WO2021017883A1 - 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用 - Google Patents

一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用 Download PDF

Info

Publication number
WO2021017883A1
WO2021017883A1 PCT/CN2020/102513 CN2020102513W WO2021017883A1 WO 2021017883 A1 WO2021017883 A1 WO 2021017883A1 CN 2020102513 W CN2020102513 W CN 2020102513W WO 2021017883 A1 WO2021017883 A1 WO 2021017883A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
protein
seq
library
chip
Prior art date
Application number
PCT/CN2020/102513
Other languages
English (en)
French (fr)
Inventor
何爱彬
余先红
艾珊珊
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2021017883A1 publication Critical patent/WO2021017883A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand

Definitions

  • the present disclosure belongs to the field of biotechnology, and specifically relates to a fusion protein used for the preparation of a single-cell ChIP-seq library and its application.
  • epigenetics With the completion of gene sequencing and the arrival of the post-genome era, epigenetics has become a research hotspot in the biological field. Epigenetics mainly studies the genetic modification of DNA and related protein molecules without changes in the nucleotide sequence of genes. These modifications can be "memorized” by cells and retained during subsequent cell divisions. Later, its research directions include: one is the regulation of selective expression at the level of gene transcription, and the other is the regulation of gene transcription. At present, the hot spots of epigenetics are mainly focused on the selective expression regulation of gene transcription level, especially the interaction between transcription factors and DNA, DNA methylation and histone modification.
  • Chromatin Immunoprecipitation is also called binding site analysis. Its general process mainly includes: (1) Cross-linking DNA and protein bound to the DNA with formaldehyde, separating and breaking the chromosomes into Fragments of a certain size; (2) Use specific antibodies to immunoprecipitate and enrich the cross-linked complex between the target protein and DNA; (3) Use low pH conditions to reverse cross-link to release DNA fragments; (4) Through the detection of DNA fragments Purification and detection of DNA to obtain sequence information of the interaction between DNA and protein. Since ChIP technology can study the interaction between protein and DNA, it is widely used in the field of epigenetics to study the interaction between transcription factors and DNA, DNA methylation and histone modification.
  • ChIP-seq a technology that can study the interaction between protein and DNA in the whole genome-chromatin immunoprecipitation-sequencing (ie, ChIP-seq) has been developed.
  • ChIP-seq technology includes two parts: chromatin immunoprecipitation and high-throughput sequencing. Among them, chromatin immunoprecipitation is used to specifically enrich the target protein-bound DNA, and then a sequencing library is constructed. The enriched DNA fragments are subjected to high-throughput sequencing, and finally, by accurately positioning the millions of sequence tags obtained on the genome, the information of the DNA segments that interact with the target protein in the whole genome can be obtained.
  • CUT&RUN Cleavage Under Targets&Release Using Nuclease
  • MNase Micrococcal Nuclease
  • Protein A-MNase can specifically cut both ends of the antibody-bound DNA, and the cut DNA fragments are released from the nucleus, and these DNA fragments are library and Sequencing analysis can draw specific protein-DNA interaction maps at the whole genome level.
  • Con A beads are combined with cells, and antibodies that recognize specific transcription factors are added. Incubate for a certain period of time to allow the antibodies to fully bind to the transcription factors.
  • Add ProteinA-MNase fusion protein, and ProteinA-MNase can bind specifically The antibody binding site, and then adding Ca 2+ ions to activate the activity of MNase nuclease.
  • ProteinA-MNase can specifically cut the two ends of the antibody-bound DNA. After terminating the MNase reaction, these cut DNA fragments are removed from the nucleus. Then, these DNA fragments will be constructed and analyzed by next-generation sequencing. According to the sequencing results, the binding map of specific transcription factors can be drawn at the whole genome level.
  • the present disclosure first relates to a fusion protein used for chromatin immunoprecipitation-sequencing (ChIP-seq) library construction.
  • the fusion protein is a homodimer and its monomer includes the following structure:
  • the first functional block Tn5 transposase mutant type
  • the second functional block Staphylococcus aureus Protein A (Protein A), Streptococcus Protein G (Protein G) or a combination of Protein A and Protein G;
  • the Tn5 transposase mutant is the following point mutations in the amino acid structure of the wild-type Tn5 transposase shown in SEQ ID NO.1: E54K, L372P Obtained Tn5 transposase mutant;
  • the amino acid sequence of the Linker is shown in SEQ ID NO. 3;
  • the protein purification tag is a protein purification tag that can be purified by affinity chromatography.
  • the Tn5 transposase mutant type is the following point mutations on the amino acid structure of the wild-type Tn5 transposase (the amino acid sequence is shown in SEQ ID NO. 1): E54K, L372P, the amino acid sequence of the mutant Tn5 transposase is shown in SEQ ID NO.2.
  • each functional block of the fusion protein is connected by a Linker whose amino acid sequence is as shown in SEQ ID NO.3;
  • the protein purification tag is: -HIS tag, GST tag, MBP tag, SUMO tag, NusA tag, or directly using the specific affinity of Protein A tag and IgG protein, Purify the fusion protein with IgG magnetic beads;
  • the second functional block is connected to the N terminal (nitrogen terminal) of the amino acid sequence of the first functional block
  • the monomer of the fusion protein is PAT or PAGT
  • the amino acid sequence of PAT is shown in SEQ ID NO. 4
  • the amino acid sequence of PAGT is shown in SEQ ID NO. 5.
  • the present disclosure also relates to the application of the fusion protein in the preparation of a high-throughput sequencing library of specific biological samples.
  • the biological samples include but are not limited to: uncrosslinked or fixed/crosslinked or fixed cultured cells
  • the high-throughput sequencing library is a chromatin immunoprecipitation-sequencing (ChIP-seq) library.
  • the present disclosure also relates to a method for preparing a high-throughput sequencing library of a target biological sample using the fusion protein.
  • the method for preparing a high-throughput sequencing library of a specific biological sample is:
  • the biological samples include but are not limited to: uncrosslinked or fixed/crosslinked or fixed cultured cell samples, fresh tissue/crosslinked or fixed tissue samples;
  • the present disclosure also relates to a method for preparing a high-throughput sequencing library of a target biological sample using the fusion protein.
  • the method for preparing a high-throughput sequencing library of a specific biological sample is:
  • the biological sample includes but is not limited to: uncrosslinked or fixed/crosslinked or fixed cultured cell sample, fresh tissue/crosslinked or fixed tissue sample;
  • the present disclosure also relates to a kit for constructing a high-throughput sequencing library.
  • the kit includes: the fusion protein and the sample washing buffer, binding buffer, and activation buffer used in the conventional library building process
  • the high-throughput sequencing library is a chromatin immunoprecipitation-sequencing (ChIP-seq) library.
  • the fusion protein, kit, and method of the present disclosure can improve the efficiency of library construction and reduce the background of the library during the ChIP-seq detection process, thereby improving the accuracy of the ChIP-seq detection method and simplifying the experimental process of ChIP-seq.
  • the method of the present disclosure can perform in situ detection on tissue sections, cell smears and cell slides, without lysing cell nuclei and ultrasonically interrupting chromatin, and retaining the spatial resolution of the original sample.
  • the method of the present disclosure can realize single-cell ChIP-seq of multiple organs and multiple tissues, and can process multiple different tissue sources or cells in multiple different pathological states in parallel at the same time.
  • the method described in the present disclosure can quickly complete the preparation of single-cell ChIP-seq, which can be completed in a single day from the start of the experiment.
  • the method of the present disclosure can realize high-throughput single-cell ChIP-seq, and can obtain a ChIP-seq library of tens of thousands of single cells at a time.
  • the method described in the present disclosure does not need to use a specially customized high-cost single-cell library sequencing method, and uses a specially designed Mosaic Truseq two-step PCR library preparation method, and the obtained library can be performed using the illunima standard sequencing method and platform Sequencing.
  • the Mosaic Truseq library only needs 1/15 of the sequencing cost.
  • experimenters do not need to be proficient in professional sequencing knowledge to perform large-scale single-cell sequencing.
  • FIG. 1 Construction map of PAT expression vector.
  • FIG. 1 Comparison of in-situ ChIP-seq (In situ-ChIP) and ultrasound ChIP-seq (Sonicate ChIP) in natural state (A) and cross-linked state (B), H3K4me3 (A) and H3K27ac (B) Signal distribution (heat map) in the promoter region, where TSS represents the transcription start site.
  • the fusion protein PAT (ProteinA-Tn5) or the fusion protein PAGT (ProteinA-proteinG-Tn5) involved in the following examples, the washing buffer 1, the washing buffer 2, the binding buffer, the reaction buffer and the termination buffer
  • the recipe is as follows:
  • Washing buffer 1 50mM HEPES, 150mM NaCl and 0.5mM spermidine;
  • Washing buffer 2 50mM HEPES, 150mM NaCl, 0.5mM spermidine and 0.01% (w.t.) digitonin;
  • Binding buffer 50mM Hepes, 150mM NaCl, 0.5mM spermidine, 0.01% (w.t.) digitonin and 5mM EDTA;
  • Reaction (activation) buffer 25mM Mg2+ and 50mM trimethylol methylamino propanesulfonic acid;
  • Stop buffer 100mM EDTA and 1%(w.t.)SDS.
  • fusion proteins of Examples 5 to 6 are Protein A-Tn5, and the formulas of washing buffer A, washing buffer B, washing buffer C, antibody incubation buffer, etc. are as follows (for high-throughput single cells):
  • Washing buffer A 20mM HEPES, 150mM NaCl and 0.5mM spermidine;
  • Washing buffer B 20mM HEPES, 150mM NaCl, 0.5mM spermidine, 0.01% (w.t.) digitonin;
  • Washing buffer C 20mM HEPES, 150mM NaCl, 0.5mM spermidine, 0.01% (w.t.) digitonin and 0.1% Triton X-100;
  • Activation buffer 20mM HEPES, 10mM KCl, 1mM CaCl2, 1mM MnCl2
  • Antibody incubation buffer 20mM HEPES, 150mM NaCl, 0.5mM spermidine, 0.01% (w.t.) digitonin, 0.1% Triton X-100 and 2mM EDTA;
  • Single cell reaction buffer 25mM Mg2+, 50mM trimethylolmethylaminopropanesulfonic acid and 0.01% (w.t.) digitonin;
  • Single cell termination buffer 40mM EDTA.
  • Single cell lysis buffer 10mM Tris-HCl pH 8.5, 0.05% SDS, 0.1mg/ml proteinase K.
  • This embodiment provides a design and purification of ultra-high activity Tn5 (mutant Tn5 enhances enzyme activity) and ProteinA-Tn5 fusion protein.
  • the method has low cost and high protein production efficiency. The method includes the following steps:
  • Tn5E54K, L372P The nucleic acid sequence of mutant Tn5E54K, L372P (hereinafter referred to as Tn5) is cloned into the pET28 expression vector, as shown in Figure 2.
  • the mutant Tn5 in PAT has stronger adaptors binding ability, and the cleavage activity is increased by more than ten times.
  • the increased cleavage activity is beneficial to its application in various experiments and techniques.
  • Purification of PAT protein includes the following steps:
  • the fresh bacterial pellet is resuspended in 30ml of pre-cooled PBS, centrifuged at 4°C, 4500rpm for 10min, and the bacterial cells are collected.
  • Ultrasonic crushing Ultrasonic treatment conditions: 4s on, 8s off, 150 watts, working hours 5 minutes.
  • the PAT protein in the filtrate is purified by affinity chromatography, and the PAT protein containing high concentration of salt is dialyzed with a dialysis bag with a molecular weight cut-off of 10kD at 4°C for 12h.
  • the PAT was concentrated with an ultrafiltration tube with a cut-off volume of 30kD, and centrifuged at 4°C and 4000rpm to a volume of 500 ⁇ l.
  • the purified protein was analyzed by electrophoresis, and the results are shown in Figure 3 (we use BSA as a standard to quantify the concentration of the purified protein. Before quantification, first take 10 ⁇ l of the purified protein and dilute it 15 times, and then dilute the diluted protein Take 1 ⁇ l and 2 ⁇ l respectively to compare with the BSA standard for quantification.)
  • Obtaining the PAT fusion protein with good quality and high enzyme activity lays the foundation for the related applications of high-throughput single-cell sequencing.
  • the one-step affinity chromatography purification method we use PEI precipitation of bacterial DNA) is the most ideal choice.
  • the advantages of using this affinity chromatography to purify PAT are:
  • Linker serial number Linker type Linker sequence 1 Flexible (GGGGS) 2 Flexible (GGGGGG) 3 Flexible (GGGGGGGG) 3 rigidity (EAAAK) 4 Flexible (GGSDDDKEF) 5 Flexible (DDDKEF) 6 Flexible (GGSGGSDDDKEF) 7 Flexible (SSG) 8 rigidity (PAPAP) 9 rigidity (AAAKEAAAKA) 10 rigidity A(EAAAK) 4 ALEA(EAAAK) 4 A 11 Flexible (LGGGGSGGGGSGGGGSAAA) 12 rigidity (LAAA)
  • linker (-GGSDDDKEF-) sequence can protect the natural conformation of Protein A and Tn5, does not affect the enzyme activity of Tn5, and does not affect the recognition of the antibody by Protein A, as shown in the result of Figure 4 .
  • IP1 and IP2 refer to two parallels of an experiment. The last linker sequence we used is number 4 in Table 1).
  • the test method includes the following steps:
  • Tn5-pA2 Fusion of two IgG recognition domains derived from Staphylococcus pyogenes Protein A protein at the C-terminus of Tn5, and named Tn5-pA2.
  • PAT ChIP-seq method 1 (cells are not cross-linked and are in a natural state), including the following steps:
  • H3K4me3 antibody (Millipore, 04-745, Lot: 2872328), incubate at 4° C. for 30 minutes to make the antibody fully bind to the target protein.
  • the purified DNA is directly amplified by PCR with NEB Nextera index primers to complete the library construction.
  • PAT ChIP-seq method two cell cross-linking
  • Washing buffer 2 washes the cells 3 times to remove excess unbound PAT fusion protein.
  • the purified DNA is directly amplified by PCR with NEB Nextera index primers to complete the library construction.
  • the H3K27ac signal obtained by using ChIP-seq of the PAT fusion protein is more concentrated near TSS, showing a higher signal-to-noise ratio.
  • the signal of 2 is relatively weak in the promoter region.
  • PAT ChIP-seq method three including the following steps:
  • PAT and PAGT are used to perform ChIP of a small number of cells, and the function of the PAGT protein is verified according to the steps of the ChIP-seq detection method described in Example 3 above (as shown in Figures 9-10).
  • Example 5 High-throughput ChIP-seq detection method for PAT fusion protein (cells are not cross-linked and are in a natural state)
  • This embodiment provides a new single-cell Mosaic Truseq two-step PCR library preparation method, and the obtained single-cell library can use the Illumina standard sequencing method and platform. Compared with the customized single-cell sequencing method, Mosaic Truseq library only needs 1/15 of the sequencing cost.
  • the Mosaic Truseq library construction method includes the following steps (as shown in Figure 12):
  • the primer sequence is as follows:
  • the amplification procedure is: 72°C 5min, 98°C 30s, 13 cycles (98°C 10s+63°C 30s+72°C 1min), 72°C extension 5min.
  • the amplification procedure is: 98°C for 30s, 5 cycles (98°C for 10s+63°C for 30s+72°C for 1min), 72°C for 5min.
  • the high-throughput single-cell ChIP-seq technology of the present disclosure is applicable to all cell types (cultured cells or tissue-digested cells, etc.); applicable to formaldehyde cross-linking or cells in a natural state; Suitable for histone modification, DNA binding protein and transcription factor.
  • PAT and PAGT have constructed a complete set of options at the same time: not limited by the source of antibodies, not limited by the source of experimental samples, and not limited by experimental conditions, it is convenient to produce high-quality ChIP-seq libraries.
  • the operation method is the same, including the following steps:
  • wash protein G magnetic beads with low-salt washing buffer solution 3 times, 5min/time.
  • ChIP elution buffer 50mM Tris-HCl (pH 8.0), 10mM EDTA, 1% SDS;
  • ChIP dilution buffer 0.01% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl (pH 7.5), 150mM NaCl;
  • Low salt washing buffer 0.1% sodium deoxycholate, 1% Triton X-100, 2mM EDTA, 50mM HEPES (pH7.5), 150mM NaCl;
  • High-salt washing buffer 0.1% sodium deoxycholate, 1% TritonX-100, 2mM EDTA, 50mM HEPES (pH7.5), 500mM NaCl;
  • Nuclear lysis buffer 1% SDS, 10mM EDTA, 50mM Tris-HCl (pH8.0).
  • the fusion protein, kit, and method of the present disclosure can improve the efficiency of library construction and reduce the background of the library during the ChIP-seq detection process, thereby improving the accuracy of the ChIP-seq detection method and simplifying the experimental process of ChIP-seq.
  • the method of the present disclosure can perform in situ detection on tissue sections, cell smears and cell slides, without lysing cell nuclei and ultrasonically interrupting chromatin, and retaining the spatial resolution of the original sample.
  • the method of the present disclosure can realize single-cell ChIP-seq of multiple organs and multiple tissues, and can process multiple different tissue sources or cells in multiple different pathological states in parallel at the same time.
  • the method described in the present disclosure can quickly complete the preparation of single-cell ChIP-seq, which can be completed in a single day from the start of the experiment.
  • the method of the present disclosure can realize high-throughput single-cell ChIP-seq, and can obtain a ChIP-seq library of tens of thousands of single cells at a time.
  • the method described in the present disclosure does not need to use a specially customized high-cost single-cell library sequencing method, and uses a specially designed Mosaic Truseq two-step PCR library preparation method, and the obtained library can be performed using the illunima standard sequencing method and platform Sequencing.
  • the Mosaic Truseq library only needs 1/15 of the sequencing cost.
  • experimenters do not need to be proficient in professional sequencing knowledge to perform large-scale single-cell sequencing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用,其中,融合蛋白包括Tn5转座酶和Fc结合蛋白,试剂盒包括前述融合蛋白以及其他辅助检测试剂,方法使用前述融合蛋白或试剂盒进行ChIP-seq检测方法。其融合蛋白、试剂盒和方法在ChIP-seq检测过程中能够提高建库效率,降低文库背景,从而提高ChIP-seq检测方法的准确性并简化ChIP-seq的实验流程。

Description

一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用
相关申请的交叉引用
本申请要求于2019年08月01日提交中国专利局的申请号为2019107099330、名称为“一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于生物技术领域,具体而言,涉及一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用。
背景技术
随着基因测序的完成以及后基因组时代的到来,表观遗传学已经成为生物领域的研究热点。表观遗传学(epigenetics)主要研究在基因核苷酸序列不发生改变的情况下,DNA及有关蛋白分子发生的可遗传修饰,这些修饰可被细胞“记忆”并在随后的细胞分裂过程中保留下来,其研究方向包括:一是基因转录水平选择性表达的调控,二是基因转录后的调控。目前,表观遗传学的热点主要集中在基因转录水平选择性表达调控上,特别是转录因子与DNA的相互作用、DNA的甲基化和组蛋白修饰等。
染色质免疫共沉淀(Chromatin Immunoprecipitation,ChIP)也称结合位点分析法,其一般流程主要包括:(1)用甲醛将DNA和结合在所述DNA上的蛋白交联,染色体分离并打碎成一定大小的片段;(2)用特异性抗体免疫沉淀并富集目标蛋白与DNA交联的复合物;(3)采用低pH值条件反交联,释放DNA片段;(4)通过对DNA片段的纯化与检测,获得DNA与蛋白质相互作用的序列信息。由于ChIP技术能够研究蛋白质与DNA的相互作用,其被广泛应用表观遗传学领域,用于研究转录因子与DNA的相互作用、DNA甲基化和组蛋白修饰等。
随着新一代测序技术的发展,在ChIP技术的基础上发展出一种可在全基因组范围内研究蛋白质与DNA相互作用的技术——染色质免疫共沉淀-测序(即,ChIP-seq)。ChIP-seq技术包括染色质免疫共沉淀和高通量测序两部分,其中,先通过染色质免疫共沉淀技术特异性地富集目的蛋白结合的DNA,然后构建测序文库,采用新一代测序技术对富集得到的DNA片段进行高通量测序,最后通过将获得的数百万条序列标签精确定位到基因组上,从而获得全基因组范围内与目标蛋白相互作用的DNA区段信息。
目前,一种优化的并与本技术相关的一种ChIP-seq技术叫做“CUT&RUN(Cleavage Under Targets&Release Using Nuclease)”。所述CUT&RUN将Protein A与核酸酶MNase(Micrococcal Nuclease)融合,通过Protein A能特异与免疫球蛋白G结合的特性,ProteinA将MNase引入抗体(识别特异转录因子或者组蛋白修饰的抗体)结合的位点,通过MNase的核酸内切和外切酶活性,Protein A-MNase能特异将抗体结合的DNA两端切开,被切开的DNA片段从细胞核中释放出来,对这些DNA片段进行建库和测序分析,能在全基因组水平绘制特定蛋白与DNA相互作用图谱。
其具体技术方案如图1所示:Con A beads和细胞结合,加入识别特异转录因子的抗体,孵育一定时间,让抗体与转录因子充分结合,加入ProteinA-MNase融合蛋白,ProteinA-MNase能特异结合抗体结合的位点,然后加入Ca 2+离子激活MNase核酸酶的活性,ProteinA-MNase能特异将抗体结合的DNA的两端切开,终止MNase的反应之后,这些被切开的DNA片段从细胞核中释放出来,之后对这些DNA片段进行建库和二代测序分析,根据测序结果可以在全基因组水平绘制特定转录因子的结合图谱。
然而,目前通用的ChIP-seq技术存在以下缺陷:
1、建库效率低,导致做少量细胞时文库信息丢失严重
对Protein A-MNase切割后释放出来的DNA片段建库时,需要采用传统的TruSeq的建库策略,建库时Adaptor和DNA片段连接效率低。尤其以少量细胞为起始材料时,DNA片段在建库过程中丢失太多,最终导致文库主要信息丢失,实验失败几率高,也无法得到全基因组水平上的蛋白与DNA相互作用图谱。
2、文库背景较高
Protein A-MNase切割反应被终止后,所有小的DNA片段将从细胞核中释放出来,它们没有与转录因子或蛋白质结合。这些小片段,在建库过程中会被Adaptor连接,最后通过PCR扩增,形成高背景,降低了文库复杂度(complexity),导致实验失败。
3、现有的ChIP-seq技术无法对组织切片等进行原位检测,破坏其空间分辨率。
有鉴于此,本领域亟待提出一种能够有效提高文库建立的效率、降低文库背景以及能够实现原位检测的ChIP-seq技术。
发明内容
本公开首先涉及一种用于染色质免疫共沉淀-测序(ChIP-seq)建库的融合蛋白,所述的融合蛋白是 同源二聚体,其单体包括如下结构:
(1)第一功能嵌段:Tn5转座酶突变型;
(2)第二功能嵌段:金黄色葡萄球菌A蛋白(Protein A)、链球菌G蛋白(Protein G)或Protein A和Protein G的组合;
(3)各个功能嵌段的连接结构(Linker),蛋白纯化标签。
在一种或多种实施方式中,所述的Tn5转座酶突变型为在氨基酸序列如SEQ ID NO.1所示的野生型Tn5转座酶的氨基酸结构上进行如下点突变:E54K、L372P获得的Tn5转座酶突变型;
所述的Linker的氨基酸序列如SEQ ID NO.3所示;
所述的蛋白纯化标签为可通过亲和层析纯化的蛋白纯化标签。
在一种或多种实施方式中,所述的Tn5转座酶突变型为在野生型Tn5转座酶(氨基酸序列如SEQ ID NO.1所示)的氨基酸结构上进行如下点突变:E54K、L372P,所述的Tn5转座酶突变型的氨基酸序列如SEQ ID NO.2所示。
在一种或多种实施方式中,,通过氨基酸序列如SEQ ID NO.3所示的Linker连接所述融合蛋白的各个功能嵌段;
在一种或多种实施方式中,,所述的蛋白纯化标签为:-HIS标签、GST标签、MBP标签、SUMO标签、NusA标签、或直接利用Protein A标签和IgG蛋白的特异亲和性,用IgG磁珠进行纯化所述融合蛋白;
在一种或多种实施方式中,所述的第二功能嵌段连接在第一功能嵌段的氨基酸序列的N端(氮端);
在一种或多种实施方式中,所述的融合蛋白的单体为PAT或PAGT,PAT的氨基酸序列如SEQ ID NO.4所示,PAGT的氨基酸序列如SEQ ID NO.5所示。
本公开还涉及所述的融合蛋白在制备特定生物学样本的高通量测序文库中的应用,所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本,所述的高通量测序文库为染色质免疫共沉淀-测序(ChIP-seq)文库。
本公开还涉及使用所述的融合蛋白制备目标生物学样本的高通量测序文库的方法所述的制备特定生物学样本的高通量测序文库中的方法为:
(1)收集并处理目标生物学样本,获得单细胞悬液;
(2)用结合缓冲液重悬细胞,加入适量的特定蛋白结合抗体,使抗体充分结合后清洗除去未结合的抗体;
(3)重悬细胞,加入所述融合蛋白,使融合蛋白与抗体充分结合后除去未结合的融合蛋白;
(4)激活所述融合蛋白,充分反应获得被所述融合蛋白识别并切割的带有标记的DNA片段;
(5)加入终止缓冲液终止反应,用纯化试剂盒进行纯化DNA片段;
(6)加入引物进行PCR扩增完成建库,
所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本;
所述的高通量测序文库未染色质免疫共沉淀-测序(ChIP-seq)文库。
本公开还涉及使用所述的融合蛋白制备目标生物学样本的高通量测序文库的方法所述的制备特定生物学样本的高通量测序文库中的方法为:
(1)收集并处理目标生物学样本,获得单细胞悬液;
(2)用结合缓冲液重悬细胞,加入适量的特定蛋白结合抗体,使抗体充分结合后清洗除去未结合的抗体;
(3)重悬细胞,加入所述融合蛋白,使融合蛋白与抗体充分结合后除去未结合的融合蛋白;
(4)激活所述融合蛋白,充分反应获得被所述融合蛋白识别并切割的带有标记的DNA片段;
(5)加入终止缓冲液终止反应,用纯化试剂盒进行纯化DNA片段;
(6)加入引物进行PCR扩增完成建库。
在一种或多种实施方式中,所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本;
所述的高通量测序文库未染色质免疫共沉淀-测序(ChIP-seq)文库。
本公开还涉及一种用于构建高通量测序文库的试剂盒,所述的试剂盒包括:所述的融合蛋白及常规的建库过程所使用的样本洗涤缓冲液、结合缓冲液、激活缓冲液和建库引物等,所述的高通量测序文库为染色质免疫共沉淀-测序(ChIP-seq)文库。
与现有技术相比,本公开的有益效果为:
(1)本公开所述融合蛋白、试剂盒和方法在ChIP-seq检测过程中能够提高建库效率,降低文库背景,从而提高ChIP-seq检测方法的准确性并简化ChIP-seq的实验流程。
(2)本公开所述方法对Tn5转座酶和Fc结合蛋白的突变体、表达体系、纯化手段、抗体、融合蛋白的孵育条件以及切割反应的条件进行优化,提高抗体、融合蛋白的结合效率以及DNA切割的效率和准确性,从而降低文库的背景和分辨率;
(3)本公开所述方法能够对组织切片、细胞涂片和细胞爬片进行原位检测,不需要裂解细胞核以及超声打断染色质,保留原样本的空间分辨率。
(4)本公开所述方法能够实现多器官多组织的单细胞ChIP-seq,可以同时平行处理多种不同组织来源,或者多种不同病理状态下的细胞。
(5)本公开所述方法能够快捷的完成单细胞ChIP-seq的制备,从实验开始,单日便可完成。
(6)本公开所述方法能够实现高通量的单细胞ChIP-seq,能够一次获得成上万个单细胞的ChIP-seq文库。
(7)本公开所述方法不需要使用特殊定制的高成本的单细胞文库测序方法,使用特殊设计的Mosaic Truseq两步PCR的文库制备方法,得到的文库可以使用illunima标准的测序方法和平台进行测序。与特殊定制的单细胞测序方法相比,一方面,Mosaic Truseq文库只需要1/15的测序成本,另一方面,实验人员不需要精通专业的测序知识,即可进行大规模的单细胞测序。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1、ProteinA-MNase在ChIP-seq中的作用原理。
图2、PAT表达载体构建图谱。
图3、高纯PAT纯化结果。
图4、PAT与IgG结合验证实验。
图5、Protein A嵌段在Tn5嵌段的N端插入型融合蛋白(PA2-Tn5)产生高活性的PAT。
图6、自然状态(A)和交联状态(B)下,原位ChIP-seq(In situ-ChIP)和超声ChIP-seq(Sonicate ChIP)方法比较,H3K4me3在Pou5f1基因启动子区域,H3K27ac在Nanog基因增强子区域信号分布(IGV track示意图)。
图7、自然状态(A)和交联状态(B)下,原位ChIP-seq(In situ-ChIP)和超声ChIP-seq(Sonicate ChIP)方法比较,H3K4me3(A)和H3K27ac(B)在启动子区域的信号分布(热图),其中TSS表示转录起始位点。
图8、时空特异的原位ChIP。
图9、PAGT、PAT与传统ChIP的比较结果,H3K27ac在Pou5f1基因启动子区域的信号分布(IGV track显示图)。
图10、PAGT、PAT与传统ChIP的比较结果,H3K27ac在Pou5f1基因启动子区域的信号分布(热图)。
图11、高通量单细胞的ChIP-seq流程图。
图12、Mosaic Truseq两步PCR文库制备流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下述实施例中所涉及的融合蛋白PAT(ProteinA-Tn5)或融合蛋白PAGT(ProteinA-proteinG-Tn5),所用洗涤缓冲液1、洗涤缓冲液2、结合缓冲液、反应缓冲液和终止缓冲液的配方如下所示:
洗涤缓冲液1:50mM HEPES、150mM NaCl和0.5mM亚精胺;
洗涤缓冲液2:50mM HEPES、150mM NaCl、0.5mM亚精胺和0.01%(w.t.)毛地黄皂苷;
结合缓冲液:50mM Hepes、150mM NaCl、0.5mM亚精胺、0.01%(w.t.)毛地黄皂苷和5mM EDTA;
反应(激活)缓冲液:25mM Mg2+和50mM三羟甲基甲胺基丙磺酸;
终止缓冲液:100mM EDTA和1%(w.t.)SDS。
下述实施例5~6融合蛋白为Protein A-Tn5,所用洗涤缓冲液A、洗涤缓冲液B、洗涤缓冲液C、抗体孵育缓冲液等的配方如下所示(高通量单细胞专用):
洗涤缓冲液A:20mM HEPES、150mM NaCl和0.5mM亚精胺;
洗涤缓冲液B:20mM HEPES、150mM NaCl、0.5mM亚精胺,0.01%(w.t.)毛地黄皂苷;
洗涤缓冲液C:20mM HEPES、150mM NaCl、0.5mM亚精胺,0.01%(w.t.)毛地黄皂苷和0.1%Triton  X-100;
激活缓冲液:20mM HEPES、10mM KCl、1mM CaCl2、1mM MnCl2
抗体孵育缓冲液:20mM HEPES、150mM NaCl、0.5mM亚精胺,0.01%(w.t.)毛地黄皂苷、0.1%Triton X-100和2mM EDTA;
单细胞反应缓冲液:25mM Mg2+、50mM三羟甲基甲胺基丙磺酸和0.01%(w.t.)毛地黄皂苷;
单细胞终止缓冲液:40mM EDTA。
单细胞分选缓冲液:2%BSA/PBS+2mM EDTA
单细胞裂解缓冲液:10mM Tris-HCl pH 8.5,0.05%SDS,0.1mg/ml蛋白酶K。
实施例1、高活性ProteinA-Tn5(PAT蛋白)的设计、表达及纯化
本实施例提供一种超高活性Tn5((突变型Tn5提升酶活)及ProteinA-Tn5融合蛋白的设计及纯化,本方法成本低,蛋白生产效率高,所述方法包括以下步骤:
1、ProteinA-Tn5融合蛋白(PAT)的设计
1)将突变型Tn5E54K,L372P(以下简称Tn5)的核酸序列克隆到pET28表达载体,如图2所示。
2)连接上2xProtein A的IgG识别结构域。
3)通过Sanger测序,确保编码区的真实性。
相比野生型Tn5,PAT中的突变型的Tn5具有更强的adaptors结合能力,切割活性提高十倍以上,切割活性的提高有利于其应用到各种实验和技术当中。
2、PAT蛋白的纯化,所述方法包括以下步骤:
1)将测序正确的由上述步骤1获得的PAT表达质粒转入BL21(ED3)表达菌中。
2)在10ml LB培养中添加终浓度为1μg/ml的卡拉霉素,并且接种一个表达PAT的单克隆,37℃,220rpm,过夜培养。
3)将过夜培养的菌液(10ml)直接按1/100接种到新鲜LB培养基中,37℃,220rpm。
4)约培养3h左右,在冰水中冷却,冷却约15min后添加终浓度为0.2mM的IPTG。
5)23℃,100rpm,诱导5h,4℃,4500rpm离心10min收集菌体。
6)新鲜的菌体沉淀用30ml预冷的PBS重悬,4℃,4500rpm离心10min,收集菌体。
7)用20ml HGX缓冲液(cocktail+PMSF)重悬菌体,充分混匀。
8)超声波破碎:超声波处理条件:4s on,8s off,150瓦特,工时5min。
9)4℃,12000rpm离心30min,留上清液,并用0.22um滤膜过滤,除去少量菌体。
10)在20ml上清液中加入100μl 10%的PEI,充分混匀沉淀细菌DNA,在冰上静置10分钟。
11)4℃,12000rpm离心10min,留上清液,并用0.22um滤膜过滤。
12)滤液中的PAT蛋白通过亲和层析纯化,并用截留分子量为10kD的透析袋透析含有高浓度盐的PAT蛋白,4℃,12h。
13)透析完后,用截留分量为30kD的超滤管浓缩PAT,4℃,4000rpm离心至体积为500μl。
14)加入500μl的100%甘油,轻轻混匀,-20℃保存。
对纯化好的蛋白进行电泳分析,结果如图3所示(我们利用BSA为标准品来定量纯化好的蛋白浓度。定量之前,先取10μl纯化好的蛋白进行15倍稀释,然后将稀释好的蛋白分别取1μl和2μl与BSA标准品进行比较从而定量。)获得质量好酶活高的PAT融合蛋白为高通量单细胞测序的相关应用奠定了基础,我们使用的一步亲和层析纯化方式(PEI沉淀细菌DNA)是最理想的选择。利用该亲和层析纯化PAT的优势是:
1步骤简便,可操作性强,所需时间短;
2产量高;
3蛋白纯化费用少;
4可放大纯化规模。
我们纯化的PAT无细菌DNA残留,一步纯化的纯度达到95%以上,PAT的产量可以达到14mg/L培养基,足够进行100万个单细胞文库的制备。
实施例2、PAT融合蛋白各个功能嵌段的优化
一、linker序列的优化筛选
选择特异的linker(-GGSDDDKEF-)序列连接PAT的不同功能片段,能够保护ProteinA和Tn5的天然构象,从而获得活性更好的融合蛋白。
连接不同linker的融合蛋白的的方法和活性验证的步骤如下:
1、在Tn5的原有序列上连上2xProtein A(IgG识别序列)时,通过PCR引入不同的linker序列(见表1,共10种linker序列)。
表1 不同linker序列
Linker序号 Linker类型 Linker序列
1 柔性 (GGGGS)
2 柔性 (GGGGGG)
3 柔性 (GGGGGGGG)
3 刚性 (EAAAK)
4 柔性 (GGSDDDKEF)
5 柔性 (DDDKEF)
6 柔性 (GGSGGSDDDKEF)
7 柔性 (SSG)
8 刚性 (PAPAP)
9 刚性 (AAAKEAAAKA)
10 刚性 A(EAAAK) 4ALEA(EAAAK) 4A
11 柔性 (LGGGGSGGGGSGGGGSAAA)
12 刚性 (LAAA)
2、按照实施例1所述的方法获得通过不同linker连接的PAT,随后对其进行功能鉴定,方法如下:
1)取10μl IgG beads,用200μl HGX缓冲液洗涤三次,4℃,2000g离心3min。
2)加入6μg Tn5(没有融合Protein A)或PAT(融合Protein A),放大到100μl体系,4℃,孵育1h。
3)用200μl HGX缓冲液漂洗三次,4℃,2000g离心3min,弃掉上清。
4)用20μl 0.5M HAc(pH 3.4)洗脱Tn5或PAT,用1M NaOH调节pH至7.2。
5)4%-7.5%SDS-PAGE检测,
我们进行了一组的IP(蛋白质免疫沉淀)对照试验,检测结果如图4所示,每组做了两个平行,当没有融合Protein A的Fc结构域时,Tn5不能被IgG beads特异捕获,Tn5蛋白最后全出现在废液中(post-SN),当Tn5融合Protein A的Fc结构域时并以linker(-GGSDDDKEF-)序列连接时,PAT全部被IgG beads捕获,证明Protein A可以高效(效率为98%)的识别IgG。
通过添加的linker筛查证明,linker(-GGSDDDKEF-)序列可以保护Protein A和Tn5的天然构象,不影响Tn5的酶活,并且不影响Protein A蛋白对抗体的识别,如图4的结果所示。(见下方结果描述,IP1和IP2指的是一个实验的两个平行,我们最后所使用的linker序列在表1中是编号4)。
通过上述筛选,最后确定在保护Protein A和Tn5的天然构象以及维持Tn5超高酶活方面有着特殊优势。
二、Protein A和Tn5嵌段的融合方式对PAT活性的影响试验
所述试验方法包括以下步骤:
1)在Tn5的N端融合两个来源于金黄色酿脓葡萄球菌Protein A蛋白的IgG识别结构域,,并命名为pA2-Tn5。
2)在Tn5的C端融合两个来源于金黄色酿脓葡萄球菌Protein A蛋白的IgG识别结构域,并命名为Tn5-pA2。
3)将纯化完的pA2-Tn5和Tn5-pA2装配上反应接头(连上切割adaptors)。
4)取500ng的小鼠基因组作为反应底物,用不同浓度的pA2-Tn5和Tn5-pA2,55℃反应10min。
5)用stopping缓冲液终止反应,55℃反应5min,经1.5%琼脂糖凝胶电泳检测,如图5所示。
通过实验比较,如图5的结果所示,随着加入的PAT量的增加,酶切产生的DNA片段越来越小,并且当Protein A的编码序列添加在Tn5的N端时(pA2-Tn5),纯化出的Tn5酶活更高,是C端融合Protein A(Tn5-pA2)酶活的16.7倍,我们将酶活更高的pA2-Tn5统一简称为PAT。实施例3、自然状态和细胞交联ChIP-seq方法验证PAT活性
1、PAT ChIP-seq方法一(细胞不交联,处于自然状态),包括以下步骤:
1)收集约1,000,000个体外培养的胚胎干细胞,用PBS洗2次,离心收集细胞后用洗涤缓冲液1洗3次。
2)用结合缓冲液重悬细胞,加入适量的抗体,所述抗体为H3K4me3抗体(Millipore,04-745,Lot:2872328),在4℃孵育30min,使抗体与目标蛋白充分结合。
3)用洗涤缓冲液2洗涤细胞3次,除去多余没有结合的抗体。
4)用洗涤缓冲液2重悬细胞,之后加入PAT融合蛋白,在4℃孵育30min,使得融合蛋白与抗体充分结合。
5)用洗涤缓冲液2洗涤细胞3次以除去多余的PAT融合蛋白。
6)加入反应缓冲液,激活PAT融合蛋白的活性,为降低反应背景,在4℃下进行反应,反应30min。
7)加入终止缓冲液终止反应,反应终止后,用QIAGEN DNA纯化试剂盒进行纯化。
8)纯化好的DNA直接用NEB Nextera index引物进行PCR扩增完成建库。
9)将完成建库的文库用于二代测序。
检测上述方法和下述对比例1(基于普通超声波的H3K4me3Sonicate ChIP-seq)所述方法的文库背景,具体检测结果详见图6-A和图7-A。
根据图6-A(Rep1和Rep2是两个实验重复)的实验结果可知,使用所述PAT融合蛋白的ChIP-seq能够获得与对比例1所述超声ChIP-Seq基本相同的阳性信号,同时,其背景信号(如图6-A所示的阴影部分)要明显低于对比例1。
根据图7-A所示结果可知,与对比例1相比,使用所述PAT融合蛋白的ChIP-seq获得的H3K4me3信号在TSS附近更为集中,表现出更高的信噪比,而对比例1的信号在启动子区域比较分散。
2、PAT ChIP-seq方法二(细胞交联),包括以下步骤:
1)收集1,000,000个胚胎干细胞,用1%甲醛室温交联3-10min,甘氨酸中和后用PBS洗3次。
2)用含0.3%SDS的低渗溶液重悬细胞,37℃孵育30min使染色质充分打开。
3)离心去掉上清。
4)用结合缓冲液洗涤细胞1次,然后用结合缓冲液重悬细胞并加入抗体,所述抗体为H3K27ac抗体,在4℃孵育30min使抗体与蛋白充分结合。
5)洗涤缓冲液2洗涤细胞3次,除去多余没有结合的抗体。
6)用洗涤缓冲液2重悬细胞,之后加入PAT融合蛋白,4℃孵育30min,使得融合蛋白与抗体充分结合。
7)洗涤缓冲液2洗涤细胞3次以除去多余的没有结合的PAT融合蛋白。
8)加入反应缓冲液,激活PAT融合蛋白的活性,为降低反应背景,在4℃下进行反应,反应30min。
9)加入终止缓冲液终止反应,反应终止后,用QIAGEN DNA纯化试剂盒进行纯化。
10)纯化好的DNA直接用NEB Nextera index引物进行PCR扩增完成建库。
11)将完成建库的文库用于二代测序。
检测上述方法和下述对比例2(基于普通超声波的H3K27ac Sonicate ChIP-seq)所述方法的文库背景,具体检测结果详见图6-B和图7-B。
根据图6-B(Rep1和Rep2是两个实验重复)的实验结果可知,使用所述PAT融合蛋白的ChIP-seq能够获得与对比例2所述超声ChIP-Seq基本相同的阳性信号,同时,其背景信号(如图6-B所示的阴影部分)要明显低于对比例2。
根据图7-B所示结果可知,与对比例2相比,使用所述PAT融合蛋白的ChIP-seq获得的H3K27ac信号在TSS附近更为集中,表现出更高的信噪比,而对比例2的信号在启动子区域比较弱。
结果显示:将自然状态下H3K4Me3 In situ-ChIP-seq,以及交联状态下H3K27ac In situ-ChIP-seq分别与对应的传统Sonication ChIP-seq比较,可以得出PAT构建出的文库质量显然都要比传统的方法好,信噪比更强。
3、PAT ChIP-seq方法三(原位组织切片),包括以下步骤:
1)PBS洗涤组织切片3次,然后用洗涤缓冲液1洗涤切片3次。
2)用结合缓冲液洗涤切片一次,用结合缓冲液覆盖组织切片,加入抗体,所述抗体为H3K4Me3抗体,在4℃孵育1h使抗体与蛋白充分结合。
3)洗涤缓冲液2洗涤切片3次,除去多余没有结合的抗体。
4)用洗涤缓冲液2覆盖组织切片,之后加入PAT融合蛋白,4℃孵育30min,使得融合蛋白与抗体充分结合。
5)洗涤缓冲液2洗涤切片3次以除去多余的PAT融合蛋白。
6)加入反应缓冲液,激活PAT融合蛋白的活性,为降低反应背景,在4℃下进行反应,反应30min。
7)加入终止缓冲液终止反应,反应终止后直接加入NEB Nextera index引物和等温DNA聚合酶(如 Phi29DNA聚合酶)在一定温度下进行PCR扩增建库。
8)PCR完成后,将DNA洗脱下来,用AMP beads进行纯化完成建库。
9)建库完成的文库直接用于二代测序。
结果如图8所示,我们对早期E7.75的胚胎进行组织切片(图8-A),利用本公开的原位ChIP-seq(图8-B),从空间位置上探索了重要转录因子周围的H3K4me3在胚胎发育早期(原肠运动)的动态变化(图8-C)。这项技术的实现有利于我们对细胞或组织本身进行直接操作,屏蔽了外界条件造成的背景干扰,真正能够做到探求细胞内最真实的生命调控过程。
实施例4、PAGT融合蛋白的构建及功能验证
本实施例提供一种PAT融合蛋白的改进方案,由于Protein G对来源于小鼠的IgG有极高的亲和能力,因此,我们进一步开发出PAGT融合蛋白,在PAT中进一步融合Protein G蛋白的IgG识别结构域,丰富了抗体来源的多样性:
一、PAGT蛋白的构建
在Tn5的N端连上Protein A和Protein G的IgG识别结构域(单体顺序连接两个蛋白,从N端到C端顺序依次是2xProtein A,Protein G,Tn5,然后构成同源二聚体,各个功能嵌段的linker和PAT的一致,linker序列都为-GGSDDDKEF-),具体的连接质粒的构建及蛋白纯化方法同实施例1。
二、PAGT蛋白的功能验证
利用PAT和PAGT进行少量细胞的ChIP,按照上述实施例3所述的ChIP-seq检测方法的步骤对所述PAGT蛋白的功能进行验证(如图9-10所示)。
结果显示:通过H3K27ac(abcam 4729,GR3216173-1)ChIP-seq的实验比较,PAGT与PAT构建出的文库质量显然都要比传统的方法好,信噪比更强,并且PAGT和PAT构建出的文库质量没有明显差异。
实施例5、PAT融合蛋白进行高通量ChIP-seq检测方法(细胞不交联,处于自然状态)
包括以下步骤:
1)收集约200,000个体外培养的胚胎干细胞,用PBS洗2次,离心收集细胞后用洗涤缓冲液A洗1次。
2)用1ml洗涤缓冲液A重悬,加入10μl经激活缓冲液激活的ConA beads,室温反应10min,回收细胞,弃掉上清。
3)用100μl洗涤缓冲液C重悬细胞,加入适量的抗体(一般0.5μg/100ul),所述抗体为H3K27ac抗体(abcam 4729,GR3216173-1,该抗体须全程添加去乙酰化酶抑制剂),在4℃孵育4h,使抗体与目的蛋白充分结合。
4)用洗涤缓冲液B洗涤细胞2次,除去多余没有结合的抗体。
5)用1%BSA/PBS液重悬细胞。
6)准备一个96孔板,用洗涤缓冲液C配制终浓度为3μg/ml T5/T7 barcoded PAT,每一个孔中都加入100μl如图11。
7)结合有ConA beads的细胞经FACS分选进上述96孔板,每孔2000个细胞,在4℃孵育1h,使得PAT与抗体充分结合。
8)弃掉每孔的PAT,用180μl洗涤缓冲液C洗涤细胞2次以除去多余的融合蛋白。
9)加入10μl单细胞反应缓冲液,激活融合蛋白的活性,为降低反应背景,在25℃下进行反应,反应60min。
10)加入10μl单细胞终止缓冲液终止反应,室温15min。
11)反应终止后,每孔加入20μl单细胞分选缓冲液,合并所有的孔,经DAPI冰上染色15min。
12)经30μm的过滤筛过滤,除掉细胞团块,回收细胞。
13)用适量的单细胞分选缓冲液重悬细胞。
14)再准备一个96孔板,每孔加入4μl单细胞裂解缓冲液,结合有ConA beads的细胞经FACS分选进上述96孔板,每孔20个细胞。
15)于65℃反应6h,反应完全后于85℃,15min失活蛋白酶K。
16)每孔加入1μl 1.8%tritonX-100,37℃反应60min。
17)采用Mosaic Truseq建库方法进行原管建库(Mosaic Truseq建库流程如图12所示)
实施例6、PAT融合蛋白进行高通量ChIP-seq检测方法(细胞交联)
包括以下步骤:
1)收集200,000个胚胎干细胞,1%甲醛室温交联3min,甘氨酸中和后用PBS洗3次。
2)用200μl含0.3%SDS的低渗溶液重悬细胞,于62℃孵育10min使染色质充分打开。
3)加入20μl 20%Triton X-100,37℃,孵育60min。
4)加入1ml洗缓冲液A,加入10μl经激活缓冲液激活的ConA beads,室温反应10min,回收细胞,弃掉上清。
5)用100μl洗涤缓冲液C重悬细胞,加入适量的抗体(一般0.5μg/100ul),所述抗体为H3K27ac抗体(该抗体须全程添加去乙酰化酶抑制剂),在4℃孵育4h,使抗体与目的蛋白充分结合。
6)用洗涤缓冲液B洗涤细胞2次,除去多余没有结合的抗体。
7)用1%BSA/PBS液重悬细胞。
8)准备一个96孔板,用洗涤缓冲液C配制终浓度为3μg/ml T5/T7 barcoded PAT,每一个孔中都加入100μl如图11。,
9))结合有ConA beads的细胞经FACS分选进上述96孔板,每孔2000个细胞,在4℃孵育1h,使得PAT与抗体充分结合。
10)弃掉每孔的PAT,用180μl洗涤缓冲液C洗涤细胞2次以除去多余的融合蛋白。
11)加入10μl单细胞反应缓冲液,激活融合蛋白的活性,为降低反应背景,在37℃下进行反应,反应60min。
12)加入10μl单细胞终止缓冲液终止反应,室温15min。
13)反应终止后,每孔加入20μl单细胞分选缓冲液,合并所有的孔,经DAPI冰上染色15min。
14)经30μm的过滤筛过滤,除掉细胞团块,回收细胞。
15)用适量的单细胞分选缓冲液重悬细胞。
16)再准备一个96孔板,每孔加入4μl单细胞裂解缓冲液,结合有ConA beads的细胞经FACS分选进上述96孔板,每孔20个细胞。
17)于65℃反应6h,反应完全后于85℃,15min失活蛋白酶K。
18)每孔加入1μl 1.8%tritonX-100,37℃反应60min。
19)采用Mosaic Truseq建库方法进行原管建库。
实施例7、单细胞Mosaic Truseq两步PCR文库制备方法
本实施例提供一种新的单细胞Mosaic Truseq两步PCR的文库制备方法,得到的单细胞文库可以使用illumina标准测序方法和平台。与特殊定制的单细胞测序方法相比,Mosaic Truseq文库只需要1/15的测序成本。所述Mosaic Truseq建库方法包括以下步骤(如图12所示):
1)按照如下体系配制PCR反应体系:
细胞裂解物 5μl
5X Q5 reaction buffer 10μl
5X Q5 high GC enhancer 10μl
10mM(each)dNTP 1μl
20mg/ml BSA 0.5μl
Primer F1st/R1st Mix(50uM) 0.5μl
1mM MgCl2 23μl
Q5 polymerase 0.3μl
引物序列如下:
F1st—ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGTCGGCAGCGTCTCCACGC(SEQ ID NO.6)
R1st--GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTCTCGTGGGCTCGGCTGTCCCTGT(SEQ ID NO.7)
扩增程序为:72℃ 5min,98℃ 30s,13个循环(98℃ 10s+63℃ 30s+72℃ 1min),72℃延伸5min.
2)每孔加入0.5μl 20U/μl Exo I(NEB M0293S),37℃孵育30min,72℃孵育20min失活Exo I。
3)每孔加入1μl 25uM 5’index(Truseq P5index)和1μl 25uM 3’index(Truseq P7index),8μl反应混合液。
上一轮产物 50μl
5X Q5 reaction buffer 2μl
5X Q5 high GC enhancer 2μl
10mM(each)dNTP 0.5μl
Primer(5’和3’index) 各1μl
1mM MgCl2 3.4μl
Q5 polymerase 0.1μl
扩增程序为:98℃ 30s,5个循环(98℃ 10s+63℃ 30s+72℃ 1min),72℃延伸5min.
4)PCR进行完之后,混合96孔板的96孔,通过柱纯化,60μl elution buffer洗脱DNA。
5)用1.0x Ampure XP-beads纯化一次,用(0.5+0.5)x Ampure XP-beads做一次size selection,最后用20μl H2O溶解DNA。
6)illunima测序平台双端150bp测序。
不仅仅限于少量细胞,本公开的高通量单细胞ChIP-seq技术适用于所有的细胞类型(培养的细胞或组织消化的细胞等均可);适用于甲醛交联或自然状态下的细胞;适用于组蛋白修饰,DNA结合蛋白和转录因子。总之,PAT和PAGT同时构建了一套完整的选择方案:不受抗体来源限制,不受实验样品来源限制,不受实验条件限制,可以很方便的制作出高质量的ChIP-seq文库。
对比例1&2、基于普通超声波的ChIP-seq
对比例1、基于普通超声波的H3K4me3 ChIP-seq(H3K4me3 sonication ChIP)
对比例2、基于普通超声波的H3K27ac ChIP-seq(H3K27ac sonication ChIP)
操作方法相同,包括如下步骤:
1)收集1,000,000个体外培养的细胞,用甲醛室温交联10min,用甘氨酸中和后用PBS洗涤细胞3次,然后用液氮速冻。
2)用1ml低渗溶液(加蛋白酶抑制剂)将细胞悬起,在冰上孵育15min。
3)用玻璃Dounce pestle B将细胞混10-20次使细胞进一步分散,并将细胞破碎。
4)4℃,3000rpm离心5min以收集细胞核。
5)用100μl细胞核裂解液(含1%SDS)重悬细胞核,轻轻混匀,4℃孵育30min以充分裂解细胞核。
6)孵育后,简单离心,然后加ChIP稀释缓冲液稀释SDS浓度到0.3%,轻轻混匀。
7)超声(Q800R2):时间:6min;程序:15s on,45s off;能量:600瓦特。
8)超声后,加入ChIP稀释缓冲液,混匀后4℃,20,000离心20min,将上清转移至新的EP管中。
9)准备70μl Protein G,用1%BSA/PBS洗3次,然后分20μl protein G磁珠加入到步骤8)到上清中,4℃孵育1个小时,以去除非一些特异结合的蛋白。分别加入5μg H3K4me3和5μg H3K27ac抗体到染色体上清中,同时加入1ml 1%BSA/PBS到剩余的50μl protein G磁珠中,4℃过夜。
10)1h后,用磁力架收集protein G磁珠,转移上清到一个新的EP管中,加入抗体,4℃孵育过夜。
11)第二天,将封闭过夜的protein G磁珠转移到染色质-抗体的混合液中,4℃孵育4h。
12)洗protein G磁珠。
13)用磁力架收集磁珠,然后进行如下洗涤过程。
a.4℃,用高盐洗涤缓冲液洗涤protein G磁珠1次,5min/次。
b.4℃,用低盐洗涤缓冲液溶液洗涤protein G磁珠3次,5min/次。
c.4℃,用1ml 1×TE溶液简单洗涤磁珠1次。
d.4℃,用800μl 1×TE溶液简单洗涤磁珠1次,然后转移到一个新的EP管中。
14)去除残留的液体,然后加入110μl ChIP洗脱缓冲液洗脱磁珠上的DNA,将ChIP洗脱缓冲液和磁珠在70℃孵育过夜。
15)第三天,用磁力架将上清转移到一个新的EP管中,然后加入100μl TE溶液再次洗脱磁珠上的DNA,将第二次洗脱的TE溶液和第一次的洗脱ChIP elution buffer结合在一起,加入3μl 10mg/ml蛋白酶K,55℃孵育6-8h。
16)第四天,用QIAGEN DNA纯化试剂盒纯化ChIPed DNA。
17)纯化完的DNA用“NEBNext Ultra DNA library Prep Kit for Illumina”试剂盒进行常规建库,常规建库过程需要1天。
18)将建库好的文库进行二代测序。
试剂配方:
ChIP洗脱缓冲液:50mM Tris-HCl(pH 8.0),10mM EDTA,1%SDS;
ChIP稀释缓冲液:0.01%SDS,1%Triton X-100,2mM EDTA,20mM Tris-HCl(pH 7.5),150mM NaCl;
低盐洗涤缓冲液:0.1%脱氧胆酸钠,1%Triton X-100,2mM EDTA,50mM HEPES(pH7.5),150mM NaCl;
高盐洗涤缓冲液:0.1%脱氧胆酸钠,1%TritonX-100,2mM EDTA,50mM HEPES(pH7.5),500mM NaCl;
核裂解缓冲液:1%SDS,10mM EDTA,50mM Tris-HCl(pH8.0)。
最后应说明的是:以上各实施例仅用做帮助本领域技术人员理解本公开的实质,不作为对本公开保护范围的限定。
工业实用性
(1)本公开所述融合蛋白、试剂盒和方法在ChIP-seq检测过程中能够提高建库效率,降低文库背景,从而提高ChIP-seq检测方法的准确性并简化ChIP-seq的实验流程。
(2)本公开所述方法对Tn5转座酶和Fc结合蛋白的突变体、表达体系、纯化手段、抗体、融合蛋白的孵育条件以及切割反应的条件进行优化,提高抗体、融合蛋白的结合效率以及DNA切割的效率和准确性,从而降低文库的背景和分辨率;
(3)本公开所述方法能够对组织切片、细胞涂片和细胞爬片进行原位检测,不需要裂解细胞核以及超声打断染色质,保留原样本的空间分辨率。
(4)本公开所述方法能够实现多器官多组织的单细胞ChIP-seq,可以同时平行处理多种不同组织来源,或者多种不同病理状态下的细胞。
(5)本公开所述方法能够快捷的完成单细胞ChIP-seq的制备,从实验开始,单日便可完成。
(6)本公开所述方法能够实现高通量的单细胞ChIP-seq,能够一次获得成上万个单细胞的ChIP-seq文库。
(7)本公开所述方法不需要使用特殊定制的高成本的单细胞文库测序方法,使用特殊设计的Mosaic Truseq两步PCR的文库制备方法,得到的文库可以使用illunima标准的测序方法和平台进行测序。与特殊定制的单细胞测序方法相比,一方面,Mosaic Truseq文库只需要1/15的测序成本,另一方面,实验人员不需要精通专业的测序知识,即可进行大规模的单细胞测序。

Claims (13)

  1. 一种用于染色质免疫共沉淀-测序(ChIP-seq)建库的融合蛋白,所述的融合蛋白是同源二聚体,其单体包括如下结构:
    (1)第一功能嵌段:Tn5转座酶突变型;
    (2)第二功能嵌段:金黄色葡萄球菌A蛋白(Protein A)、链球菌G蛋白(Protein G)或Protein A和Protein G的组合;
    (3)各个功能嵌段的连接结构(Linker),蛋白纯化标签。
  2. 根据权利要求1所述的融合蛋白,其特征在于,
    所述的Tn5转座酶突变型为在氨基酸序列如SEQ ID NO.1所示的野生型Tn5转座酶的氨基酸结构上进行如下点突变:E54K、L372P获得的Tn5转座酶突变型;
    所述的Linker的氨基酸序列如SEQ ID NO.3所示;
    所述的蛋白纯化标签为可通过亲和层析纯化的蛋白纯化标签。
  3. 根据权利要求1所述的融合蛋白,其特征在于,所述的Tn5转座酶突变型为在野生型Tn5转座酶,其氨基酸序列如SEQ ID NO.1所示,的氨基酸结构上进行如下点突变:E54K、L372P,所述的Tn5转座酶突变型的氨基酸序列如SEQ ID NO.2所示。
  4. 根据权利要求3所述的融合蛋白,其特征在于,通过氨基酸序列如SEQ ID NO.3所示的Linker连接所述融合蛋白的各个功能嵌段。
  5. 根据权利要求3所述的融合蛋白,其特征在于,所述的蛋白纯化标签为:-HIS标签、GST标签、MBP标签、SUMO标签、NusA标签、或直接利用Protein A标签和IgG蛋白的特异亲和性,用IgG磁珠进行纯化所述融合蛋白。
  6. 根据权利要求4所述的融合蛋白,其特征在于,所述的蛋白纯化标签为:-HIS标签、GST标签、MBP标签、SUMO标签、NusA标签、或直接利用Protein A标签和IgG蛋白的特异亲和性,用IgG磁珠进行纯化所述融合蛋白。
  7. 根据权利要求1-6中任一所述的融合蛋白,其特征在于,所述的第二功能嵌段连接在第一功能嵌段的氨基酸序列的N端(氮端)。
  8. 根据权利要求1-7中任一所述的融合蛋白,其特征在于,所述的融合蛋白的单体为PAT或PAGT,
    所述的PAT的氨基酸序列如SEQ ID NO.4所示,
    所述的PAGT的氨基酸序列如SEQ ID NO.5所示。
  9. 权利要求1-8任一所述的融合蛋白在制备目标生物学样本的高通量测序文库中的应用,
    所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本;
    所述的高通量测序文库为染色质免疫共沉淀-测序(ChIP-seq)文库。
  10. 使用权利要求1-8任一所述的融合蛋白制备目标生物学样本的高通量测序文库的方法,所述方法包括如下步骤:
    (1)收集并处理目标生物学样本,获得单细胞悬液;
    (2)用结合缓冲液重悬细胞,加入适量的特定蛋白结合抗体,使抗体充分结合后清洗除去未结合的抗体;
    (3)重悬细胞,加入所述融合蛋白,使融合蛋白与抗体充分结合后除去未结合的融合蛋白;
    (4)激活所述融合蛋白,充分反应获得被所述融合蛋白识别并切割的带有标记的DNA片段;
    (5)加入终止缓冲液终止反应,用纯化试剂盒进行纯化DNA片段;
    (6)加入引物进行PCR扩增完成建库;
    所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本;
    所述的高通量测序文库未染色质免疫共沉淀-测序(ChIP-seq)文库。
  11. 使用权利要求1-8任一所述的融合蛋白制备目标生物学样本的高通量测序文库的方法,所述方法包括如下步骤:
    (1)收集并处理目标生物学样本,获得单细胞悬液;
    (2)用结合缓冲液重悬细胞,加入适量的特定蛋白结合抗体,使抗体充分结合后清洗除去未结合的抗体;
    (3)重悬细胞,加入所述融合蛋白,使融合蛋白与抗体充分结合后除去未结合的融合蛋白;
    (4)激活所述融合蛋白,充分反应获得被所述融合蛋白识别并切割的带有标记的DNA片段;
    (5)加入终止缓冲液终止反应,用纯化试剂盒进行纯化DNA片段;
    (6)加入引物进行PCR扩增完成建库。
  12. 根据权利要求11所述的方法,其特征在于,所述的生物学样本包括但不限于:未经交联或固定/经过交联或固定培养细胞样本、新鲜组织/经过交联或固定的组织样本;
    所述的高通量测序文库未染色质免疫共沉淀-测序(ChIP-seq)文库。
  13. 一种用于构建高通量测序文库的试剂盒,所述的试剂盒包括:
    (1)权利要求1-8任一所述的融合蛋白;
    (2)常规的建库过程所使用的样本洗涤缓冲液、结合缓冲液、激活缓冲液和建库引物等;
    所述的高通量测序文库为染色质免疫共沉淀-测序(ChIP-seq)文库。
PCT/CN2020/102513 2019-08-01 2020-07-17 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用 WO2021017883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910709933.0A CN110372799B (zh) 2019-08-01 2019-08-01 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用
CN201910709933.0 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021017883A1 true WO2021017883A1 (zh) 2021-02-04

Family

ID=68257699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102513 WO2021017883A1 (zh) 2019-08-01 2020-07-17 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用

Country Status (2)

Country Link
CN (1) CN110372799B (zh)
WO (1) WO2021017883A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785283A (zh) * 2022-11-02 2023-03-14 武汉影子基因科技有限公司 PAG-Tn5突变体及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372799B (zh) * 2019-08-01 2020-06-09 北京大学 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用
CN110950969B (zh) * 2019-12-23 2021-03-30 北京全式金生物技术有限公司 一种具有免疫球蛋白结合能力的融合蛋白
CN112391443B (zh) * 2020-11-19 2022-02-18 中国科学院广州生物医药与健康研究院 一种原位活性R-loop建库和检测方法以及试剂盒
CN113717256B (zh) * 2020-11-19 2023-10-03 中国科学院广州生物医药与健康研究院 一种融合蛋白及其应用
CN113322254B (zh) * 2021-01-06 2022-05-20 南京诺唯赞生物科技股份有限公司 多靶点蛋白质-dna相互作用的研究方法和工具
CN113005145B (zh) * 2021-03-09 2022-10-14 同济大学 不依赖于特异性抗体的捕获tf在全基因组上结合位点的方法
CN113136374B (zh) * 2021-04-25 2022-10-21 福建农林大学 一种重组突变型Tn5转座酶的制备及应用
CN113304279B (zh) * 2021-04-30 2022-12-06 苏州有诺真生物科技有限公司 一种定点偶联抗体与效应分子的方法及其桥接分子
CN113698496B (zh) * 2021-08-27 2023-03-28 中国科学院深圳先进技术研究院 临近标记复合物、临近标记方法、分子间互作分析方法
CN114106196A (zh) * 2021-10-29 2022-03-01 陈凯 抗体-转座酶融合蛋白及其制备方法和应用
CN115948363B (zh) * 2022-08-26 2024-02-27 武汉影子基因科技有限公司 Tn5转座酶突变体及其制备方法和应用
CN116813800B (zh) * 2023-07-07 2024-03-12 南京诺唯赞生物科技股份有限公司 一种双链dna结合蛋白-转座酶融合蛋白及文库构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219006A (zh) * 2018-03-27 2018-06-29 上海欣百诺生物科技有限公司 一种转座酶-抗体结合蛋白的融合蛋白及其制备与应用
CN108285494A (zh) * 2018-02-11 2018-07-17 北京大学 一种融合蛋白、试剂盒以及CHIP-seq检测方法
CN110372799A (zh) * 2019-08-01 2019-10-25 北京大学 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400714B (zh) * 2018-10-26 2019-11-01 南京诺唯赞生物科技有限公司 抗体靶向的重组融合蛋白以及其在表观遗传学中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285494A (zh) * 2018-02-11 2018-07-17 北京大学 一种融合蛋白、试剂盒以及CHIP-seq检测方法
CN108219006A (zh) * 2018-03-27 2018-06-29 上海欣百诺生物科技有限公司 一种转座酶-抗体结合蛋白的融合蛋白及其制备与应用
CN110372799A (zh) * 2019-08-01 2019-10-25 北京大学 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN SCHMIDL, ANDRÉ F RENDEIRO, NATHAN C SHEFFIELD, CHRISTOPH BOCK: "ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors", NATURE METHODS, NATURE PUB. GROUP, NEW YORK, vol. 12, no. 10, 1 October 2015 (2015-10-01), New York, pages 963 - 965, XP055566448, ISSN: 1548-7091, DOI: 10.1038/nmeth.3542 *
HATICE S. KAYA-OKUR, STEVEN J. WU, CHRISTINE A. CODOMO, ERICA S. PLEDGER, TERRI D. BRYSON, JORJA G. HENIKOFF, KAMI AHMAD, STEVEN H: "CUT&Tag for efficient epigenomic profiling of small samples and single cells", NATURE COMMUNICATIONS, vol. 10, no. 1, 1 December 2019 (2019-12-01), XP055719803, DOI: 10.1038/s41467-019-09982-5 *
MATTHEW J. ROSSI, WILLIAM K. M. LAI, B. FRANKLIN PUGH: "Simplified ChIP-exo assays", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, GB, vol. 9, no. 1, 1 December 2018 (2018-12-01), GB, pages 1, XP055634453, ISSN: 2041-1723, DOI: 10.1038/s41467-018-05265-7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785283A (zh) * 2022-11-02 2023-03-14 武汉影子基因科技有限公司 PAG-Tn5突变体及其应用
CN115785283B (zh) * 2022-11-02 2024-05-31 武汉影子基因科技有限公司 PAG-Tn5突变体及其应用

Also Published As

Publication number Publication date
CN110372799B (zh) 2020-06-09
CN110372799A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2021017883A1 (zh) 一种用于单细胞ChIP-seq文库制备的融合蛋白及其应用
JP5954808B2 (ja) 内在性dna配列特異的結合分子を用いる特定ゲノム領域の単離方法
Ivanov et al. A topological interaction between cohesin rings and a circular minichromosome
KR20190059966A (ko) S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드
CN108285494B (zh) 一种融合蛋白、试剂盒以及CHIP-seq检测方法
Correa et al. Generation of a vector suite for protein solubility screening
EP3507297A1 (en) Genome-wide identification of chromatin interactions
CN112063643A (zh) 一种用于检测细菌中膜蛋白相互作用的表达载体及方法
JP5413924B2 (ja) 特定ゲノム領域の単離方法
WO2020124319A1 (zh) 融合蛋白及其应用
US20220154167A1 (en) Methods and compositions for assessing protein function
CN113717256B (zh) 一种融合蛋白及其应用
WO2022041231A1 (zh) 一种可用于人原代细胞基因编辑的Cas9蛋白的制备方法
US20080248958A1 (en) System for pulling out regulatory elements in vitro
Teubl et al. Tethered MNase Structure Probing as Versatile Technique for Analyzing RNPs Using Tagging Cassettes for Homologous Recombination in Saccharomyces cerevisiae
EP2271773B1 (en) Rapid method for identifying polypeptide-nucleic acid interactions
CN113698496B (zh) 临近标记复合物、临近标记方法、分子间互作分析方法
US20100029499A1 (en) Artificial Protein Scaffolds
CN113801915B (zh) 获取目标rna结合蛋白靶rna的方法
WO2023024066A1 (zh) 临近标记复合物、临近标记方法、分子间互作分析方法
Hoshijima et al. Protocols for screening for binding partners of CCN proteins: Yeast two-hybrid system
Han et al. Hfq Globally Binds and Destabilizes the bound sRNAs and mRNAs in Yersinia pestis
JPWO2020145405A1 (ja) 三次元dna構造相互作用分析方法
JP6619983B2 (ja) Head−to−Head架橋を用いるmRNAディスプレイ法
CN118406160A (zh) 一种单细胞样品标记用融合蛋白、复合体及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846858

Country of ref document: EP

Kind code of ref document: A1