide emulsion solution was applied to the corona-treated surface of the biaxially stretched polypropylene film and dried to form a coat layer having a thickness of 0.5 μm to obtain a multilayer base material.
[比較例1B]
 一方の面がコロナ処理された、厚さ20μmの2軸延伸ポリプロピレンフィルム(三井化学東セロ(株)製、ME-1)を準備した。
[Comparative Example 1B]
A 20 μm-thick biaxially stretched polypropylene film (ME-1 manufactured by Mitsui Chemicals Tohcello Corporation) having one surface treated with corona was prepared.
<ガスバリア性評価>
 上記実施例において得られた多層基材および上記比較例において準備したポリプロピレンフィルムをテスト機内に配置し、該多層基材のコート層上、および該ポリプロピレンフィルムのコロナ処理面上に、バッチ式の平行平板CVD法によりシリカ蒸着膜を形成した。CVD法の蒸着条件は実施例1A~4Aと同様の条件とした。
 蒸着膜形成後、酸素透過度(cc/m・day・atm)および水蒸気透過度(g/m・day)を、以下の方法により測定し、その結果を表1Bにまとめた。
<Evaluation of gas barrier property>
The multilayer base material obtained in the above example and the polypropylene film prepared in the above comparative example were placed in a test machine, and a batch type parallel was placed on the coat layer of the multilayer base material and on the corona-treated surface of the polypropylene film. A silica vapor deposition film was formed by a flat plate CVD method. The vapor deposition conditions of the CVD method were the same as those of Examples 1A to 4A.
After the vapor deposition film was formed, the oxygen permeability (cc / m 2 · day · atm) and the water vapor permeability (g / m 2 · day) were measured by the following methods, and the results are summarized in Table 1B.
[酸素透過度]
 酸素透過度測定装置(MOCON社製、OX-TRAN2/20)を用いて、試験片の基材層面が酸素供給側になるようにセットして、JIS K 7126に準拠して、23℃、相対湿度90%RH環境下における酸素透過度を測定した。
[Oxygen permeability]
Using an oxygen permeability measuring device (OX-TRAN2 / 20 manufactured by MOCON), set the test piece so that the base material layer surface is on the oxygen supply side, and set it at 23 ° C. relative to JIS K 7126. Oxygen permeability was measured in a humidity 90% RH environment.
[水蒸気透過度]
 水蒸気透過度測定装置(MOCON社製、PERMATRAN-w 3/33)を用いて、試験片の基材層面が水蒸気供給側になるようにセットして、JIS K 7129に準拠して、40℃、相対湿度90%RH環境下における水蒸気透過度を測定した。
[Water vapor permeability]
Using a water vapor permeability measuring device (MOCON, PERMATRAN-w 3/33), set the test piece so that the base material layer surface is on the water vapor supply side, and set it at 40 ° C. in accordance with JIS K 7129. The water vapor permeability in a 90% relative humidity RH environment was measured.
 また、テスト機内において、PVD法によりシリカ蒸着膜およびアルミナ蒸着膜を形成し、同様に酸素透過度(cc/m・day・atm)および水蒸気透過度(g/m・day)を測定し、表1Bにまとめた。 Further, in the test machine, a silica vapor deposition film and an alumina vapor deposition film were formed by the PVD method, and the oxygen permeability (cc / m 2 · day · atm) and the steam permeability (g / m 2 · day) were measured in the same manner. , Table 1B.
<ラミネート強度試験>
 上記ガスバリア性評価において、CVD法により形成したシリカ蒸着膜上に、厚さ40μmの未延伸ポリプロピレンフィルムをドライラミネートしてシーラント層を形成し、積層体を作製した。
 この積層体を15mm巾の短冊状にカットしたサンプルを、引張試験機((株)オリエンテック製、テンシロン万能材料試験機)を用いて、JIS K6854-2に準拠し、蒸着膜とコート層との間、および蒸着膜とポリプロピレンフィルムとの間のラミネート強度(N/15mm)を、剥離速度50mm/minで90°剥離(T字剥離法)を用いて測定した。測定結果を表1Bにまとめた。
 PVD法により形成したシリカ蒸着膜およびアルミナ蒸着膜上にも厚さ40μmの未延伸ポリプロピレンフィルムをドライラミネートし、積層体を作製し、上記同様に、ラミネート強度を測定した。測定結果を表1Bにまとめた。
<Laminate strength test>
In the above gas barrier property evaluation, an unstretched polypropylene film having a thickness of 40 μm was dry-laminated on the silica-deposited film formed by the CVD method to form a sealant layer, and a laminate was produced.
A sample obtained by cutting this laminate into strips with a width of 15 mm was used with a tensile tester (manufactured by Orientec Co., Ltd., Tencilon universal material tester) in accordance with JIS K6854-2 to form a thin-film deposition film and a coat layer. The lamination strength (N / 15 mm) between the vapor deposition film and the polypropylene film was measured using 90 ° peeling (T-shaped peeling method) at a peeling speed of 50 mm / min. The measurement results are summarized in Table 1B.
An unstretched polypropylene film having a thickness of 40 μm was dry-laminated on the silica-deposited film and the alumina-deposited film formed by the PVD method to prepare a laminate, and the lamination strength was measured in the same manner as described above. The measurement results are summarized in Table 1B.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 10:第1の実施形態による多層基材
 11:ポリプロピレン樹脂層
 12:表面樹脂層
 13:接着性樹脂層
 16:第2の実施形態による多層基材
 17:ポリプロピレン樹脂層
 18:コート層
 20:第3の実施形態による積層フィルム
 21:蒸着膜、22:バリアコート層
 26:第4の実施形態による積層フィルム
 30:積層体
 31:シーラント層
 40:スタンディングパウチ
 41:胴部(側面シート)
 42:底部(底面シート)
 43:ガゼット
10: Multilayer base material according to the first embodiment 11: Polypropylene resin layer 12: Surface resin layer 13: Adhesive resin layer 16: Multilayer base material according to the second embodiment 17: Polypropylene resin layer 18: Coat layer 20: First Laminated film according to the third embodiment 21: Vapor film, 22: Barrier coat layer 26: Laminated film according to the fourth embodiment 30: Laminated body 31: Sealant layer 40: Standing pouch 41: Body (side sheet)
42: Bottom (bottom sheet)
43: Gazette

Claims (20)

  1.  少なくともポリプロピレン樹脂層と表面樹脂層とを備えた多層基材であって、
     前記多層基材は、延伸処理が施されており、
     前記表面樹脂層が、融点180℃以上の樹脂材料を含む、多層基材。
    A multilayer base material having at least a polypropylene resin layer and a surface resin layer.
    The multilayer base material has been stretched and has been stretched.
    A multilayer base material in which the surface resin layer contains a resin material having a melting point of 180 ° C. or higher.
  2.  前記樹脂材料の融点が、265℃以下である、請求項1に記載の多層基材。 The multilayer base material according to claim 1, wherein the resin material has a melting point of 265 ° C. or lower.
  3.  前記樹脂材料の融点と、前記ポリプロピレン樹脂層に含まれるポリプロピレンの融点との差が、20~80℃である、請求項1または2に記載の多層基材。 The multilayer base material according to claim 1 or 2, wherein the difference between the melting point of the resin material and the melting point of polypropylene contained in the polypropylene resin layer is 20 to 80 ° C.
  4.  前記樹脂材料が極性基を有する、請求項1~3のいずれか一項に記載の多層基材。 The multilayer base material according to any one of claims 1 to 3, wherein the resin material has a polar group.
  5.  前記樹脂材料が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリエステル、ナイロン6、ナイロン6,6、MXDナイロンおよびアモルファスナイロンからなる群より選択される1以上の樹脂材料である、請求項1~4のいずれか一項に記載の多層基材。 The resin material is one or more resin materials selected from the group consisting of ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, nylon 6, nylon 6,6, MXD nylon and amorphous nylon. The multilayer base material according to any one of 4.
  6.  前記多層基材の総厚さに対する、前記表面樹脂層の厚さの割合が、1%以上10%以下である、請求項1~5のいずれか一項に記載の多層基材。 The multilayer base material according to any one of claims 1 to 5, wherein the ratio of the thickness of the surface resin layer to the total thickness of the multilayer base material is 1% or more and 10% or less.
  7.  前記多層基材が、共押フィルムである、請求項1~6のいずれか一項に記載の多層基材。 The multilayer base material according to any one of claims 1 to 6, wherein the multilayer base material is a co-pressed film.
  8.  少なくともポリプロピレン樹脂層とコート層とを備えた多層基材であって、
     前記ポリプロピレン樹脂層は、延伸処理が施されており、
     前記コート層が、極性基を有する樹脂材料を含む、多層基材。
    A multilayer base material having at least a polypropylene resin layer and a coat layer.
    The polypropylene resin layer has been stretched and has been stretched.
    A multilayer base material in which the coat layer contains a resin material having a polar group.
  9.  前記多層基材の総厚さに対する、前記コート層の厚さの割合が、1%以上20%以下である、請求項8に記載の多層基材。 The multilayer base material according to claim 8, wherein the ratio of the thickness of the coat layer to the total thickness of the multilayer base material is 1% or more and 20% or less.
  10.  前記コート層の厚さが、0.1μm以上10μm以下である、請求項8または9に記載の多層基材。 The multilayer base material according to claim 8 or 9, wherein the thickness of the coat layer is 0.1 μm or more and 10 μm or less.
  11.  前記樹脂材料が、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリエステル、ポリエチレンイミン、水酸基含有(メタ)アクリル樹脂、ナイロン6、ナイロン6,6、MXDナイロン、アモルファスナイロンおよびポリウレタンからなる群より選択される1以上の樹脂材料である、請求項8~10のいずれか一項に記載の多層基材。 The resin material is selected from the group consisting of ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyester, polyethylene imine, hydroxyl group-containing (meth) acrylic resin, nylon 6, nylon 6,6, MXD nylon, amorphous nylon and polyurethane. The multilayer base material according to any one of claims 8 to 10, which is one or more resin materials.
  12.  前記コート層が、水系エマルジョンまたは溶剤系エマルジョンを用いて形成された層である、請求項8~11のいずれか一項に記載の多層基材。 The multilayer base material according to any one of claims 8 to 11, wherein the coat layer is a layer formed by using an aqueous emulsion or a solvent-based emulsion.
  13.  包装材料用途に用いられる、請求項1~12のいずれか一項に記載の多層基材。 The multilayer base material according to any one of claims 1 to 12, which is used for packaging material applications.
  14.  請求項1~7および13のいずれか一項に記載の多層基材と、無機酸化物からなる蒸着膜とを備え、前記表面樹脂層上に前記蒸着膜を備える、積層フィルム。 A laminated film comprising the multilayer base material according to any one of claims 1 to 7 and 13 and a vapor-deposited film made of an inorganic oxide, and having the vapor-deposited film on the surface resin layer.
  15.  請求項8~13のいずれか一項に記載の多層基材と、無機酸化物からなる蒸着膜とを備え、前記コート層上に前記蒸着膜を備える、積層フィルム。 A laminated film comprising the multilayer base material according to any one of claims 8 to 13 and a vapor-deposited film made of an inorganic oxide, and having the vapor-deposited film on the coat layer.
  16.  前記無機酸化物が、シリカまたはアルミナである、請求項14または15に記載の積層フィルム。 The laminated film according to claim 14 or 15, wherein the inorganic oxide is silica or alumina.
  17.  前記蒸着膜上に、バリアコート層をさらに備える、請求項14~16のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 14 to 16, further comprising a barrier coat layer on the vapor-deposited film.
  18.  請求項14~17のいずれか一項に記載の積層フィルムと、シーラント層とを備える、積層体。 A laminate comprising the laminate film according to any one of claims 14 to 17 and a sealant layer.
  19.  前記シーラント層が、前記ポリプロピレン樹脂層と同一の材料により構成され、
     前記同一材料が、ポリプロピレンである、請求項18に記載の積層体。
    The sealant layer is made of the same material as the polypropylene resin layer.
    The laminate according to claim 18, wherein the same material is polypropylene.
  20.  請求項18または19に記載の積層体を備える、包装材料。 A packaging material comprising the laminate according to claim 18 or 19.
PCT/JP2020/029420 2019-07-31 2020-07-31 Multilayer base material, multilayer film provided with said multilayer base material, multilayer body provided with said multilayer film, and packaging material provided with said multilayer body WO2021020558A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-141727 2019-07-31
JP2019141732 2019-07-31
JP2019141727A JP7331537B2 (en) 2019-07-31 2019-07-31 Multilayer substrate, multilayer film comprising the multilayer substrate, laminate comprising the multilayer film, and packaging material comprising the laminate
JP2019-141732 2019-07-31
JP2019-180741 2019-09-30
JP2019180741A JP7382020B2 (en) 2019-07-31 2019-09-30 A multilayer base material, a multilayer film comprising the multilayer base material, a laminate comprising the multilayer film, and a packaging material comprising the laminate

Publications (1)

Publication Number Publication Date
WO2021020558A1 true WO2021020558A1 (en) 2021-02-04

Family

ID=74230371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029420 WO2021020558A1 (en) 2019-07-31 2020-07-31 Multilayer base material, multilayer film provided with said multilayer base material, multilayer body provided with said multilayer film, and packaging material provided with said multilayer body

Country Status (1)

Country Link
WO (1) WO2021020558A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359033A (en) * 1991-06-03 1992-12-11 Daicel Chem Ind Ltd Composite film and production thereof
JPH11962A (en) * 1997-06-13 1999-01-06 Toppan Printing Co Ltd Gas barrier film and packaging material using the same
JPH11157021A (en) * 1997-11-28 1999-06-15 Toyo Metallizing Co Ltd Gas barrier film
JP2010089321A (en) * 2008-10-06 2010-04-22 Oji Paper Co Ltd Method for manufacturing gas-barrier film
JP2014531341A (en) * 2011-09-20 2014-11-27 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Multilayer barrier film, packaging laminate including the film, packaging container formed from the packaging laminate, and method for producing the film
JP2016087814A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Gas barrier laminate and manufacturing method therefor
WO2016158794A1 (en) * 2015-03-27 2016-10-06 凸版印刷株式会社 Laminated film, and bag for packaging
WO2018083962A1 (en) * 2016-11-04 2018-05-11 三菱瓦斯化学株式会社 Easily tearable aluminum-vapor-deposited biaxially oriented film
JP2019065911A (en) * 2017-09-29 2019-04-25 凸版印刷株式会社 sleeve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359033A (en) * 1991-06-03 1992-12-11 Daicel Chem Ind Ltd Composite film and production thereof
JPH11962A (en) * 1997-06-13 1999-01-06 Toppan Printing Co Ltd Gas barrier film and packaging material using the same
JPH11157021A (en) * 1997-11-28 1999-06-15 Toyo Metallizing Co Ltd Gas barrier film
JP2010089321A (en) * 2008-10-06 2010-04-22 Oji Paper Co Ltd Method for manufacturing gas-barrier film
JP2014531341A (en) * 2011-09-20 2014-11-27 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Multilayer barrier film, packaging laminate including the film, packaging container formed from the packaging laminate, and method for producing the film
JP2016087814A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Gas barrier laminate and manufacturing method therefor
WO2016158794A1 (en) * 2015-03-27 2016-10-06 凸版印刷株式会社 Laminated film, and bag for packaging
WO2018083962A1 (en) * 2016-11-04 2018-05-11 三菱瓦斯化学株式会社 Easily tearable aluminum-vapor-deposited biaxially oriented film
JP2019065911A (en) * 2017-09-29 2019-04-25 凸版印刷株式会社 sleeve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Evoh resins & film with gas barrier properties", KURARAY CO., LTD EVAL DIVISION, 31 October 2016 (2016-10-31), pages 7, Retrieved from the Internet <URL:http://www.eval.jp/media/152697/evoh.pdf> *
ANONYMOUS: "Plastics Proceesing databook (second edition)", NIKKAN KOGYO SHIMBUN, LTD, 28 January 2002 (2002-01-28) *

Similar Documents

Publication Publication Date Title
JP5846477B2 (en) Barrier laminated film
JP7100830B2 (en) A barrier-type laminate, a heat-sealable laminate having the barrier-type laminate, and a packaging container having the heat-sealable laminate.
JP6963762B2 (en) Barrier laminate, packaging container provided with the barrier laminate
WO2020129291A1 (en) Gas barrier film and production method therefor, packaging film, and packaging bag
JP2021054078A (en) Barrier laminate, and packaging container having the barrier laminate
JP7351328B2 (en) Barrier laminate, heat-sealable laminate including the barrier laminate, and packaging container including the heat-sealable laminate
JP6331166B2 (en) Barrier laminated film
JP2021160255A (en) Substrate, vapor-deposited substrate, laminate and packaging container
JP2023162244A (en) Multilayer base material, multilayer film provided with the multilayer base material, multilayer body provided with the multilayer film, and packaging material provided with the multilayer body
JP2024028382A (en) packaging bag
JP4076036B2 (en) Barrier film and laminated material using the same
JP2000127286A (en) Barrier film and laminate employing the same
JP6098957B2 (en) Barrier laminated film
JP2021160262A (en) Laminate and packaging container
WO2021020558A1 (en) Multilayer base material, multilayer film provided with said multilayer base material, multilayer body provided with said multilayer film, and packaging material provided with said multilayer body
JP4946412B2 (en) Liquid paper container
JP4076037B2 (en) Barrier film and laminated material using the same
JP7382020B2 (en) A multilayer base material, a multilayer film comprising the multilayer base material, a laminate comprising the multilayer film, and a packaging material comprising the laminate
JP2023166511A (en) Multilayer base material, multilayer film provided with the multilayer base material, multilayer body provided with the multilayer film, and packaging material provided with the multilayer body
JP5157149B2 (en) Method and apparatus for producing gas barrier film
JP2009248455A (en) High gas-barrier laminate and packaging container
TW202327864A (en) Laminated layered body
JP2021160257A (en) Vapor-deposited substrate, laminate and packaging container
JP2021160258A (en) Laminate and packaging container
JP2021160259A (en) Laminate and packaging container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846834

Country of ref document: EP

Kind code of ref document: A1