WO2021019928A1 - 成形品の製造方法および複合材料 - Google Patents

成形品の製造方法および複合材料 Download PDF

Info

Publication number
WO2021019928A1
WO2021019928A1 PCT/JP2020/023131 JP2020023131W WO2021019928A1 WO 2021019928 A1 WO2021019928 A1 WO 2021019928A1 JP 2020023131 W JP2020023131 W JP 2020023131W WO 2021019928 A1 WO2021019928 A1 WO 2021019928A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
continuous
molded product
prepreg
Prior art date
Application number
PCT/JP2020/023131
Other languages
English (en)
French (fr)
Inventor
信彦 松本
孝介 池内
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP20846004.8A priority Critical patent/EP4005788A4/en
Priority to US17/631,272 priority patent/US11932741B2/en
Priority to JP2020551604A priority patent/JP6806292B1/ja
Priority to CN202080053432.2A priority patent/CN114174050A/zh
Publication of WO2021019928A1 publication Critical patent/WO2021019928A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance

Definitions

  • the present invention relates to a method for producing a molded product and a composite material.
  • it relates to articles and composite materials suitable for the manufacture of seats.
  • thermoplastic resin film as a mixed fiber containing continuous reinforcing fibers (A) and thermoplastic resin fibers (B) as fiber components, and a thermoplastic resin fiber (C). Composite materials that have been used and retained are disclosed.
  • the above-mentioned blended yarn stitch is an excellent material, but it is a blended yarn for all parts of a molded product, such as when manufacturing a large molded product or a molded product in which a part where high mechanical characteristics are required. In some cases, it is preferable to use it in combination with other materials rather than stitching. However, no suitable composite material or manufacturing method is known. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a method for producing a novel molded product and a composite material using a mixed fiber yarn.
  • the continuous reinforcing fibers and the continuous thermoplastic resin fibers are partially formed on the surface of the prepreg containing the continuous reinforcing fibers parallel in at least one direction and the thermosetting resin impregnated in the continuous reinforcing fibers.
  • a method for producing a molded product which comprises arranging a mixed fiber yarn containing the above and heat-processing.
  • the molded product according to ⁇ 1> further comprising arranging the mixed fiber yarn, fixing the mixed fiber yarn on the surface of the prepreg using a filamentous material, and then heat-processing. Manufacturing method.
  • thermoplastic resin constituting the continuous thermoplastic resin fiber By differential scanning calorimetry of the thermoplastic resin constituting the continuous thermoplastic resin fiber, the sample amount was set to 1 mg, nitrogen was flowed as an atmospheric gas at 30 mL / min, and the temperature was raised at 10 ° C./min.
  • the melting point which is the temperature of the peak top of the heat absorption peak observed when the temperature is raised from room temperature to 300 ° C. and melted, is higher than the curing temperature of the thermosetting resin.
  • thermoplastic resin constituting the continuous thermoplastic resin fiber By differential scanning calorimetry of the thermoplastic resin constituting the continuous thermoplastic resin fiber, the sample amount was set to 1 mg, nitrogen was flowed as an atmospheric gas at 30 mL / min, and the temperature was raised to 300 at 10 ° C./min. The glass transition temperature when heated to ° C., immediately cooled to room temperature or lower, and then heated again from room temperature to 300 ° C. at a heating rate of 10 ° C./min is lower than the curing temperature of the thermosetting resin, ⁇ 1>.
  • thermosetting resin is an epoxy resin.
  • ⁇ 8> The method for producing a molded product according to any one of ⁇ 1> to ⁇ 7>, wherein the continuous reinforcing fiber contained in the prepreg contains at least one of carbon fiber and glass fiber.
  • ⁇ 9> The method for producing a molded product according to any one of ⁇ 1> to ⁇ 8>, wherein the continuous reinforcing fiber contained in the mixed fiber yarn contains at least one of carbon fiber and glass fiber.
  • ⁇ 10> The method for producing a molded product according to any one of ⁇ 1> to ⁇ 9>, wherein the continuous thermoplastic resin fiber contained in the mixed fiber yarn contains a polyamide resin.
  • the continuous thermoplastic resin fiber contained in the mixed fiber yarn is composed of a diamine-derived structural unit and a dicarboxylic acid-derived structural unit, and 50 mol% or more of the diamine-derived structural unit is derived from xylylenediamine.
  • ⁇ 12> Production of the molded product according to any one of ⁇ 1> to ⁇ 11>, wherein at least a part of the mixed fiber yarn is arranged on the surface of the prepreg so that the radius of curvature is 100 cm or less.
  • Method. ⁇ 13> The method for manufacturing a molded product according to any one of ⁇ 1> to ⁇ 12>, wherein the molded product is a seat.
  • ⁇ 14> The continuous reinforcing fibers and the continuous thermoplastic resin fibers are partially formed on the surface of the prepreg containing the continuous reinforcing fibers parallel in at least one direction and the thermosetting resin impregnated in the continuous reinforcing fibers.
  • ⁇ 15> The composite material according to ⁇ 14>, wherein the mixed fiber yarn is fixed to the surface of the prepreg using a filamentous material.
  • the present invention it has become possible to provide a new method for producing a molded product and a composite material using a mixed yarn.
  • a manufacturing method that can be preferably applied to the case of manufacturing a large molded product or a molded product in which a part where a high level of mechanical properties is required is partially.
  • the method for producing a molded product of the present invention continuously reinforces a part of the surface of a prepreg containing continuously reinforcing fibers parallel in at least one direction and a thermosetting resin impregnated in the continuous reinforcing fibers. It is characterized in that a mixed fiber containing a fiber and a continuous thermoplastic resin fiber is arranged and heat-processed. With such a configuration, it can be preferably used when a large molded product is manufactured or when a molded product that requires high mechanical properties is partial.
  • a prepreg containing continuous reinforcing fibers parallel in at least one direction and a thermosetting resin impregnated in the continuous reinforcing fibers is used.
  • the prepreg is usually a base material. Then, by using the prepreg, it becomes possible to obtain a molded product having a large area with high productivity while maintaining the required mechanical strength. That is, in the prepreg used in the present invention, the thermosetting resin is not completely cured, but the continuous reinforcing fibers are impregnated with the thermosetting resin (including additives to be blended as necessary) and heated. And / or dried and semi-cured.
  • the prepreg used in the present invention is preferably a prepreg containing continuously reinforcing fibers arranged in parallel in two directions and a thermosetting resin impregnated in the continuously reinforcing fibers. In the present invention, only one prepreg may be used, or a plurality of prepregs may be used in layers.
  • the prepreg used in the present invention is usually in the form of a flat plate.
  • the term "flat plate” as used herein means to include not only a flat plate in a geometrical sense but also a flat plate in the technical field of the present invention.
  • a UD (Uni-Directional) tape or the like is included in an example of a flat plate.
  • a woven fabric using UD tape for warp and weft is also included in the flat plate shape. The details of the prepreg will be described below.
  • the prepreg used in the present invention contains continuous reinforcing fibers.
  • the "continuous reinforcing fibers parallel to each other in at least one direction" in the prepreg means that the reinforcing fibers are continuously present in parallel from any one end of the prepreg to the other end. However, those in which reinforcing fibers are spun into continuous reinforcing fibers are included in those in which reinforcing fibers are continuously present. Examples of continuous reinforcing fibers parallel in at least one direction include roving reinforcing fibers, woven fabrics of reinforcing fibers, and braids of reinforcing fibers. The length of the continuous reinforcing fiber is determined according to the shape of the molded product.
  • the reinforcing fiber means a reinforcing fiber having a number average fiber length of 3 cm or more, and is usually 10 cm or more.
  • the upper limit may be, for example, 100 m or less.
  • the continuous reinforcing fiber is not particularly limited, and a fiber applicable to this type of technology can be appropriately selected and used.
  • plant fiber, carbon fiber, glass fiber, alumina fiber, boron fiber, ceramic fiber, aramid fiber and the like are exemplified, and at least one of carbon fiber and glass fiber is preferable.
  • Known carbon fibers can be widely used, and for example, polyacrylonitrile-based carbon fibers and pitch-based carbon fibers can be preferably used.
  • carbon fibers made from plant-derived materials such as lignin and cellulose can also be used.
  • glass fiber a fiber obtained by melt-spinning glass such as E glass, C glass, A glass, S glass, and alkali resistant glass, which are generally supplied, is used.
  • E glass is used. It is preferable to include it.
  • the cross section of the continuous reinforcing fiber may be circular or non-circular.
  • the continuous reinforcing fiber preferably has a tensile strength of 1500 MPa or more, more preferably 2500 MPa or more, and further preferably 3500 MPa or more. There is no particular upper limit, but it is practical that it is 8000 MPa or less.
  • the tensile strength is preferably 800 MPa or more, more preferably 1800 MPa or more, and further preferably 2800 MPa or more. There is no particular upper limit, but it is practical that it is 5000 MPa or less.
  • the continuous reinforcing fibers may be parallel in at least one direction, and are preferably parallel in two directions.
  • Examples of the state of being parallel in one direction include those in which continuous reinforcing fiber roving is opened, and examples of states in which they are parallel in two directions are woven fabrics and braids.
  • Examples of the woven fabric include a woven fabric having warp and weft (plain weave, twill weave, satin weave, etc.) and a non-crimp woven fabric.
  • warp and weft plain weave, twill weave, satin weave, etc.
  • non-crimp woven fabric When a woven fabric having warp threads and weft threads is used, the stitching property tends to be improved and the mechanical strength tends to be improved. On the other hand, when a non-crimp woven fabric is used, the mechanical strength tends to be further improved.
  • Examples of the braid include a structure in which fibers are aligned at ⁇ 45 degrees, a structure in which fibers are aligned at 0 degrees and ⁇ 60 degrees, and a structure in which fibers are aligned at 0 degrees, ⁇ 45 degrees, and 90 degrees.
  • the lower limit of the ratio of the continuous reinforcing fibers in the prepreg is preferably 35% by mass or more, and more preferably 45% by mass or more.
  • the upper limit is preferably 85% by mass or less, and more preferably 75% by mass or less.
  • the ratio of the continuous reinforcing fibers in the prepreg also preferably has a lower limit of 30% by volume or more, more preferably 40% by volume or more.
  • the upper limit is preferably 80% by volume or less, and more preferably 70% by volume or less.
  • the prepreg may contain only one type of continuous reinforcing fiber, or may contain two or more types of continuous reinforcing fibers. When two or more kinds are included, the total amount is preferably in the above range.
  • the impregnation rate of the thermosetting resin in the continuous reinforcing fibers of the prepreg is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the upper limit is preferably 100%.
  • the impregnation rate is measured based on the method described in Examples below.
  • Thermosetting resin is not particularly specified as long as it is a resin that can be cured by heat, and urethane-based polymers, acrylic-based polymers, vinyl acetate-based polymers, vinyl chloride-based polymers, polyester-based polymers, and theirs. Examples thereof include copolymers, epoxy resins, phenol resins, cyanate resins, melamine resins, urea resins, and thermosetting polyimides. Epoxy resins, urethane-based polymers, and cyanate resins are preferable, and epoxy resins are more preferable. The details of the epoxy resin can be referred to in paragraphs 0035 to 0042 of Japanese Patent No.
  • an alicyclic epoxy resin having a hydrogenated bisphenol A skeleton or a celoxide skeleton can be used.
  • an epoxy resin, a urethane polymer, and a cyanate resin are preferable, and an epoxy resin is more preferable, from the viewpoint of affinity.
  • the lower limit of the glass transition temperature of the thermosetting resin is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and even more preferably 98 ° C. or higher. By setting it to the lower limit value or more, the usable temperature range can be further improved.
  • the upper limit is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and may be 140 ° C. or lower, 135 ° C. or lower, or 130 ° C. or lower. By setting the value to the upper limit or less, the adhesion between the continuously reinforcing fibers arranged on the surface and the mixed fiber containing the continuously thermoplastic resin fibers tends to be further improved.
  • the glass transition temperature is measured according to the method described in Examples described later. When two or more types of thermosetting resins are contained, the glass transition temperature is the lower of the detected glass transition temperatures.
  • the glass transition temperature and melting point of the resin will be considered in the same manner.
  • the lower limit of the ratio of the thermosetting resin in the prepreg is preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the upper limit is preferably 55% by mass or less, and more preferably 65% by mass or less.
  • the prepreg may contain only one type of thermosetting resin, or may contain two or more types of thermosetting resin. When two or more kinds are included, the total amount is preferably in the above range.
  • the prepreg may contain components other than the continuous reinforcing fiber and the thermoplastic resin. Specifically, fillers, metal powders, antioxidants, UV absorbers, flame retardants, mold release agents, plasticizers, curing catalysts, curing aids, pigments, lightfasteners, antistatic agents, antibacterial agents, conductive agents. , Dispersants and the like.
  • the curing aid include imidazole compounds, tertiary amine compounds, organic phosphorus compounds, magnesium oxide, phenols, organic acids, metal catalysts and the like.
  • a mixed fiber containing continuous reinforcing fibers and continuous thermoplastic resin fibers is arranged on a part of the surface of the prepreg.
  • the surface of the prepreg means a flat plate surface of the prepreg when the prepreg is flat.
  • it may break when placed on the surface of the prepreg, and a good molded product cannot be obtained. This makes it possible to mold into a desired shape.
  • the mixed fiber yarn is supple, it becomes easier to apply it to a shape having a small radius of curvature. Further, since the mixed fiber yarn contains continuous thermoplastic resin fibers, the adhesion to the prepreg can be improved. Further, since the cross-talk yarn contains continuous thermoplastic resin fibers, the fiber content in each region of the obtained molded product can be made more uniform as compared with the case where only carbon fibers are arranged. Further, by using the mixed fiber yarn, the yarn maneuverability is further improved, and even if the manufacturing apparatus is operated for a long period of time, the thermoplastic resin can be less likely to adhere to the apparatus.
  • the mixed fiber yarn contains a continuous reinforcing fiber and a continuous thermoplastic resin fiber, the continuous reinforcing fiber is dispersed in the continuous thermoplastic resin fiber, and a part or all of the continuous thermoplastic resin fiber becomes a continuous reinforcing fiber.
  • a mixed fiber yarn that maintains the fiber state without being impregnated.
  • the lower limit of the ratio of the continuous reinforcing fibers in the mixed fiber yarn is preferably 35% by mass or more, and more preferably 45% by mass or more.
  • the upper limit is preferably 75% by mass or less, and more preferably 65% by mass or less.
  • the lower limit value of the ratio of the continuous reinforcing fibers in the mixed fiber yarn is preferably 30% by volume or more, and more preferably 40% by volume or more.
  • the upper limit is preferably 70% by volume or less, and more preferably 60% by volume or less.
  • the mixed fiber yarn may contain only one type of continuous reinforcing fiber, or may contain two or more types of continuous reinforcing fibers. When two or more kinds are included, the total amount is preferably in the above range.
  • the lower limit of the ratio of the continuous thermoplastic resin fibers in the mixed fiber yarn is preferably 25% by mass or more, and more preferably 35% by mass or more.
  • the upper limit is preferably 65% by mass or less, and more preferably 55% by mass or less.
  • the mixed fiber yarn may contain only one type of continuous thermoplastic resin fiber, or may contain two or more types of continuous thermoplastic resin fibers. When two or more kinds are included, the total amount is preferably in the above range.
  • the total of the continuous reinforcing fiber and the continuous thermoplastic resin fiber preferably occupies 80% by mass or more of the mixed fiber yarn, more preferably 90% by mass or more, and occupies 95% by mass or more. Is more preferable, and it is more preferable to occupy 98% by mass or more.
  • the dispersity of the continuous reinforcing fibers in the mixed fiber yarn is preferably 60% or more, more preferably 63% or more, further preferably 68% or more, 70% or more, 80% or more. , 90% or more.
  • the degree of dispersion is ideally 100%, but may be 99% or less. Within such a range, the continuous reinforcing fibers and the continuous thermoplastic resin fibers can be easily impregnated, and the voids in the obtained molded product can be further reduced.
  • the degree of dispersion is measured according to the description of Examples described later.
  • the impregnation rate of continuous thermoplastic resin fibers in the mixed fiber yarn is usually 20% or less.
  • the upper limit of the impregnation rate is preferably 10% or less, more preferably 5% or less, further preferably 3% or less, still more preferably 1% or less.
  • the lower limit value may be 0%, but even if it is 0.1% or more, there is no problem in practical use.
  • the impregnation rate of the mixed fiber yarn is measured according to the description of Examples described later.
  • the mixed fiber yarn used in the present invention is preferably a continuous reinforcing fiber and a continuous thermoplastic resin fiber bundled with at least one treatment agent of the continuous reinforcing fiber and the continuous thermoplastic resin fiber.
  • the treatment agent for the continuous reinforcing fiber can be referred to in paragraphs 0075 to 0078 of International Publication No. 2014/132767, and these contents are incorporated in the present specification.
  • the treatment agent for the continuous thermoplastic resin fiber can be referred to in paragraph 0021 of International Publication No. 2014/132767, and these contents are incorporated in the present specification.
  • the descriptions of International Publication No. 2014/132767 and International Publication No. 2016/039242 can be referred to as long as the gist of the present invention is not deviated, and these contents are incorporated in the present specification.
  • the mixed fiber yarn used in the present invention includes continuous thermoplastic resin fibers.
  • the thermoplastic resin fiber means that the thermoplastic resin fiber is continuously present from one end to the other end in the longitudinal direction of the mixed yarn. It should be noted that those in which the thermoplastic resin fibers are spun into continuous thermoplastic resin fibers are included in those in which the thermoplastic resin fibers are continuously present. Therefore, the length of the continuous thermoplastic resin fiber is determined according to the shape of the molded product. For example, it means a thermoplastic resin fiber having a number average fiber length of 3 cm or more, and is usually 10 cm or more. The upper limit may be, for example, 100 m or less.
  • thermoplastic resin used for the continuous thermoplastic resin fiber contained in the mixed fiber yarn can be selected according to the application and the like.
  • the thermoplastic resin used in the present invention includes polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyamide resin, polyethylene terephthalate and polybutylene terephthalate, polycarbonate resin, polyoxymethylene resin, polyether ketone and polyether ether ketone.
  • Polyether ketone resins such as polyether ketone ketone, polyether ether ketone ketone, polyether sulfone resin, polyether sulfide resin, thermoplastic polyetherimide, thermoplastic polyamideimide, total aromatic polyimide, semi-aromatic polyimide, etc.
  • Thermoplastic polyimide resins and the like can be used, and polyamide resins, polycarbonate resins and thermoplastic polyimide resins are preferable, polyamide resins and polycarbonate resins are more preferable, and polyamide resins are even more preferable.
  • thermoplastic resin fiber in the continuous thermoplastic resin fiber, a form in which 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more) is a polyamide resin is preferably exemplified.
  • 80% by mass or more preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more
  • the melting point is preferably 170 ° C. or higher, more preferably 190 ° C. or higher, and further preferably 210 ° C. or higher.
  • the upper limit of the melting point is preferably 290 ° C. or lower, more preferably 265 ° C. or lower, and even more preferably 240 ° C. or lower. By setting the value to the above upper limit or less, the molding processability tends to be superior.
  • the glass transition temperature of the thermoplastic resin constituting the continuous thermoplastic resin fiber is preferably 30 ° C. or higher, more preferably 40 ° C.
  • the upper limit of the glass transition temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 100 ° C. or lower. By setting the value to the upper limit or less, the adhesion to the prepreg tends to be superior.
  • the continuous thermoplastic resin fiber used in the present invention may contain various contained components as long as the object and effect of the present invention are not impaired.
  • stabilizers such as elastomers, antioxidants, heat stabilizers, hydrolysis resistance improvers, weather stabilizers, matting agents, UV absorbers, nucleating agents, plasticizers, dispersants, flame retardants, antistatic agents.
  • Anti-coloring agent, anti-gelling agent, coloring agent, mold release agent, additives such as lubricant can be added.
  • the melting point of the polyamide resin is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 190 ° C. or higher.
  • the upper limit of the melting point is preferably 310 ° C. or lower, more preferably 300 ° C. or lower, and even more preferably 250 ° C. or lower.
  • the lower limit of the glass transition temperature of the polyamide resin is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and particularly preferably 60 ° C. or higher. Within this range, the heat resistance tends to be good.
  • the upper limit of the glass transition temperature is preferably 100 ° C. or lower.
  • the lower limit of the terminal amino group concentration ([NH 2 ]) of the polyamide resin is preferably 10 ⁇ e equivalent / g or more, and more preferably 15 ⁇ e equivalent / g or more. By setting the value to the lower limit or more, the reactivity with the thermosetting resin contained in the prepreg tends to be further improved.
  • the upper limit is preferably 100 ⁇ e equivalent / g or less, and more preferably 50 ⁇ e equivalent / g or less. By setting the value to the upper limit or less, the adhesion to the prepreg tends to be better.
  • the terminal amino group concentration of the polyamide resin can be referred to in paragraph 0108 of WO 2012/169334, the contents of which are incorporated herein by reference.
  • the polyamide resin used in the present invention preferably has a number average molecular weight (Mn) of 6,000 to 30,000, more preferably 8,000 to 28,000, and even more preferably 9,000 to 26, It is 000, more preferably 10,000 to 24,000, and particularly preferably 11,000 to 22,000. Within such a range, heat resistance, elastic modulus, dimensional stability, and molding processability become better.
  • Mn number average molecular weight
  • Mn number average molecular weight
  • polyamide resin used in the present invention examples include polyamide 4, polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 66, polyamide 610, polyamide 612, polyhexamethylene terephthalamide (polyamide 6T), and polyhexamethylene isophthalamide.
  • Polyamide 6I polyamide 66 / 6T, polyxylylene adipamide, polyxylylene sebacamide, polyxylylene dedecamide, polyamide 9T, polyamide 9MT, polyamide 6I / 6T and the like.
  • polyamide resins from the viewpoint of moldability and heat resistance, they are composed of a diamine-derived structural unit and a dicarboxylic acid-derived structural unit, and 50 mol% or more of the diamine-derived structural unit is derived from xylylene diamine.
  • 50 mol% or more of the constituent units derived from dicarboxylic acid is a polyamide resin derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms (hereinafter, may be referred to as “XD-based polyamide”). It is preferable to have.
  • the ratio of the XD-based polyamide in the polyamide resin is preferably 50% by mass or more, more preferably 80% by mass or more, and even 90% by mass or more. Good.
  • the XD-based polyamide preferably contains 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, still more preferably 95 mol% or more of the diamine-derived structural unit as m-xylylenediamine and / or para.
  • a constituent unit derived from xylylenediamine and derived from a dicarboxylic acid preferably has 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and even more preferably 95 mol% or more. It is derived from 4 to 20 ⁇ , ⁇ -linear aliphatic dicarboxylic acids.
  • diamines other than m-xylylenediamine and paraxylylenediamine that can be used as the raw material diamine component of XD-based polyamide include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, and octa Aliamine diamines such as methylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (amino) Methyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclo
  • a diamine other than xylylenediamine is used as the diamine component, it is less than 50 mol%, preferably 30 mol% or less, more preferably 1 to 25 mol%, and particularly preferably 1 to 25 mol% of the constituent unit derived from diamine. It is used at a ratio of 5 to 20 mol%.
  • Examples of ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms that are preferable to be used as the raw material dicarboxylic acid component of the polyamide resin include succinic acid, glutaric acid, pimeric acid, suberic acid, azelaic acid, and adipic acid.
  • Sebacic acid, undecanedioic acid, dodecanedioic acid and other aliphatic dicarboxylic acids can be exemplified, and one kind or a mixture of two or more kinds can be used.
  • the melting point of the polyamide resin is suitable for molding.
  • Adipic acid or sebacic acid is preferable because it is in the range.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3- Examples of naphthalenedicarboxylic acid isomers such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid can be exemplified, and one kind or a mixture of two or more kinds can be used.
  • phthalic acid compounds such as iso
  • terephthalic acid or isophthalic acid may be used from the viewpoint of molding processability and barrier property. preferable.
  • the ratio of terephthalic acid and isophthalic acid is preferably 30 mol% or less of the dicarboxylic acid constituent unit, more preferably 1 to 30 mol%, and particularly preferably 5 to 20 mol%.
  • a diamine-derived structural unit and a dicarboxylic acid-derived structural unit means that the amide bond constituting the XD-based polyamide is formed by the bond between the dicarboxylic acid and the diamine. Further, the XD-based polyamide contains other sites such as a terminal group in addition to the dicarboxylic acid-derived structural unit and the diamine-derived structural unit. Further, it may contain repeating units having an amide bond not derived from the bond between the dicarboxylic acid and the diamine, a trace amount of impurities, and the like.
  • the XD-based polyamide has, in addition to the diamine component and the dicarboxylic acid component, as a component constituting the polyamide resin, lactams such as ⁇ -caprolactam and laurolactam, and aminocaproic acid as long as the effects of the present invention are not impaired.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aminocaproic acid as long as the effects of the present invention are not impaired.
  • Amino undecanoic acid and other aliphatic aminocarboxylic acids can also be used as the copolymerization component.
  • 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more of the XD-based polyamide is a diamine-derived structural unit or a dicarboxylic acid-derived structural unit.
  • the mixed fiber yarn used in the present invention includes continuous reinforcing fibers.
  • the continuous reinforcing fiber in the mixed fiber yarn means that the reinforcing fiber is continuously present from one end to the other end in the longitudinal direction of the mixed fiber yarn. It should be noted that those in which reinforcing fibers are spun into continuous reinforcing fibers are included in those in which reinforcing fibers are continuously present. Therefore, the length of the continuous reinforcing fiber is determined according to the shape of the molded product. For example, it means a reinforcing fiber having a number average fiber length of 3 cm or more, and is usually 10 cm or more. The upper limit may be, for example, 100 m or less.
  • the continuous reinforcing fiber is not particularly limited, and a fiber applicable to this type of technology can be appropriately selected and used.
  • a fiber applicable to this type of technology can be appropriately selected and used.
  • plant fiber, carbon fiber, glass fiber, alumina fiber, boron fiber, ceramic fiber, aramid fiber and the like are exemplified, and at least one of carbon fiber and glass fiber is preferable.
  • Known carbon fibers can be widely used, and for example, polyacrylonitrile-based carbon fibers and pitch-based carbon fibers can be preferably used.
  • carbon fibers made from plant-derived materials such as lignin and cellulose can also be used.
  • the glass fiber a fiber obtained by melt-spinning glass such as E glass, C glass, A glass, S glass, and alkali resistant glass, which are generally supplied, is used. In the present invention, E glass is used. It is preferable to include it.
  • the cross section of the continuous reinforcing fiber may be circular or non-circular.
  • the continuous reinforcing fiber preferably has a tensile strength of 1500 MPa or more, more preferably 2500 MPa or more, and further preferably 3500 MPa or more. There is no particular upper limit, but it is practical that it is 8000 MPa or less.
  • the tensile strength is preferably 800 MPa or more, more preferably 1800 MPa or more, and further preferably 2800 MPa or more. There is no particular upper limit, but it is practical that it is 5000 MPa or less.
  • the difference between the glass transition temperature of the thermoplastic resin constituting the continuous thermoplastic resin fiber and the glass transition temperature of the thermosetting resin (preferably, the glass transition temperature of the thermosetting resin-the continuous thermoplastic resin fiber).
  • the glass transition temperature of the constituent thermoplastic resin is preferably 15 ° C. or higher, more preferably 18 ° C. or higher, and even more preferably 20 ° C. or higher. By setting the value to the lower limit or more, the molding processability tends to be improved.
  • the upper limit of the difference in the glass transition temperature is preferably 200 ° C. or lower, more preferably 100 ° C. or lower, further preferably 70 ° C. or lower, and further preferably 65 ° C. or lower. preferable.
  • the melting point of the thermoplastic resin to the glass transition temperature of the thermosetting resin is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 105 ° C. or higher.
  • the upper limit of the difference in melting points is, for example, 300 ° C.
  • the prepreg and the mixed fiber tend to be formed with higher adhesion.
  • the surface area of the mixed yarn (part 2 of FIG. 1) is preferably 0.1 to 10% of the surface area of the prepreg (part 1 of FIG. 1). Further, the ratio of the mass of the prepreg to the mass of the mixed yarn is preferably 100: 0.1 to 10.
  • the present invention includes arranging a mixed yarn on a part of the surface of the prepreg and heat-processing it.
  • the heating temperature is usually determined based on the curing temperature of the thermosetting resin.
  • the heating temperature is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and even more preferably 110 ° C. or higher. By setting it to the above lower limit value or more, it is sufficiently cured.
  • the glass transition temperature of the thermosetting resin contained in the prepreg it is preferably Tg or more of the thermosetting resin, and more preferably Tg + 5 ° C. or more of the thermosetting resin.
  • the upper limit of the heating temperature is preferably 220 ° C.
  • the temperature is preferably Tg + 30 ° C. or lower of the thermosetting resin, and more preferably Tg + 20 ° C. or lower of the thermosetting resin.
  • the melting point of the thermoplastic resin constituting the continuous thermoplastic resin fiber is preferably higher than the curing temperature of the thermosetting resin. It is preferably higher than ° C., more preferably 100 ° C. or higher, further preferably 110 ° C. or higher, and even more preferably 118 ° C. or higher. By setting the value to the lower limit or more, the dimensional stability of the obtained molded product tends to be further improved.
  • the upper limit of the difference between the melting point and the curing temperature of the continuous thermoplastic resin is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 130 ° C. or lower. By setting the value to the upper limit or less, the adhesion between the prepreg and the mixed yarn tends to be better.
  • the glass transition temperature of the thermoplastic resin constituting the continuous thermoplastic resin fiber may be lower than the curing temperature of the thermosetting resin. It is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 25 ° C. or higher. By setting the value to the lower limit or more, the adhesion between the prepreg and the mixed fiber tends to be further improved.
  • the upper limit of the difference between the curing temperature and the glass transition temperature of the continuous thermoplastic resin is preferably 120 ° C. or lower, more preferably 75 ° C. or lower, and further preferably 40 ° C. or lower. By setting the value to the upper limit or less, the mechanical properties of the thermoplastic resin can be less likely to be impaired.
  • the melting point, the glass transition temperature, and the curing temperature of the thermosetting resin are measured according to the description of Examples described later.
  • the heating method is, for example, prepreg in which the mixed fiber yarn is arranged, placed in a mold with the prepreg underneath, sealed with a bagging film, and the inside is depressurized by a vacuum pump, heated and pressurized to room temperature.
  • the bagging film can be peeled off by removing the pressure from the kettle after cooling and reducing the pressure.
  • the pressure of the heating and pressurizing kettle can be 2 to 4 atm.
  • the mixed fiber yarn may be fixed to the surface of the prepreg using a thread-like material, and then the heat processing may be performed.
  • the filamentous material is preferably a thermoplastic resin fiber.
  • the thermoplastic resin constituting the thermoplastic resin fiber include polyolefin resins such as polyethylene and polypropylene, polyamide resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, polyoxymethylene resins, polyetherketones, and polyethers.
  • thermoplastic resins such as etherketone, polyetherketoneketone, polyetheretherketoneketone, polyethersulfone resin, polyethersulfide resin, thermoplastic polyetherimide, thermoplastic polyamideimide, total aromatic polyimide, semi-aromatic Thermoplastic polyimide resins such as polyimide can be used.
  • the thermoplastic resin is preferably a polyamide resin.
  • the polyamide resin described in the continuous thermoplastic resin fiber contained in the above-mentioned mixed fiber yarn can be preferably adopted.
  • the melting point of the thermoplastic resin constituting the thermoplastic resin fiber which is a filamentous material is preferably 15 ° C.
  • thermoplastic resin fibers in the mixed fiber yarn can be impregnated without disturbing the morphology of the continuous reinforcing fibers in the mixed fiber yarn, and the appearance of the obtained molded product is improved.
  • the upper limit is not particularly specified, but it is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and particularly preferably 75 ° C. or lower.
  • the description of International Publication No. 2016/159340 can be referred to as long as it does not deviate from the gist of the present invention, and these contents are incorporated in the present specification.
  • a mixed fiber yarn is arranged on a part of the surface of the prepreg.
  • the portion where the mixed fiber yarn is arranged is mainly a portion where the strength of the molded product is desired to be increased, and is preferably arranged in a bent state as shown by reference numeral 1 in FIG. 1, for example.
  • it is suitable for arranging at least a part of the mixed fiber yarn on the surface of the prepreg so that the radius of curvature is 100 cm or less.
  • the lower limit of the radius of curvature is appropriately determined depending on the application, but is suitable for 3 cm or more.
  • the radius of curvature here refers to the radius of curvature of the smallest portion of the mixed yarn.
  • the arrangement of the mixed yarn having a radius of curvature of 100 cm or less preferably exists over a range of 30 cm or more.
  • the molded product is a transport machine part such as an automobile / aircraft, a general machine part, a precision machine part, an electronic / electrical equipment part, an OA equipment part, a building material / housing related part, a medical device, a leisure sports item, and a plaything.
  • Medical products daily necessities such as food packaging films, defense and aerospace products, etc.
  • it is preferably used for seats, especially seats for vehicles such as vehicles and airplanes.
  • the composite material of the present invention is continuous with the continuous reinforcing fibers on a part on the surface of the prepreg containing the continuous reinforcing fibers parallel in at least one direction and the thermosetting resin impregnated in the continuous reinforcing fibers.
  • a mixed fiber yarn containing a thermoplastic resin fiber is arranged.
  • the mixed fiber yarn is fixed to the surface of the prepreg using a thread-like material.
  • the details of the composite material are synonymous with those described in the above-mentioned method for producing a molded product, and the preferable range is also the same.
  • Prepreg (epoxy resin / carbon fiber / bidirectional): prepreg in which epoxy resin is impregnated in a continuous carbon fiber woven fabric, manufactured by Toray Industries, Inc., Treca T 300 / # 2500, and the ratio of reinforcing fibers is 76% by mass (70 volumes). %) Prepreg (epoxy resin / carbon fiber / one-way): One-way prepreg in which epoxy resin is impregnated in continuous carbon fiber, manufactured by Toray Industries, Inc., Treca T700SC / # 2500, the ratio of reinforcing fibers is 76% by mass (70% by volume). ) Prepreg (epoxy resin / glass fiber / bidirectional): Manufactured according to the following production example. Prepreg (cyanate resin / carbon fiber / bidirectional): Manufactured according to the following production example.
  • Epoxy resin manufactured by Toray Industries, Inc., # 2500
  • a glass fiber woven fabric manufactured by Nitto Boseki Co., Ltd., KS1210 1080S-935N, with a grain of 90 g / m 2
  • the proportion of reinforcing fibers in the prepreg is 81% by mass (70% by volume).
  • Curing accelerator tetraphenylphosphonium tetra-p-tolylborate, TPP-TTB, manufactured by Hokuko Chemical Industry Co., Ltd., TPP-MK
  • cyanate ester resin diallyl bisphenol A disianate, manufactured by Mitsubishi Gas Chemical Company
  • Continuously reinforced fiber Continuous carbon fiber Pyrofil-TR-50S-12000-AD, 8000dtex, number of fibers 12000f, surface-treated with epoxy resin manufactured by Mitsubishi Chemical Corporation.
  • Continuous glass fiber Nitto Boseki Co., Ltd., ECG 75 1/0 0.7Z, fineness 687dtex, number of fibers 400f, surface treated with a sizing agent.
  • Thermoplastic resin MXD6 Metaxylylene adipamide (manufactured by Mitsubishi Gas Chemical Company, grade S6001), number average molecular weight 16800, terminal amino group concentration 18 ⁇ e equivalent / g MP10: Polymumbleraxylylene sebacamide was synthesized according to the following synthetic example.
  • PA6 Polyamide resin 6, manufactured by Ube Industries, Ltd., 1022B, terminal amino group concentration 40 ⁇ e equivalent / g PC: Iupiron 3000 (manufactured by Mitsubishi Engineering Plastics), glass transition temperature 153 ° C
  • thermoplastic resin is metaxylylene adipamide, manufactured by Mitsubishi Gas Chemical Company, S6011, melting point 237 ° C, glass transition temperature 88 ° C.
  • Thermoplastic resin film As the thermoplastic resin, metaxylylene adipamide, manufactured by Mitsubishi Gas Chemical Company, S6011, a film having a thickness of 50 ⁇ m was prepared and used by a melt extrusion method.
  • UD tape ⁇ Manufacturing of UD tape>
  • the roving-like continuous reinforcing fibers were arranged at equal intervals, passed through a spreader, and spread to a width of 200 mm.
  • the resin melted by a twin-screw extruder manufactured by Toshiba Machine Co., Ltd., TEM26SS
  • the continuous reinforcing fibers are impregnated with the resin in the impregnated rolls. I let you. Then, while cooling with a cooling roll, it was continuously taken up for 50 m and wound around a columnar core material to obtain a UD tape.
  • the UD tape was slit to a width of 10 mm and used.
  • thermoplastic resin powder shown in the table By adhering the thermoplastic resin powder shown in the table to the surface of the continuous reinforcing fiber and treating it in a nitrogen atmosphere at a temperature of + 20 ° C. for 20 minutes, the core component is carbon fiber and the sheath component is the core / sheath of the thermoplastic resin. A fiber having a structure and having 60% by mass of carbon fiber was obtained.
  • the melting point was set to 1 mg by differential scanning calorimetry, nitrogen was flowed as an atmospheric gas at 30 mL / min, and the temperature was raised from room temperature to 300 ° C at a heating rate of 10 ° C / min. , It was obtained from the temperature of the peak top of the endothermic peak observed when it was melted.
  • the glass transition temperature of the thermoplastic resin is set to 1 mg by differential scanning calorimetry, nitrogen is flowed as an atmospheric gas at 30 mL / min, and the temperature rises to 300 ° C at 10 ° C / min.
  • the sample was immediately cooled to room temperature or lower, and the glass transition temperature when heated again from room temperature to 300 ° C. at a heating rate of 10 ° C./min was measured.
  • the glass transition temperature of the thermosetting resin was set to 1 mg by differential scanning calorimetry, nitrogen was flowed as an atmospheric gas at 30 mL / min, and the room temperature was 2 ° C./min.
  • the temperature is raised to 300 ° C. at a heating rate of 2 ° C./min, immediately cooled to room temperature or lower, and again from room temperature to 300 ° C.
  • the glass transition temperature when heated at 10 ° C./min was measured.
  • the curing temperature of the thermosetting resin is set to 1 mg by differential scanning calorimetry, nitrogen is flowed as an atmospheric gas at 30 mL / min, and the temperature rises from room temperature at 2 ° C./min. It was obtained from the temperature of the peak top of the exothermic peak when the temperature was raised to 300 ° C.
  • DSC-60 manufactured by SHIMADZU CORPORATION was used for the measurement.
  • Example 1 Manufacturing of mixed yarn> ⁇ Manufacture of continuous thermoplastic resin fibers >>
  • the thermoplastic resin shown in Table 1 is melt-extruded by a single-screw extruder having a screw having a diameter of 30 mm, extruded into a strand shape from a die with 60 holes, stretched while being wound by a roll, and a fiber bundle of the continuous thermoplastic resin.
  • the melting temperature was the melting point of the continuous thermoplastic resin + 15 ° C.
  • the mixed fiber yarn was produced according to the following method. Each fiber was pulled out from the wound body of the continuous thermoplastic resin fiber and the wound body of the continuous carbon fiber, and the fiber was opened by air blowing while passing through a plurality of guides. While opening the fibers, continuous thermoplastic resin fibers and continuous carbon fibers were bundled, and air blow was applied while passing through a plurality of guides to promote homogenization.
  • the obtained mixed fiber yarn had a fineness of about 13000 dtex, a number of fibers of about 13500 f, a volume ratio of continuous thermoplastic resin fibers and continuous carbon fibers of 1: 1 and a ratio of continuous carbon fibers of 61% by mass.
  • the dispersity and impregnation rate of the obtained mixed yarn were measured as follows.
  • the impregnated region means that at least a part of the carbon fibers is in contact with the resin obtained by melting and solidifying the thermoplastic resin fibers, and the melted and solidified resin is at least a part of the other at least one carbon fiber.
  • the impregnated region means that at least a part of the carbon fibers is in contact with the resin obtained by melting and solidifying the thermoplastic resin fibers, and the melted and solidified resin is at least a part of the other at least one carbon fiber.
  • VK-9500 controller unit
  • VK-9510 measurement unit
  • FIG. 1 is a schematic view showing a state in which the mixed fiber 1 is arranged on the prepreg 2. Further, using the fixing yarn, the mixed yarn was stitched to the prepreg and fixed to obtain a composite material.
  • the prepreg on which the mixed fiber yarn was arranged was placed in a mold with the prepreg on the bottom, sealed with a bagging film, and the inside was depressurized by a vacuum pump. This was placed in a heating and pressurizing kettle, pressurized by 3 atm, heated to 90 ° C. at 2 ° C./min, held for 1 hour, and then heated to the curing temperature of the thermosetting resin + 10 ° C. at 2 ° C./min. After holding for 3 hours, the temperature was raised to the melting point of the thermoplastic resin + 10 ° C.
  • the obtained molded product was evaluated for rigidity and lightness as follows.
  • the molded product is compressed using an autograph (manufactured by Shimadzu Corporation, AG-Xplus 100 kN) under the conditions of a distance between fulcrums of 160 mm, a moving speed of 1 mm / min, and 23 ° C., and based on the bending displacement amount under a load of 200 N, based on the following criteria. evaluated.
  • Example 2 In Example 1, the type and the like of the thermoplastic resin used for the mixed fiber yarn were changed as shown in Table 1, and the others were carried out in the same manner. Similar to Example 1, a molded product having high rigidity, light weight, and a stable shape was obtained.
  • Example 3 In Example 1, the type and the like of the thermoplastic resin used for the mixed fiber yarn were changed as shown in Table 1, and the others were carried out in the same manner. Similar to Example 1, a molded product having high rigidity and light weight was obtained. However, the obtained molded product was slightly warped in a high humidity environment.
  • Example 4 In Example 1, the type of the thermoplastic resin used for the mixed fiber yarn was changed as shown in Table 1, and the same was performed except that the temperature during heat processing was set to the glass transition temperature + 100 ° C. Similar to Example 1, a molded product having high rigidity, light weight, and a stable shape was obtained.
  • Example 5 In Example 1, the prepreg was changed to a woven prepreg or the like in which glass fibers were impregnated with an epoxy resin, and the others were carried out in the same manner. A molded product with high rigidity was obtained, but the lightness was inferior to that using carbon fiber, although it was at a practical level.
  • Example 6 In Example 1, the types of continuous reinforcing fibers used for the mixed fiber yarns were changed as shown in Table 1, and the others were carried out in the same manner.
  • the mixed fiber yarn had a fineness of about 15,000 dtex and a number of fibers of about 10,000 f, and the volume ratio of the continuous thermoplastic resin fiber to the continuous glass fiber was 1: 1 and the ratio of the continuous glass fiber was 69% by mass.
  • glass fiber was used as the mixed fiber, a light molded product was obtained, but the rigidity was inferior to that using carbon fiber, although it was at a practical level.
  • Example 7 In Example 5, the type of the continuous reinforcing fiber used for the mixed fiber yarn was changed as shown in Table 1, and the others were carried out in the same manner. Although the lightness of the molded product was at a practical level, it was inferior to that using carbon fiber. Moreover, although the rigidity was at a practical level, it was inferior to that using carbon fiber. Furthermore, although it was at a practical level, it was easily distorted.
  • Example 8 In Example 1, the prepreg was changed to a prepreg (carbon fiber / one direction), and the radius of curvature was set to the value shown in Table 1, and the same procedure was performed.
  • the rigidity of the obtained molded product was inferior to that using carbon fiber, although it was at a practical level. Furthermore, although it is at a practical level, the traces of fixing the mixed fiber yarn with the fixing yarn are somewhat conspicuous.
  • Example 9 In Example 1, the same procedure was carried out except that the fixing thread was not used and the radius of curvature was set to the value shown in Table 1. Although the rigidity was at a practical level, it was slightly inferior to that of Example 1 due to a deviation during molding as compared with the non-fixed one. Further, although it was at a practical level, its shape stability was inferior.
  • Example 10 In Example 1, the prepreg was changed to a woven prepreg (carbon fiber, bidirectional) in which the cyanate resin obtained above was impregnated into carbon fibers, and the heating was held at 150 ° C. for 3 hours and then at 180 ° C. After holding for 5 hours, it was held at 250 ° C. for 5 hours. Others were changed as shown in Table 1 and the same procedure was performed. Although the rigidity was at a practical level, it was inferior to that of Example 1 and the like. Further, since the difference between the glass transition temperature of the thermoplastic resin constituting the continuous thermoplastic resin fiber and the glass transition temperature of the thermosetting resin is 105 ° C., the curing temperature is high and the curing time is long, so that during molding. The thermoplastic resin may have deteriorated and was inferior in terms of moldability.
  • Comparative Example 1 In Example 1, the same procedure was carried out except that the prepregs were stacked so as to have a thickness of 3 mm after curing and no mixed yarn was arranged. Although the rigidity equivalent to that of the molded product obtained in the examples could be achieved, the thickness became thicker. In other words, it was found that a thickness of about three times is required to achieve the rigidity equivalent to that of the molded product obtained in the examples.
  • Example 2 Comparative Example 2 In Example 1, the mixed fiber yarn was not arranged, and the others were carried out in the same manner. When the thickness was equivalent to that of the molded product obtained in Example 1, the rigidity could not be achieved at all.
  • Example 3 Comparative Example 3 In Example 1, the prepreg was changed to a thermoplastic resin film, and heating was carried out in the same manner except that the prepreg was directly heated to the melting point of the thermoplastic resin + 10 ° C. In addition to not satisfying sufficient rigidity as a molded product, there are problems in various performances required for seats.
  • Example 4 Comparative Example 4 In Example 1, the UD tape obtained above was used instead of the mixed fiber yarn, and the others were carried out in the same manner. The curve could not be arranged.
  • Example 1 Comparative Example 5 In Example 1, the mixed fiber yarn was changed to continuous carbon fiber, and the heating was held at the curing temperature of the thermosetting resin at + 10 ° C. for 3 hours, then cooled to room temperature, and the pressure was reduced. Others went in the same way. There was a shortage of thermoplastic resin at the place where the continuous carbon fibers were placed, and molding defects were observed. Therefore, the rigidity and lightness were not evaluated.
  • Example 6 instead of the mixed fiber yarn, the fiber having the core-sheath structure obtained above was used, and the others were carried out in the same manner. The continuous carbon fibers of the thermoplastic resin were not sufficiently impregnated, and the rigidity was not developed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸を配置し、加熱加工することを含む、成形品の製造方法。

Description

成形品の製造方法および複合材料
 本発明は、成形品の製造方法および複合材料に関する。特に、座席シートの製造に適した成形品および複合材料に関する。
 従来から、熱可塑性樹脂繊維と連続強化繊維を用いた混繊糸が検討されている。混繊糸は、そのしなやかな特性を生かし、複雑な形状の成形品や強度が特に求められる成形品などに好適に用いられている。
 また、混繊糸の応用例として、混繊糸ステッチ(Tailored-fiber placement)で成形品を製造することが考えられる。具体的には、特許文献1には、熱可塑性樹脂フィルムに、繊維成分として、連続強化繊維(A)と熱可塑性樹脂繊維(B)を含む混繊糸を、熱可塑性樹脂繊維(C)を用いて保形した複合材料が開示されている。
特開2016-196624号公報
 上記混繊糸ステッチは、優れた材料であるが、大きな成形品を製造する場合や、高度な機械物性が求められる箇所が部分的である成形品など、成形品のすべての部分を混繊糸ステッチとするよりも、他の材料と併用することが望ましい場合もある。しかしながら、これに適した複合材料や製造方法は知られていない。
 本発明は、かかる課題を解決することを目的とするものであって、混繊糸を用いた新規な成形品の製造方法および複合材料を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、下記手段により、上記課題は解決された。
<1>少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸を配置し、加熱加工することを含む、成形品の製造方法。
<2>さらに、前記混繊糸を配置した後、前記プリプレグの表面に、糸状材料を用いて前記混繊糸を固定した後、前記加熱加工することを含む、<1>に記載の成形品の製造方法。
<3>前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の示差走査熱量測定により、試料量を1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で、室温から300℃まで昇温し、溶融させた際に観測される吸熱ピークのピークトップの温度である融点が前記熱硬化性樹脂の硬化温度よりも高い、<1>または<2>に記載の成形品の製造方法。
<4>前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の示差走査熱量測定により、試料量を1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で300℃まで加熱したのち、ただちに室温以下まで冷却し、再び室温から300℃まで昇温速度10℃/分で加熱した際のガラス転移温度が前記熱硬化性樹脂の硬化温度よりも低い、<1>~<3>のいずれか1つに記載の成形品の製造方法。
<5>前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度と、前記熱硬化性樹脂のガラス転移温度の差が15~200℃である、<1>~<4>のいずれか1つに記載の成形品の製造方法。
<6>前記プリプレグが、二方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグである、<1>~<5>のいずれか1つに記載の成形品の製造方法。
<7>前記熱硬化性樹脂がエポキシ樹脂である、<1>~<6>のいずれか1つに記載の成形品の製造方法。
<8>前記プリプレグに含まれる連続強化繊維が、炭素繊維およびガラス繊維の少なくとも1種を含む、<1>~<7>のいずれか1つに記載の成形品の製造方法。
<9>前記混繊糸に含まれる連続強化繊維が、炭素繊維およびガラス繊維の少なくとも1種を含む、<1>~<8>のいずれか1つに記載の成形品の製造方法。
<10>前記混繊糸に含まれる連続熱可塑性樹脂繊維が、ポリアミド樹脂を含む、<1>~<9>のいずれか1つに記載の成形品の製造方法。
<11>前記混繊糸に含まれる連続熱可塑性樹脂繊維が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上が炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、<1>~<9>のいずれか1つに記載の成形品の製造方法。
<12>前記混繊糸の少なくとも一部を、曲率半径が100cm以下となるように、前記プリプレグの表面に配置する、<1>~<11>のいずれか1つに記載の成形品の製造方法。
<13>前記成形品が座席シートである、<1>~<12>のいずれか1つに記載の成形品の製造方法。
<14>少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸が配置されている、複合材料。
<15>前記混繊糸が前記プリプレグの表面に、糸状材料を用いて固定されている、<14>に記載の複合材料。
 本発明により、混繊糸を用いた新規な成形品の製造方法および複合材料を提供可能になった。特に、大きな成形品を製造する場合や、高度な機械物性が求められる箇所が部分的である成形品などに、好ましく適用できる製造方法を提供可能になった。
プリプレグの表面に混繊糸を配置した複合材料を示す模式図である。 混繊糸の断面図を顕微鏡観察した画像である。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の成形品の製造方法は、少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸を配置し、加熱加工することを含むことを特徴とする。このような構成とすることにより、大きな成形品を製造する場合や、高度な機械物性が求められる成形品が部分的である場合などに、好ましく用いることができる。
<プリプレグ>
 本発明の成形品の製造方法では、少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグを用いる。本発明の成形品において、プリプレグは、通常、基材となる。そして、プリプレグを用いることにより、必要な機械的強度を維持しつつ、大面積の成形品を生産性高く得ることが可能になる。すなわち、本発明で用いるプリプレグは、熱硬化性樹脂が完全に硬化しているのではなく、連続強化繊維に、熱硬化性樹脂(必要に応じ配合される添加剤を含む)を含浸させ、加熱および/または乾燥して半硬化状態にしたものである。半硬化とは、後述する加熱工程の硬化によりさらに熱可塑性樹脂の硬化が進行する余地を残していることをいう。
 本発明で用いるプリプレグは、二方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグであることが好ましい。本発明では、プリプレグは1枚のみ用いてもよいし、複数枚を重ねて用いてもよい。
 本発明で用いるプリプレグは、通常、平板状である。ここでの平板状とは、幾何学的な意味での平板状の他、本発明の技術分野において、平板状と解釈されるものを含む趣旨である。例えば、UD(Uni-Directional)テープなどは、平板状の一例に含まれる。また、UDテープを縦糸と緯糸に用いた織物なども平板状の一例に含まれる。
 以下、プリプレグの詳細について説明する。
<<連続強化繊維>>
 本発明で用いるプリプレグは、連続強化繊維を含む。プリプレグにおける「少なくとも一方向に並列している連続強化繊維」とは、プリプレグの任意の一端から他の一端まで強化繊維が連続して、並列して存在していることをいう。ただし、強化繊維を紡いで連続強化繊維としているものは、強化繊維が連続して存在しているものに含まれる。少なくとも一方向に並列している連続強化繊維の例としては、ロービング強化繊維や強化繊維の織物、強化繊維の組物などが挙げられる。
 連続強化繊維の長さは、成形品の形状に応じて定められるが、例えば、数平均繊維長が3cm以上の強化繊維をいい、通常は、10cm以上である。上限値は、例えば、100m以下であってもよい。
 連続強化繊維としては、特に制限なく、この種の技術に適用しうるものを適宜選定して用いることができる。例えば、植物繊維、炭素繊維、ガラス繊維、アルミナ繊維、ボロン繊維、セラミック繊維、アラミド繊維等が例示され、炭素繊維およびガラス繊維の少なくとも1種であることが好ましい。
 炭素繊維としては公知のものを広く採用することができるが、例えば、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維を好ましく用いることができる。また、リグニンやセルロースなど、植物由来原料の炭素繊維も用いることができる。
 ガラス繊維としては、一般的に供給されるEガラス、Cガラス、Aガラス、Sガラス、および耐アルカリガラス等のガラスを溶融紡糸して得られる繊維が用いられるが、本発明では、Eガラスを含むことが好ましい。
 連続強化繊維の断面は、円形および非円形のいずれであってもよい。
 連続強化繊維は炭素繊維の場合、引張強度が1500MPa以上であることが好ましく、2500MPa以上であることがより好ましく、3500MPa以上であることがさらに好ましい。上限は特にないが、8000MPa以下であることが実際的である。ガラス繊維の場合は、引張強度が800MPa以上であることが好ましく、1800MPa以上であることがより好ましく、2800MPa以上であることがさらに好ましい。上限は特にないが、5000MPa以下であることが実際的である。
 連続強化繊維は、少なくとも一方向に並列してればよく、二方向に並列していることが好ましい。一方向に並列している状態としては、連続強化繊維ロービングを開繊したものなどが例示され、二方向に並列している状態としては、織物、組物が例示される。
 織物は、縦糸と横糸を有する織物(平織り、綾織り、朱子織等)やノンクリンプ織物などが例示される。縦糸と横糸を有する織物を用いた場合、ステッチ性が向上するとともに、機械的強度も向上する傾向にある。一方、ノンクリンプ織物を用いると、機械的強度がさらに向上する傾向にある。
 組物は、±45度に繊維をひき揃えた構造や0度、±60度にひき揃えたもの、0度、±45度、90度にひき揃えたものなどが例示される。構成する角度が多いほど等方的になる傾向にある。
 プリプレグにおける連続強化繊維の割合は、下限値が、35質量%以上であることが好ましく、45質量%以上であることがより好ましい。また、上限値は、85質量%以下であることが好ましく、75質量%以下であることがより好ましい。
 プリプレグにおける連続強化繊維の割合は、また、下限値が、30体積%以上であることが好ましく、40体積%以上であることがより好ましい。また、上限値は、80体積%以下であることが好ましく、70体積%以下であることがより好ましい。
 プリプレグは、連続強化繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 プリプレグは、連続強化繊維に対する熱硬化性樹脂の含浸率が90%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることがさらに好ましい。上限値としては、100%であることが好ましい。
 含浸率は、後述の実施例に記載の方法に基づき測定される。
<<熱硬化性樹脂>>
 熱硬化性樹脂は、熱により硬化する樹脂であれば、特に定めるものではなく、ウレタン系重合体、アクリル系重合体、酢酸ビニル系重合体、塩化ビニル系重合体、ポリエステル系重合体およびそれらの共重合体やエポキシ樹脂、フェノール樹脂、シアネート樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミドなどが例示され、エポキシ樹脂、ウレタン系重合体、シアネート樹脂が好ましく、エポキシ樹脂がより好ましい。
 エポキシ樹脂の詳細は、特許第6439901号の段落0035~0042の記載を参酌でき、この内容は本明細書に組み込まれる。他にも、水添ビスフェノールA骨格やセロキサイド骨格を有する脂環式エポキシ樹脂を用いることができる。
 特に、混繊糸にポリアミド樹脂繊維を用いる場合、親和性の観点から、エポキシ樹脂、ウレタン系重合体、シアネート樹脂が好ましく、エポキシ樹脂がより好ましい。
 熱硬化性樹脂は、ガラス転移温度の下限値が、80℃以上であることが好ましく、90℃以上であることがより好ましく、98℃以上であることがさらに好ましい。前記下限値以上とすることにより、使用可能な温度域をより向上させることができる。また、上限値は、250℃以下であることが好ましく、200℃以下であることがより好ましく、さらには、140℃以下、135℃以下、130℃以下であってもよい。前記上限値以下とすることにより、表面に配置される連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸との密着性がより向上する傾向にある。ガラス転移温度は、後述する実施例に記載の方法に従って測定される。
 熱硬化性樹脂を2種以上含む場合、ガラス転移温度は、検出されるガラス転移温度の内、低い方の温度とする。以下、樹脂のガラス転移温度および融点について同様に考える。
 プリプレグにおける熱硬化性樹脂の割合は、下限値が、15質量%以上であることが好ましく、20質量%以上であることがより好ましい。また、上限値は、55質量%以下であることが好ましく、65質量%以下であることがより好ましい。
 プリプレグは、熱硬化性樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 プリプレグには、連続強化繊維および熱可塑性樹脂以外の成分を含んでいてもよい。具体的には、充填材、金属粉、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、可塑剤、硬化触媒、硬化助剤、顔料、耐光剤、帯電防止剤、抗菌剤、導電剤、分散剤等が挙げられる。硬化助剤としては、例えば、イミダゾール化合物、三級アミン化合物、有機リン化合物、酸化マグネシウム、フェノール、有機酸、金属触媒等が挙げられる。
<混繊糸>
 本発明の成形品の製造方法では、プリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸を配置する。プリプレグの表面に、混繊糸を配置することにより、特に高い強度が求められる部分を効果的に補強することが可能になる。ここで、プリプレグの表面とは、プリプレグが平板状である場合は、平板状の平板面をいう。特に、糸状の材料であっても、含浸の進んでいる材料を用いると、プリプレグの表面に配置する際に折れてしまったりして良好な成形品が得られないが、混繊糸を用いることにより、所望の形状に成形することが可能になる。特に、混繊糸はしなやかであることから、曲率半径が小さい形状などにも適用させることがより容易になる。さらに、混繊糸は、連続熱可塑性樹脂繊維を含むことから、プリプレグとの密着性を高くすることができる。また、混線糸は、連続熱可塑性樹脂繊維を含むことから、炭素繊維のみを配置する場合と比べ、得られる成形品の領域ごとの繊維含有率をより均一にすることができる。さらに、混繊糸を用いることにより、操糸性がより向上し、かつ、長期間にわたって製造装置を運転させても、熱可塑性樹脂が装置に付着しにくくすることができる。
 混繊糸は、連続強化繊維と連続熱可塑性樹脂繊維を含み、連続強化繊維が連続熱可塑性樹脂繊維中に分散しており、かつ、連続熱可塑性樹脂繊維の一部または全部が連続強化繊維に含浸せずに、繊維の状態を保っている混繊糸をいう。
 混繊糸における連続強化繊維の割合は、下限値が、35質量%以上であることが好ましく、45質量%以上であることがより好ましい。また、上限値は、75質量%以下であることが好ましく、65質量%以下であることがより好ましい。
 また、混繊糸における連続強化繊維の割合は、下限値が、30体積%以上であることが好ましく、40体積%以上であることがより好ましい。また、上限値は、70体積%以下であることが好ましく、60体積%以下であることがより好ましい。
 混繊糸は、連続強化繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 混繊糸における連続熱可塑性樹脂繊維の割合は、下限値が、25質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、上限値は、65質量%以下であることが好ましく、55質量%以下であることがより好ましい。
 混繊糸は、連続熱可塑性樹脂繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 混繊糸は、連続強化繊維と連続熱可塑性樹脂繊維の合計が、混繊糸の80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましく、98質量%以上を占めることが一層好ましい。
 混繊糸中における、連続強化繊維の分散度は、60%以上であることが好ましく、63%以上であることがより好ましく、68%以上であることがさらに好ましく、70%以上、80%以上、90%超であってもよい。また、前記分散度は、100%が理想であるが、99%以下であってもよい。このような範囲とすることにより、連続強化繊維と連続熱可塑性樹脂繊維が含浸しやすく、また、得られる成形品中の空隙をより少なくすることができる。分散度は、後述する実施例の記載に従って測定される。
 混繊糸における、連続熱可塑性樹脂繊維の含浸率は、通常、20%以下である。含浸率の上限値は、10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましく、1%以下が一層好ましい。下限値は、0%であってよいが、0.1%以上であっても、実用上問題ない。混繊糸の含浸率は、後述する実施例の記載に従って測定される。
 本発明で用いる混繊糸は、好ましくは、連続強化繊維と連続熱可塑性樹脂繊維とが、連続強化繊維および連続熱可塑性樹脂繊維の少なくとも一方の処理剤によって、束状にされたものである。連続強化繊維の処理剤は、国際公開第2014/132776号の段落0075~0078の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、連続熱可塑性樹脂繊維の処理剤は、国際公開第2014/132776号の段落0021の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 その他、混繊糸については、本発明の趣旨を逸脱しない限り、国際公開第2014/132776号、国際公開第2016/039242号の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<連続熱可塑性樹脂繊維>>
 本発明で用いる混繊糸は、連続熱可塑性樹脂繊維を含む。熱可塑性樹脂繊維とは、混繊糸の長手方向において、端から他の一端まで熱可塑性樹脂繊維が連続して存在していることをいう。尚、熱可塑性樹脂繊維を紡いで連続熱可塑性樹脂繊維としているものは、熱可塑性樹脂繊維が連続して存在しているものに含まれる。
 したがって、連続熱可塑性樹脂繊維の長さは、成形品の形状に応じて定められるが、例えば、数平均繊維長が3cm以上の熱可塑性樹脂繊維をいい、通常は、10cm以上である。上限値は、例えば、100m以下であってもよい。
 混繊糸に含まれる連続熱可塑性樹脂繊維に用いる熱可塑性樹脂については、用途等に応じてその種類を選択できる。本発明で用いる熱可塑性樹脂は、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂類、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂類、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン等のポリエーテルケトン樹脂類、ポリエーテルスルフォン樹脂、ポリエーテルサルファイド樹脂、熱可塑性ポリエーテルイミド、熱可塑性ポリアミドイミド、全芳香族ポリイミド、半芳香族ポリイミド等の熱可塑性ポリイミド樹脂類等を用いることができ、ポリアミド樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂が好ましく、ポリアミド樹脂、ポリカーボネート樹脂がより好ましく、ポリアミド樹脂であることがさらに好ましい。
 本発明では、連続熱可塑性樹脂繊維において、80質量%以上(好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上)が、ポリアミド樹脂である形態が好ましく例示される。
 連続熱可塑性樹脂繊維を構成する熱可塑性樹脂が融点を有する場合、その融点は、170℃以上であることが好ましく、190℃以上であることがより好ましく、210℃以上であることがさらに好ましい。上記下限値以上とすることにより、成形品がより耐熱性に優れる傾向にある。また、前記融点の上限値は、290℃以下であることが好ましく、265℃以下であることがより好ましく、240℃以下であることがさらに好ましい。上記上限値以下とすることにより、成形加工性により優れる傾向にある。
 また、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度は、30℃以上が好ましく、40℃以上がより好ましく、特に好ましくは55℃以上である。前記下限値以上とすることにより、加熱工程において、硬化前のプリプレグになじみやすく、得られる成形品の密着性が向上する傾向にある。また、前記ガラス転移温度の上限値は、180℃以下であることが好ましく、150℃以下であることがより好ましく、100℃以下であることがさらに好ましい。上記上限値以下とすることにより、プリプレグとの密着性により優れる傾向にある。
 さらに、本発明の目的・効果を損なわない範囲で、本発明で用いる連続熱可塑性樹脂繊維には、各種の含有成分を含めてもよい。例えば、エラストマー、酸化防止剤、熱安定剤等の安定剤、耐加水分解性改良剤、耐候安定剤、艶消剤、紫外線吸収剤、核剤、可塑剤、分散剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、離型剤、滑剤等の添加剤等を加えることができる。これらの詳細は、特許第4894982号公報の段落番号0130~0155の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<<ポリアミド樹脂>>>
 本発明で用いるポリアミド樹脂は、公知のポリアミド樹脂を広く用いることができる。
 本発明においては、ポリアミド樹脂の融点は、150℃以上であることが好ましく、180℃以上であることがより好ましく、190℃以上であることがさらに好ましい。また、前記融点の上限値は、310℃以下であることが好ましく、300℃以下であることがより好ましく、250℃以下であることがさらに好ましい。
 また、ポリアミド樹脂のガラス転移温度について、下限値は、50℃以上が好ましく、55℃以上がより好ましく、特に好ましくは60℃以上である。この範囲であると、耐熱性が良好となる傾向にある。また、ガラス転移温度の上限値は、100℃以下が好ましい。
 また、ポリアミド樹脂は、末端アミノ基濃度([NH])が、下限値が、好ましくは10μ当量/g以上であり、より好ましくは15μ当量/g以上である。前記下限値以上とすることにより、プリプレグに含まれる熱硬化性樹脂との反応性がより向上する傾向にある。また、上限値は、好ましくは100μ当量/g以下であり、より好ましくは50μ当量/g以下である。上記上限値以下とすることにより、プリプレグとの密着性により優れる傾向にある。
 ポリアミド樹脂の末端アミノ基濃度は、国際公開第2012/169334号の段落0108の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明で用いるポリアミド樹脂は、数平均分子量(Mn)が6,000~30,000であることが好ましく、より好ましくは8,000~28,000であり、さらに好ましくは9,000~26,000であり、よりさらに好ましくは10,000~24,000であり、特に好ましくは11,000~22,000である。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 なお、ここでいう数平均分子量(Mn)とは、国際公開第2012/169334号の段落0108~0110の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明で用いるポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリアミド66/6T、ポリキシリレンアジパミド、ポリキシリレンセバカミド、ポリキシリレンドデカミド、ポリアミド9T、ポリアミド9MT、ポリアミド6I/6T等が挙げられる。
 上述のようなポリアミド樹脂の中でも、成形性、耐熱性の観点から、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上が炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂(以下、「XD系ポリアミド」ということがある)であることが好ましい。
 また、ポリアミド樹脂が混合物である場合は、ポリアミド樹脂中のXD系ポリアミドの比率が50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であってもよい。
 XD系ポリアミドは、好ましくはジアミン由来の構成単位の70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、一層好ましくは95モル%以上がメタキシリレンジアミンおよび/またはパラキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の好ましくは70モル%以上、さらに好ましくは80モル%以上が、一層好ましくは90モル%以上、より一層好ましくは95モル%以上が炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。
 XD系ポリアミドの原料ジアミン成分として用いることができるメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の50モル%未満であり、30モル%以下であることが好ましく、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸が好ましい。
 上記炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸と等のナフタレンジカルボン酸異性体を例示することができ、1種または2種以上を混合して使用できる。
 ジカルボン酸成分として、炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性、バリア性の点から、テレフタル酸、イソフタル酸を用いることが好ましい。テレフタル酸、イソフタル酸の割合は、好ましくはジカルボン酸構成単位の30モル%以下であり、より好ましくは1~30モル%、特に好ましくは5~20モル%の範囲である。
 尚、「ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され」とは、XD系ポリアミドを構成するアミド結合がジカルボン酸とジアミンの結合によって形成されていることをいう。また、XD系ポリアミドは、ジカルボン酸由来の構成単位と、ジアミン由来の構成単位以外に、末端基等の他の部位を含む。さらに、ジカルボン酸とジアミンの結合に由来しないアミド結合を有する繰り返し単位や微量の不純物等が含まれる場合もあるであろう。具体的には、XD系ポリアミドは、ジアミン成分、ジカルボン酸成分以外にも、ポリアミド樹脂を構成する成分として、本発明の効果を損なわない範囲でε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。本発明では、好ましくはXD系ポリアミドの90質量%以上が、より好ましくは95質量%以上が、さらに好ましくは98質量%以上がジアミン由来の構成単位またはジカルボン酸由来の構成単位である。
<<連続強化繊維>>
 本発明で用いる混繊糸は、連続強化繊維を含む。
 混繊糸における連続強化繊維とは、混繊糸の長手方向において、端から他の一端まで強化繊維が連続して存在していることをいう。尚、強化繊維を紡いで連続強化繊維としているものは、強化繊維が連続して存在しているものに含まれる。
 したがって、連続強化繊維の長さは、成形品の形状に応じて定められるが、例えば、数平均繊維長が3cm以上の強化繊維をいい、通常は、10cm以上である。上限値は、例えば、100m以下であってもよい。
 連続強化繊維としては、特に制限なく、この種の技術に適用しうるものを適宜選定して用いることができる。例えば、植物繊維、炭素繊維、ガラス繊維、アルミナ繊維、ボロン繊維、セラミック繊維、アラミド繊維等が例示され、炭素繊維およびガラス繊維の少なくとも1種であることが好ましい。
 炭素繊維としては公知のものを広く採用することができるが、例えば、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維を好ましく用いることができる。また、リグニンやセルロースなど、植物由来原料の炭素繊維も用いることができる。
 ガラス繊維としては、一般的に供給されるEガラス、Cガラス、Aガラス、Sガラス、および耐アルカリガラス等のガラスを溶融紡糸して得られる繊維が用いられるが、本発明では、Eガラスを含むことが好ましい。
 連続強化繊維の断面は、円形および非円形のいずれであってもよい。
 連続強化繊維は炭素繊維の場合、引張強度が1500MPa以上であることが好ましく、2500MPa以上であることがより好ましく、3500MPa以上であることがさらに好ましい。上限は特にないが、8000MPa以下であることが実際的である。ガラス繊維の場合は、引張強度が800MPa以上であることが好ましく、1800MPa以上であることがより好ましく、2800MPa以上であることがさらに好ましい。上限は特にないが、5000MPa以下であることが実際的である。
<プリプレグと混繊糸>
 本発明では、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度と、熱硬化性樹脂のガラス転移温度の差(好ましくは、熱硬化性樹脂のガラス転移温度-連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度)が15℃以上であることが好ましく、18℃以上であることがより好ましく、20℃以上であることがさらに好ましい。前記下限値以上とすることにより、成形加工性により優れる傾向にある。また、前記ガラス転移温度の差の上限値は、200℃以下であることが好ましく、100℃以下であることがより好ましく、70℃以下であることがさらに好ましく、65℃以下であることが一層好ましい。前記上限値以下とすることにより、プリプレグと混繊糸がより密着性高く成形される傾向にある。
 本発明では、また、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点(融点を有する場合に限る)と、熱硬化性樹脂のガラス転移温度の差(好ましくは、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点-熱硬化性樹脂のガラス転移温度)が90℃以上であることが好ましく、100℃以上であることがより好ましく、105℃以上であることがさらに好ましい。前記下限値以上とすることにより瞬間耐熱性により優れる傾向にある。また、前記融点の差の上限値は、例えば、300℃以下であり、150℃以下であることが好ましく、145℃以下であることがより好ましく、140℃以下であることがさらに好ましい。前記上限値以下とすることにより、プリプレグと混繊糸がより密着性高く成形される傾向にある。
 本発明では、プリプレグの表面積(図1の1の部分)に対する、混繊糸の表面積(図1の2の部分)が0.1~10%であることが好ましい。また、プリプレグの質量と混繊糸の質量の比が、100:0.1~10であることが好ましい。このように、プリプレグの一部分にのみ混繊糸を設けることにより、成形性を高く維持しつつ、機械的強度に優れた成形品が得られる。
<加熱工程>
 本発明では、プリプレグの表面上の一部に、混繊糸を配置し、加熱加工することを含む。
 加熱温度は、通常、熱硬化性樹脂の硬化温度に基づいて定められる。加熱温度は、100℃以上であることが好ましく、105℃以上であることがより好ましく、110℃以上であることがさらに好ましい。前記下限値以上とすることにより、十分に硬化される。また、プリプレグに含まれる熱硬化性樹脂のガラス転移温度との関係で規定すると、熱硬化性樹脂のTg以上であることが好ましく、熱硬化性樹脂のTg+5℃以上であることがより好ましい。また、加熱温度の上限値は、220℃以下であることが好ましく、210℃以下であることがより好ましく、200℃以下であることがさらに好ましい。また、プリプレグに含まれる熱硬化性樹脂のガラス転移温度との関係で規定すると、熱硬化性樹脂のTg+30℃以下であることが好ましく、熱硬化性樹脂のTg+20℃以下であることがより好ましい。前記上限値以下とすることにより、熱硬化性樹脂の急激な発熱による劣化を効果的に抑制することができる。
 さらに、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点との関係では、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点が前記熱硬化性樹脂の硬化温度よりも高いことが好ましく、40℃以上高いことが好ましく、100℃以上高いことがより好ましく、110℃以上高いことがさらに好ましく、118℃以上高いことが一層好ましい。前記下限値以上とすることにより、得られる成形品の寸法安定性がより向上する傾向にある。また、前記連続熱可塑性樹脂の融点と硬化温度の差の上限は、150℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることがさらに好ましい。前記上限値以下とすることにより、プリプレグと混繊糸との密着性により優れる傾向にある。
 また、熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度との関係では、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度が前記熱硬化性樹脂の硬化温度よりも低いことが好ましく、10℃以上低いことが好ましく、20℃以上低いことがより好ましく、25℃以上低いことがさらに好ましい。前記下限値以上とすることにより、プリプレグと混繊糸の密着性がより向上する傾向にある。また、前記硬化温度と、連続熱可塑性樹脂のガラス転移温度の差の上限は、120℃以下であることが好ましく、75℃以下であることがより好ましく、40℃以下であることがさらに好ましい。前記上限値以下とすることにより、熱可塑性樹脂の機械物性をより損なわれにくくすることができる。
 融点およびガラス転移温度および熱硬化性樹脂の硬化温度は、後述する実施例の記載に従って測定される。
 加熱加工において、加熱方法は、例えば、混繊糸を配置したプリプレグを、プリプレグを下に、金型に配置し、バギングフィルムで密封し、内部を真空ポンプで減圧し、加熱および加圧し、室温まで冷却、落圧して釜から取り出し、バギングフィルムを剥がすことが挙げられる。加熱加圧釜の圧力は、2~4atmとすることができる。
 本発明では、さらに、前記混繊糸を配置した後、前記プリプレグの表面に、糸状材料を用いて前記混繊糸を固定した後、前記加熱加工を施してもよい。
 糸状材料は、熱可塑性樹脂繊維であることが好ましい。熱可塑性樹脂繊維を構成する熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂類、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン等のポリエーテルケトン樹脂類、ポリエーテルスルフォン樹脂、ポリエーテルサルファイド樹脂、熱可塑性ポリエーテルイミド、熱可塑性ポリアミドイミド、全芳香族ポリイミド、半芳香族ポリイミド等の熱可塑性ポリイミド樹脂類等を用いることができる。本発明では、熱可塑性樹脂がポリアミド樹脂であることが好ましい。ポリアミド樹脂の具体例としては、上述の混繊糸に含まれる連続熱可塑性樹脂繊維で述べたポリアミド樹脂が好ましく採用できる。本発明では、糸状材料である熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点は、混繊糸に含まれる連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の融点よりも15℃以上高いことが好ましく、16℃以上とすることもでき、さらには17℃以上とすることもでき、特には18℃以上とすることもできる。このような構成とすることにより、混繊糸中の連続強化繊維の形態が乱れないまま、混繊糸中の熱可塑性樹脂繊維を含浸させることができ、得られる成形品の外観が向上する。また、上限は特に定めるものでは無いが、100℃以下とすることが好ましく、80℃以下とすることがより好ましく、75℃以下とすることが特に好ましい。
 その他、糸状材料やその固定方法については、本発明の趣旨を逸脱しない限り、国際公開第2016/159340号の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<配置>
 本発明の成形品の製造方法においては、プリプレグの表面の一部に、混繊糸を配置する。混繊糸を配置する部分は、主に、成形品の強度を高めたい部分であって、例えば、図1の符号1で示すように屈曲した状態に配置することが好ましい。
 具体的には、本発明の製造方法においては、混繊糸の少なくとも一部を、曲率半径が100cm以下となるように、前記プリプレグの表面に配置する態様に適している。曲率半径の下限は、用途に応じて適宜定められるが、3cm以上に適している。尚、ここでの曲率半径は、混繊糸のうち、最も小さい部分の曲率半径をいう。曲率半径が100cm以下である混繊糸の配置は、30cm以上の範囲にわたって存在していることが好ましい。
<用途>
 本発明において、成形品は、自動車・航空機等輸送機部品、一般機械部品、精密機械部品、電子・電気機器部品、OA機器部品、建材・住設関連部品、医療装置、レジャースポーツ用品、遊戯具、医療品、食品包装用フィルム等の日用品、防衛および航空宇宙製品等に広く用いられる。特に、座席シート、特に、車両、飛行機等の乗り物の座席シートに好ましく用いられる。
<複合材料>
 本発明の複合材料は、少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸が配置されているものである。特に、前記混繊糸が前記プリプレグの表面に、糸状材料を用いて固定されていることが好ましい。その他、複合材料の詳細は、上述の成形品の製造方法で述べたものと同義であり、好ましい範囲も同様である。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[原料]
プリプレグ(エポキシ樹脂/炭素繊維/二方向):エポキシ樹脂が連続炭素繊維の織物に含浸しているプリプレグ、東レ社製、トレカT 300/#2500、強化繊維の割合は、76質量%(70体積%)
プリプレグ(エポキシ樹脂/炭素繊維/一方向):エポキシ樹脂が連続炭素繊維に含浸している一方向プリプレグ、東レ社製、トレカ T700SC/#2500、強化繊維の割合は、76質量%(70体積%)
プリプレグ(エポキシ樹脂/ガラス繊維/二方向):以下の製造例に従って製造した。
プリプレグ(シアネート樹脂/炭素繊維/二方向):以下の製造例に従って製造した。
<エポキシ樹脂をガラス繊維に含浸させた織物プリプレグの製造>
 ガラス繊維織物(日東紡績社製、KS1210 1080S-935N、目付90g/mに、エポキシ樹脂(東レ社製、#2500)を浸漬させた後にニップロールで絞り、プリプレグ(ガラス繊維、二方向)を得た。プリプレグ中の強化繊維の割合は、81質量%(70体積%)である。
<シアネート樹脂を炭素繊維に含浸させた織物プリプレグの製造>
 シアネートエステル樹脂(ジアリルビスフェノールAジシアナート、三菱ガス化学社製)100質量部に対し、硬化促進剤(テトラフェニルホスホニウムテトラ-p-トリルボラート、TPP-TTB、北興化学工業社製、TPP-MK)1.0質量部を90℃/1時間かけて、溶融させた。
 得られた樹脂を容器中で90℃に保持して溶融状態とし、溶融樹脂中に炭素繊維織物(東レ社製、CO6343)を通すことで所定の量の樹脂を炭素繊維織物に含浸させ、室温に戻すことでプリプレグを製造した。
 プリプレグ中の強化繊維の割合は、77質量%(70体積%)である。
連続強化繊維
連続炭素繊維:三菱ケミカル社製、Pyrofil-TR-50S-12000-AD、8000dtex、繊維数12000f、エポキシ樹脂で表面処理されている。
連続ガラス繊維:日東紡績社製、ECG 75 1/0 0.7Z、繊度687dtex、繊維数400f、集束剤で表面処理されている。
熱可塑性樹脂
MXD6:メタキシリレンアジパミド(三菱ガス化学社製、グレードS6001)、数平均分子量16800、末端アミノ基濃度18μ当量/g
MP10:ポリメタパラキシリレンセバカミド、下記合成例に従って合成した。
PA6:ポリアミド樹脂6、宇部興産社製、1022B、末端アミノ基濃度40μ当量/g
PC:ユーピロン3000(三菱エンジニアリングプラスチックス社製)、ガラス転移温度153℃
<MP10の合成>
 セバシン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、メタキシリレンジアミン(三菱ガス化学社製)とパラキシリレンジアミン(三菱ガス化学社製)のモル比が7:3の混合ジアミンを、加圧(0.35MPa)下でジアミンとセバシン酸とのモル比が約1:1になるように徐々に滴下しながら、温度を235℃まで上昇させた。滴下終了後、60分間反応継続し、分子量1,000以下の成分量を調整した。反応終了後、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂(MP10、M/P=7:3)を得た。融点は215℃だった。
 得られた樹脂は、末端アミノ基濃度31μ当量/gであった。
固定糸(糸状材料):連続熱可塑性樹脂繊維、熱可塑性樹脂は、メタキシリレンアジパミド、三菱ガス化学社製、S6011、融点237℃、ガラス転移温度88℃
熱可塑性樹脂フィルム:熱可塑性樹脂は、メタキシリレンアジパミド、三菱ガス化学社製、S6011、溶融押出法にて50μm厚のフィルムを作製して用いた。
<UDテープの製造>
 ロービング状の連続強化繊維を等間隔に並べ、スプレッダーを通過させ、200mm幅に広げた。広げた連続強化繊維を上下2つの含浸ロール間に入れる際に、二軸押出機(東芝機械社製、TEM26SS)で溶融させた樹脂を供給し、含浸ロール中で、連続強化繊維に樹脂を含浸させた。その後、冷却ロールで冷却しながら、50m連続して引き取り、円柱状の芯材に巻き取り、UDテープを得た。UDテープを幅10mmにスリットして用いた。
<芯鞘構造繊維の製造>
 表に示す熱可塑性樹脂粉末を連続強化繊維の表面に付着させ、温度が融点+20℃、窒素雰囲気下で20分間処理することにより芯成分が炭素繊維で、鞘成分が熱可塑性樹脂の芯/鞘構造を有し、炭素繊維が60質量%の繊維を得た。
<融点およびガラス転移温度および硬化温度の測定>
 本実施例において、融点は、示差走査熱量測定により、試料量は1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で、室温から300℃まで昇温し、溶融させた際に観測される吸熱ピークのピークトップの温度から求めた。
 本実施例において、熱可塑性樹脂のガラス転移温度は、示差走査熱量測定により、試料量は1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で300℃まで加熱したのち、ただちに室温以下まで冷却し、再び室温から300℃まで昇温速度10℃/分で加熱した際のガラス転移温度を測定した。
 本実施例において、熱硬化性樹脂のガラス転移温度は、示差走査熱量測定により、試料量は1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、2℃/分の昇温速度で、室温から90℃まで昇温し、90℃で60分間保持した後に、2℃/分の昇温速度で300℃まで昇温した後に、ただちに室温以下まで冷却し、再び室温から300℃まで昇温速度10℃/分で加熱した際のガラス転移温度を測定した。
 本実施例において、熱硬化性樹脂の硬化温度は、示差走査熱量測定により、試料量は1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、2℃/分の昇温速度で、室温から300℃まで昇温した際の発熱ピークのピークトップの温度から求めた。
 測定には、島津製作所(SHIMADZU CORPORATION)製、DSC-60を用いた。
実施例1
<混繊糸の製造>
<<連続熱可塑性樹脂繊維の製造>>
 表1に示す熱可塑性樹脂を直径30mmのスクリューを有する単軸押出機にて溶融押出しし、60穴のダイからストランド状に押出し、ロールにて巻き取りながら延伸し、連続熱可塑性樹脂の繊維束を巻取体に800m巻き取った。溶融温度は、連続熱可塑性樹脂の融点+15℃とした。
<<連続熱可塑性樹脂繊維の表面処理>>
 油剤(ポリオキシエチレン硬化ヒマシ油(花王製、エマノーン 1112))を深型のバットに満たし、表面をゴム処理したローラーをローラーの下部分が油剤に接するように設置してローラーを回転させることで、常に油剤がローラー表面に付着している状態にした。上記連続熱可塑性樹脂繊維をこのローラーに接触させることで連続熱可塑性樹脂繊維の表面に油剤を塗布した。
<<混繊>>
 混繊糸は、以下の方法に従って製造した。
 連続熱可塑性樹脂繊維の巻取体、および、連続炭素繊維の巻取体からそれぞれの繊維を引き出し、複数のガイドを通しながらエアブローにより開繊を行った。開繊しながら、連続熱可塑性樹脂繊維および連続炭素繊維を一束とし、さらに、複数のガイドを通しながらエアブローを与え、均一化を進めた。
 得られた混繊糸は、繊度約13000dtex、繊維数約13500f、連続熱可塑性樹脂繊維と連続炭素繊維の体積比率が1:1、連続炭素繊維の割合が61質量%であった。また、得られた混繊糸の分散度と含浸率を以下の通り測定した。
<<分散度の測定方法>>
 混繊糸をエポキシ樹脂で包埋し、混繊糸の長手方向に垂直な断面を研磨し、断面図を、超深度カラー3D形状測定顕微鏡を使用して撮影した。図2に示すように、撮影画像において、放射状に補助線を等間隔に6本ひき、各補助線上にある連続強化繊維領域の長さをa1, a2, a3・・・ai(i=n)と測量した。また、各補助線上にある連続熱可塑性樹脂繊維の領域の長さをb1, b2, b3・・・bi(i=m)と測量した。その結果に基づき、次式により分散度を算出した。
Figure JPOXMLDOC01-appb-M000001
 超深度カラー3D形状測定顕微鏡は、VK-9500(コントローラー部)/VK-9510(測定部)(キーエンス製)を使用した。
<<含浸率の測定方法>>
 混繊糸またはプリプレグを切り取り、エポキシ樹脂で包埋し、混繊糸またはプリプレグの断面部にあたる面を研磨し、断面図を、超深度カラー3D形状測定顕微鏡を使用して撮影した。エポキシ樹脂で包埋したサンプルの断面をデジタルマイクロスコープで観察した。得られた断面写真に対し、連続炭素繊維の樹脂が含浸した領域を画像解析ソフトImageJを用いて選択し、その面積を測定した。含浸率は、連続強化繊維へ、樹脂が含浸した領域/断面積(単位%)として示した。ここで、含浸領域とは、炭素繊維の少なくとも一部が、熱可塑性樹脂繊維が溶融し固化した樹脂と接しており、その溶融し固化した樹脂が他の少なくとも一本の炭素繊維の少なくとも一部と接している状況において、前記少なくとも一部が溶融した炭素繊維と、前記溶融し固化した樹脂によって形成される領域を言う。
 超深度カラー3D形状測定顕微鏡は、VK-9500(コントローラー部)/VK-9510(測定部)(キーエンス製)を使用した。
<成形品の製造>
 表1に示すプリプレグを硬化後の厚さが表1に示す値(1mm)となるように重ね、その表面に表1に示す曲率半径となるように混繊糸を配置した。プリプレグの表面に混繊糸を配置した部分の面積は、プリプレグの表面(片面の面積)の5.6%(質量基準では、プリプレグの5.5質量%)とした。図1は、プリプレグ2に、混繊糸1を配置した状態を示す模式図である。さらに、固定糸を用いて、混繊糸をプリプレグにステッチングして固定し、複合材料を得た。
 混繊糸を配置したプリプレグを、プリプレグを下に、金型に配置し、バギングフィルムで密封し、内部を真空ポンプで減圧した。これを加熱加圧釜に配置し、3atm加圧し、90℃まで2℃/分で昇温し、1時間保持した後に、熱硬化性樹脂の硬化温度+10℃まで2℃/分で昇温し、3時間保持した後に、熱可塑性樹脂の融点+10℃まで2℃/分で昇温し、1分間保持した後に、室温まで冷却、落圧して釜から取り出し、バギングフィルムを剥がして成形品を得た。
 得られた成形品について、剛性および軽さについて以下の通り評価した。
<<剛性>>
 成形品をオートグラフ(島津製作所社製、AG-Xplus 100kN)を用いて、支点間距離160mm、移動速度1mm/分、23℃条件で圧縮し、200N荷重時の曲げ変位量から以下の基準で評価した。
A:10mm未満
B:10mm以上15mm未満
C:15mm以上
<<軽さ>>
 成形品の質量と面積を測定し、質量を面積で除した値を以下の基準で評価した。
A:0.2g/cm未満
B:0.2g/cm以上0.4g/cm未満
C:0.4g/cm以上
実施例2
 実施例1において、混繊糸に用いる熱可塑性樹脂の種類等を表1に示す通り変更し、他は同様に行った。実施例1と同様に、剛性が高く、軽量で形状が安定した成形品が得られた。
実施例3
 実施例1において、混繊糸に用いる熱可塑性樹脂の種類等を表1に示す通り変更し、他は同様に行った。実施例1と同様に、剛性が高く、軽い成形品が得られた。しかしながら、得られた成形品は、高湿環境下で多少反りやすかった。
実施例4
 実施例1において、混繊糸に用いる熱可塑性樹脂の種類等を表1に示す通り変更し、さらに、加熱加工の際の温度を、ガラス転移温度+100℃とした他は同様に行った。実施例1と同様に、剛性が高く、軽量で形状が安定した成形品が得られた。
実施例5
 実施例1において、プリプレグについて、エポキシ樹脂をガラス繊維に含浸させた織物プリプレグ等に変更し、他は同様に行った。
 剛性の高い成形品が得られたが、軽さは、実用レベルではあるものの、炭素繊維を用いたものに比べて劣っていた。
実施例6
 実施例1において、混繊糸に用いる連続強化繊維の種類等を表1に示す通り変更し、他は同様に行った。
 混繊糸は、繊度約15000dtex、繊維数約10000fであり、連続熱可塑性樹脂繊維と連続ガラス繊維の体積比率が1:1、連続ガラス繊維の割合は69質量%であった。
 混繊糸にガラス繊維を用いた場合、軽い成形品が得られたが、剛性は、実用レベルではあるものの、炭素繊維を用いたものに比べ劣っていた。
実施例7
 実施例5において、混繊糸に用いる連続強化繊維の種類等を表1に示す通り変更し、他は同様に行った。
 成形品の軽さは、実用レベルではあるものの、炭素繊維を用いたものに比べ劣っていた。また、剛性は、実用レベルではあるものの、炭素繊維を用いたものに比べ劣っていた。さらに、実用レベルではあるものの、歪みやすかった。
実施例8
 実施例1において、プリプレグをプリプレグ(炭素繊維/一方向)に変更し、曲率半径を表1に示す値とした他は同様に行った。
 得られた成形品の剛性は、実用レベルではあるものの、炭素繊維を用いたものに比べ劣っていた。さらに、実用レベルではあるものの、混繊糸を固定糸によって固定した跡が多少目立ってしまった。
実施例9
 実施例1において、固定糸を用いず、曲率半径を表1に示す値とした他は同様に行った。
 剛性は、実用レベルではあるものの、固定しないものに比べ、成形時にずれが起こり、実施例1に比べて、多少、劣っていた。さらに、実用レベルではあるものの、形状安定性が劣っていた。
実施例10
 実施例1において、プリプレグを上記で得られたシアネート樹脂を炭素繊維に含侵させた織物プリプレグ(炭素繊維、二方向)に変更し、加熱は、150℃で3時間保持した後に、180℃で5時間保持した後に、250℃で5時間保持した。他は、表1に示す通り変更し、同様に行った。
 剛性は、実用レベルではあるものの、実施例1等に比べ劣っていた。また、連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度と、前記熱硬化性樹脂のガラス転移温度の差が105℃であり、硬化温度が高く、硬化時間が長いため、成形中に熱可塑性樹脂が劣化した可能性があり、成形性の観点でも劣っていた。
比較例1
 実施例1において、プリプレグを硬化後の厚さが3mmとなるように重ね、かつ、混繊糸を配置しなかった他は、同様に行った。実施例で得られた成形品相当の剛性は達成できたが、厚さが厚くなってしまった。言い換えれば、実施例で得られた成形品相当の剛性を達成するためには、3倍程度の厚さが必要であることが分かった。
比較例2
 実施例1において、混繊糸を配置せず、他は同様に行った。厚さを実施例1で得られた成形品相当とすると、剛性が全く達成できなかった。
比較例3
 実施例1において、プリプレグを熱可塑性樹脂フィルムに変更し、加熱は、熱可塑性樹脂の融点+10℃まで直接に行った他は、同様に行った。成形品としての十分な剛性を満たさない他、座席シートに求められる種々の性能において、問題があった。
比較例4
 実施例1において、混繊糸に変えて、上記で得られたUDテープを用い、他は同様に行った。曲線配置ができなかった。
比較例5
 実施例1において、混繊糸を連続炭素繊維に変更し、加熱は、熱硬化性樹脂の硬化温度+10℃で3時間保持した後に、室温まで冷却し、落圧した。他は同様に行った。連続炭素繊維を配置した場所の熱可塑性樹脂が不足し、成形不良が認められた。そのため、剛性および軽さについては評価をしなかった。
比較例6
 実施例1において、混繊糸に変えて、上記で得られた芯鞘構造の繊維を用い、他は同様に行った。熱可塑性樹脂の連続炭素繊維への含浸が不足し、剛性が発現しなかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
1  混繊糸
2  プリプレグ

Claims (15)

  1. 少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸を配置し、加熱加工することを含む、成形品の製造方法。
  2. さらに、前記混繊糸を配置した後、前記プリプレグの表面に、糸状材料を用いて前記混繊糸を固定した後、前記加熱加工することを含む、請求項1に記載の成形品の製造方法。
  3. 前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の示差走査熱量測定により、試料量を1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で、室温から300℃まで昇温し、溶融させた際に観測される吸熱ピークのピークトップの温度である融点が前記熱硬化性樹脂の硬化温度よりも高い、請求項1または2に記載の成形品の製造方法。
  4. 前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂の示差走査熱量測定により、試料量を1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、10℃/分の昇温速度で300℃まで加熱したのち、ただちに室温以下まで冷却し、再び室温から300℃まで昇温速度10℃/分で加熱した際のガラス転移温度が前記熱硬化性樹脂の硬化温度よりも低い、請求項1~3のいずれか1項に記載の成形品の製造方法。
  5. 前記連続熱可塑性樹脂繊維を構成する熱可塑性樹脂のガラス転移温度と、前記熱硬化性樹脂のガラス転移温度の差が15~200℃である、請求項1~4のいずれか1項に記載の成形品の製造方法。
  6. 前記プリプレグが、二方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグである、請求項1~5のいずれか1項に記載の成形品の製造方法。
  7. 前記熱硬化性樹脂がエポキシ樹脂である、請求項1~6のいずれか1項に記載の成形品の製造方法。
  8. 前記プリプレグに含まれる連続強化繊維が、炭素繊維およびガラス繊維の少なくとも1種を含む、請求項1~7のいずれか1項に記載の成形品の製造方法。
  9. 前記混繊糸に含まれる連続強化繊維が、炭素繊維およびガラス繊維の少なくとも1種を含む、請求項1~8のいずれか1項に記載の成形品の製造方法。
  10. 前記混繊糸に含まれる連続熱可塑性樹脂繊維が、ポリアミド樹脂を含む、請求項1~9のいずれか1項に記載の成形品の製造方法。
  11. 前記混繊糸に含まれる連続熱可塑性樹脂繊維が、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上が炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂を含む、請求項1~9のいずれか1項に記載の成形品の製造方法。
  12. 前記混繊糸の少なくとも一部を、曲率半径が100cm以下となるように、前記プリプレグの表面に配置する、請求項1~11のいずれか1項に記載の成形品の製造方法。
  13. 前記成形品が座席シートである、請求項1~12のいずれか1項に記載の成形品の製造方法。
  14. 少なくとも一方向に並列している連続強化繊維と、前記連続強化繊維に含浸している熱硬化性樹脂とを含むプリプレグの表面上の一部に、連続強化繊維と連続熱可塑性樹脂繊維を含む混繊糸が配置されている、複合材料。
  15. 前記混繊糸が前記プリプレグの表面に、糸状材料を用いて固定されている、請求項14に記載の複合材料。
PCT/JP2020/023131 2019-07-30 2020-06-12 成形品の製造方法および複合材料 WO2021019928A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20846004.8A EP4005788A4 (en) 2019-07-30 2020-06-12 METHOD FOR PRODUCTION OF FORMED PRODUCT AND COMPOSITE MATERIAL
US17/631,272 US11932741B2 (en) 2019-07-30 2020-06-12 Method for manufacturing molded article, and composite material
JP2020551604A JP6806292B1 (ja) 2019-07-30 2020-06-12 成形品の製造方法および複合材料
CN202080053432.2A CN114174050A (zh) 2019-07-30 2020-06-12 成型品的制造方法和复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139584 2019-07-30
JP2019139584 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021019928A1 true WO2021019928A1 (ja) 2021-02-04

Family

ID=74229802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023131 WO2021019928A1 (ja) 2019-07-30 2020-06-12 成形品の製造方法および複合材料

Country Status (1)

Country Link
WO (1) WO2021019928A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0139901B2 (ja) 1980-12-15 1989-08-24 Matsushita Electric Works Ltd
JPH04211734A (ja) * 1990-03-08 1992-08-03 Basf Ag 繊維/合成樹脂複合体板発条
JPH05269873A (ja) * 1992-01-30 1993-10-19 Nikkiso Co Ltd 格子状構造物の製造方法
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
JP2012154364A (ja) * 2011-01-24 2012-08-16 Hitachi Chemical Co Ltd 耐圧摺動部材及びブレーキパッド
WO2012169334A1 (ja) 2011-06-10 2012-12-13 三菱瓦斯化学株式会社 反応性ポリアミド樹脂およびポリアミド樹脂組成物
WO2014132776A1 (ja) 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
WO2016017080A1 (ja) * 2014-07-31 2016-02-04 小松精練株式会社 成形体及びその製造方法
WO2016039242A1 (ja) 2014-09-10 2016-03-17 三菱瓦斯化学株式会社 混繊糸の製造方法、混繊糸、巻取体、および、織物
WO2016159340A1 (ja) 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 複合材料、複合材料の製造方法および成形品の製造方法
JP2016196624A (ja) 2015-04-03 2016-11-24 国立大学法人岐阜大学 複合材料、複合材料の製造方法および成形品の製造方法
JP2017513733A (ja) * 2014-04-08 2017-06-01 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 複合プリフォームの製造方法
JP2019099955A (ja) * 2017-12-05 2019-06-24 Agc株式会社 混繊糸、布帛、繊維強化成形品及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0139901B2 (ja) 1980-12-15 1989-08-24 Matsushita Electric Works Ltd
JPH04211734A (ja) * 1990-03-08 1992-08-03 Basf Ag 繊維/合成樹脂複合体板発条
JPH05269873A (ja) * 1992-01-30 1993-10-19 Nikkiso Co Ltd 格子状構造物の製造方法
JP2012154364A (ja) * 2011-01-24 2012-08-16 Hitachi Chemical Co Ltd 耐圧摺動部材及びブレーキパッド
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2012169334A1 (ja) 2011-06-10 2012-12-13 三菱瓦斯化学株式会社 反応性ポリアミド樹脂およびポリアミド樹脂組成物
WO2014132776A1 (ja) 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
JP2017513733A (ja) * 2014-04-08 2017-06-01 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 複合プリフォームの製造方法
WO2016017080A1 (ja) * 2014-07-31 2016-02-04 小松精練株式会社 成形体及びその製造方法
WO2016039242A1 (ja) 2014-09-10 2016-03-17 三菱瓦斯化学株式会社 混繊糸の製造方法、混繊糸、巻取体、および、織物
WO2016159340A1 (ja) 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 複合材料、複合材料の製造方法および成形品の製造方法
JP2016196624A (ja) 2015-04-03 2016-11-24 国立大学法人岐阜大学 複合材料、複合材料の製造方法および成形品の製造方法
JP2019099955A (ja) * 2017-12-05 2019-06-24 Agc株式会社 混繊糸、布帛、繊維強化成形品及びその製造方法

Similar Documents

Publication Publication Date Title
EP3278945B1 (en) Composite material and process for producing composite material
CN108602246B (zh) 立体结构物的制造方法
US11465370B2 (en) Method for manufacturing molded article and manufacturing device
WO2014136662A1 (ja) 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
KR102101721B1 (ko) 복합섬유, 직물, 편물 및 복합재료
KR102385582B1 (ko) 복합재료, 복합재료의 제조방법 및 성형품의 제조방법
JP7384197B2 (ja) 繊維強化樹脂材料、巻取体、成形品および繊維強化樹脂材料の製造方法
JP2021066974A (ja) カバリング糸、カバリング糸の製造方法および成形品の製造方法
JP6806292B1 (ja) 成形品の製造方法および複合材料
WO2021019928A1 (ja) 成形品の製造方法および複合材料
JP7228178B2 (ja) 材料および成形品の製造方法
JP7219053B2 (ja) 繊維強化樹脂成形品の製造方法
CN115151749A (zh) 软管、软管的制造方法和液压式泵
TWI651189B (zh) 材料、材料之製造方法、部分熔接材料、複合材料及成形品之製造方法
JP7138015B2 (ja) 繊維強化樹脂材料の製造方法
JP7301289B2 (ja) 成形品の製造方法
JP7275962B2 (ja) 長尺平板状材料
JP2021041622A (ja) 成形品の製造方法
JP2008308626A (ja) シート状の繊維強化複合材料とその製造方法
JP2020037456A (ja) 巻取体および巻取体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020551604

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846004

Country of ref document: EP

Effective date: 20220228