WO2021019902A1 - レーザレーダ - Google Patents

レーザレーダ Download PDF

Info

Publication number
WO2021019902A1
WO2021019902A1 PCT/JP2020/021728 JP2020021728W WO2021019902A1 WO 2021019902 A1 WO2021019902 A1 WO 2021019902A1 JP 2020021728 W JP2020021728 W JP 2020021728W WO 2021019902 A1 WO2021019902 A1 WO 2021019902A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
laser radar
laser
rotation axis
Prior art date
Application number
PCT/JP2020/021728
Other languages
English (en)
French (fr)
Inventor
加納 康行
哲央 細川
遼 福田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080048033.7A priority Critical patent/CN114041066A/zh
Priority to JP2021536636A priority patent/JPWO2021019902A1/ja
Publication of WO2021019902A1 publication Critical patent/WO2021019902A1/ja
Priority to US17/570,795 priority patent/US20220128664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0085Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements

Definitions

  • the present invention relates to a laser radar that detects an object using a laser beam.
  • laser radar has been used for security purposes such as detecting intrusion into buildings.
  • a laser radar scans a laser beam in a target region and detects the presence or absence of an object at each scanning position based on the reflected light at each scanning position. Further, the laser radar detects the distance to the object at each scanning position based on the time required from the irradiation timing of the laser light at each scanning position to the receiving timing of the reflected light.
  • Patent Document 1 describes a detection device including a stationary pedestal and a scanning unit that rotates about a rotation axis with respect to the pedestal. It is described that a plurality of detection units are housed in the scanning unit in the circumferential direction of the rotation axis, and the plurality of detection units rotate together with the scanning unit to detect an object using, for example, a laser beam.
  • the detection unit rotates about the rotation axis, so that the range in the circumferential direction about the rotation axis is scanned.
  • the detection unit since there is a limit to expanding the laser beam with a single lens, it is difficult to expand the scanning range in the direction parallel to the rotation axis.
  • an object of the present invention is to provide a laser radar capable of expanding the scanning range in a direction parallel to the rotation axis.
  • the laser radar according to the first aspect of the present invention is arranged on the base member, a drive unit for rotating the base member with respect to the rotation axis, and the base member at predetermined intervals in the circumferential direction about the rotation axis.
  • a plurality of optical units that project laser light in directions away from the rotation axis.
  • the plurality of optical units have different projection directions of the laser beam in directions parallel to the rotation axis.
  • the laser radar when the base member rotates about the rotation axis, the laser beam emitted from each optical unit scans the circumferential range around the rotation axis. At this time, since the projection directions of the laser light in each optical unit are different from each other in the direction parallel to the rotation axis, the range scanned by each laser light is shifted to each other in the direction parallel to the rotation axis. Therefore, the entire range scanned by these laser beams is a wide range in which the scanning ranges of the laser beams that are shifted to each other in the direction parallel to the rotation axis are integrated. Therefore, according to the laser radar according to this aspect, the scanning range in the direction parallel to the rotation axis can be effectively expanded.
  • the laser radar according to the second aspect of the present invention is arranged on the base member, a drive unit that rotates the base member with respect to the rotation axis, and a predetermined interval in the circumferential direction about the rotation axis.
  • a plurality of optical units that project laser light in directions away from the rotation axis.
  • the plurality of optical units have the same projection direction of the laser beam in a direction parallel to the rotation axis.
  • the projection direction of the laser light in each optical unit is the same in the direction parallel to the rotation axis. Therefore, since the detection frequency with respect to the range around the rotation axis can be increased, a high frame rate can be realized without increasing the rotation speed.
  • FIG. 1 is a perspective view for explaining the assembly of the laser radar according to the embodiment.
  • FIG. 2 is a perspective view showing the configuration of the laser radar in a state in which the assembly of the portion excluding the cover is completed according to the embodiment.
  • FIG. 3 is a perspective view showing the configuration of the laser radar with the cover attached according to the embodiment.
  • FIG. 4 is a cross-sectional view showing the configuration of the laser radar according to the embodiment.
  • FIG. 5A is a perspective view showing the configuration of the optical system of the optical unit according to the embodiment.
  • FIG. 5B is a side view showing the configuration of the optical system of the optical unit according to the embodiment.
  • FIG. 5C is a schematic view showing the configuration of the sensor of the photodetector according to the embodiment.
  • FIG. 6A is a top view of the laser radar according to the embodiment when viewed in the negative direction of the Z axis.
  • FIG. 6B is a schematic view showing the projection angle of the projected light of each optical unit when each optical unit is positioned on the positive side of the X-axis of the rotation axis according to the embodiment.
  • FIG. 7 is a circuit block diagram showing a configuration of a laser radar according to an embodiment.
  • FIG. 8A is a schematic diagram for explaining a light emission angle interval and a light emission time interval according to a comparative example.
  • FIG. 8B is a schematic diagram showing light emission timings of the six optical units according to the passage of time according to the comparative example.
  • FIG. 9 (a) to 9 (f) are diagrams showing positions (angles) of light emitted by the six optical units according to the comparative example.
  • FIG. 10 is a diagram showing a position (angle) at which each optical unit emits light until the six optical units rotate 360 ° according to a comparative example.
  • FIG. 11 is a schematic view showing the arrangement of the optical units when the laser radar is viewed in the negative direction of the Z axis according to the modified example.
  • 12 (a) to 12 (f) are views showing the positions (angles) of the six optical units emitting light according to the modified example.
  • FIG. 13 is a diagram showing a position (angle) at which each optical unit emits light before the six optical units rotate 360 ° according to the modified example.
  • FIG. 10 is a diagram showing a position (angle) at which each optical unit emits light until the six optical units rotate 360 ° according to a comparative example.
  • FIG. 11 is a schematic view showing the arrangement of the optical units when the laser radar is
  • FIG. 14A is a schematic diagram showing six luminous fluxes according to other modified examples.
  • FIG. 14B is a schematic diagram showing a configuration of a photodetector according to another modified example.
  • FIG. 15A is a schematic view showing the configuration of the projection optical system of the optical unit according to other modified examples.
  • FIG. 15B is a schematic view showing six diffracted lights according to other modified examples.
  • FIG. 15C is a schematic view showing the configuration of a photodetector according to another modified example.
  • 16 (a) and 16 (c) are schematic views showing six diffracted lights according to other modified examples.
  • 16 (b) and 16 (d) are schematic views showing the configuration of a photodetector according to other modified examples.
  • FIG. 17A is a schematic view showing the configuration of a laser radar in which 12 optical units are installed according to another modification.
  • FIG. 17B is a schematic view showing a configuration of a laser radar when eight optical units are not arranged at equal intervals according to another modification.
  • FIG. 18 is a cross-sectional view showing a configuration of a laser radar according to another modified example.
  • the Z-axis positive direction is the height direction of the laser radar 1.
  • FIG. 1 is a perspective view for explaining the assembly of the laser radar 1.
  • FIG. 2 is a perspective view showing the configuration of the laser radar 1 in a state where the assembly of the portion excluding the cover 70 is completed.
  • FIG. 3 is a perspective view showing the configuration of the laser radar 1 with the cover 70 attached.
  • the laser radar 1 includes a cylindrical fixing portion 10, a base member 20 rotatably arranged on the fixing portion 10, a disk member 30 installed on the upper surface of the base member 20, and a base.
  • the member 20 and the optical unit 40 installed on the disk member 30 are provided.
  • the base member 20 is installed on the drive shaft 13a of the motor 13 (see FIG. 4) provided in the fixed portion 10.
  • the base member 20 is driven by the drive shaft 13a and rotates about a rotation shaft R10 parallel to the Z-axis direction.
  • the base member 20 has a cylindrical outer shape.
  • the base member 20 is formed with six installation surfaces 21 at equal intervals (60 ° intervals) along the circumferential direction of the rotation axis R10.
  • the installation surface 21 is inclined with respect to a plane (XY plane) perpendicular to the rotation axis R10.
  • the side of the installation surface 21 (the direction away from the rotation axis R10) and the upper side of the installation surface 21 (the Z-axis positive direction) are open.
  • the tilt angles of the six installation surfaces 21 are different from each other. The inclination angles of the six installation surfaces 21 will be described later with reference to FIG. 6B.
  • the disk member 30 is a plate member having a disk-shaped outer shape.
  • six circular holes 31 are formed at equal intervals (60 ° intervals) along the circumferential direction of the rotation axis R10.
  • the hole 31 penetrates the disk member 30 in the direction of the rotation axis R10 (Z-axis direction).
  • the disk member 30 is installed on the upper surface of the base member 20 so that the six holes 31 are positioned above the six installation surfaces 21 of the base member 20, respectively.
  • the optical unit 40 includes a structure 41 and a mirror 42.
  • the structure 41 includes two holding members 41a and 41b, a light shielding member 41c, and two substrates 41d and 41e.
  • the holding members 41a and 41b and the light-shielding member 41c hold each part of the optical system included in the structure 41.
  • the holding member 41b is installed above the holding member 41a.
  • the light-shielding member 41c is held by the holding member 41a.
  • the substrates 41d and 41e are installed on the upper surfaces of the holding members 41a and 41b, respectively.
  • the structure 41 emits laser light in the downward direction (negative direction on the Z axis) and receives the laser light from below.
  • the optical system included in the structure 41 will be described later with reference to FIGS. 4 and 5 (a) to 5 (c).
  • the structure 41 of the optical unit 40 is installed on the surface 31a around the hole 31 from the upper side of the hole 31 with respect to the structure composed of the fixing portion 10, the base member 20, and the disk member 30. Ru.
  • the six optical units 40 are arranged at equal intervals (60 ° intervals) along the circumferential direction of the rotation axis R10.
  • the mirror 42 of the optical unit 40 is installed on the installation surface 21.
  • the mirror 42 is a plate member in which the surface installed on the installation surface 21 and the reflection surface 42a on the opposite side of the installation surface 21 are parallel to each other.
  • the surface 31a for installing the structure 41 and the installation surface 21 for installing the mirror 42 located below the surface 31a provide an installation area for installing one optical unit 40. It is composed. In the present embodiment, six installation areas are provided, and the optical unit 40 is installed in each installation area.
  • the substrate 50 is installed on the upper surface of the six optical units 40.
  • the assembly of the rotating portion 60 including the base member 20, the disk member 30, the six optical units 40, and the substrate 50 is completed.
  • the rotating portion 60 rotates with the rotating shaft R10 as the center of rotation by driving the drive shaft 13a (see FIG. 4) of the motor 13 of the fixed portion 10.
  • a cylindrical cover 70 covering the upper side and the side of the rotating portion 60 is installed with respect to the outer peripheral portion of the fixing portion 10.
  • An opening is formed at the lower end of the cover 70, and the inside of the cover 70 is hollow.
  • the cover 70 is made of a material that transmits laser light.
  • the cover 70 is made of, for example, polycarbonate. In this way, the assembly of the laser radar 1 is completed.
  • the laser light (projected light) is emitted from the laser light source 110 (see FIG. 4) of the structure 41 in the negative direction of the Z axis.
  • the projected light is reflected by the mirror 42 in a direction away from the rotation axis R10.
  • the projected light reflected by the mirror 42 passes through the cover 70 and is emitted to the outside of the laser radar 1.
  • the projected light is emitted from the cover 70 radially with respect to the rotation axis R10 and is projected toward the scanning region located around the laser radar 1.
  • the projected light (reflected light) reflected by the object existing in the scanning region is incident on the cover 70 and taken into the inside of the laser radar 1 as shown by the broken line in FIG.
  • the reflected light is reflected by the mirror 42 and received by the photodetector 150 (see FIG. 4) of the structure 41.
  • the rotating unit 60 shown in FIG. 2 rotates about the rotation axis R10.
  • the optical axis of the projected light from the laser radar 1 toward the scanning region rotates about the rotation axis R10.
  • the scanning area also rotates.
  • the laser radar 1 determines whether or not an object exists in the scanning region based on the presence or absence of light reception of reflected light. Further, the laser radar 1 is a distance to an object existing in the scanning region based on a time difference (time of flight) between the timing of projecting the projected light on the scanning region and the timing of receiving the reflected light from the scanning region. To measure. When the rotating unit 60 rotates around the rotation axis R10, the laser radar 1 can detect an object existing in almost the entire range of 360 ° around.
  • FIG. 4 is a cross-sectional view showing the configuration of the laser radar 1.
  • FIG. 4 shows a cross-sectional view of the laser radar 1 shown in FIG. 3 when it is cut at the center position in the Y-axis direction by a plane parallel to the XX plane.
  • the luminous flux of the laser beam (projected light) emitted from the laser light source 110 of the optical unit 40 and directed toward the scanning region is shown by a single point chain line, and the luminous flux of the laser beam (reflected light) reflected from the scanning region is shown. It is shown by a broken line.
  • the positions of the laser light source 110 and the collimator lens 120 are shown by dotted lines.
  • the fixing portion 10 includes a columnar support base 11, a bottom plate 12, a motor 13, a substrate 14, a non-contact power feeding unit 211, and a non-contact communication unit 212.
  • the support base 11 is made of, for example, resin.
  • the lower surface of the support base 11 is closed with a circular dish-shaped bottom plate 12.
  • a hole 11a is formed in the center of the upper surface of the support base 11 so as to penetrate the upper surface of the support base 11 in the Z-axis direction.
  • the upper surface of the motor 13 is installed around the hole 11a on the inner surface of the support base 11.
  • the motor 13 includes a drive shaft 13a extending in the positive direction of the Z axis, and rotates the drive shaft 13a around the rotation shaft R10.
  • a non-contact power feeding unit 211 is installed around the hole 11a on the outer surface of the support base 11 along the circumferential direction of the rotation shaft R10.
  • the non-contact power feeding unit 211 is composed of a coil capable of supplying power to and from the non-contact power feeding unit 171 described later.
  • a non-contact communication unit 212 is installed around the non-contact power supply unit 211 on the outer surface of the support base 11 along the circumferential direction of the rotation shaft R10.
  • the non-contact communication unit 212 is composed of a substrate on which electrodes and the like capable of wireless communication with the non-contact communication unit 172, which will be described later, are arranged.
  • a control unit 201 and a power supply circuit 202 are installed on the board 14.
  • the motor 13, the non-contact power feeding unit 211, and the non-contact communication unit 212 are electrically connected to the substrate 14.
  • a hole 22 that penetrates the base member 20 in the Z-axis direction is formed in the center of the base member 20.
  • the base member 20 is rotatably supported by the fixing portion 10 with respect to the rotation shaft R10.
  • a non-contact feeding portion 171 is installed around the hole 22 on the lower surface side of the base member 20 along the circumferential direction of the rotating shaft R10.
  • the non-contact power feeding unit 171 is composed of a coil capable of supplying power to and from the non-contact power feeding unit 211 of the fixed unit 10.
  • a non-contact communication unit 172 is installed around the non-contact power supply unit 171 on the lower surface side of the base member 20 along the circumferential direction of the rotation shaft R10.
  • the non-contact communication unit 172 is composed of a substrate on which electrodes and the like capable of wireless communication with the non-contact communication unit 212 of the fixed unit 10 are arranged.
  • six installation surfaces 21 are formed on the base member 20 along the circumferential direction of the rotation axis R10, and mirrors 42 are installed on each of the six installation surfaces 21.
  • a disk member 30 is installed on the upper surface of the base member 20.
  • the optical unit 40 is installed on the upper surface of the disk member 30 so that the hole 31 of the disk member 30 and the opening formed on the lower surface of the holding member 41a coincide with each other.
  • the structure 41 of the optical unit 40 includes a laser light source 110, a collimator lens 120, a condenser lens 130, a filter 140, and a photodetector 150 as an optical system configuration.
  • the holding members 41a and 41b and the light-shielding member 41c are formed with holes penetrating in the Z-axis direction.
  • the light-shielding member 41c is a tubular member.
  • the laser light source 110 is installed on a substrate 41d installed on the upper surface of the holding member 41a, and the emission end surface of the laser light source 110 is positioned inside a hole formed in the light-shielding member 41c.
  • the collimator lens 120 is positioned inside a hole formed in the light-shielding member 41c, and is installed on the side wall of the hole.
  • the condenser lens 130 is held in a hole formed in the holding member 41a.
  • the filter 140 is held in a hole formed in the holding member 41b.
  • the photodetector 150 is installed on the substrate 41e installed on the upper surface of the holding member 41b.
  • a control unit 101 and a power supply circuit 102 are installed on the board 50.
  • the six substrates 41d, the six substrates 41e, the non-contact power feeding unit 171 and the non-contact communication unit 172 are electrically connected to the substrate 50.
  • the laser light source 110 emits a laser beam (projected light) having a predetermined wavelength.
  • the emission light axis of the laser light source 110 is parallel to the Z axis.
  • the collimator lens 120 converges the projected light emitted from the laser light source 110.
  • the collimator lens 120 is composed of, for example, an aspherical lens.
  • the projected light converged by the collimator lens 120 is incident on the mirror 42.
  • the projected light incident on the mirror 42 is reflected by the mirror 42 in a direction away from the rotation axis R10. After that, the projected light passes through the cover 70 and is projected onto the scanning area.
  • the projected light projected on the scanning area is reflected by the object.
  • the projected light (reflected light) reflected by the object passes through the cover 70 and is guided to the mirror 42. After that, the reflected light is reflected by the mirror 42 in the positive direction of the Z axis.
  • the condenser lens 130 converges the reflected light reflected by the mirror 42.
  • the filter 140 is configured to transmit light in the wavelength band of the projected light emitted from the laser light source 110 and block light in other wavelength bands.
  • the reflected light transmitted through the filter 140 is guided to the photodetector 150.
  • the photodetector 150 receives the reflected light and outputs a detection signal according to the amount of the received light.
  • the photodetector 150 is, for example, an avalanche photodiode.
  • FIG. 5A is a perspective view showing the configuration of the optical system of the optical unit 40.
  • FIG. 5B is a side view showing the configuration of the optical system of the optical unit 40.
  • FIG. 5C is a schematic view showing the configuration of the sensor 151 of the photodetector 150.
  • FIGS. 5A to 5C show an optical unit 40 and a photodetector 150 located on the positive side of the X-axis of the rotation axis R10 in FIG.
  • FIGS. 5A to 5C for convenience, the optical unit 40 and the photodetector 150 located on the positive side of the X-axis of the rotation axis R10 are shown, but the other optical units 40 have the same configuration. is there.
  • the laser light source 110 is a surface emitting type laser light source whose light emitting surface is longer in the X-axis direction than in the Y-axis direction.
  • the collimator lens 120 is configured so that the curvature in the X-axis direction and the curvature in the Y-axis direction are equal to each other, and the laser light source 110 is located closer to the collimator lens 120 than the focal length of the collimator lens 120. is set up.
  • the projected light reflected by the mirror 42 is projected onto the projection region in a slightly diffused state.
  • the luminous flux of the projected light reflected by the mirror 42 has a longer length in the direction parallel to the rotation axis R10 (Z-axis direction) than the length in the Y-axis direction.
  • the reflected light from the scanning region is reflected by the mirror 42 in the positive direction of the Z axis and then incidents on the condenser lens 130.
  • the optical axis A1 of the projection optical system (laser light source 110 and collimator lens 120) for projecting the projected light and the optical axis A2 of the light receiving optical system (condensing lens 130) for receiving the reflected light are both Z. It is parallel to the axial direction and is separated by a predetermined distance in the circumferential direction of the rotation axis R10.
  • the condenser lens 130 since the optical axis A1 of the projection optical system is included in the effective diameter of the condenser lens 130, the condenser lens 130 has an opening 131 for passing the optical axis A1 of the projection optical system. It is formed.
  • the opening 131 is formed outside the center of the condenser lens 130, and is a notch that penetrates the condenser lens 130 in the Z-axis direction.
  • the light-shielding member 41c shown in FIG. 4 covers the optical axis A1 of the projection optical system and extends from the position of the laser light source 110 to the lower end of the opening 131. Further, the light-shielding member 41c is fitted in the opening 131. As a result, it is possible to prevent the laser light emitted from the laser light source 110 from being applied to the condenser lens 130.
  • the rotating portion 60 is rotated clockwise around the rotating axis R10 when viewed in the negative direction of the Z axis.
  • each part of the optical unit 40 located on the X-axis positive side of the rotation axis R10 shown in FIG. 5A is rotated in the Y-axis positive direction.
  • the optical axis A2 of the light receiving optical system is located behind the optical axis A1 of the projection optical system in the rotation direction of the rotating portion 60.
  • the projected light incident on the mirror 42 is reflected in the direction corresponding to the angle ⁇ with respect to the XY plane of the reflecting surface 42a of the mirror 42.
  • the laser radar 1 includes six optical units 40, and the inclination angle of the installation surface 21 on which the mirror 42 of each optical unit 40 is installed with respect to the plane (XY plane) perpendicular to the rotation axis R10. Are different from each other. Therefore, the inclination angles of the reflecting surfaces 42a of the six mirrors 42 installed on the six installation surfaces 21 are also different from each other. Therefore, the projected light reflected by each mirror 42 is projected to different scanning positions in the direction parallel to the rotation axis R10 (Z-axis direction).
  • the photodetector 150 includes six sensors 151 on the negative side surface of the Z axis.
  • the six sensors 151 are arranged adjacent to each other in a row in the X-axis direction.
  • the arrangement direction of the six sensors 151 corresponds to the Z-axis direction (direction parallel to the rotation axis R10) of the scanning range. That is, the six sensors 151 are incident with the reflected light from each of the divided regions whose scanning range is divided into six in the Z-axis direction. Therefore, the detection signal from each sensor 151 can detect an object existing in each divided region.
  • the resolution of object detection in the scanning range in the Z-axis direction is increased.
  • FIG. 6A is a top view of the laser radar 1 when viewed in the negative direction of the Z axis.
  • the cover 70, the substrate 50, the holding member 41b, and the substrates 41d and 41e are omitted for convenience.
  • the six optical units 40 rotate around the rotation axis R10 as the center of rotation. At this time, the six optical units 40 project projected light in a direction away from the rotation axis R10 (radially when viewed in the Z-axis direction). The six optical units 40 project the projected light onto the scanning region while rotating at a predetermined speed, and receive the reflected light from the scanning region. As a result, the object is detected over the entire circumference (360 °) of the laser radar 1.
  • FIG. 6B is a schematic view showing the projection angle of the projected light of each optical unit 40 when each optical unit 40 is positioned on the positive side of the X axis of the rotation axis R10.
  • the installation angles of the six mirrors 42 are different from each other.
  • the angles of the luminous fluxes L1 to L6 of the projected light emitted from each of the six optical units 40 are also different from each other.
  • the optical axes of the six luminous fluxes L1 to L6 are indicated by alternate long and short dash lines.
  • the angles ⁇ 0 to ⁇ 6 indicating the angle range of the luminous fluxes L1 to L6 are angles with respect to a direction parallel to the rotation axis R10 (Z-axis direction).
  • the angles ⁇ 0 to ⁇ 6 are set so that the adjacent light fluxes are substantially adjacent to each other.
  • the distribution ranges of the luminous fluxes L1, L2, L3, L4, L5, and L6 are angles ⁇ 0 to ⁇ 1, angles ⁇ 1 to ⁇ 2, angles ⁇ 2 to ⁇ 3, angles ⁇ 3 to ⁇ 4, angles ⁇ 4 to ⁇ 5, and angles ⁇ 5 to ⁇ 6, respectively. Is.
  • the projected light from each optical unit 40 is projected to the scanning positions adjacent to each other in the direction parallel to the rotation axis R10 (Z-axis direction).
  • FIG. 7 is a circuit block diagram showing the configuration of the laser radar 1.
  • the laser radar 1 has a control unit 101, a power supply circuit 102, a drive circuit 161 and a processing circuit 162, a non-contact power supply unit 171 and a non-contact communication unit 172, and a control unit 201 as a circuit unit configuration. It includes a power supply circuit 202, a non-contact power feeding unit 211, and a non-contact communication unit 212.
  • the control unit 101, the power supply circuit 102, the drive circuit 161, the processing circuit 162, the non-contact power feeding unit 171 and the non-contact communication unit 172 are arranged in the rotating unit 60.
  • the control unit 201, the power supply circuit 202, the non-contact power feeding unit 211, and the non-contact communication unit 212 are arranged in the fixed unit 10.
  • the power supply circuit 202 is connected to an external power supply, and power is supplied to each part of the fixed portion 10 from the external power supply via the power supply circuit 202.
  • the electric power supplied to the non-contact power feeding unit 211 is supplied to the non-contact power feeding unit 171 in accordance with the rotation of the rotating unit 60.
  • the power supply circuit 102 is connected to the non-contact power supply unit 171, and power is supplied to each part of the rotating unit 60 from the non-contact power supply unit 171 via the power supply circuit 102.
  • the control units 101 and 201 include an arithmetic processing circuit and a memory, and are composed of, for example, an FPGA or an MPU.
  • the control unit 101 controls each part of the rotating unit 60 according to a predetermined program stored in the memory, and the control unit 201 controls each part of the fixing unit 10 according to a predetermined program stored in the memory.
  • the control unit 101 and the control unit 201 are communicably connected via the non-contact communication units 172 and 212.
  • the control unit 201 is connected so as to be able to communicate with the external system.
  • External systems include, for example, intrusion detection systems, cars, robots and the like.
  • the control unit 201 drives each unit of the fixed unit 10 in response to control from the external system, and transmits a drive instruction to the control unit 101 via the non-contact communication units 212 and 172.
  • the control unit 101 drives each unit of the rotating unit 60 in response to a drive instruction from the control unit 201, and transmits a detection signal to the control unit 201 via the non-contact communication units 172 and 212.
  • the drive circuit 161 and the processing circuit 162 are provided in each of the six optical units 40.
  • the drive circuit 161 drives the laser light source 110 in response to control from the control unit 101.
  • the processing circuit 162 performs processing such as amplification and noise removal on the detection signal input from the sensor 151 of the photodetector 150, and outputs the detection signal to the control unit 101.
  • the control unit 201 controls the motor 13 to rotate the rotating unit 60 at a predetermined rotation speed, and controls the six drive circuits 161 to emit laser light at predetermined timings and at predetermined rotation angles. (Projected light) is emitted from the laser light source 110. As a result, the projected light is projected from the rotating unit 60 to the scanning region, and the reflected light is received by the sensor 151 of the photodetector 150 of the rotating unit 60.
  • the control unit 201 determines whether or not an object exists in the scanning region based on the detection signal output from the sensor 151. Further, the control unit 201 measures the distance to the object existing in the scanning region based on the time difference (time of flight) between the timing of projecting the projected light and the timing of receiving the reflected light from the scanning region. ..
  • each optical unit 40 scans the circumferential range around the rotation axis R10. To.
  • the projection directions of the projected light in each optical unit 40 are different from each other in the direction parallel to the rotation axis R10 (Z-axis direction)
  • the light is scanned by each projected light.
  • the ranges are shifted to each other in the direction parallel to the rotation axis R10. Therefore, the entire range scanned by these projected lights is a wide range in which the scanning ranges of the laser beams that are shifted to each other in the direction parallel to the rotation axis R10 are integrated.
  • the scanning range in the direction parallel to the rotation axis R10 can be effectively expanded. Further, when the scanning range in the direction parallel to the rotation axis R10 is widened in this way, the object can be detected in the wide scanning range parallel to the rotation axis R10.
  • the optical unit 40 includes a laser light source 110 and a mirror 42 that bends the optical axis of the laser light source 110. Further, as shown in FIG. 6B, the bending angle of the optical axis by the mirror 42 is different for each optical unit 40. As a result, the projection direction of the projected light projected from each optical unit 40 can be adjusted only by adjusting the installation angle of the mirror 42.
  • the mirror 42 as the optical element for bending the optical axis of the laser light source 110 in this way, the attenuation of the projected light emitted from the structure 41 can be suppressed, and the power of the projected light projected on the scanning range can be suppressed. Can be secured.
  • the base member 20 is formed with six installation surfaces 21 for installing the mirror 42 in the installation area where the six optical units 40 are installed. Further, the inclination angles of the six installation surfaces 21 with respect to the plane (XY plane) perpendicular to the optical axis of the laser light source 110 are different for each installation area of the optical unit 40. As a result, the mirror 42 can be installed on the base member 20 at a desired inclination angle simply by installing the mirror 42 on each installation surface 21. Therefore, the projection direction of the projected light projected from each optical unit 40 can be easily adjusted.
  • the laser light source 110 is a surface emitting type laser light source having a long light emitting surface in one direction.
  • each optical unit 40 includes a collimator lens 120 to which a laser beam (projected light) emitted from a laser light source 110 is incident.
  • the laser light source 110 is installed so that the longitudinal direction of the light emitting surface of the laser light source 110 is parallel to the rotation axis R10 (Z-axis direction) when the projected light is projected. As a result, the projected light projected from the optical unit 40 can be smoothly spread in the direction parallel to the rotation axis R10 (Z-axis direction).
  • the photodetector 150 includes six sensors 151 divided in a direction (X-axis direction) corresponding to a direction parallel to the rotation axis R10 (Z-axis direction). As a result, each sensor 151 can receive the reflected light from each position of the scanning region in the direction parallel to the rotation axis R10. Therefore, the state of each position in the scanning region can be detected by the output signal from each sensor 151.
  • the optical axis A1 of the projection optical system (laser light source 110 and collimator lens 120) for projecting the projected light and the reflected light for receiving the reflected light.
  • the optical axis A2 of the light receiving optical system (condensing lens 130) is parallel to each other.
  • the condenser lens 130 is provided with an opening 131 for passing the optical axis A1 of the projection optical system.
  • the optical axis A1 and the optical axis A2 can be brought close to each other, so that the optical unit 40 can be compactly configured while ensuring a wide effective diameter of the condenser lens 130.
  • the optical axis A1 and the optical axis A2 can be brought close to each other, the reflected light of the projected light projected from the optical unit 40 can be easily received by the photodetector 150.
  • the light-shielding member 41c covers the periphery of the optical axis A1 of the projection optical system and extends from the position of the laser light source 110 to the lower end of the opening 131. Further, the light-shielding member 41c is fitted in the opening 131.
  • the optical axis A1 of the projection optical system and the optical axis A2 of the light receiving optical system are aligned in the circumferential direction of the rotation axis R10, and the optical axis A2 of the light receiving optical system projects. It is located behind the optical axis A1 of the optical system in the rotation direction of the rotating portion 60.
  • the optical axis A2 of the light receiving optical system approaches the position of the optical axis A1 of the projection optical system at the timing when the laser light is projected in the flying time from the projection of the laser beam to the reception of the laser light. Therefore, the reflected light can be better received by the light receiving optical system.
  • the six optical units 40 are evenly divided at each angle position.
  • the six optical units 40 are evenly divided at each angle position.
  • the six optical units 40 it is possible to control the six optical units 40 to emit light at the same time.
  • control is performed so that the six optical units 40 simultaneously emit light every time for the rotating unit 60 to rotate by an angle (for example, 1 °) obtained by dividing the entire circumference evenly. Is done.
  • the projected light can be projected from the subsequent optical unit 40.
  • the projection positions of the projected light in each optical unit 40 can be aligned in the circumferential direction.
  • the detection position of the object by each projected light can be aligned in the circumferential direction.
  • the distance image can be smoothly generated.
  • each optical unit 40 emits light at different timings.
  • a configuration is used for aligning the projection positions of the projected light in each optical unit 40 in the circumferential direction while causing each optical unit 40 to emit light at different timings.
  • the six optical units 40 are sequentially emitted at equal intervals while rotating the rotating portion 60 at a constant angular velocity. Then, the deviation of the light emitting position (light emitting angle with respect to the reference angular position) in the circumferential direction of the six optical units 40 will be described below with reference to FIGS. 8A to 10A.
  • FIG. 8A is a schematic diagram for explaining the light emission angle interval and the light emission time interval.
  • the six optical units 40 are referred to as optical units U1, U2, U3, U4, U5, and U6 for convenience.
  • the optical units U1 to U6 are arranged at intervals of 60 ° along the circumferential direction of the rotation axis R10.
  • the position on the positive side of the X axis of the rotation axis R10 is 0 ° (reference angle position), clockwise from 0 ° is a positive angle, and counterclockwise from 0 ° is negative. Let it be an angle.
  • the six optical units U1 to U6 rotate clockwise at a constant angular velocity ⁇ (deg / sec).
  • the optical unit U1 at the position of 0 ° at the time T1 rotates to the position of the angle d (deg) at the time T2, and during this period, the six optical units U1 to U6 emit light in order at equal time intervals.
  • the angle at which the six optical units U1 to U6 rotate while being sequentially emitted is referred to as an emission angle interval d.
  • the time required for the optical units U1 to U6 to rotate by the light emission angle interval d is referred to as a light emission time interval Ti.
  • the emission time interval Ti can be represented by d / ⁇ .
  • FIG. 8B is a schematic diagram showing the light emission timings of the six optical units U1 to U6 according to the passage of time.
  • the horizontal axis indicates time, and the circles on the number line indicate the light emission timing.
  • the optical units U2 to U6 emit light in order until the light emission time interval Ti elapses and reaches time T2.
  • the light emission interval of each optical unit is referred to as an adjacent light emission time interval A.
  • the adjacent emission time interval A is obtained by dividing the emission time interval Ti by the number of optical units (6 in this example), and can be represented by Ti / 6.
  • FIGS. 9 (a) to 9 (f) are diagrams showing the positions (angles) of the six optical units U1 to U6 emitting light.
  • the horizontal axis indicates the angle (deg)
  • the solid line circle on the number line indicates the position (angle) of the optical unit at the time of light emission
  • the broken line circle on the number line indicates the position (angle). It shows the position (angle) of the optical unit that does not emit light.
  • the optical units U2 to U6 are at ⁇ 60 °, ⁇ 120 °, ⁇ 180 °, ⁇ 240 °, and ⁇ 300 °, respectively. In position.
  • the time from when the optical unit U1 emits light to when the optical unit U2 emits light is the adjacent light emission time interval A, as shown in FIG. 8 (b). Since the optical units U1 to U6 continue to rotate at the angular velocity ⁇ , the optical units U1 to U6 rotate by the angle ⁇ until the adjacent light emission time interval A elapses.
  • the angle ⁇ can be represented by A ⁇ or d / 6. Therefore, as shown in FIG. 9B, the optical unit U2 emits light at a position advanced by an angle ⁇ from the position of FIG. 9A. At this time, the optical units U1 and U3 to U6 are also at positions advanced by an angle ⁇ from the position shown in FIG. 9A.
  • the optical units U1 to U6 rotate by an angle ⁇ between the time when the optical unit U2 emits light and the time when the adjacent light emission time interval A elapses. Therefore, as shown in FIG. 9C, the optical unit U3 emits light at a position advanced by an angle 2 ⁇ from the position shown in FIG. 9A (a position advanced by an angle ⁇ from the position shown in FIG. 9B). ..
  • the optical unit U4 emits light at a position advanced by an angle of 3 ⁇ from the state of FIG. 9A (a position advanced by an angle ⁇ from the position of FIG. 9C).
  • the optical unit U5 emits light at a position advanced by an angle 4 ⁇ from the state of FIG. 9A (a position advanced by an angle ⁇ from the position of FIG. 9D).
  • the optical unit U6 emits light at a position advanced by an angle of 5 ⁇ from the state of FIG. 9A (a position advanced by an angle ⁇ from the position of FIG. 9E).
  • FIG. 10 is a diagram showing a position (angle) at which each optical unit emits light during the period until the six optical units U1 to U6 rotate 360 °.
  • the horizontal axis indicates an angle (deg)
  • the solid circle on the number line indicates the position (angle) of the optical unit at the time of light emission.
  • the light emission of the six optical units U1 to U6 (light emission of one frame) performed while rotating by the light emission angle interval d (while the light emission time interval Ti elapses) is repeated, and the six optical units U1 to U6 are 360 °.
  • the light emitting positions (light emitting angles) of the six optical units U1 to U6 are displaced in the horizontal direction (circumferential direction) as shown in FIG.
  • the six optical units U1 to U6 rotate around the rotation axis R10 at a constant angular velocity, and the six optical units U1 to U6
  • the emission angles light receiving angles
  • the generated image will be distorted when the distance image is generated as described above based on the detection signals output from the six optical units U1 to U6. Therefore, further processing for correcting this distortion is required.
  • the arrangement of the six optical units U1 to U6 is changed from equal intervals in order to reduce the deviation of the emission angles of the six optical units U1 to U6.
  • FIG. 11 is a schematic view showing the arrangement of the optical units U1 to U6 according to this modified example.
  • the optical unit U1 is arranged at a position of 0 °.
  • the optical unit U2 is arranged in the negative rotation direction with a distance of 60 ° + ⁇ from the optical unit U1.
  • the optical unit U3 is arranged in the negative rotation direction with a distance of 60 ° + ⁇ from the optical unit U2.
  • the optical unit U4 is arranged in the negative rotation direction with a distance of 60 ° + ⁇ from the optical unit U3.
  • the optical unit U5 is arranged in the negative rotation direction with a distance of 60 ° + ⁇ from the optical unit U4.
  • the optical unit U6 is arranged in the negative rotation direction with a distance of 60 ° + ⁇ from the optical unit U5. As a result, the distance between the optical unit U1 and the optical unit U6 becomes 60 ° -5 ⁇ .
  • 12 (a) to 12 (f) are diagrams showing the positions (angles) at which the six optical units U1 to U6 according to this modified example emit light.
  • the optical units U2 to U6 are ⁇ 60 ° ⁇ , ⁇ 120 ° -2 ⁇ , ⁇ 180 ° -3 ⁇ , and ⁇ 240, respectively. It is located at ° -4 ⁇ and ⁇ 300 ° -5 ⁇ .
  • the optical units U1 to U6 rotate by an angle ⁇ between the time when the optical unit U1 emits light and the time when the adjacent light emission time interval A elapses. Therefore, as shown in FIG. 12B, the optical unit U2 emits light at a position of ⁇ 60 °. At this time, the optical units U1 and U3 to U6 are located at positions advanced by an angle ⁇ from the position shown in FIG. 12A, and the optical units U3 are positioned at ⁇ 120 ° ⁇ .
  • the optical unit U3 emits light at a position of ⁇ 120 °.
  • the optical unit U4 emits light at a position of ⁇ 180 °.
  • the optical unit U5 emits light at a position of ⁇ 240 °.
  • the optical unit U6 emits light at a position of ⁇ 300 °.
  • the optical units U1 to U6 are rotated by the light emission angle interval d from the state of FIG. 12 (a), and the light emission time interval Ti elapses. become. Then, in the same manner as in FIGS. 12A to 12F, the light emission of the optical units U1 to U6 is repeated.
  • FIG. 13 is a diagram showing a position (angle) at which each optical unit emits light during the period until the six optical units U1 to U6 rotate 360 ° according to this modified example.
  • the light emission of the six optical units U1 to U6 (light emission of one frame) performed while rotating by the light emission angle interval d (while the light emission time interval Ti elapses) is repeated, and the six optical units U1 to U6 are 360 °.
  • the light emitting positions (light emitting angles) of the six optical units U1 to U6 are aligned in the horizontal direction (circumferential direction) as shown in FIG.
  • the six optical units U1 to U6 project the laser light at different times. Then, the installation position of each optical unit with respect to the base member 20 is set to a position displaced by a predetermined angle from a position uniform in the circumferential direction so that each optical unit projects a laser beam at a uniform angle position in the circumferential direction. Has been done.
  • the six optical units U1 to U6 rotate around the rotation axis R10 at a constant angular velocity ⁇ , and the six optical units U1 to U6 emit light at equal time intervals (adjacent emission time intervals A).
  • the optical units U1 to U6 are arranged as shown in FIG. As a result, the emission angles (light receiving angles) of the six optical units U1 to U6 can be made uniform. Therefore, even when the distance image is generated as described above based on the detection signals output from the six optical units U1 to U6, the distortion of the generated image can be suppressed.
  • the configuration of the laser radar 1 can be changed in various ways in addition to the configuration shown in the above embodiment.
  • the photodetector 150 is divided into six sensors 151 in a direction (radial direction of a circle centered on the rotation axis R10) corresponding to a direction parallel to the rotation axis R10 (Z-axis direction).
  • the number of sensors 151 arranged in the photodetector 150 is not limited to this.
  • the photodetector 150 may be provided with 2 to 5 sensors, or may be provided with 7 or more sensors. As the number of sensors arranged in the photodetector 150 is increased, the resolution of object detection in the direction parallel to the rotation axis R10 can be increased.
  • the photodetector 150 does not necessarily have to include a plurality of sensors, and may include one sensor 152 which is long in the radial direction of the rotation axis R10.
  • FIG. 14 (a) is a schematic diagram showing the six luminous fluxes L1 to L6 according to this modified example
  • FIG. 14 (b) is a schematic diagram showing the configuration of the photodetector 150 according to this modified example.
  • FIG. 14B shows a photodetector 150 when the optical unit 40 is positioned on the positive side of the X-axis of the rotation axis R10.
  • a long scanning range is provided in the direction parallel to the rotation axis R10 (Z-axis direction) corresponding to the luminous fluxes L1 to L6, respectively, as in the above embodiment. It is scanned. Since the reflected light from the scanning range corresponding to each luminous flux is long in the Z-axis direction as in the above embodiment, it is long in the X-axis direction on the light receiving surface of the photodetector 150.
  • the length of the sensor 152 shown in FIG. 14B in the X-axis direction is set in the same manner as the total length of the plurality of sensors 151 of the above embodiment in the X-axis direction.
  • the reflected light from each scanning range is received by one sensor 152. Therefore, although the resolution of the photodetector 150 corresponding to the Z-axis direction of each scanning range is lower than that of the above embodiment, the configuration of the photodetector 150 can be simplified. Further, also in this modification, the width of the entire scanning range in the Z-axis direction can be widened as in the above embodiment.
  • the laser light source 110 is a surface emitting type laser light source having a long light emitting surface in one direction, but the present invention is not limited to this, and an end surface emitting type laser light source may be used.
  • FIG. 14 (c) is a diagram showing the luminous fluxes L1 to L6 according to this modified example
  • FIG. 14 (d) is a schematic diagram showing the configuration of the photodetector 150 according to this modified example.
  • the length of the luminous flux L1 to L6 in the direction parallel to the rotation axis R10 (Z-axis direction) is shorter than that of the above embodiment.
  • the luminous fluxes L1 to L6 are predetermined including the angles ( ⁇ 0 + ⁇ 1) / 2, ( ⁇ 1 + ⁇ 2) / 2, ( ⁇ 2 + ⁇ 3) / 2, ( ⁇ 3 + ⁇ 4) / 2, ( ⁇ 4 + ⁇ 5) / 2, and ( ⁇ 5 + ⁇ 6) / 2, respectively. It is distributed only in the angular range of.
  • the reflected light from each scanning range is shorter in the Z-axis direction than in the above embodiment, and thus is shorter in the X-axis direction on the light receiving surface of the photodetector 150. Therefore, as shown in FIG. 14 (d), the photodetector 150 of this modification includes one sensor 153 that is substantially circular, and the reflected light from each scanning range is received by the sensor 153.
  • the width of the entire scanning range in the Z-axis direction can be widened as in the above embodiment.
  • the number of sensors 153 does not necessarily have to be one, and a plurality of sensors divided in the X-axis direction may be arranged in the photodetector 150. As a result, the resolution of object detection can be improved.
  • the projected light is directed to the scanning region by the mirror 42, but a spectroscopic element that disperses the projected light in the direction parallel to the rotation axis R10 may be further arranged.
  • a diffraction grating is used as the spectroscopic element.
  • FIG. 15A is a schematic view showing the configuration of the projection optical system of the optical unit 40 according to this modified example. In FIG. 15A, only the optical axis of the projected light is shown for convenience.
  • the optical unit 40 of this modified example includes a diffraction grating 180 between the collimator lens 120 and the mirror 42 as compared with the above embodiment.
  • the diffraction grating 180 is installed inside a hole formed in the light-shielding member 41c.
  • the diffraction grating 180 is, for example, a step-type diffraction grating, and the diffraction efficiency is adjusted so that the amounts of the 0th-order diffraction light, the + 1st-order diffraction light, and the -1st-order diffraction light are substantially the same.
  • the projected light incident on the diffraction grating 180 from the collimator lens 120 is the 0th-order diffracted light in the radial direction (X-axis direction in FIG. 15A) centered on the rotation axis R10 due to the diffraction action of the diffraction grating 180. It is split into folding light and -1st order diffracted light.
  • the projection range of the projected light is expanded in the direction parallel to the rotation axis R10 as compared with the above embodiment. Therefore, in order to obtain a scanning range similar to that of the above embodiment, it is not always necessary to arrange the six optical units 40, and by adjusting the diffraction angle of the diffraction grating 180, for example, two optical units 40 Only may be arranged on the base member 20.
  • FIG. 15 (b) is a schematic view showing a total of six diffracted light projection states that occur when two optical units 40 are arranged in this modified example, and FIG. 15 (c) shows this modified example. It is a schematic diagram which shows the structure of the said light detector 150.
  • the tilt angle of the mirror 42 of the optical unit U1 and the tilt angle of the mirror 42 of the optical unit U2 are different from each other. Therefore, as shown in FIG. 15B, the luminous flux of the +1st-order diffracted light of the optical unit U1, the luminous flux of the 0th-order diffracted light, and the luminous flux of the -1st-order diffracted light, and the luminous flux of the + 1st-order diffracted light of the optical unit U2, the 0th-order diffracted light And the luminous flux of the -1st order diffracted light can be arranged in the Z-axis direction. Therefore, the distribution of the luminous flux of this modified example is almost the same as that of the above embodiment.
  • the photodetector 150 of this modification includes 18 sensors 154 in order to achieve the same resolution as in the above embodiment.
  • the laser light projected from the optical units U1 and U2 is directed in the direction parallel to the rotation axis R10 (Z axis) as described above.
  • Direction which allows the scanning range of one optical unit to be extended in the direction of the rotation axis R10. Therefore, the number of optical units arranged on the base member 20 can be reduced as compared with the above embodiment, and the apparatus can be simplified and the cost can be reduced.
  • the resolution of the photodetector 150 corresponding to the Z-axis direction of each scanning range is the same as that of the above embodiment. Further, the length of the entire scanning range in the Z-axis direction is increased as in the above embodiment.
  • the amount of projected light based on each diffracted light is the projected light based on one optical unit 40 of the above embodiment. It becomes smaller than the amount of light of. Therefore, in order to lengthen the detection limit distance, it is necessary to increase the emission power of the laser light source 110 to increase the amount of projected light based on each diffracted light.
  • the number of sensors provided in the photodetector 150 is not limited to 18.
  • the reflected light based on one diffracted light may be received by one sensor.
  • FIG. 16 (a) is a schematic diagram showing the six diffracted lights according to this modified example
  • FIG. 16 (b) is a schematic diagram showing the configuration of the photodetector 150 according to this modified example.
  • the diffraction grating 180 is installed in the same manner as in the modification shown in FIG. 15A.
  • FIG. 16A three diffracted lights based on the optical unit U1 and three diffracted lights based on the optical unit U2 are projected onto the projection region as in FIG. 15B.
  • the photodetector 150 of this modified example includes three sensors 155. Reflected light based on one diffracted light is incident on each of the three sensors 155.
  • the laser light source 110 is a surface emitting type laser light source having a long emitting surface in one direction, but the present invention is not limited to this, and the end surface emitting type laser is not limited to this. It may be a light source.
  • FIG. 16 (c) is a diagram showing light fluxes L1 to L6 according to this modified example
  • FIG. 16 (d) is a schematic diagram showing a configuration of a photodetector 150 according to this modified example.
  • the photodetector 150 of this modification includes three sensors 156 that are substantially circular. Reflected light based on one diffracted light is incident on each of the three sensors 156.
  • the diffraction grating 180 was a step type diffraction grating, but it may be a blaze type diffraction grating. Further, the arrangement position of the diffraction grating 180 may be another position as long as the projected light can be divided in the direction of the rotation axis R10 by diffraction.
  • the reflecting surface 42a of the mirror 42 may be replaced with a reflective diffraction grating. The number of lights dispersed by the spectroscopic element does not have to be three.
  • the six optical units 40 are installed along the circumferential direction of the rotation axis R10, but the number of the optical units 40 to be installed is not limited to six and may be two to five. , 7 or more may be used.
  • FIG. 17A is a schematic diagram showing the configuration of the laser radar 1 in which 12 optical units U1 to U12 are installed.
  • the twelve optical units U1 to U12 are arranged at equal intervals (30 ° intervals) in the circumferential direction of the rotation axis R10.
  • the tilt angle of the installation surface 21 of the base member 20 on which the 12 mirrors 42 are installed is set so that the tilt angles of the mirrors 42 included in the 12 optical units U1 to U12 are different from each other.
  • the plurality of optical units 40 are arranged at equal intervals (60 ° intervals) along the circumferential direction of the rotation axis R10, but they do not necessarily have to be installed at equal intervals.
  • FIG. 17B is a schematic view showing the configuration of the laser radar 1 in which eight optical units U1 to U8 are installed.
  • the distance between the optical units U1 and U2, the distance between the optical units U3 and U4, the distance between the optical units U5 and U6, and the distance between the optical units U7 and U8 are 30 °.
  • the distance between the optical units U2 and U3, the distance between the optical units U4 and U5, the distance between the optical units U6 and U7, and the distance between the optical units U8 and U1 are 60 °.
  • the plurality of optical units 40 are installed point-symmetrically with respect to the rotation axis R10. As a result, the rotating portion 60 can be rotated in a well-balanced manner in the radial direction of the rotating shaft R10.
  • the motor 13 is used as the driving unit for rotating the rotating portion 60.
  • coils and magnets are arranged in the fixed portion 10 and the rotating portion 60, respectively, and the rotating portion is provided. 60 may be rotated with respect to the fixed portion 10.
  • a gear is provided on the outer peripheral surface of the rotating portion 60 over the entire circumference, and a gear installed on the drive shaft of the motor installed in the fixed portion 10 is meshed with the gear to fix the rotating portion 60. May be rotated with respect to.
  • the projection directions of the projected light projected from each optical unit 40 are set to be different from each other.
  • the method of making the projection directions of the projected light projected from the unit 40 different from each other is not limited to this.
  • the mirror 42 may be omitted from each of the six optical units 40, and the six structures 41 may be installed radially so as to have different inclination angles with respect to the plane perpendicular to the rotation axis R10.
  • the mirror 42 may be omitted, and instead, the installation surface 21 may be mirror-finished so that the reflectance of the installation surface 21 is high.
  • the optical unit 40 includes one mirror 42, but may include two or more mirrors. In this case, the angle of the projected light reflected by the plurality of mirrors and projected onto the scanning region with respect to the Z-axis direction may be adjusted by the angle of any one of the plurality of mirrors.
  • the mirror 42 is used to bend the optical axis of the projected light emitted from the structure 41, but instead of the mirror 42, the projected light is transmitted by a transmission type optical element such as a diffraction grating.
  • the optical axis may be bent.
  • the structure according to the present invention can be applied to an apparatus that does not have a distance measuring function and has only a function of detecting whether or not an object exists in the projection direction by a signal from the photodetector 150. Also in this case, the scanning range in the direction parallel to the rotation axis R10 (Z-axis direction) can be widened.
  • the configuration of the optical system of the optical unit 40 is not limited to the configuration shown in the above embodiment.
  • the projection optical system and the light receiving optical system may be separated so that the opening 131 is omitted from the condenser lens 130 and the optical axis A1 of the projection optical system does not hang on the condenser lens 130.
  • the number of laser light sources 110 arranged in the optical unit 40 is not limited to one, and may be plural.
  • the projected light may be generated by integrating the laser light emitted from each laser light source 110 by a polarizing beam splitter or the like. This configuration is suitable, for example, for use in the modified example of FIG. 15 (a).
  • the projection direction of the projected light projected from the plurality of optical units 40 is set in the direction parallel to the rotation axis R10 (Z-axis direction). Although they are different from each other, for other purposes, the projection direction of the projected light projected from the plurality of optical units 40 may be set to be the same in the direction parallel to the rotation axis R10 (Z-axis direction).
  • FIG. 18 is a cross-sectional view showing the configuration of the laser radar 1 according to this modified example.
  • the inclination angle of the installation surface 21 on the positive side of the X-axis of the rotation axis R10 with respect to the horizontal plane (XY plane) is equal to the inclination angle of the installation surface 21 on the negative side of the X-axis of the rotation axis R10 with respect to the horizontal plane. Therefore, the inclination angles of the two mirrors 42 installed on the installation surfaces 21 are also the same.
  • the tilt angle of the other installation surface 21 is set to the same angle as the two installation surfaces 21, and the tilt angle of the other mirror 42 is also set to the same angle as the two mirrors 42.
  • the projection directions of the projected light projected from the six optical units 40 are the same in the direction parallel to the rotation axis R10.
  • the detection frequency with respect to the range around the rotation axis R10 can be increased, thereby increasing the rotation speed.
  • a high frame rate can be achieved.
  • Laser radar 13 Motor (drive unit) 20 Base member 21 Installation surface 40 Optical unit 41c Light-shielding member 42 Mirror (optical element) 110 Laser light source 120 Collimator lens 130 Condensing lens 131 Opening 150 Photodetector 151-156 Sensor 180 Diffraction grating (spectroscopic element) R10 Rotating axis U1 to U12 Optical unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

レーザレーダ(1)は、ベース部材(20)と、ベース部材(20)を回転軸(R10)について回転させるモータ(13)と、回転軸(R10)を中心とする周方向に所定の間隔でベース部材(20)に配置され、回転軸(R10)から離れる方向にレーザ光をそれぞれ投射する複数の光学ユニット(40)と、を備える。ここで、複数の光学ユニット(40)は、レーザ光の投射方向が回転軸(R10)に平行な方向に互いに異なっている。

Description

レーザレーダ
 本発明は、レーザ光を用いて物体を検出するレーザレーダに関する。
 近年、建物への侵入を検知するセキュリティ用途などに、レーザレーダが用いられている。一般に、レーザレーダは、目標領域にレーザ光を走査させ、各走査位置における反射光に基づいて、各走査位置における物体の有無を検出する。また、レーザレーダは、各走査位置におけるレーザ光の照射タイミングから反射光の受光タイミングまでの所要時間に基づいて、各走査位置における物体までの距離を検出する。
 以下の特許文献1には、静止した台座と、台座に対して回転軸を中心に回転する走査部とを備える検出装置が記載されている。走査部には、回転軸の周方向に複数の検出ユニットが収納されており、複数の検出ユニットは、走査部とともに回転し、たとえばレーザ光を用いて物体を検出することが記載されている。
特許第6069281号公報
 上記のような検出装置では、検出ユニットが回転軸を中心に回転することにより、回転軸を中心とする周方向の範囲が走査される。しかしながら、単一のレンズによってレーザ光を広げることには限界があるため、回転軸に平行な方向に走査範囲を広げることが困難である。
 かかる課題に鑑み、本発明は、回転軸に平行な方向における走査範囲を広げることが可能なレーザレーダを提供することを目的とする。
 本発明の第1の態様に係るレーザレーダは、ベース部材と、前記ベース部材を回転軸について回転させる駆動部と、前記回転軸を中心とする周方向に所定の間隔で前記ベース部材に配置され、前記回転軸から離れる方向にレーザ光をそれぞれ投射する複数の光学ユニットと、を備える。前記複数の光学ユニットは、前記レーザ光の投射方向が前記回転軸に平行な方向に互いに異なっている。
 本態様に係るレーザレーダによれば、ベース部材が回転軸について回転することにより、各光学ユニットから出射されるレーザ光によって、回転軸を中心とする周方向の範囲が走査される。このとき、各光学ユニットにおけるレーザ光の投射方向が回転軸に平行な方向に互いに異なっているため、各レーザ光によって走査される範囲は、回転軸に平行な方向に互いにシフトする。このため、これらレーザ光によって走査される全体の範囲は、回転軸に平行な方向に互いにシフトする各レーザ光の走査範囲を統合した広い範囲となる。したがって、本態様に係るレーザレーダによれば、回転軸に平行な方向における走査範囲を効果的に広げることができる。
 本発明の第2の態様に係るレーザレーダは、ベース部材と、前記ベース部材を回転軸について回転させる駆動部と、前記回転軸を中心とする周方向に所定の間隔で前記ベース部材に配置され、前記回転軸から離れる方向にレーザ光をそれぞれ投射する複数の光学ユニットと、を備える。前記複数の光学ユニットは、前記レーザ光の投射方向が前記回転軸に平行な方向に互いに同じである。
 本態様に係るレーザレーダによれば、各光学ユニットにおけるレーザ光の投射方向が回転軸に平行な方向に同じになる。したがって、回転軸の周囲の範囲に対する検出頻度を高めることができるため、回転速度を高めることなく高フレームレートを実現できる。
 以上のとおり、本発明によれば、回転軸に平行な方向における走査範囲を広げることが可能なレーザレーダを提供できる。
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。
図1は、実施形態に係る、レーザレーダの組み立てを説明するための斜視図である。 図2は、実施形態に係る、カバーを除く部分の組み立てが完了した状態のレーザレーダの構成を示す斜視図である。 図3は、実施形態に係る、カバーが装着された状態のレーザレーダの構成を示す斜視図である。 図4は、実施形態に係る、レーザレーダの構成を示す断面図である。 図5(a)は、実施形態に係る、光学ユニットの光学系の構成を示す斜視図である。図5(b)は、実施形態に係る、光学ユニットの光学系の構成を示す側面図である。図5(c)は、実施形態に係る、光検出器のセンサの構成を示す模式図である。 図6(a)は、実施形態に係る、レーザレーダをZ軸負方向に見た場合の上面図である。図6(b)は、実施形態に係る、各光学ユニットが回転軸のX軸正側に位置付けられたときの、各光学ユニットの投射光の投射角度を示す模式図である。 図7は、実施形態に係る、レーザレーダの構成を示す回路ブロック図である。 図8(a)は、比較例に係る、発光角度間隔および発光時間間隔を説明するための模式図である。図8(b)は、比較例に係る、時間の経過に応じた6つの光学ユニットの発光タイミングを示す模式図である。 図9(a)~(f)は、比較例に係る、6つの光学ユニットが発光した位置(角度)を示す図である。 図10は、比較例に係る、6つの光学ユニットが360°回転するまでの間に、各光学ユニットが発光した位置(角度)を示す図である。 図11は、変更例に係る、レーザレーダをZ軸負方向に見た場合の光学ユニットの配置を示す模式図である。 図12(a)~(f)は、変更例に係る、6つの光学ユニットが発光した位置(角度)を示す図である。 図13は、変更例に係る、6つの光学ユニットが360°回転するまでの間に、各光学ユニットが発光した位置(角度)を示す図である。 図14(a)は、その他の変更例に係る、6つの光束を示す模式図である。図14(b)は、その他の変更例に係る、光検出器の構成を示す模式図である。 図15(a)は、その他の変更例に係る、光学ユニットの投射光学系の構成を示す模式図である。図15(b)は、その他の変更例に係る、6つの回折光を示す模式図である。図15(c)は、その他の変更例に係る、光検出器の構成を示す模式図である。 図16(a)、(c)は、その他の変更例に係る、6つの回折光を示す模式図である。図16(b)、(d)は、その他の変更例に係る、光検出器の構成を示す模式図である。 図17(a)は、その他の変更例に係る、12個の光学ユニットが設置されたレーザレーダの構成を示す模式図である。図17(b)は、その他の変更例に係る、8個の光学ユニットが等間隔に配置されない場合のレーザレーダの構成を示す模式図である。 図18は、その他の変更例に係る、レーザレーダの構成を示す断面図である。
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。
 以下、本発明の実施形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。Z軸正方向は、レーザレーダ1の高さ方向である。
 図1は、レーザレーダ1の組み立てを説明するための斜視図である。図2は、カバー70を除く部分の組み立てが完了した状態のレーザレーダ1の構成を示す斜視図である。図3は、カバー70が装着された状態のレーザレーダ1の構成を示す斜視図である。
 図1に示すように、レーザレーダ1は、円柱形状の固定部10と、固定部10に回転可能に配置されたベース部材20と、ベース部材20の上面に設置された円盤部材30と、ベース部材20および円盤部材30に設置された光学ユニット40と、を備える。
 ベース部材20は、固定部10に設けられたモータ13(図4参照)の駆動軸13aに設置されている。ベース部材20は、駆動軸13aの駆動により、Z軸方向に平行な回転軸R10を中心として回転する。ベース部材20は、円柱形状の外形を有している。ベース部材20には、回転軸R10の周方向に沿って6つの設置面21が等間隔(60°間隔)で形成されている。設置面21は、回転軸R10に垂直な平面(X-Y平面)に対して傾いている。設置面21の側方(回転軸R10から離れる方向)および設置面21の上方(Z軸正方向)は、開放されている。6つの設置面21の傾き角は、互いに異なっている。6つの設置面21の傾き角については、追って図6(b)を参照して説明する。
 円盤部材30は、円盤状の外形を有する板部材である。円盤部材30には、回転軸R10の周方向に沿って円形の6つの孔31が等間隔(60°間隔)で形成されている。孔31は、回転軸R10の方向(Z軸方向)に円盤部材30を貫通している。6つの孔31が、それぞれベース部材20の6つの設置面21の上方に位置付けられるよう、円盤部材30がベース部材20の上面に設置される。
 光学ユニット40は、構造体41とミラー42を備える。構造体41は、2つの保持部材41a、41bと、遮光部材41cと、2つの基板41d、41eと、を備える。保持部材41a、41bと遮光部材41cは、構造体41が備える光学系の各部を保持している。保持部材41bは、保持部材41aの上部に設置されている。遮光部材41cは、保持部材41aに保持されている。基板41d、41eは、それぞれ、保持部材41a、41bの上面に設置されている。構造体41は、下方向(Z軸負方向)にレーザ光を出射するとともに、下側からレーザ光を受光する。構造体41が備える光学系については、追って図4および図5(a)~(c)を参照して説明する。
 固定部10、ベース部材20および円盤部材30からなる構造体に対して、図1に示すように、孔31の上側から、孔31の周囲の面31aに光学ユニット40の構造体41が設置される。これにより、6つの光学ユニット40は、回転軸R10の周方向に沿って等間隔(60°間隔)で並ぶことになる。また、設置面21に光学ユニット40のミラー42が設置される。ミラー42は、設置面21に設置される面と、設置面21とは反対側の反射面42aとが平行な板部材である。このように、構造体41を設置するための面31aと、当該面31aの下方に位置しミラー42を設置するための設置面21とによって、1つの光学ユニット40を設置するための設置領域が構成される。本実施形態では、6つの設置領域が設けられており、各設置領域に対して光学ユニット40が設置される。
 続いて、6つの光学ユニット40の上面に、図2に示すように、基板50が設置される。こうして、ベース部材20、円盤部材30、6つの光学ユニット40、および基板50からなる回転部60の組み立てが完了する。回転部60は、固定部10のモータ13の駆動軸13a(図4参照)が駆動されることにより、回転軸R10を回転の中心として回転する。
 その後、図2に示す状態から、図3に示すように、固定部10の外周部分に対して、回転部60の上方および側方を覆う円筒形状のカバー70が設置される。カバー70の下端には開口が形成されており、カバー70の内部は空洞になっている。カバー70が設置されることにより、カバー70の内部で回転する回転部60が保護される。また、カバー70は、レーザ光を透過する材料によって構成される。カバー70は、たとえば、ポリカーボネートにより構成される。こうして、レーザレーダ1の組み立てが完了する。
 レーザレーダ1による物体の検出の際には、構造体41のレーザ光源110(図4参照)からレーザ光(投射光)がZ軸負方向に出射される。投射光は、ミラー42により回転軸R10から遠ざかる方向に反射される。ミラー42により反射された投射光は、カバー70を透過し、レーザレーダ1の外部に出射される。図3の一点鎖線に示すように、投射光は、回転軸R10に対して放射状にカバー70から出射され、レーザレーダ1の周囲に位置する走査領域に向かって投射される。そして、走査領域に存在する物体によって反射された投射光(反射光)は、図3の破線に示すように、カバー70に入射し、レーザレーダ1の内部に取り込まれる。反射光は、ミラー42によって反射され、構造体41の光検出器150(図4参照)によって受光される。
 図2に示した回転部60は、回転軸R10を中心に回転する。回転部60の回転に伴い、レーザレーダ1から走査領域に向かう投射光の光軸が回転軸R10を中心に回転する。これに伴い、走査領域(投射光の走査位置)も回転する。
 レーザレーダ1は、反射光の受光の有無に基づいて、走査領域に物体が存在するか否かを判定する。また、レーザレーダ1は、走査領域に投射光を投射したタイミングと、走査領域から反射光を受光したタイミングとの間の時間差(タイムオブフライト)に基づいて、走査領域に存在する物体までの距離を計測する。回転部60が回転軸R10を中心に回転することにより、レーザレーダ1は、周囲360°のほぼ全範囲に存在する物体を検出できる。
 図4は、レーザレーダ1の構成を示す断面図である。
 図4には、図3に示したレーザレーダ1を、X-Z平面に平行な平面により、Y軸方向の中央位置で切断したときの断面図が示されている。図4では、光学ユニット40のレーザ光源110から出射され、走査領域へと向かうレーザ光(投射光)の光束が一点鎖線で示され、走査領域から反射されたレーザ光(反射光)の光束が破線で示されている。また、図4では、便宜上、レーザ光源110とコリメータレンズ120の位置が点線で示されている。
 図4に示すように、固定部10は、円柱状の支持ベース11と、底板12と、モータ13と、基板14と、非接触給電部211と、非接触通信部212と、を備える。
 支持ベース11は、たとえば樹脂で形成されている。支持ベース11の下面は、円形皿状の底板12で塞がれる。支持ベース11の上面中央には、支持ベース11の上面をZ軸方向に貫通する孔11aが形成されている。支持ベース11の内面の孔11aの周囲に、モータ13の上面が設置される。モータ13は、Z軸正方向に延びた駆動軸13aを備え、回転軸R10を中心として駆動軸13aを回転させる。
 支持ベース11の外面の孔11aの周囲には、回転軸R10の周方向に沿って、非接触給電部211が設置されている。非接触給電部211は、後述する非接触給電部171との間で給電が可能なコイルにより構成される。また、支持ベース11の外面の非接触給電部211の周囲には、回転軸R10の周方向に沿って、非接触通信部212が設置されている。非接触通信部212は、後述する非接触通信部172との間で無線による通信が可能な電極等が配置された基板により構成される。
 基板14には、後述する制御部201と電源回路202(図7参照)が設置される。モータ13と、非接触給電部211と、非接触通信部212とは、基板14に対して電気的に接続される。
 ベース部材20の中央には、ベース部材20をZ軸方向に貫通する孔22が形成されている。孔22にモータ13の駆動軸13aが設置されることにより、ベース部材20が回転軸R10について回転可能に固定部10に支持される。ベース部材20の下面側の孔22の周囲には、回転軸R10の周方向に沿って、非接触給電部171が設置されている。非接触給電部171は、固定部10の非接触給電部211との間で給電が可能なコイルにより構成される。また、ベース部材20の下面側の非接触給電部171の周囲には、回転軸R10の周方向に沿って、非接触通信部172が設置されている。非接触通信部172は、固定部10の非接触通信部212との間で無線による通信が可能な電極等が配置された基板により構成される。
 図1を参照して説明したように、ベース部材20には、回転軸R10の周方向に沿って6つの設置面21が形成されており、6つの設置面21に、それぞれミラー42が設置される。また、ベース部材20の上面には、円盤部材30が設置されている。円盤部材30の孔31と保持部材41aの下面に形成された開口とが一致するよう、円盤部材30の上面に光学ユニット40が設置されている。
 光学ユニット40の構造体41は、光学系の構成として、レーザ光源110と、コリメータレンズ120と、集光レンズ130と、フィルタ140と、光検出器150と、を備える。
 保持部材41a、41bと遮光部材41cには、Z軸方向に貫通する孔が形成されている。遮光部材41cは筒状の部材である。レーザ光源110は、保持部材41aの上面に設置された基板41dに設置され、レーザ光源110の出射端面は、遮光部材41cに形成された孔の内部に位置付けられている。コリメータレンズ120は、遮光部材41cに形成された孔の内部に位置付けられ、この孔の側壁に設置されている。集光レンズ130は、保持部材41aに形成された孔に保持されている。フィルタ140は、保持部材41bに形成された孔に保持されている。光検出器150は、保持部材41bの上面に設置された基板41eに設置されている。
 基板50には、後述する制御部101と電源回路102(図7参照)が設置される。6つの基板41dと、6つの基板41eと、非接触給電部171と、非接触通信部172とは、基板50に対して電気的に接続される。
 レーザ光源110は、所定波長のレーザ光(投射光)を出射する。レーザ光源110の出射光軸は、Z軸に平行である。コリメータレンズ120は、レーザ光源110から出射された投射光を収束させる。コリメータレンズ120は、たとえば非球面レンズによって構成される。コリメータレンズ120により収束された投射光は、ミラー42に入射する。ミラー42に入射した投射光は、ミラー42によって、回転軸R10から離れる方向に反射される。その後、投射光は、カバー70を透過して、走査領域へと投射される。
 走査領域に物体が存在する場合、走査領域に投射された投射光は、物体で反射される。物体によって反射された投射光(反射光)は、カバー70を透過し、ミラー42に導かれる。その後、反射光は、ミラー42によってZ軸正方向に反射される。集光レンズ130は、ミラー42で反射された反射光を収束させる。
 その後、反射光は、フィルタ140に入射する。フィルタ140は、レーザ光源110から出射される投射光の波長帯の光を透過し、その他の波長帯の光を遮光するよう構成されている。フィルタ140を透過した反射光は、光検出器150に導かれる。光検出器150は、反射光を受光して、受光光量に応じた検出信号を出力する。光検出器150は、たとえば、アバランシェフォトダイオードである。
 図5(a)は、光学ユニット40の光学系の構成を示す斜視図である。図5(b)は、光学ユニット40の光学系の構成を示す側面図である。図5(c)は、光検出器150のセンサ151の構成を示す模式図である。
 図5(a)~(c)には、図4において回転軸R10のX軸正側に位置する光学ユニット40および光検出器150が示されている。図5(a)~(c)では、便宜上、図4において回転軸R10のX軸正側に位置する光学ユニット40および光検出器150を示したが、他の光学ユニット40も同様の構成である。
 図5(a)、(b)に示すように、レーザ光源110は、発光面がY軸方向よりX軸方向の方が長い面発光型のレーザ光源である。また、コリメータレンズ120は、X軸方向の曲率とY軸方向の曲率が等しくなるよう構成されており、レーザ光源110は、コリメータレンズ120の焦点距離よりもコリメータレンズ120側に近付けられた位置に設置されている。これにより、図5(a)に示すように、ミラー42によって反射された投射光は、僅かに拡散した状態で投射領域に投射される。また、ミラー42によって反射された投射光の光束は、Y軸方向の長さよりも、回転軸R10に平行な方向(Z軸方向)の長さが長くなる。
 走査領域からの反射光は、ミラー42によってZ軸正方向に反射された後、集光レンズ130に入射する。投射光を投射するための投射光学系(レーザ光源110とコリメータレンズ120)の光軸A1と、反射光を受光するための受光光学系(集光レンズ130)の光軸A2は、いずれもZ軸方向に平行であり、且つ、回転軸R10の周方向に所定の距離だけ離れている。
 ここで、本実施形態では、投射光学系の光軸A1が集光レンズ130の有効径に含まれるため、集光レンズ130には、投射光学系の光軸A1を通すための開口部131が形成されている。開口部131は、集光レンズ130の中心よりも外側に形成されており、Z軸方向に集光レンズ130を貫通する切欠きである。このように集光レンズ130に開口部131が設けられることにより、投射光学系の光軸A1と受光光学系の光軸A2とを近付けることができ、レーザ光源110から出射されたレーザ光を、集光レンズ130にほぼ掛かることなくミラー42に入射させることができる。
 また、図4に示した遮光部材41cは、投射光学系の光軸A1を覆うとともに、レーザ光源110の位置から開口部131の下端まで延びている。また、遮光部材41cは、開口部131に嵌め込まれている。これにより、レーザ光源110から出射されたレーザ光が集光レンズ130に掛かることを抑制できる。
 また、本実施形態では、Z軸負方向に見て回転軸R10を中心に回転部60が時計回りに回転される。これにより、図5(a)に示す回転軸R10のX軸正側に位置する光学ユニット40の各部は、Y軸正方向に回転される。このように、本実施形態では、受光光学系の光軸A2が、投射光学系の光軸A1に対して、回転部60の回転方向において後方の位置にある。
 図5(b)に示すように、ミラー42に入射する投射光は、ミラー42の反射面42aのX-Y平面に対する角度θに応じた方向に反射される。上述したように、レーザレーダ1は6つの光学ユニット40を備えており、各光学ユニット40のミラー42が設置される設置面21の回転軸R10に垂直な平面(X-Y平面)に対する傾き角は、互いに異なっている。したがって、6つの設置面21にそれぞれ設置される6つのミラー42の反射面42aの傾き角も、互いに異なっている。よって、各ミラー42によって反射された投射光は、回転軸R10に平行な方向(Z軸方向)において、互いに異なる走査位置に投射される。
 図5(c)に示すように、光検出器150は、Z軸負側の面に6つのセンサ151を備える。6つのセンサ151は、X軸方向に一列に隣接して並んでいる。6つのセンサ151の並び方向は、走査範囲のZ軸方向(回転軸R10に平行な方向)に対応する。すなわち、6つのセンサ151には、走査範囲をZ軸方向に6つに分割した各分割領域からの反射光が入射する。したがって、各センサ151からの検出信号により、各分割領域に存在する物体を検出できる。センサ151の数を増やすことにより、Z軸方向において、走査範囲における物体検出の分解能が高められる。
 図6(a)は、レーザレーダ1をZ軸負方向に見た場合の上面図である。図6(a)では、便宜上、カバー70と、基板50と、保持部材41bと、基板41d、41eとが省略されている。
 6つの光学ユニット40は、回転軸R10を回転の中心として回転する。このとき、6つの光学ユニット40は、回転軸R10から離れる方向(Z軸方向に見て放射状に)投射光を投射する。6つの光学ユニット40は所定の速度で回転しながら投射光を走査領域に投射し、走査領域からの反射光を受光する。これにより、レーザレーダ1の周囲全周(360°)にわたって物体の検出が行われる。
 図6(b)は、各光学ユニット40が回転軸R10のX軸正側に位置付けられたときの、各光学ユニット40の投射光の投射角度を示す模式図である。
 上述したように、6つのミラー42の設置角度は互いに異なっている。これにより、6つの光学ユニット40からそれぞれ出射される投射光の光束L1~L6の角度も互いに異なる。図6(b)において、6つの光束L1~L6の光軸は一点鎖線で示されている。光束L1~L6の角度範囲を示す角度θ0~θ6は、回転軸R10に平行な方向(Z軸方向)に対する角度である。本実施形態では、隣り合う光束が互いにほぼ隣接するように、角度θ0~θ6が設定されている。すなわち、光束L1、L2、L3、L4、L5、L6の分布範囲は、それぞれ、角度θ0~θ1、角度θ1~θ2、角度θ2~θ3、角度θ3~θ4、角度θ4~θ5、角度θ5~θ6である。これにより、回転軸R10に平行な方向(Z軸方向)において、互いに隣接する走査位置に各光学ユニット40からの投射光が投射される。
 図7は、レーザレーダ1の構成を示す回路ブロック図である。
 レーザレーダ1は、回路部の構成として、制御部101と、電源回路102と、駆動回路161と、処理回路162と、非接触給電部171と、非接触通信部172と、制御部201と、電源回路202と、非接触給電部211と、非接触通信部212と、を備える。制御部101と、電源回路102と、駆動回路161と、処理回路162と、非接触給電部171と、非接触通信部172とは、回転部60に配置されている。制御部201と、電源回路202と、非接触給電部211と、非接触通信部212とは、固定部10に配置されている。
 電源回路202は、外部電源と接続されており、固定部10の各部には、電源回路202を介して外部電源から電力が供給される。非接触給電部211に供給された電力は、回転部60の回転に応じて、非接触給電部171へと供給される。電源回路102は、非接触給電部171と接続されており、回転部60の各部には、電源回路102を介して非接触給電部171から電力が供給される。
 制御部101、201は、演算処理回路とメモリを備え、たとえばFPGAやMPUにより構成される。制御部101は、メモリに記憶された所定のプログラムに従って回転部60の各部を制御し、制御部201は、メモリに記憶された所定のプログラムに従って固定部10の各部を制御する。制御部101と制御部201は、非接触通信部172、212を介して通信可能に接続される。
 制御部201は、外部システムと通信可能に接続されている。外部システムは、たとえば、侵入検知システム、車、ロボットなどである。制御部201は、外部システムからの制御に応じて、固定部10の各部を駆動し、非接触通信部212、172を介して制御部101に駆動指示を送信する。制御部101は、制御部201からの駆動指示に応じて、回転部60の各部を駆動し、非接触通信部172、212を介して制御部201に検出信号を送信する。
 駆動回路161と処理回路162は、6つの光学ユニット40にそれぞれ設けられている。駆動回路161は、制御部101からの制御に応じてレーザ光源110を駆動する。処理回路162は、光検出器150のセンサ151から入力される検出信号に対して増幅やノイズ除去等の処理を施して、制御部101に出力する。
 検出動作において、制御部201は、モータ13を制御して回転部60を所定の回転速度で回転させつつ、6つの駆動回路161を制御して、所定のタイミングで所定の回転角度ごとにレーザ光(投射光)をレーザ光源110から出射させる。これにより、投射光が回転部60から走査領域に投射され、反射光が回転部60の光検出器150のセンサ151により受光される。制御部201は、センサ151から出力される検出信号に基づいて、走査領域に物体が存在するか否かを判定する。また、制御部201は、投射光を投射したタイミングと、走査領域から反射光を受光したタイミングとの間の時間差(タイムオブフライト)に基づいて、走査領域に存在する物体までの距離を計測する。
 <実施形態の効果>
 以上、実施形態によれば、以下の効果が奏される。
 図6(a)に示したように、ベース部材20が回転軸R10について回転することにより、各光学ユニット40から出射される投射光によって、回転軸R10を中心とする周方向の範囲が走査される。このとき、図6(b)に示したように、各光学ユニット40における投射光の投射方向が回転軸R10に平行な方向(Z軸方向)に互いに異なっているため、各投射光によって走査される範囲は、回転軸R10に平行な方向に互いにシフトする。このため、これら投射光によって走査される全体の範囲は、回転軸R10に平行な方向に互いにシフトする各レーザ光の走査範囲を統合した広い範囲となる。したがって、回転軸R10に平行な方向における走査範囲を効果的に広げることができる。また、このように回転軸R10に平行な方向における走査範囲が広がると、回転軸R10に平行な広い走査範囲において物体を検出できるようになる。
 光学ユニット40は、レーザ光源110と、レーザ光源110の光軸を折り曲げるミラー42とを備える。また、図6(b)に示したように、ミラー42による光軸の折り曲げ角は、光学ユニット40ごとに異なっている。これにより、ミラー42の設置角度を調整するだけで、各光学ユニット40から投射される投射光の投射方向を調整できる。
 また、このように、レーザ光源110の光軸を折り曲げる光学素子として、ミラー42を用いることにより、構造体41から出射された投射光の減衰を抑制でき、走査範囲に投射される投射光のパワーを確保できる。
 ベース部材20には、6つの光学ユニット40が設置される設置領域に、それぞれ、ミラー42を設置するための6つの設置面21が形成されている。また、レーザ光源110の光軸に垂直な平面(X-Y平面)に対する6つの設置面21の傾き角は、光学ユニット40の設置領域ごとに相違している。これにより、各設置面21にミラー42を設置するだけで、所望の傾き角でミラー42をベース部材20に設置できる。よって、各光学ユニット40から投射される投射光の投射方向を簡易に調整できる。
 レーザ光源110は、発光面が一方向に長い面発光型のレーザ光源である。また、各光学ユニット40は、レーザ光源110から出射されるレーザ光(投射光)が入射するコリメータレンズ120を備える。さらに、レーザ光源110の発光面の長手方向が、投射光が投射される際に、回転軸R10に平行な方向(Z軸方向)となるようにレーザ光源110が設置されている。これにより、光学ユニット40から投射される投射光を、回転軸R10に平行な方向(Z軸方向)に円滑に広げることができる。
 光検出器150は、回転軸R10に平行な方向(Z軸方向)に対応する方向(X軸方向)に分割された6つのセンサ151を備える。これにより、回転軸R10に平行な方向における走査領域の各位置からの反射光を、各センサ151で受光できる。よって、走査領域の各位置の状態を各センサ151からの出力信号により検出できる。
 図5(a)に示したように、6つの光学ユニット40において、投射光を投射するための投射光学系(レーザ光源110とコリメータレンズ120)の光軸A1と、反射光を受光するための受光光学系(集光レンズ130)の光軸A2とは、互いに平行である。また、集光レンズ130には、投射光学系の光軸A1を通すための開口部131が設けられている。これにより、光軸A1と光軸A2とを接近させることができるため、集光レンズ130の有効径を広く確保しながら、光学ユニット40をコンパクトに構成できる。また、光軸A1と光軸A2とを接近させることができるため、光学ユニット40から投射された投射光の反射光を、光検出器150に受光させやすくなる。
 図4に示したように、遮光部材41cは、投射光学系の光軸A1の周囲を覆うとともに、レーザ光源110の位置から開口部131の下端まで延びている。また、遮光部材41cは、開口部131に嵌め込まれている。このように、レーザ光源110から出射された投射光の光路を制限することにより、投射前の投射光が集光レンズ130に入射することを抑制でき、集光レンズ130の表面で反射された投射光が迷光となって光検出器150に入射することを抑制できる。よって、物体検出精度を高めることができる。
 図5(a)に示したように、投射光学系の光軸A1と受光光学系の光軸A2とが、回転軸R10の周方向に並んでおり、受光光学系の光軸A2が、投射光学系の光軸A1に対して、回転部60の回転方向において後方の位置にある。これにより、レーザ光が投射されてから受光されるまでのフライングタイムにおいて、受光光学系の光軸A2が、レーザ光を投射したタイミングの投射光学系の光軸A1の位置に接近する。よって、受光光学系によって反射光をより良好に受光できる。
 <変更例>
 上記実施形態のように、6つの光学ユニット40が、回転軸R10の周方向に沿って等間隔(60°間隔)で配置された構成では、全周を均等に分割した各角度位置に6つの光学ユニット40が位置づけられるタイミングにおいて、6つの光学ユニット40を同時に発光させる制御が行われ得る。たとえば、回転部60を一定の角速度で回転させる場合、全周を均等に分割した角度(たとえば1°)だけ回転部60が回転するための時間ごとに、6つの光学ユニット40を同時に発光させる制御が行われる。これにより、1つの光学ユニット40において投射光が投射された角度位置において、これに後続する光学ユニット40から投射光を投射させることができる。すなわち、各光学ユニット40における投射光の投射位置を、周方向において揃えることができる。これにより、各投射光による物体の検出位置も、周方向に揃えることができる。その結果、各検出位置における測定距離を統合して走査範囲全周の距離画像を生成する場合に、距離画像を円滑に生成できる。
 しかしながら、このように6つの光学ユニット40を同時に発光させる制御では、瞬時電力の消費量が高く、且つ、制御が煩雑になるとの問題がある。このため、各光学ユニット40は、異なるタイミングで発光させることが好ましい。
 そこで、本変更例では、各光学ユニット40を異なるタイミングで発光させつつ、各光学ユニット40における投射光の投射位置を周方向において揃えるための構成が用いられる。
 まず、上実施形態のように、6つの光学ユニット40が等間隔で配置される場合に、回転部60を一定の角速度で回転させつつ、6つの光学ユニット40が順に等間隔のタイミングで発光されると、6つの光学ユニット40の周方向における発光位置(基準の角度位置に対する発光角度)にずれが生じることについて、以下、図8(a)~図10を参照して説明する。
 図8(a)は、発光角度間隔および発光時間間隔を説明するための模式図である。
 6つの光学ユニット40を、便宜上、光学ユニットU1、U2、U3、U4、U5、U6と称する。光学ユニットU1~U6は、回転軸R10の周方向に沿って60°間隔で配置されている。Z軸負方向に見た場合に、回転軸R10のX軸正側の位置を0°(基準の角度位置)とし、0°から時計回りを正の角度、0°から反時計回りを負の角度とする。また、6つの光学ユニットU1~U6は、一定の角速度ω(deg/sec)で時計回りに回転している。
 時刻T1において0°の位置にある光学ユニットU1が、時刻T2において角度d(deg)の位置まで回転し、この間に6つの光学ユニットU1~U6の発光が等しい時間間隔で順に発光されたとする。このように、6つの光学ユニットU1~U6が順に発光される間に回転する角度を、発光角度間隔dと称する。また、発光角度間隔dだけ光学ユニットU1~U6が回転するために要する時間を、発光時間間隔Tiと称する。発光時間間隔Tiは、d/ωで表すことができる。
 図8(b)は、時間の経過に応じた6つの光学ユニットU1~U6の発光タイミングを示す模式図である。図8(b)において、横軸は時間を示し、数直線上の丸印は発光タイミングを示している。
 時刻T1において光学ユニットU1が発光された後、発光時間間隔Tiが経過して時刻T2に至るまでの間に、光学ユニットU2~U6が順に発光される。ここで、各光学ユニットの発光間隔を、隣接発光時間間隔Aと称する。隣接発光時間間隔Aは、発光時間間隔Tiを、光学ユニットの数(この例では6個)で除算したものであり、Ti/6で表すことができる。
 次に、図8(b)のような発光タイミングで6つの光学ユニットU1~U6からレーザ光(投射光)が発光された場合、6つの光学ユニットU1~U6の発光角度がどのような角度になるかを説明する。
 図9(a)~(f)は、6つの光学ユニットU1~U6が発光した位置(角度)を示す図である。図9(a)~(f)において、横軸は角度(deg)を示し、数直線上の実線丸印は発光時の光学ユニットの位置(角度)を示し、数直線上の破線丸印は発光していない光学ユニットの位置(角度)を示している。
 図9(a)に示すように、0°において光学ユニットU1が発光するとき、光学ユニットU2~U6は、それぞれ、-60°、-120°、-180°、-240°、-300°の位置にある。
 光学ユニットU1が発光してから、光学ユニットU2が発光されるタイミングまでの時間は、図8(b)に示したように、隣接発光時間間隔Aである。光学ユニットU1~U6は角速度ωで回転し続けているため、隣接発光時間間隔Aが経過するまでの間に、光学ユニットU1~U6は角度αだけ回転する。角度αは、Aωまたはd/6で表すことができる。したがって、図9(b)に示すように、光学ユニットU2は、図9(a)の位置から角度αだけ進んだ位置で発光する。このとき、光学ユニットU1、U3~U6も、図9(a)の位置から角度αだけ進んだ位置にある。
 続いて、光学ユニットU2が発光してから、隣接発光時間間隔Aが経過するまでの間に、光学ユニットU1~U6は角度αだけ回転する。したがって、図9(c)に示すように、光学ユニットU3は、図9(a)の位置から角度2αだけ進んだ位置(図9(b)の位置から角度αだけ進んだ位置)で発光する。
 同様に、図9(d)に示すように、光学ユニットU4は、図9(a)の状態から角度3αだけ進んだ位置(図9(c)の位置から角度αだけ進んだ位置)で発光する。図9(e)に示すように、光学ユニットU5は、図9(a)の状態から角度4αだけ進んだ位置(図9(d)の位置から角度αだけ進んだ位置)で発光する。図9(f)に示すように、光学ユニットU6は、図9(a)の状態から角度5αだけ進んだ位置(図9(e)の位置から角度αだけ進んだ位置)で発光する。
 続いて、図9(f)の状態から、角度αだけ進むことにより、図9(a)の状態から、光学ユニットU1~U6は発光角度間隔dだけ回転し、発光時間間隔Tiが経過することになる。そして、図9(a)~(f)と同様にして、光学ユニットU1~U6の発光が繰り返される。
 図10は、6つの光学ユニットU1~U6が360°回転するまでの間に、各光学ユニットが発光した位置(角度)を示す図である。図10において、横軸は角度(deg)を示し、数直線上の実線丸印は発光時の光学ユニットの位置(角度)を示している。
 発光角度間隔dだけ回転する間(発光時間間隔Tiが経過する間)に行われる6つの光学ユニットU1~U6の発光(1フレームの発光)が繰り返され、6つの光学ユニットU1~U6が360°回転した場合、6つの光学ユニットU1~U6の発光位置(発光角度)は、図10に示すように水平方向(周方向)においてずれることになる。
 以上のように、6つの光学ユニットU1~U6が等間隔で配置される場合に、6つの光学ユニットU1~U6が一定の角速度で回転軸R10のまわりを回転し、6つの光学ユニットU1~U6が等しい時間間隔(隣接発光時間間隔A)で発光されると、6つの光学ユニットU1~U6で受光された反射光の発光角度(受光角度)にずれが生じることが分かる。このように発光角度にずれが生じると、6つの光学ユニットU1~U6から出力された検出信号に基づいて上記のように距離画像を生成する場合に、生成した画像に歪みが生じてしまう。したがって、この歪みを補正するための処理がさらに必要になる。
 本変更例では、このような6つの光学ユニットU1~U6における発光角度のずれを低減するために、6つの光学ユニットU1~U6の配置が、等間隔から変更される。
 図11は、本変更例に係る光学ユニットU1~U6の配置を示す模式図である。
 本変更例において、光学ユニットU1は、0°の位置に配置される。光学ユニットU2は、負の回転方向に、光学ユニットU1と60°+αだけ間隔を開けて配置される。同様に、光学ユニットU3は、負の回転方向に、光学ユニットU2と60°+αだけ間隔を開けて配置される。光学ユニットU4は、負の回転方向に、光学ユニットU3と60°+αだけ間隔を開けて配置される。光学ユニットU5は、負の回転方向に、光学ユニットU4と60°+αだけ間隔を開けて配置される。光学ユニットU6は、負の回転方向に、光学ユニットU5と60°+αだけ間隔を開けて配置される。これにより、光学ユニットU1と光学ユニットU6との間隔は、60°-5αとなる。
 図12(a)~(f)は、本変更例に係る6つの光学ユニットU1~U6が発光した位置(角度)を示す図である。
 図12(a)に示すように、0°において光学ユニットU1が発光するとき、光学ユニットU2~U6は、それぞれ、-60°-α、-120°-2α、-180°-3α、-240°-4α、-300°-5αの位置にある。
 光学ユニットU1が発光してから、隣接発光時間間隔Aが経過するまでの間に、光学ユニットU1~U6は角度αだけ回転する。したがって、図12(b)に示すように、光学ユニットU2は、-60°の位置で発光する。このとき、光学ユニットU1、U3~U6は、図12(a)の位置から角度αだけ進んだ位置にあり、光学ユニットU3は、-120°-αに位置付けられる。
 同様に、図12(c)に示すように、光学ユニットU3は、-120°の位置で発光する。図12(d)に示すように、光学ユニットU4は、-180°の位置で発光する。図12(e)に示すように、光学ユニットU5は、-240°の位置で発光する。図12(f)に示すように、光学ユニットU6は、-300°の位置で発光する。
 続いて、図12(f)の状態から、角度αだけ進むことにより、図12(a)の状態から、光学ユニットU1~U6は発光角度間隔dだけ回転し、発光時間間隔Tiが経過することになる。そして、図12(a)~(f)と同様にして、光学ユニットU1~U6の発光が繰り返される。
 図13は、本変更例に係る、6つの光学ユニットU1~U6が360°回転するまでの間に、各光学ユニットが発光した位置(角度)を示す図である。
 発光角度間隔dだけ回転する間(発光時間間隔Tiが経過する間)に行われる6つの光学ユニットU1~U6の発光(1フレームの発光)が繰り返され、6つの光学ユニットU1~U6が360°回転した場合、本変更例では、6つの光学ユニットU1~U6の発光位置(発光角度)は、図13に示すように水平方向(周方向)に揃うことになる。
 以上のように、本変更例では、6つの光学ユニットU1~U6が、互いに時間をずらしてレーザ光を投射する。そして、周方向において均等な角度位置において各光学ユニットがレーザ光を投射するように、ベース部材20に対する各光学ユニットの設置位置が、周方向に均等な位置から所定の角度だけ変位した位置に設定されている。
 具体的には、6つの光学ユニットU1~U6が一定の角速度ωで回転軸R10のまわりを回転し、6つの光学ユニットU1~U6が等しい時間間隔(隣接発光時間間隔A)で発光される場合に、光学ユニットU1~U6が図11に示したように配置される。これにより、6つの光学ユニットU1~U6の発光角度(受光角度)を揃えることができる。よって、6つの光学ユニットU1~U6から出力された検出信号に基づいて上記のように距離画像を生成する場合でも、生成した画像の歪みを抑制できる。
 <その他の変更例>
 レーザレーダ1の構成は、上記実施形態に示した構成以外に、種々の変更が可能である。
 たとえば、上記実施形態では、光検出器150は、回転軸R10に平行な方向(Z軸方向)に対応する方向(回転軸R10を中心とする円の径方向)に分割された6つのセンサ151を備えたが、光検出器150に配置されるセンサ151の数はこれに限られるものではない。たとえば、光検出器150に2~5個のセンサが設けられてもよく、7個以上のセンサが設けられてもよい。光検出器150に配置されるセンサの数を増やすほど、回転軸R10に平行な方向における物体検出の分解能を高めることができる。
 また、光検出器150は、必ずしも複数のセンサを備えていなくてもよく、回転軸R10の径方向に長い1つのセンサ152を備えてもよい。
 図14(a)は、この変更例に係る6つの光束L1~L6を示す模式図であり、図14(b)は、この変更例に係る光検出器150の構成を示す模式図である。図14(b)には、光学ユニット40が回転軸R10のX軸正側に位置付けられたときの光検出器150が示されている。
 図14(a)に示すように、この変更例においても、上記実施形態と同様、光束L1~L6に対応して、それぞれ、回転軸R10に平行な方向(Z軸方向)に長い走査範囲が走査される。そして、各光束に対応する走査範囲からの反射光は、上記実施形態と同様に、Z軸方向に長いため、光検出器150の受光面上においてX軸方向に長くなる。図14(b)に示すセンサ152のX軸方向の長さは、上記実施形態の複数のセンサ151の全体のX軸方向の長さと同様に設定される。
 この変更例によれば、各走査範囲からの反射光は、いずれも1つのセンサ152によって受光される。このため、各走査範囲のZ軸方向に対応する光検出器150の分解能は、上記実施形態に比べて低下するものの、光検出器150の構成を簡素化できる。また、この変更例においても、上記実施形態と同様、走査範囲全体のZ軸方向の幅を広げることができる。
 また、上記実施形態では、レーザ光源110は、発光面が一方向に長い面発光型のレーザ光源であったが、これに限らず、端面発光型のレーザ光源であってもよい。
 図14(c)は、この変更例に係る光束L1~L6を示す図であり、図14(d)は、この変更例に係る光検出器150の構成を示す模式図である。
 図14(c)に示すように、この変更例では、光束L1~L6の回転軸R10に平行な方向(Z軸方向)における長さは、上記実施形態に比べて短くなっている。これにより、光束L1~L6は、それぞれ、角度(θ0+θ1)/2、(θ1+θ2)/2、(θ2+θ3)/2、(θ3+θ4)/2、(θ4+θ5)/2、(θ5+θ6)/2を含む所定の角度範囲にのみ分布する。このため、各走査範囲からの反射光は、上記実施形態に比べてZ軸方向に短くなるため、光検出器150の受光面上においてX軸方向に短くなる。したがって、図14(d)に示すように、この変更例の光検出器150は、ほぼ円形の1つのセンサ153を備え、各走査範囲からの反射光は、センサ153により受光される。
 この変更例においても、上記実施形態と同様、走査範囲全体のZ軸方向の幅を広げることができる。ただし、この変更例では、図14(c)に示すように、光束間に投射光が投射されない範囲が含まれるため、物体の検出に漏れが生じやすい。したがって、物体検出の精度を高めるためには、上記実施形態のように、回転軸R10に平行な方向に光束の幅を広げて、光束間に隙間が生じることを抑制することが好ましい。なお、この変更例においても、センサ153は必ずしも1つでなくてもよく、X軸方向に分割された複数のセンサが光検出器150に配置されてもよい。これにより、物体検出の分解能を高めることができる。
 また、上記実施形態では、ミラー42によって投射光が走査領域に向けられたが、投射光を回転軸R10に平行な方向に分光させる分光素子がさらに配置されてもよい。この場合、分光素子として、たとえば、回折格子が用いられる。
 図15(a)は、この変更例に係る光学ユニット40の投射光学系の構成を示す模式図である。図15(a)では、便宜上、投射光の光軸のみが図示されている。
 この変更例の光学ユニット40は、上記実施形態と比較して、コリメータレンズ120とミラー42との間に回折格子180を備える。回折格子180は、遮光部材41cに形成された孔の内部に設置される。回折格子180は、たとえばステップ型の回折格子であり、0次回折光、+1次回折光、および-1次回折光の光量がほぼ同じとなるように、回折効率が調整されている。コリメータレンズ120から回折格子180に入射した投射光は、回折格子180の回折作用によって、回転軸R10を中心とする径方向(図15(a)ではX軸方向)に、0次回折光、+1次回折光、および-1次回折光に分光される。
 この構成によれば、上記実施形態に比べて、投射光の投射範囲が、回転軸R10に平行な方向に広げられる。したがって、上記実施形態と同様の走査範囲を得るためには、必ずしも6つの光学ユニット40を配置しなくてもよく、回折格子180の回折角を調整することにより、たとえば、2個の光学ユニット40のみがベース部材20に配置されてもよい。
 図15(b)は、この変更例において、2つの光学ユニット40が配置される場合に生じる合計6つの回折光の投射状態を示す模式図であり、図15(c)は、この変更例に係る光検出器150の構成を示す模式図である。
 この変更例で設置される2つの光学ユニット40を、光学ユニットU1、U2とすると、光学ユニットU1のミラー42の傾き角と、光学ユニットU2のミラー42の傾き角とは互いに異なっている。したがって、図15(b)に示すように、光学ユニットU1の+1次回折光の光束、0次回折光の光束、および-1次回折光の光束と、光学ユニットU2の+1次回折光の光束、0次回折光の光束、および-1次回折光の光束とを、Z軸方向に並べることができる。したがって、この変更例の光束の分布は、上記実施形態とほぼ同じとなる。
 この変更例では、光学ユニットU1に対応して3つの光束の投射光が投射され、光学ユニットU2に対応して3つの光束の投射光が投射される。したがって、1つの光学ユニットに基づく走査範囲は、上記実施形態の約3倍の幅となる。このため、図15(c)に示すように、この変更例の光検出器150は、上記実施形態と同様の分解能を実現するために、18個のセンサ154を備える。
 この変更例では、光学ユニットU1、U2に、それぞれ、回折格子180を配置することにより、上記のように、光学ユニットU1、U2から投射されるレーザ光を回転軸R10に平行な方向(Z軸方向)に分けることができ、これにより、1つの光学ユニットにおける走査範囲を回転軸R10の方向に広げることができる。このため、ベース部材20に配置される光学ユニットの数を上記実施形態に比べて減らすことができ、装置の簡素化とコストの低減を図ることができる。
 また、この変更例によれば、各走査範囲のZ軸方向に対応する光検出器150の分解能は、上記実施形態と同様になる。また、走査範囲全体のZ軸方向の長さは、上記実施形態と同様に高められる。
 ただし、この変更例では、レーザ光源110から出射されたレーザ光が回折格子180により分光されるため、各回折光に基づく投射光の光量は、上記実施形態の1つの光学ユニット40に基づく投射光の光量に比べて小さくなる。したがって、検出の限界距離を長くするためには、レーザ光源110の出射パワーを高めて、各回折光に基づく投射光の光量を高める必要がある。
 なお、図15(a)~(c)に示す変更例において、光検出器150に設けられるセンサの数は、18個に限らない。たとえば、1つの回折光に基づく反射光を1つのセンサで受光してもよい。
 図16(a)は、この変更例に係る6つの回折光を示す模式図であり、図16(b)は、この変更例に係る光検出器150の構成を示す模式図である。この変更例では、図15(a)に示した変更例と同様に回折格子180が設置される。これにより、図16(a)に示すように、図15(b)と同様、光学ユニットU1に基づく3つの回折光と、光学ユニットU2に基づく3つの回折光とが投射領域に投射される。そして、図16(b)に示すように、この変更例の光検出器150は、3つのセンサ155を備える。3つのセンサ155には、それぞれ、1つの回折光に基づく反射光が入射する。
 また、図15(a)~(c)に示す変更例では、レーザ光源110は、発光面が一方向に長い面発光型のレーザ光源であったが、これに限らず、端面発光型のレーザ光源でもよい。
 図16(c)は、この変更例に係る光束L1~L6を示す図であり、図16(d)は、この変更例に係る光検出器150の構成を示す模式図である。図16(c)に示すように、この変更例においても、図14(c)に示した変更例と同様、回折光に基づく6つの光束の投射光が投射される。また、図16(d)に示すように、この変更例の光検出器150は、ほぼ円形の3つのセンサ156を備える。3つのセンサ156には、それぞれ、1つの回折光に基づく反射光が入射する。
 なお、図15(a)~図16(d)に示す変更例では、回折格子180は、ステップ型の回折格子であったが、ブレーズ型の回折格子であってもよい。また、回折格子180の配置位置は、回折により投射光を回転軸R10の方向に分け得る限りにおいて、他の位置であってもよい。たとえば、ミラー42の反射面42aを反射型の回折格子に置き換えてもよい。分光素子によって分光される光は、3つでなくてもよい。
 また、上記実施形態では、6つの光学ユニット40が、回転軸R10の周方向に沿って設置されたが、設置される光学ユニット40の数は、6つに限らず、2~5個でもよく、7個以上でもよい。
 図17(a)は、12個の光学ユニットU1~U12が設置されたレーザレーダ1の構成を示す模式図である。12個の光学ユニットU1~U12は、回転軸R10の周方向に等間隔(30°間隔)で配置されている。この場合も、12個の光学ユニットU1~U12が備えるミラー42の傾き角が互いに異なるよう、12個のミラー42が設置されるベース部材20の設置面21の傾き角が設定される。このように12個の光学ユニットU1~U12が設置されることにより、上記実施形態に比べて、回転軸R10に平行な方向(Z軸方向)における走査範囲を広げることができる。
 また、上記実施形態では、複数の光学ユニット40が、回転軸R10の周方向に沿って等間隔(60°間隔)で配置されたが、必ずしも等間隔に設置されなくてもよい。
 図17(b)は、8個の光学ユニットU1~U8が設置されたレーザレーダ1の構成を示す模式図である。光学ユニットU1、U2の間隔、光学ユニットU3、U4の間隔、光学ユニットU5、U6の間隔、および光学ユニットU7、U8の間隔は、30°である。光学ユニットU2、U3の間隔、光学ユニットU4、U5の間隔、光学ユニットU6、U7の間隔、および光学ユニットU8、U1の間隔は、60°である。ただし、このように光学ユニット40が等間隔に配置されない場合、複数の光学ユニット40が、回転軸R10に対して点対称に設置されるのが好ましい。これにより、回転軸R10の径方向において、回転部60をバランスよく回転させることができる。
 また、上記実施形態では、回転部60を回転させる駆動部として、モータ13が用いられたが、モータ13に代えて、固定部10と回転部60にそれぞれコイルと磁石を配置して、回転部60を固定部10に対して回転させてもよい。また、回転部60の外周面に全周にわたってギアが設けられ、このギアに固定部10に設置されたモータの駆動軸に設置されたギアが噛み合わされることにより、回転部60を固定部10に対して回転させてもよい。
 また、上記実施形態では、各光学ユニット40のミラー42を互いに異なる傾き角で設置することにより、各光学ユニット40から投射される投射光の投射方向が互いに異なる方向に設定されたが、各光学ユニット40から投射される投射光の投射方向を互いに相違させる方法は、これに限られるものではない。
 たとえば、6つの光学ユニット40からそれぞれミラー42が省略され、6つの構造体41が、回転軸R10に垂直な平面に対して互いに異なる傾き角となるように、放射状に設置されてもよい。また、上記実施形態においてミラー42が省略され、代わりに、設置面21の反射率が高くなるよう設置面21に鏡面仕上げが施されてもよい。また、上記実施形態では、光学ユニット40は、1つのミラー42を備えたが、2つ以上のミラーを備えてもよい。この場合、複数のミラーによって反射され走査領域に投射される投射光のZ軸方向に対する角度は、複数のミラーのうちいずれかのミラーの角度によって調節されればよい。
 また、上記実施形態では、構造体41から出射された投射光の光軸を折り曲げるためにミラー42が用いられたが、ミラー42に代えて、回折格子等の透過型の光学素子によって投射光の光軸が折り曲げられてもよい。
 また、距離測定機能がなく光検出器150からの信号により投射方向に物体が存在するか否かの検出機能のみを備えた装置に本発明に係る構造を適用することも可能である。この場合も、回転軸R10に平行な方向(Z軸方向)における走査範囲を広げることができる。
 また、光学ユニット40の光学系の構成は、上記実施形態に示された構成に限られるものではない。たとえば、集光レンズ130から開口部131が省略され、投射光学系の光軸A1が集光レンズ130に掛からないように、投射光学系と受光光学系とが離されてもよい。さらに、光学ユニット40に配置されるレーザ光源110の数は1つに限らず、複数であってもよい。この場合、各レーザ光源110から出射されたレーザ光が偏光ビームスプリッタ等によって統合されることにより、投射光が生成されてもよい。この構成は、たとえば、図15(a)の変更例に用いて好適である。
 なお、上記実施形態では、走査範囲を回転軸に平行な方向に広げるために、複数の光学ユニット40から投射される投射光の投射方向を、回転軸R10に平行な方向(Z軸方向)において互いに相違させたが、他の目的からは、複数の光学ユニット40から投射される投射光の投射方向を回転軸R10に平行な方向(Z軸方向)において同じに設定してもよい。
 図18は、この変更例に係るレーザレーダ1の構成を示す断面図である。この変更例では、回転軸R10のX軸正側の設置面21の水平面(X-Y平面)に対する傾き角と、回転軸R10のX軸負側の設置面21の水平面に対する傾き角とが等しいため、これら設置面21に設置される2つのミラー42の傾き角も等しい。同様に、他の設置面21の傾き角も、上記2つの設置面21と同じ角度に設定され、他のミラー42の傾き角も、上記2つのミラー42と同じ角度に設定される。これにより、6つの光学ユニット40から投射される投射光の投射方向は、回転軸R10に平行な方向において同じになる。このように、回転軸R10に平行な方向において全ての光学ユニット40の投射方向を同じに設定すると、回転軸R10の周囲の範囲に対する検出頻度を高めることができ、これにより、回転速度を高めることなく高フレームレートを実現できる。
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
 1 レーザレーダ
 13 モータ(駆動部)
 20 ベース部材
 21 設置面
 40 光学ユニット
 41c 遮光部材
 42 ミラー(光学素子)
 110 レーザ光源
 120 コリメータレンズ
 130 集光レンズ
 131 開口部
 150 光検出器
 151~156 センサ
 180 回折格子(分光素子)
 R10 回転軸
 U1~U12 光学ユニット

Claims (13)

  1.  ベース部材と、
     前記ベース部材を回転軸について回転させる駆動部と、
     前記回転軸を中心とする周方向に所定の間隔で前記ベース部材に配置され、前記回転軸から離れる方向にレーザ光をそれぞれ投射する複数の光学ユニットと、を備え、
     前記複数の光学ユニットは、前記レーザ光の投射方向が前記回転軸に平行な方向に互いに異なっている、
    ことを特徴とするレーザレーダ。
     
  2.  請求項1に記載のレーザレーダにおいて、
     前記光学ユニットは、
      レーザ光源と、
      前記レーザ光源の光軸を折り曲げる光学素子と、を備え、
     前記光学素子による前記光軸の折り曲げ角を前記光学ユニットごとに変化させることにより、前記複数の光学ユニットの前記レーザ光の投射方向が前記回転軸に平行な方向に互いに異なっている、
    ことを特徴とするレーザレーダ。
     
  3.  請求項2に記載のレーザレーダにおいて、
     前記光学素子は、ミラーである、
    ことを特徴とするレーザレーダ。
     
  4.  請求項3に記載のレーザレーダにおいて、
     前記ベース部材には、前記複数の光学ユニットの設置領域に、それぞれ、前記ミラーを設置するための複数の設置面が形成され、
     前記光軸に垂直な平面に対する前記複数の設置面の傾き角が、前項光学ユニットの前記設置領域ごとに相違している、
    ことを特徴とするレーザレーダ。
     
  5.  請求項2ないし4の何れか一項に記載のレーザレーダにおいて、
     前記レーザ光源は、発光面が一方向に長い面発光型のレーザ光源であり、
     前記各光学ユニットは、前記レーザ光源から出射されるレーザ光が入射するコリメータレンズを備え、
     前記発光面の長手方向が、前記レーザ光が投射される際に前記回転軸に平行な方向となるように、前記各光学ユニットの前記レーザ光源が設置されている、
    ことを特徴とするレーザレーダ。
     
  6.  請求項2ないし5の何れか一項に記載のレーザレーダにおいて、
     前記各光学ユニットは、前記レーザ光源から出射された前記レーザ光を前記回転軸に平行な方向に対応する方向に分光する分光素子を備える、
    ことを特徴とするレーザレーダ。
     
  7.  請求項2ないし6の何れか一項に記載のレーザレーダにおいて、
     前記光学ユニットは、
      投射されたレーザ光が物体によって反射された反射光を受光する光検出器と、
      前記光検出器に前記反射光を集光する集光レンズと、を備える、
    ことを特徴とするレーザレーダ。
     
  8.  請求項7に記載のレーザレーダにおいて、
     前記光検出器は、前記回転軸に平行な方向に対応する方向に分割された複数のセンサを備える、
    ことを特徴とするレーザレーダ。
     
  9.  請求項7または8に記載のレーザレーダにおいて、
     前記各光学ユニットにおいて、前記レーザ光を投射するための投射光学系の光軸と、前記反射光を受光するための受光光学系の光軸とが互いに平行となっており、
     前記集光レンズに、前記投射光学系の光軸を通すための開口部が設けられている、
    ことを特徴とするレーザレーダ。
     
  10.  請求項9に記載のレーザレーダにおいて、
     前記光学ユニットは、前記投射光学系の光軸の周囲を覆う遮光部材を備え、
     前記遮光部材は、前記開口部に嵌め込まれている、
    ことを特徴とするレーザレーダ。
     
  11.  請求項9または10に記載のレーザレーダにおいて、
     投射光学系の光軸と前記受光光学系の光軸とが前記回転軸の周方向に並んでおり、
     前記受光光学系の光軸が、前記投射光学系の光軸に対して、前記ベース部材の回転方向において後方の位置にある、
    ことを特徴とするレーザレーダ。
     
  12.  請求項1ないし11の何れか一項に記載のレーザレーダにおいて、
     前記複数の光学ユニットは、互いに時間をずらしてレーザ光を投射し、
     前記周方向に均等な角度位置において前記各光学ユニットがレーザ光を投射するように、前記ベース部材に対する前記各光学ユニットの設置位置が、前記周方向に均等な位置から所定の角度だけ変位した位置に設定されている、
    ことを特徴とするレーザレーダ。
     
  13.  ベース部材と、
     前記ベース部材を回転軸について回転させる駆動部と、
     前記回転軸を中心とする周方向に所定の間隔で前記ベース部材に配置され、前記回転軸から離れる方向にレーザ光をそれぞれ投射する複数の光学ユニットと、を備え、
     前記複数の光学ユニットは、前記レーザ光の投射方向が前記回転軸に平行な方向に互いに同じである、
    ことを特徴とするレーザレーダ。
PCT/JP2020/021728 2019-07-26 2020-06-02 レーザレーダ WO2021019902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080048033.7A CN114041066A (zh) 2019-07-26 2020-06-02 激光雷达
JP2021536636A JPWO2021019902A1 (ja) 2019-07-26 2020-06-02
US17/570,795 US20220128664A1 (en) 2019-07-26 2022-01-07 Laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019137672 2019-07-26
JP2019-137672 2019-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/570,795 Continuation US20220128664A1 (en) 2019-07-26 2022-01-07 Laser radar

Publications (1)

Publication Number Publication Date
WO2021019902A1 true WO2021019902A1 (ja) 2021-02-04

Family

ID=74230545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021728 WO2021019902A1 (ja) 2019-07-26 2020-06-02 レーザレーダ

Country Status (4)

Country Link
US (1) US20220128664A1 (ja)
JP (1) JPWO2021019902A1 (ja)
CN (1) CN114041066A (ja)
WO (1) WO2021019902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171896A1 (ja) * 2020-02-25 2021-09-02 パナソニックIpマネジメント株式会社 レーザレーダ
WO2023037892A1 (ja) * 2021-09-10 2023-03-16 株式会社デンソー 光検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144861B (zh) * 2022-09-05 2022-11-04 天津帆探科技有限公司 一种混合固态激光雷达及扫描方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172554A (ja) * 1997-08-28 1999-03-16 Kanto Denshi Oyo Kaihatsu:Kk 車載用ミリ波レーダ装置
JP2002352188A (ja) * 2001-05-25 2002-12-06 Sony Corp バーコード読み取り用光学装置及びその製造方法
JP2009063339A (ja) * 2007-09-05 2009-03-26 Hokuyo Automatic Co 走査式測距装置
JP2015081921A (ja) * 2013-10-21 2015-04-27 ジック アーゲー 回転軸を中心に運動する走査ユニットを備えるセンサ
JP2017150902A (ja) * 2016-02-23 2017-08-31 株式会社Ihiエアロスペース 車載レーザレーダ装置
CN206479638U (zh) * 2017-01-19 2017-09-08 北京飞思迈尔光电科技有限公司 一种光学扫描传感器
JP2018077088A (ja) * 2016-11-08 2018-05-17 株式会社東芝 距離計測装置、及び距離計測方法
JP2018513365A (ja) * 2015-03-31 2018-05-24 アマゾン テクノロジーズ インコーポレイテッド モジュール式lidarシステム
US20180167602A1 (en) * 2015-09-24 2018-06-14 Ouster, Inc. Optical system for collecting distance information within a field

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056362B2 (ja) * 2007-02-06 2012-10-24 株式会社デンソーウェーブ レーザレーダ装置
JP5532003B2 (ja) * 2011-03-31 2014-06-25 株式会社デンソーウェーブ レーザレーダ装置
JP7157386B2 (ja) * 2017-02-09 2022-10-20 コニカミノルタ株式会社 レーザーレーダー用の走査型の光学系及びレーザーレーダー装置
CN109557554A (zh) * 2018-12-03 2019-04-02 北京觉醒纪科技有限公司 激光雷达和车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172554A (ja) * 1997-08-28 1999-03-16 Kanto Denshi Oyo Kaihatsu:Kk 車載用ミリ波レーダ装置
JP2002352188A (ja) * 2001-05-25 2002-12-06 Sony Corp バーコード読み取り用光学装置及びその製造方法
JP2009063339A (ja) * 2007-09-05 2009-03-26 Hokuyo Automatic Co 走査式測距装置
JP2015081921A (ja) * 2013-10-21 2015-04-27 ジック アーゲー 回転軸を中心に運動する走査ユニットを備えるセンサ
JP2018513365A (ja) * 2015-03-31 2018-05-24 アマゾン テクノロジーズ インコーポレイテッド モジュール式lidarシステム
US20180167602A1 (en) * 2015-09-24 2018-06-14 Ouster, Inc. Optical system for collecting distance information within a field
JP2017150902A (ja) * 2016-02-23 2017-08-31 株式会社Ihiエアロスペース 車載レーザレーダ装置
JP2018077088A (ja) * 2016-11-08 2018-05-17 株式会社東芝 距離計測装置、及び距離計測方法
CN206479638U (zh) * 2017-01-19 2017-09-08 北京飞思迈尔光电科技有限公司 一种光学扫描传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171896A1 (ja) * 2020-02-25 2021-09-02 パナソニックIpマネジメント株式会社 レーザレーダ
WO2023037892A1 (ja) * 2021-09-10 2023-03-16 株式会社デンソー 光検出装置
JP7548171B2 (ja) 2021-09-10 2024-09-10 株式会社デンソー 光検出装置

Also Published As

Publication number Publication date
JPWO2021019902A1 (ja) 2021-02-04
CN114041066A (zh) 2022-02-11
US20220128664A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2021019902A1 (ja) レーザレーダ
JP4918593B2 (ja) 共用レチクル基板を有する複数のサブエンコーダを利用する光学式回転エンコーダ
JP5660429B2 (ja) レーザレーダ装置
JP7322037B2 (ja) レーザレーダ及びその作動方法
JP4531750B2 (ja) 光学式ロータリーエンコーダ
US10261174B2 (en) Laser radar device
US20010035946A1 (en) Light-projecting/receiving unit and omnidirectional distance detecting apparatus
TWI664398B (zh) Optical rotary encoder
JPWO2013014721A1 (ja) サーボモータ製造方法、サーボモータ製造装置、サーボモータ、エンコーダ
WO2019239845A1 (ja) 物体検出装置および光検出器
JP2007078690A (ja) 反射型光エンコーダ
JP4367363B2 (ja) 光学式ロータリーエンコーダ
JP4579321B2 (ja) 位置検出装置
JP4846302B2 (ja) 回転レーザ装置及びこれを用いた回転ブレ検出装置
JP4315323B2 (ja) 投影型ロータリエンコーダ
WO2019220787A1 (ja) 距離測定装置
WO2021019903A1 (ja) レーザレーダ
JP2020190495A (ja) 距離測定装置
TWI857042B (zh) 光學編碼器
JP7406971B2 (ja) 測定装置
JP2019070625A (ja) 距離測定装置
JP2020012784A (ja) 光学式角度センサ
JP2749987B2 (ja) ロータリーエンコーダー
JP2023181650A (ja) レーザレーダおよび受光光学系
TW202104848A (zh) 光學編碼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847418

Country of ref document: EP

Kind code of ref document: A1