WO2021017729A1 - 信号的发送、接收方法、终端及装置 - Google Patents

信号的发送、接收方法、终端及装置 Download PDF

Info

Publication number
WO2021017729A1
WO2021017729A1 PCT/CN2020/099335 CN2020099335W WO2021017729A1 WO 2021017729 A1 WO2021017729 A1 WO 2021017729A1 CN 2020099335 W CN2020099335 W CN 2020099335W WO 2021017729 A1 WO2021017729 A1 WO 2021017729A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
pbch
pattern
sss
channel estimation
Prior art date
Application number
PCT/CN2020/099335
Other languages
English (en)
French (fr)
Inventor
任晓涛
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20848671.2A priority Critical patent/EP4009598A4/en
Priority to US17/631,623 priority patent/US20220295425A1/en
Priority to KR1020227005954A priority patent/KR20220038731A/ko
Publication of WO2021017729A1 publication Critical patent/WO2021017729A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, terminal and device, and storage medium for signal transmission and reception.
  • PSSS/SSSS master through link synchronization
  • the signal/secondary through link synchronization signal, Primary Sidelink Synchronization Signal/Secondary Sidelink Synchronization Signal) is repeated in the time domain to enhance the detection performance of the synchronization signal.
  • Figure 1 is a schematic diagram of the structure of R14V2X Sidelink synchronous broadcast information.
  • the abscissa is the time domain, and each column represents an OFDM (Orthogonal Frequency Division Multiplexing) )symbol.
  • the ordinate is the frequency domain, and in the figure is 6RB (Resource Element).
  • a Slot contains a synchronous broadcast block SSB (Synchronization Signal and PBCH Block), and a synchronous broadcast block includes PSSS (Primary Sidelink Synchronization Signal) signal , SSSS (Secondary Sidelink Synchronization Signal) signal, PSBCH (Physical Sidelink Broadcast Channel) signal, and necessary DMRS (Demodulation Reference Signal) signal.
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • DMRS Demodulation Reference Signal
  • the present disclosure provides a signal transmission and reception method, terminal and device, and storage medium to solve the problem that the coverage radius that can be supported by the conventional CP length of LTE in NR V2X cannot meet the requirements.
  • An embodiment of the present disclosure provides a signal sending method, and the method includes:
  • Send SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • An embodiment of the present disclosure provides a signal receiving method, and the method includes:
  • Receive SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern;
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • An embodiment of the present disclosure provides a terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • Send SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern;
  • Transceiver used to receive and send data under the control of the processor.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • An embodiment of the present disclosure provides a terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • Transceiver used to receive and send data under the control of the processor, perform the following process:
  • Receive SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • An embodiment of the present disclosure provides a signal sending device, including:
  • the sending module is used to send SSB, where the SSB includes PSS, SSS and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with regular
  • the SSB pattern used in the CP is the first SSB pattern
  • the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern.
  • the first SSB pattern is the same as the second SSB pattern. The patterns are different.
  • An embodiment of the present disclosure provides a signal receiving device, including:
  • the receiving module is configured to receive SSB, where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with conventional
  • the SSB pattern used in the CP is the first SSB pattern
  • the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern.
  • the first SSB pattern is the same as the second SSB pattern. Different patterns;
  • Demodulation module used to demodulate SSB.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the foregoing signal sending and/or receiving method.
  • the SSB pattern under the extended CP can be used to avoid inter-symbol crosstalk caused by multipath delay, thereby improving the PSS and SSS sequence
  • the detection success rate also improves the decoding success rate performance of the broadcast channel PBCH and ensures the coverage radius requirement of NR V2X.
  • Figure 1 is a schematic diagram of the structure of R14V2X Sidelink synchronous broadcast information in the background technology
  • FIG. 2 is a schematic diagram of an implementation process of a method for transmitting a signal at a transmitting end in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of an implementation flow of a method for receiving signals at a receiving end in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of an S-SSB structure in an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the structure of the S-SSB in Embodiment 1 of the disclosure.
  • FIG. 6 is a schematic diagram of the structure of the S-SSB in Embodiment 2 of the disclosure.
  • FIG. 7 is a schematic diagram of the structure of the S-SSB in Embodiment 3 of the disclosure.
  • FIG. 8 is a schematic diagram of the structure of the S-SSB in Embodiment 4 of the disclosure.
  • FIG. 9 is a schematic diagram of the structure of the S-SSB in Embodiment 5 of the disclosure.
  • FIG. 10 is a schematic diagram of the structure of the S-SSB in Embodiment 6 of the disclosure.
  • FIG. 11 is a schematic diagram of the structure of the S-SSB in Embodiment 7 of the disclosure.
  • FIG. 12 is a schematic diagram of the structure of the S-SSB in Embodiment 8 of the disclosure.
  • FIG. 13 is a schematic diagram of the structure of the S-SSB in Embodiment 9 of the disclosure.
  • FIG. 14 is a schematic diagram of the structure of S-SSB in Embodiment 10 of the disclosure.
  • FIG. 16 is a schematic diagram of the structure of S-SSB in Embodiment 12 of the disclosure.
  • FIG. 17 is a schematic diagram of the structure of the S-SSB in Embodiment 13 of the disclosure.
  • FIG. 19 is a schematic diagram of the structure of the S-SSB in Embodiment 15 of the disclosure.
  • FIG. 21 is a schematic diagram of the structure of the S-SSB in Embodiment 17 of the disclosure.
  • FIG. 22 is a schematic diagram of the structure of the S-SSB in Embodiment 18 of the disclosure.
  • FIG. 23 is a schematic diagram of the structure of a terminal as a transmitting end in an embodiment of the disclosure.
  • FIG. 24 is a schematic diagram of the structure of a terminal as a receiving end in an embodiment of the disclosure.
  • the terminal and the terminal use the PC5 port for direct communication.
  • the two terminals that need to communicate must first establish synchronization on the PC5 port.
  • the method of establishing synchronization is that one terminal A sends synchronization and broadcast signals, and the other terminal B receives the synchronization and broadcast signals sent by terminal A. Once terminal B receives and demodulates successfully, the two terminals can establish synchronization. Communication is ready.
  • the synchronization signal and broadcast information of LTE V2X occupy 6 RBs in the frequency domain, and are transmitted in a slot (Slot) using 12 symbols.
  • PSSS and SSSS occupy 2 symbols each
  • PSBCH occupies 5 symbols
  • 3 Channel estimation and PSBCH decoding are performed for DMRS of four symbols.
  • the synchronization signal of the NR UU port is carried through the SSB.
  • Each Slot carries 2 SSBs, and PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal) signals do not have a time domain repetition mechanism.
  • Beam scanning means that the base station sends the SSB once in each possible beam direction within a certain time interval (5ms). Then the terminal measures the SSB signal strength of each beam and reports the measurement result to the base station. The base station selects the most suitable beam to send data to the terminal according to the measurement result reported by the terminal. According to different carrier frequencies and different sub-carrier intervals, the number of beam scanning directions is also different. The maximum values of SSB beam scanning candidate directions in different carrier frequency ranges are: 4/8/64, and the number of actually configured beam scanning directions cannot exceed the maximum value.
  • SSB includes PSS, SSS, and PBCH.
  • the pattern of SSB refers to a pattern composed of time-frequency resources occupied by at least one signal or channel among PSS, SSS, and PBCH.
  • S-SSB Sidelink Synchronization Signal and PBCH Block
  • S-PSS Sidelink Primary Synchronization Signal
  • S-PSS Sidelink Secondary Synchronization Signal
  • S-PSS Sidelink Secondary Synchronization Signal
  • -SSS Sidelink Secondary Synchronization Signal
  • the S-SSB may not be sent by beam scanning, but an omnidirectional beam is sent once or the same beam is sent repeatedly.
  • the extended CP is not supported in PC5V2X of LTE Rel-14.
  • the regular CP length becomes 1/4 of 15KHz.
  • the length of the conventional CP is only 1.2 microseconds. Considering factors such as delay expansion, at this time, the coverage radius that the conventional CP can support cannot meet the requirements.
  • the extended CP length is 16.67 microseconds when the subcarrier spacing is 15KHz, and 4.2 microseconds when the subcarrier spacing is 60KHz, which can meet the coverage requirements of NR V2X.
  • the present disclosure provides a scheme for sending and receiving SSB.
  • this scheme can avoid inter-symbol crosstalk caused by multipath delay by using the SSB pattern under the extended CP. Therefore, the detection success rate of PSS and SSS sequences is improved, and the decoding success rate performance of the broadcast channel PBCH is also improved, thereby ensuring the coverage radius requirement of NR V2X.
  • Figure 2 is a schematic diagram of the implementation process of the signal sending method at the sending end, as shown in the figure, including:
  • Step 201 Send an SSB, where the SSB includes PSS, SSS and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with a regular CP.
  • the SSB pattern used below is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern .
  • Figure 3 is a schematic diagram of the implementation process of the method for receiving signals at the receiving end, as shown in the figure, including:
  • Step 301 Receive an SSB, where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with a regular CP.
  • the SSB pattern used below is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern ;
  • Step 301 Demodulate the SSB.
  • the patterns of the SSB are different in the two cases of the regular CP and the extended CP.
  • the SSB two OFDM symbols are used to transmit the PSS, and two OFDM symbols are used to transmit the SSS at the same time.
  • This solution can be used in Sidelink communication of NR V2X.
  • the extended CP length is longer than the conventional CP, and the extended CP can support a longer multipath delay, so that a larger signal coverage radius can be supported under the extended CP.
  • the conventional CP can only overcome a relatively small multipath delay due to its relatively short length, so the supported coverage radius is relatively small; while the extended CP is relatively long, which can overcome a relatively large multipath delay and can support a relatively large coverage radius.
  • the regular CP and the extended CP are configuration parameters before signal transmission.
  • the system can choose to configure the CP as a regular CP or as an extended CP. Generally, two CPs cannot exist at the same time.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • DMRS Demodulation Reference Signal
  • PSBCH does not include embedded DMRS on the symbol . But use SSS for channel estimation, and use the channel estimation value for PSBCH decoding. At this time, the two waveforms can share one SSB pattern.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes the PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the pattern of SSB in the two cases of conventional CP and extended CP is different in: the number of symbols occupied by PBCH is different; PBCH occupies 8 symbols or 9 symbols under conventional CP; PBCH occupies 6 symbols or 7 symbols under extended CP Symbols.
  • the conventional CP is generally used in scenarios with a relatively short communication distance, for example, the distance between the receiving and sending parties is less than 1 km, and the extended CP is generally used in scenarios where the distance between the receiving and sending parties is greater than 1 km.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • two discontinuous OFDM symbols are used to transmit the SSS in the SSB pattern.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the PBCH in the SSB pattern occupies at least 5 OFDM symbols.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the PBCH is placed in the first symbol in the SSB pattern, which is used for the AGC (Automatic Gain Control) function.
  • AGC Automatic Gain Control
  • the SSB is an S-SSB
  • the PSS is an S-PSS
  • the SSS is an S-SSS
  • the PBCH is a PSBCH.
  • S-PSS S-SSS
  • PSBCH PSBCH
  • Figure 4 is a schematic diagram of the structure of an S-SSB. As shown in the figure, Figure 4 shows an S-SSB pattern in the case of extended CP and regular CP with a Sidelink sub-carrier spacing of 60KHz. In the S-SSB pattern In the case of extended CP, S-PSS and S-SSS in each S-SSB occupies 2 symbols respectively, and PSBCH occupies 6 symbols. Using the S-SSB pattern under the extended CP as shown, avoiding inter-symbol crosstalk caused by multipath delay, thereby improving the detection success rate of PSS and SSS sequences, and also improving the decoding success rate performance of the direct link broadcast channel PSBCH , Thereby ensuring the coverage radius requirements of NR V2X.
  • FIG. 5 is a schematic diagram of the structure of the S-SSB in Embodiment 1.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located in symbols #3 and #4, PSBCH is located in symbols #5 to #10, and the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • DMRS and S-SSS are used for channel estimation, and the channel estimation value is used as PSBCH Decoding.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols, so that the extended CP can guarantee the coverage requirements of NR V2X.
  • FIG. 6 is a schematic diagram of the S-SSB structure in Embodiment 2.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located in symbols #3 and #10
  • PSBCH is located in symbols #4 to #9
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • DMRS and S-SSS are used for channel estimation, and the channel estimation value is used as PSBCH Decoding.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and there are 6 symbols between two S-SSS symbols, and the performance of frequency offset estimation is better.
  • FIG. 7 is a schematic diagram of the structure of the S-SSB in Embodiment 3.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #2 and #3.
  • S-SSS is located in symbols #1 and #4
  • PSBCH is located in symbols #5 to #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • the S-SSB pattern in the regular CP slot is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can guarantee the coverage requirements of NR V2X, and there are 2 symbols between two S-SSS symbols, and the performance of frequency offset estimation is better.
  • FIG. 8 is a schematic diagram of the structure of the S-SSB in Embodiment 4.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located in symbols #4 and #5
  • PSBCH is located in symbols #3, #6 to #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS, use DMRS and S-SSS for channel estimation, and use this channel estimation Value is used to decode PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and two S-PSS symbols
  • the PSBCH is followed to avoid the impact of the conversion time on the S-SSS detection.
  • FIG. 9 is a schematic diagram of the S-SSB structure in Embodiment 5.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located at symbols #3 and #4
  • PSBCH is located at symbol 0, and symbols #5 to #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS, use DMRS and S-SSS for channel estimation, and use this channel
  • the estimated value is decoded for PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and symbol #0 uses PSBCH as AGC, which reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • FIG. 10 is a schematic diagram of the S-SSB structure in Embodiment 6.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located at symbols #3 and #10
  • PSBCH is located at symbol 0, and symbols #4 to #9.
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • the estimated value is decoded for PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and symbol #0 uses PSBCH as AGC reduces the code rate of PSBCH and improves the decoding performance of PSBCH. And there are 6 symbols between two S-SSS symbols, and the performance of frequency offset estimation is better.
  • FIG 11 is a schematic diagram of the structure of the S-SSB in embodiment 7.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #2 and #3.
  • S-SSS is located at symbols #1 and #4
  • PSBCH is located at symbol 0, and symbols #5 to #10.
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • the estimated value is decoded for PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and symbol #0 uses PSBCH as AGC, which reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • FIG 12 is a schematic diagram of the S-SSB structure in Embodiment 8.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located in symbols #4 and #5
  • PSBCH is located in symbols #0, #3, and symbols #6 to #10.
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • DMRS and S-SSS are used for channel estimation. And use the channel estimation value to decode PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can ensure the coverage requirements of NR V2X, and symbol #0 uses PSBCH as AGC reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • the two S-PSS symbols are followed by PSBCH, which avoids the impact of conversion time on S-SSS detection performance.
  • FIG. 13 is a schematic diagram of the S-SSB structure in Embodiment 9.
  • an extended CP slot includes an S-SSB, and the S-PSS is located Symbols #1 and #2, S-SSS is located in symbols #3 and #10, PSBCH is located in symbols #4 to #9, and DMRS is not included on the symbol where PSBCH is located.
  • S-SSS is used for channel estimation, and the channel estimation value is used for Decoding of PSBCH.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 6 symbols in the time domain.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols for transmitting S-SSS are separated by 6 symbols in the time domain and 6 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • the S-SSB pattern does not include any DMRS, it can be applied to both the CP-OFDM waveform and the DFT-s-OFDM waveform.
  • FIG 14 is a schematic diagram of the structure of the S-SSB in Embodiment 10.
  • an extended CP slot includes an S-SSB, and the S-PSS is located Symbols #1 and #2, S-SSS are located at symbols #3 and #7, PSBCH is located at symbols #4 to #6, and symbols #8 and #10.
  • the DMRS is not included on the symbol where the PSBCH is located.
  • S-SSS is used for channel estimation, and the channel estimation value is used for PSBCH decoding.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 3 symbols in the time domain.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols that transmit S-SSS are separated by 3 symbols in the time domain and 3 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • the S-SSB pattern does not include any DMRS, it can be applied to both the CP-OFDM waveform and the DFT-s-OFDM waveform.
  • FIG. 15 is a schematic diagram of the structure of the S-SSB in Embodiment 11.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and # 2.
  • S-SSS is located at symbols #3 and #10
  • PSBCH is located at symbols #4 and #6, and symbols #8 and #10.
  • the DMRS is located in the symbols #5 and #7
  • the DMRS and S-SSS are used for channel estimation
  • the channel estimation value is used for PSBCH decoding.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 6 symbols in the time domain.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols for transmitting S-SSS are separated by 6 symbols in the time domain and 6 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • FIG 16 is a schematic diagram of the structure of the S-SSB in Embodiment 12.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and # 2.
  • S-SSS is located at symbols #3 and #7
  • PSBCH is located at symbols #4 and #6, and symbols #8 and #10.
  • DMRS is located in symbols #5 and #9
  • DMRS and S-SSS are used for channel estimation
  • the channel estimation value is used for PSBCH decoding.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 3 symbols in the time domain.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols that transmit S-SSS are separated by 3 symbols in the time domain and 3 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • FIG 17 is a schematic diagram of the structure of the S-SSB in Embodiment 13.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located in symbols #9 and #10
  • PSBCH is located in symbols #3 to #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can guarantee the coverage requirements of NR V2X.
  • two S-PSS symbols are followed by PSBCH, which avoids the influence of switching time on S-SSS detection.
  • FIG. 18 is a schematic diagram of the structure of the S-SSB in embodiment 14.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located at symbols #9 and #10
  • PSBCH is located at symbol #0, and symbols #3 to #8.
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS.
  • Use DMRS and S-SSS for channel estimation and use this
  • the channel estimation value is decoded for PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can guarantee the coverage requirements of NR V2X.
  • symbol #0 uses PSBCH as AGC, which reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • the two S-PSS symbols are followed by PSBCH, which avoids the impact of switching time on S-SSS detection performance.
  • FIG 19 is a schematic diagram of the structure of the S-SSB in Embodiment 15.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located at symbols #5 and #8
  • PSBCH is located at symbols #3, #4, #6, #7, #9, and #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS, use DMRS and S-SSS Do channel estimation, and use the channel estimation value to do PSBCH decoding.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can guarantee the coverage requirements of NR V2X.
  • two S-PSS symbols are followed by PSBCH, which avoids the influence of switching time on S-SSS detection.
  • an extended CP slot includes an S-SSB, and the S-PSS is located in symbols #1 and #2.
  • S-SSS is located at symbols #5 and #8
  • PSBCH is located at symbols #0, #3, #4, #6, #7, #9, #10
  • the symbol where PSBCH is located includes comb-shaped embedded DMRS
  • use DMRS and S-SSS performs channel estimation and uses the channel estimation value to decode PSBCH.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • the extended CP is used to transmit S-SSB, and both S-PSS and S-SSS are transmitted using two symbols.
  • the use of extended CP can guarantee the coverage requirements of NR V2X.
  • symbol #0 uses PSBCH as AGC, which reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • the two S-PSS symbols are followed by PSBCH, which avoids the impact of switching time on S-SSS detection performance.
  • the disadvantage is that S-PSS and S-SSS occupy two symbols, and the resource overhead is relatively large.
  • FIG. 21 is a schematic diagram of the structure of the S-SSB in Embodiment 17.
  • an extended CP slot includes an S-SSB, and the S-PSS is located Symbols #1 and #2, S-SSS are located at symbols #5 and #8, and PSBCH is located at symbols #3, #4, #6, #7, #9, #10.
  • the DMRS is not included on the symbol where the PSBCH is located.
  • S-SSS is used for channel estimation, and the channel estimation value is used for PSBCH decoding.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 2 symbols in the time domain.
  • the S-SSB pattern in the time slot of the conventional CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols for transmitting S-SSS are separated by 2 symbols in the time domain and 2 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • the S-SSB pattern does not include any DMRS, it can be applied to both the CP-OFDM waveform and the DFT-s-OFDM waveform.
  • the two S-PSS symbols are followed by PSBCH, which avoids the impact of switching time on S-SSS detection performance.
  • FIG 22 is a schematic diagram of the structure of the S-SSB in Embodiment 18.
  • an extended CP slot includes an S-SSB, and the S-PSS is located Symbols #1 and #2, S-SSS are located at symbols #5 and #8, and PSBCH is located at symbols #0, #3, #4, #6, #7, #9, #10.
  • the DMRS is not included on the symbol where the PSBCH is located.
  • S-SSS is used for channel estimation, and the channel estimation value is used for PSBCH decoding.
  • the S-SSS on the two symbols that are repeatedly sent is separated by 2 symbols in the time domain.
  • the S-SSB pattern in the time slot of the regular CP is different from the extended CP, and the PSBCH occupies two more symbols.
  • both S-PSS and S-SSS are sent using two symbols, and the two symbols for transmitting S-SSS are separated by 2 symbols in the time domain and 2 symbols in the time domain.
  • the S-SSS of the symbol can bring about an increase in the frequency offset estimation performance, which in turn increases the decrease in the decoding BLER of the PSBCH.
  • symbol #0 uses PSBCH as AGC, which reduces the code rate of PSBCH and improves the decoding performance of PSBCH.
  • the S-SSB pattern does not include any DMRS, it can be applied to both the CP-OFDM waveform and the DFT-s-OFDM waveform.
  • the two S-PSS symbols are followed by PSBCH, which avoids the impact of switching time on S-SSS detection performance.
  • the embodiments of the present disclosure also provide a terminal as a sending end, a terminal as a receiving end, a sending device, a receiving device, and a storage medium.
  • the principle of these devices to solve the problem and the signal sending method and signal receiving The methods are similar, so the implementation of these devices can refer to the implementation of the method, and the repetition will not be repeated.
  • Figure 23 is a schematic diagram of the terminal structure as a sending end, as shown in the figure, including:
  • the processor 2300 is configured to read a program in the memory 2320 and execute the following process:
  • Send SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern;
  • the transceiver 2310 is used to receive and send data under the control of the processor 2300.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2300 and various circuits of the memory represented by the memory 2320 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2310 may be multiple elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 2330 may also be an interface capable of externally connecting internally required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2300 is responsible for managing the bus architecture and general processing, and the memory 2320 can store data used by the processor 2300 when performing operations.
  • Figure 24 is a schematic diagram of the terminal structure as a receiving end, as shown in the figure, including:
  • the processor 2400 is configured to read the program in the memory 2420 and execute the following process:
  • the transceiver 2410 is used to receive and send data under the control of the processor 2400, and execute the following process:
  • Receive SSB where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is used when a regular CP is configured
  • the pattern of the SSB is the first SSB pattern, and the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern, and the first SSB pattern is different from the second SSB pattern.
  • that the first SSB pattern is different from the second SSB pattern means that when the SSB is sent:
  • the SSB When the SSB is transmitted in the extended CP, the SSB includes a PBCH occupying M OFDM symbols; or,
  • the SSB When the SSB is transmitted in a regular CP, the SSB includes a PBCH occupying N OFDM symbols;
  • the M is not equal to N.
  • the M is 6 or 7; or, N is 8 or 9.
  • the two OFDM symbols used to transmit the SSS signal in the SSB are discontinuous OFDM symbols in the time domain.
  • the SSB further includes: a PBCH occupying 5 OFDM symbols or more.
  • the first OFDM symbol of the time slot where the SSB is located is used to place the PBCH, and this symbol is used to complete the AGC function.
  • the DMRS is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • the SSB is S-SSB
  • the PSS is S-PSS
  • the SSS is S-SSS
  • the PBCH is PSBCH.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2400 and various circuits of the memory represented by the memory 2420 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2410 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 2430 may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 2400 is responsible for managing the bus architecture and general processing, and the memory 2420 can store data used by the processor 2400 when performing operations.
  • An embodiment of the present disclosure provides a signal sending device, including:
  • the sending module is used to send SSB, where the SSB includes PSS, SSS and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with regular
  • the SSB pattern used in the CP is the first SSB pattern
  • the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern.
  • the first SSB pattern is the same as the second SSB pattern. The patterns are different.
  • An embodiment of the present disclosure provides a signal receiving device, including:
  • the receiving module is configured to receive SSB, where the SSB includes PSS, SSS, and PBCH, the PSS occupies two OFDM symbols for transmission, the SSS occupies two OFDM symbols for transmission, and the time slot where the SSB is located is configured with conventional
  • the SSB pattern used in the CP is the first SSB pattern
  • the SSB pattern used when the extended CP is configured in the time slot of the SSB is the second SSB pattern.
  • the first SSB pattern is the same as the second SSB pattern. Different patterns;
  • Demodulation module used to demodulate SSB.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same or multiple software or hardware.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the above-mentioned signal sending and/or receiving method.
  • the embodiment of the present disclosure provides a SSB transmission and reception solution, and this technical solution can be used in NR V2X Sidelink communication.
  • the patterns of the SSB are different in the two cases of the regular CP and the extended CP, and two OFDM symbols are used to transmit the PSS in the SSB, and two OFDM symbols are used to transmit the SSS at the same time.
  • the pattern of SSB in the two cases of conventional CP and extended CP is reflected in: the number of symbols occupied by PBCH is different; in particular, PBCH occupies 8 symbols or 9 symbols under conventional CP; PBCH occupies 6 symbols or 7 symbols under extended CP Symbols.
  • Two discontinuous OFDM symbols are used in the SSB pattern to transmit the SSS.
  • the PBCH in the SSB pattern occupies at least 5 OFDM symbols.
  • the first symbol in the SSB pattern is placed PBCH, which is used for AGC function.
  • a separate DMRS column is not included, but the DMRS embedded in the PBCH is used for channel estimation, and the channel estimation value is used for PBCH decoding.
  • PBCH does not include embedded DMRS on the symbol, but uses SSS for channel estimation, and uses the channel estimation value for PBCH decoding. At this time, the two waveforms can be shared An SSB pattern.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种信号的发送、接收方法、终端及装置以及存储介质,其中方法包括,发送端发送同步信号块,其中,同步信号块包括主同步信号、辅同步信号与物理广播信道,主同步信号占用两个正交频分复用符号传输,辅同步信号占用两个正交频分复用符号传输,同步信号块所在时隙在配置了常规循环前缀情况下所使用的同步信号块的图案为第一同步信号块图案,同步信号块所在时隙在配置了扩展循环前缀情况下所使用的同步信号块的图案为第二同步信号块图案,第一同步信号块图案与第二同步信号块图案不同。接收端对同步信号块进行解调。

Description

信号的发送、接收方法、终端及装置
相关申请的交叉引用
本申请主张在2019年8月1日在中国提交的中国专利申请号No.201910708865.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种信号的发送、接收方法、终端及装置、存储介质。
背景技术
当用户设备(User Equipment,UE)准备在Sidelink(直通链路)上进行业务传输之前,首先需要在Sidelink上取得同步,为了扩大同步信号的覆盖范围,需要进行PSSS/SSSS(主直通链路同步信号/辅直通链路同步信号,Primary Sidelink Synchronization Signal/Secondary Sidelink Synchronization Signal)信号的时域重复,以增强同步信号的检测性能。
图1为R14V2X Sidelink同步广播信息的结构示意图,如图所示,R14(版本14)同步广播信息中,横坐标是时域,每列代表一个OFDM(正交频分复用,Orthogonal Frequency Division Multiplexing)符号。纵坐标是频域,该图中是6RB(资源单元,Resource Element)。一个Slot(时隙)里容纳了一个同步广播块SSB(同步信号与广播信道块,Synchronization Signal and PBCH Block),一个同步广播块包括有PSSS(主直通链路同步信号,Primary Sidelink Synchronization Signal)信号、SSSS(辅直通链路同步信号,Secondary Sidelink Synchronization Signal)信号、PSBCH(物理直通链路广播信道,Physical Sidelink Broadcast Channel)信号,以及必要的DMRS(解调导频,Demodulation Reference Signal)信号。
在LTE(长期演进,Long Term Evolution)V2X(智能网联汽车技术,Vehicle to Everything)系统中,由于PC5(近距离通信端口5,Proximity Communication Port 5)口要求的覆盖半径仅为300米,而LTE的子载波间隔 为15KHz,其对应的常规CP(循环前缀,Cyclic Prefix)长度为4.7微秒,因此支持LTE常规CP长度即可满足系统覆盖要求。
相关技术的不足在于:在NR(新无线接入技术,NR Radio Access)V2X中,LTE的常规CP长度所能支持的覆盖半径达不到要求。
发明内容
本公开提供了一种信号的发送、接收方法、终端及装置、存储介质,用以在NR V2X中,LTE的常规CP长度所能支持的覆盖半径达不到要求的问题。
本公开实施例中提供了一种信号的发送方法,所述方法包括:
发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
本公开实施例中提供了一种信号的接收方法,所述方法包括:
接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
对SSB进行解调。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的 DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
本公开实施例中提供了一种终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
收发机,用于在处理器的控制下接收和发送数据。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且 该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
本公开实施例中提供了一种终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
对SSB进行解调;
收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是 不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
本公开实施例中提供了一种信号的发送装置,包括:
发送模块,用于发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
本公开实施例中提供了一种信号的接收装置,包括:
接收模块,用于接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
解调模块,用于对SSB进行解调。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述信号的发送和/或接收方法的计算机程序。
本公开有益效果如下:
采用本公开实施例提供的技术方案,在Sidelink通信子载波间隔较大时,可以通过使用扩展CP下的SSB图案,避免了多径时延导致的符号间串扰,从而提高了PSS和SSS序列的检测成功率,也提高了广播信道PBCH的解码成功率性能,保证NR V2X的覆盖半径要求。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为背景技术中R14V2X Sidelink同步广播信息的结构示意图;
图2为本公开实施例中发送端的信号的发送方法实施流程示意图;
图3为本公开实施例中接收端的信号的接收方法实施流程示意图;
图4为本公开实施例中一种S-SSB结构示意图;
图5为本公开实施例1中S-SSB结构示意图;
图6为本公开实施例2中S-SSB结构示意图;
图7为本公开实施例3中S-SSB结构示意图;
图8为本公开实施例4中S-SSB结构示意图;
图9为本公开实施例5中S-SSB结构示意图;
图10为本公开实施例6中S-SSB结构示意图;
图11为本公开实施例7中S-SSB结构示意图;
图12为本公开实施例8中S-SSB结构示意图;
图13为本公开实施例9中S-SSB结构示意图;
图14为本公开实施例10中S-SSB结构示意图;
图15为本公开实施例11中S-SSB结构示意图;
图16为本公开实施例12中S-SSB结构示意图;
图17为本公开实施例13中S-SSB结构示意图;
图18为本公开实施例14中S-SSB结构示意图;
图19为本公开实施例15中S-SSB结构示意图;
图20为本公开实施例16中S-SSB结构示意图;
图21为本公开实施例17中S-SSB结构示意图;
图22为本公开实施例18中S-SSB结构示意图;
图23为本公开实施例中作为发送端的终端结构示意图;
图24为本公开实施例中作为接收端的终端结构示意图。
具体实施方式
发明人在发明过程中注意到:
在5G(第五代移动通信,the fifth generation)NR V2X系统中,终端与终端之间使用PC5口进行直接通信。在进行业务数据传输之前,首先需要进行通信的两个终端之间在PC5口建立同步。建立同步的方法就是一个终端A发送同步与广播信号,另外一个终端B接收终端A发送的同步与广播信号,一旦终端B接收并解调成功,这两个终端就能够建立同步,为下一步直接通信做好了准备。
LTE V2X的同步信号与广播信息在频域占用6RB,是在一个时隙(Slot)中使用12个符号完成发送的,其中PSSS和SSSS各占用2个符号,PSBCH占用5个符号,并使用3个符号的DMRS做信道估计与PSBCH的解码。
NR UU口的同步信号是通过SSB携带的。每个Slot中携带2个SSB并且PSS(主同步信号,Primary Synchronisation Signal,)与SSS(辅同步信号,Secondary Synchronisation Signal)信号没有时域重复机制。
为了完成波束测量与波束选择,NR UU口的SSB需要做波束扫描(Beam Sweeping),波束扫描是指基站在一定的时间区间内(5ms),将SSB在可能的各个波束方向上都发送一次,然后终端测量各个波束的SSB信号强度并将测量结果上报给基站,基站根据终端上报的测量结果,选择最合适的波束给终端发送数据。根据不同的载波频率与不同的子载波间隔,需要做波束扫描的方向的数量也是不同的。SSB波束扫描候选方向在不同的载频范围的最大值分别为:4/8/64个,实际配置的波束扫描方向的数量不能超过该最大值。
SSB包括PSS、SSS与PBCH,SSB的图案是指PSS、SSS、PBCH中至少一种信号或信道所占用的时频资源所组成的图案。
NR V2X Sidelink做同步信息发送时,也需要采用SSB的方式,Sidelink链路上的SSB被称为S-SSB(直通链路-同步信号与广播信道块,Sidelink Synchronization Signal and PBCH Block)。特别地,S-SSB的图案是指Sidelink主同步信号直通链路-主同步信号(Sidelink Primary Synchronization Signal,S-PSS),Sidelink辅同步信号直通链路-辅同步信号(Sidelink Secondary Synchronization Signal,S-SSS),以及Sidelink广播信道PSBCH中至少一种信号或信道所占用的时频资源所组成的图案。为了降低复杂度,S-SSB的发送可能不会采取波束扫描的方式,而是发送一次全向波束或者重复发送多次相同的波束。
在LTE V2X系统中,由于PC5口要求的覆盖半径仅为300米,而LTE的子载波间隔为15KHz,其对应的常规CP长度为4.7微秒,因此支持LTE常规CP长度即可满足系统覆盖要求。从而在LTE Rel-14的PC5V2X中不支持扩展CP。
但是,对于NR V2X,由于要求支持多种SCS(SubCarrier Spacing,子载波间隔),包括有15KHz、30KHz与60KHz等,对于60KHz子载波间隔,其常规CP长度变成了15KHz的1/4,这时常规CP长度仅有1.2微秒,考虑到时延扩展等因素,此时,常规CP所能支持的覆盖半径达不到要求。
因此,这时就需要引入扩展CP,来支持NR V2X中足够远的覆盖半径需求。扩展CP长度在子载波间隔为15KHz时为16.67微秒,在子载波间隔为60KHz时为4.2微秒,可以满足NR V2X的覆盖要求。
基于此,本公开提供了一种SSB的发送与接收方案,在Sidelink通信子载波间隔较大时,采用该方案可以通过使用扩展CP下的SSB图案,避免了多径时延导致的符号间串扰,从而提高了PSS和SSS序列的检测成功率,也提高了广播信道PBCH的解码成功率性能,进而保证了NR V2X的覆盖半径要求。
下面结合附图对本公开的具体实施方式进行说明。
在说明过程中,将分别从使用PC5口进行直接通信的发送终端与接收终端之间的实施进行说明。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当发送端与接收端分开实施时,其也各自解决自 身一侧的问题,而二者结合使用时,会获得更好的技术效果。
图2为发送端的信号的发送方法实施流程示意图,如图所示,包括:
步骤201、发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
图3为接收端的信号的接收方法实施流程示意图,如图所示,包括:
步骤301、接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
步骤301、对SSB进行解调。
具体的,对于SSB,在常规CP和扩展CP两种情况下SSB的图案不同,在SSB中使用两个OFDM符号传输PSS,同时使用两个OFDM符号传输SSS。该方案可以使用在NR V2X的Sidelink通信中。
由于信号在空间传播会导致多径时延,而CP是为了克服多径时延而设置的,CP越长,就可以克服更长的多径时延。这样,扩展CP长度比常规CP长,扩展CP下就可以支持更长的多径时延,这样扩展CP下就可以支持更大的信号覆盖半径。
常规CP由于比较短,只能克服比较小的多径时延,所以支持的覆盖半径比较小;而扩展CP比较长,可以克服比较大的多径时延,可以支持比较大的覆盖半径。常规CP与扩展CP是信号发射之前的配置参数,系统可以选择将CP配置成常规CP,也可以选择将CP配置成扩展CP,一般两种CP不能同时存在。
实施中,在发送端:
在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
相应的,在接收端:
在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
具体的,在CP-OFDM(循环前缀的正交频分复用,Cyclic Prefix-Orthogonal Frequency Division Multiplexing)波形下:不包括单独的DMRS(解调导频,Demodulation Reference Signal)列,而是使用PSBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PSBCH的解码。
在CP-OFDM或DFT-s-OFDM(离散傅里叶变换扩频的正交频分复用,Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形下:PSBCH所在符号上不包括嵌入式的DMRS,而是使用SSS做信道估计,并使用该信道估计值做PSBCH的解码,这时两种波形可以共用一种SSB图案。
在DFT-s-OFDM波形下:使用单独的DMRS列做信道估计,并使用该信道估计值做PSBCH的解码。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的 PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
具体的,常规CP和扩展CP两种情况下SSB的图案不同体现在:PBCH所占用的符号数不同;常规CP下PBCH占用8个符号或9个符号;扩展CP下PBCH占用6个符号或7个符号。
具体实施中,常规CP一般用于较近通信距离的场景,比如收发双方相距1km以下,扩展CP一般用于较远通信距离的场景,比如收发双方相距1km以上。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
具体的,SSB图案中使用两个不连续的OFDM符号传输SSS。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
具体的,SSB图案中PBCH占用至少5个OFDM符号。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
具体的,SSB图案中第一个符号放置PBCH,用来做AGC(自动增益控制,Automatic Gain Control)功能。
下面以一种可能的SSB图案为例进行说明,另外,在本申请的附图中,如有以粗黑实线框出现,则该粗黑实线框代表1个SSB。
具体实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。下面在举例时将主要以S-PSS、S-SSS、PSBCH为例进行说明。
图4为一种S-SSB结构示意图,如图所示,图4给出一种Sidelink子载波间隔为60KHz下,扩展CP和常规CP情况下的S-SSB图案,在该S-SSB图案中,扩展CP情况下每个S-SSB中S-PSS和S-SSS分别占用2个符号,PSBCH占用6个符号。使用所示扩展CP下的S-SSB图案,避免了多径时延 导致的符号间串扰,从而提高了PSS和SSS序列的检测成功率,也提高了直通链路广播信道PSBCH的解码成功率性能,进而保证NR V2X的覆盖半径要求。
下面将以实例进行说明。
实施例1:
图5为实施例1中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#4,PSBCH位于符号#5至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送,使得扩展CP可以保证NR V2X的覆盖要求。
实施例2:
图6为实施例2中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#10,PSBCH位于符号#4至#9,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求,并且两个S-SSS符号中间间隔了6个符号,频偏估计的性能比较好。
实施例3:
图7为实施例3中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#2和#3,S-SSS位于符号#1和#4,PSBCH位于符号#5至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多 占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求,并且两个S-SSS符号中间间隔了2个符号,频偏估计的性能比较好。
实施例4:
图8为实施例4中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#4和#5,PSBCH位于符号#3、#6至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送,扩展CP的使用可以保证NR V2X的覆盖要求,并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测的影响。
实施例5:
图9为实施例5中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#4,PSBCH位于符号0,以及符号#5至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求,并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。
实施例6:
图10为实施例6中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#10,PSBCH位于符号0,以及符号#4至#9,PSBCH所在 符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送,扩展CP的使用可以保证NR V2X的覆盖要求,并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。并且两个S-SSS符号中间间隔了6个符号,频偏估计的性能比较好。
实施例7:
图11为实施例7中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#2和#3,S-SSS位于符号#1和#4,PSBCH位于符号0,以及符号#5至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求,并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能,并且两个S-SSS符号中间间隔了2个符号,频偏估计的性能比较好。
实施例8:
图12为实施例8中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#4和#5,PSBCH位于符号#0,#3,以及符号#6至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送,扩展CP的使用可以保证NR V2X的覆盖要求,并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测性 能的影响。
实施例9:
图13为实施例9中S-SSB结构示意图,如图所示,在CP-OFDM波形或DFT-s-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#10,PSBCH位于符号#4至#9,PSBCH所在符号上不包括DMRS,使用S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔6个符号。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔6个符号,在两个在时域上间隔了6个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。另外,由于该S-SSB图案中不包括任何DMRS,所以可以同时应用于CP-OFDM波形和DFT-s-OFDM波形。
实施例10:
图14为实施例10中S-SSB结构示意图,如图所示,在CP-OFDM波形或DFT-s-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#7,PSBCH位于符号#4至#6,以及符号#8和#10。PSBCH所在符号上不包括DMRS,使用S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔3个符号。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔3个符号,在两个在时域上间隔了3个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。另外,由于该S-SSB图案中不包括任何DMRS,所以可以同时应用于CP-OFDM波形和DFT-s-OFDM波形。
实施例11:
图15为实施例11中S-SSB结构示意图,如图所示,在DFT-s-OFDM波 形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#10,PSBCH位于符号#4和#6,以及符号#8和#10。DMRS位于符号#5和#7,使用DMRS以及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔6个符号。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔6个符号,在两个在时域上间隔了6个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。
实施例12:
图16为实施例12中S-SSB结构示意图,如图所示,在DFT-s-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#3和#7,PSBCH位于符号#4和#6,以及符号#8和#10。DMRS位于符号#5和#9,使用DMRS以及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔3个符号。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔3个符号,在两个在时域上间隔了3个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。
实施例13:
图17为实施例13中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#9和#10,PSBCH位于符号#3至#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测的影响。
实施例14:
图18为实施例14中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#9和#10,PSBCH位于符号#0,以及符号#3至#8,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求。并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测性能的影响。
实施例15:
图19为实施例15中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#5和#8,PSBCH位于符号#3、#4、#6、#7、#9和#10,PSBCH所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测的影响。
实施例16:
图20为实施例16中S-SSB结构示意图,如图所示,在CP-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#5和#8,PSBCH位于符号#0,#3、#4、#6、#7、#9、#10,PSBCH 所在符号上包括有梳状嵌入的DMRS,使用DMRS及S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,采用了扩展CP来发射S-SSB,并且S-PSS和S-SSS都使用了两个符号发送。扩展CP的使用可以保证NR V2X的覆盖要求。并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测性能的影响。缺点是S-PSS以及S-SSS占用了两个符号,资源开销比较大。
实施例17:
图21为实施例17中S-SSB结构示意图,如图所示,在CP-OFDM波形或DFT-s-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#5和#8,PSBCH位于符号#3、#4、#6、#7、#9、#10。PSBCH所在符号上不包括DMRS,使用S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔2个符号。常规CP的时隙中的S-SSB图案与扩展CP不同,PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔2个符号,在两个在时域上间隔了2个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。另外,由于该S-SSB图案中不包括任何DMRS,所以可以同时应用于CP-OFDM波形和DFT-s-OFDM波形。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测性能的影响。
实施例18:
图22为实施例18中S-SSB结构示意图,如图所示,在CP-OFDM波形或DFT-s-OFDM波形下,一个扩展CP的时隙中包括有一个S-SSB,S-PSS位于符号#1和#2,S-SSS位于符号#5和#8,PSBCH位于符号#0、#3、#4、#6、#7、#9、#10。PSBCH所在符号上不包括DMRS,使用S-SSS做信道估计,并使用该信道估计值做PSBCH的解码。并且重复发送的两个符号上的S-SSS在时域上间隔2个符号。常规CP的时隙中的S-SSB图案与扩展CP不同, PSBCH多占用了两个符号。
这种配置下,S-PSS和S-SSS都使用了两个符号发送,并且这两个传输S-SSS的符号在时域上间隔2个符号,在两个在时域上间隔了2个符号的S-SSS可以带来频偏估计性能的上升,进而提升了PSBCH的解码BLER的下降。并且符号#0采用PSBCH作为AGC,降低了PSBCH的码率,提升了PSBCH的解码性能。另外,由于该S-SSB图案中不包括任何DMRS,所以可以同时应用于CP-OFDM波形和DFT-s-OFDM波形。并且两个S-PSS符号后面是PSBCH,避免了转换时间对S-SSS检测性能的影响。
基于同一发明构思,本公开实施例中还提供了一种作为发送端的终端、作为接收端的终端、发送装置、接收装置、存储介质,由于这些设备解决问题的原理与信号的发送方法、信号的接收方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图23为作为发送端的终端结构示意图,如图所示,包括:
处理器2300,用于读取存储器2320中的程序,执行下列过程:
发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
收发机2310,用于在处理器2300的控制下接收和发送数据。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
其中,在图23中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2300代表的一个或多个处理器和存储器2320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2300负责管理总线架构和通常的处理,存储器2320可以存储处理器2300在执行操作时所使用的数据。
图24为作为接收端的终端结构示意图,如图所示,包括:
处理器2400,用于读取存储器2420中的程序,执行下列过程:
对SSB进行解调;
收发机2410,用于在处理器2400的控制下接收和发送数据,执行下列过 程:
接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
实施中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
其中,所述M不等于N。
实施中,所述M为6或7;或,N为8或9。
实施中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
实施中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
实施中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
实施中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
实施中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
其中,在图24中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2400代表的一个或多个处理器和存储器2420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2410可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2400负责管理总线架构和通常的处理,存储器2420可以存储处理器2400在执行操作时所使用的数据。
本公开实施例中提供了一种信号的发送装置,包括:
发送模块,用于发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
具体实施可以参见信号发送的方法的实施,不再赘述。
本公开实施例中提供了一种信号的接收装置,包括:
接收模块,用于接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
解调模块,用于对SSB进行解调。
具体实施可以参见信号接收的方法的实施,不再赘述。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储 介质存储有执行上述信号的发送和/或接收方法的计算机程序。
具体实施可以参见信号发送和/或接收的方法的实施,不再赘述。
综上所述,本公开实施例中提供了SSB的发送与接收方案,该技术方案可以使用在NR V2X的Sidelink通信中。方案中,在常规CP和扩展CP两种情况下SSB的图案不同,并且SSB中使用两个OFDM符号传输PSS,同时使用两个OFDM符号传输SSS。
具体的还提供了:
常规CP和扩展CP两种情况下SSB的图案不同体现在:PBCH所占用的符号数不同;特别的,常规CP下PBCH占用8个符号或9个符号;扩展CP下PBCH占用6个符号或7个符号。
SSB图案中使用两个不连续的OFDM符号传输SSS。
SSB图案中PBCH占用至少5个OFDM符号。
SSB图案中第一个符号放置PBCH,用来做AGC功能。
在CP-OFDM波形下:不包括单独的DMRS列,而是使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码。
在CP-OFDM或DFT-s-OFDM波形下:PBCH所在符号上不包括嵌入式的DMRS,而是使用SSS做信道估计,并使用该信道估计值做PBCH的解码,这时两种波形可以共用一种SSB图案。
在DFT-s-OFDM波形下:使用单独的DMRS列做信道估计,并使用该信道估计值做PBCH的解码。
采用本公开实施例提供的技术方案,在Sidelink通信子载波间隔较大时,采用该技术可以通过使用扩展CP下的SSB图案,避免了多径时延导致的符号间串扰,从而提高了PSS和SSS序列的检测成功率,也提高了广播信道PBCH的解码成功率性能,保证NR V2X的覆盖半径要求。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存 储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法 的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (35)

  1. 一种信号的发送方法,包括:
    发送同步信号块SSB,其中,所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH,所述PSS占用两个正交频分复用OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规循环前缀CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
  2. 如权利要求1所述的方法,其中,所述第一SSB图案与第二SSB图案不同是指,在发送同步信号块SSB时:
    当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
    当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
    其中,所述M不等于N。
  3. 如权利要求2所述的方法,其中,所述M为6或7;或,N为8或9。
  4. 如权利要求1所述的方法,其中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
  5. 如权利要求1所述的方法,其中,所述SSB进一步包括:占用大于等于5个OFDM符号的物理广播信道PBCH。
  6. 如权利要求1所述的方法,其中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成自动增益控制AGC功能。
  7. 如权利要求1所述的方法,其中,在以循环前缀的正交频分复用CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的解调参考信号DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
  8. 根据权利要求1至7任一所述方法,其中,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
  9. 一种信号的接收方法,包括:
    接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
    对SSB进行解调。
  10. 如权利要求9所述的方法,其中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
    当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
    当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
    其中,所述M不等于N。
  11. 如权利要求10所述的方法,其中,所述M为6或7;或,N为8或9。
  12. 如权利要求9所述的方法,其中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
  13. 如权利要求9所述的方法,其中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
  14. 如权利要求9所述的方法,其中,所述SSB所在时隙的第一个OFDM 符号用于放置PBCH,并且该符号用以完成AGC功能。
  15. 如权利要求9所述的方法,其中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
  16. 根据权利要求9至16任一所述的方法,其中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
  17. 一种终端,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
    收发机,用于在处理器的控制下接收和发送数据。
  18. 如权利要求17所述的终端,其中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
    当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的PBCH;或,
    当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
    其中,所述M不等于N。
  19. 如权利要求18所述的终端,其中,所述M为6或7;或,N为8或9。
  20. 如权利要求17所述的终端,其中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
  21. 如权利要求17所述的终端,其中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
  22. 如权利要求17所述的终端,其中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
  23. 如权利要求17所述的终端,其中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
  24. 根据权利要求17至24任一所述的终端,其中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
  25. 一种终端,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    对SSB进行解调;
    收发机,用于在处理器的控制下接收和发送数据,执行下列过程:
    接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
  26. 如权利要求25所述的终端,其中,所述第一SSB图案与第二SSB图案不同是指,在发送所述SSB时:
    当以扩展CP发送SSB时,所述SSB中包括占用M个OFDM符号的 PBCH;或,
    当以常规CP发送SSB时,所述SSB中包括占用N个OFDM符号的PBCH;
    其中,所述M不等于N。
  27. 如权利要求26所述的终端,其中,所述M为6或7;或,N为8或9。
  28. 如权利要求25所述的终端,其中,所述SSB中用于传输SSS信号的两个OFDM符号在时域上是不连续的OFDM符号。
  29. 如权利要求25所述的终端,其中,所述SSB进一步包括:占用大于等于5个OFDM符号的PBCH。
  30. 如权利要求25所述的终端,其中,所述SSB所在时隙的第一个OFDM符号用于放置PBCH,并且该符号用以完成AGC功能。
  31. 如权利要求25所述的终端,其中,在以CP-OFDM波形发送所述SSB时,使用PBCH中嵌入的DMRS做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以CP-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用SSS信号做信道估计,并使用该信道估计值做PBCH的解码;或,
    在以DFT-s-OFDM波形发送所述SSB时,使用DMRS用以做信道估计,并使用该信道估计值做PBCH的解码。
  32. 根据权利要求25至31任一所述的终端,其中,所述SSB为S-SSB,所述PSS为S-PSS,所述SSS为S-SSS,所述PBCH为PSBCH。
  33. 一种信号的发送装置,包括:
    发送模块,用于发送SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同。
  34. 一种信号的接收装置,包括:
    接收模块,用于接收SSB,其中,所述SSB包括PSS、SSS与PBCH,所述PSS占用两个OFDM符号传输,所述SSS占用两个OFDM符号传输,所述SSB所在时隙在配置了常规CP情况下所使用的SSB的图案为第一SSB图案,所述SSB所在时隙在配置了扩展CP情况下所使用的SSB的图案为第二SSB图案,所述第一SSB图案与第二SSB图案不同;
    解调模块,用于对SSB进行解调。
  35. 一种计算机可读存储介质,所述计算机可读存储介质存储有执行权利要求1至16任一所述方法的计算机程序。
PCT/CN2020/099335 2019-08-01 2020-06-30 信号的发送、接收方法、终端及装置 WO2021017729A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20848671.2A EP4009598A4 (en) 2019-08-01 2020-06-30 METHOD FOR SENDING AND RECEIVING A SIGNAL, TERMINAL AND APPARATUS
US17/631,623 US20220295425A1 (en) 2019-08-01 2020-06-30 Method for sending and receiving signal, terminal and apparatus
KR1020227005954A KR20220038731A (ko) 2019-08-01 2020-06-30 신호의 송신 방법, 신호의 수신 방법, 단말 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910708865.6A CN112311712B (zh) 2019-08-01 2019-08-01 一种信号的发送、接收方法、终端及装置
CN201910708865.6 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021017729A1 true WO2021017729A1 (zh) 2021-02-04

Family

ID=74229177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099335 WO2021017729A1 (zh) 2019-08-01 2020-06-30 信号的发送、接收方法、终端及装置

Country Status (6)

Country Link
US (1) US20220295425A1 (zh)
EP (1) EP4009598A4 (zh)
KR (1) KR20220038731A (zh)
CN (2) CN114268530B (zh)
TW (1) TWI767273B (zh)
WO (1) WO2021017729A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066507A1 (ko) * 2019-10-02 2021-04-08 엘지전자 주식회사 Nr v2x에서 s-ssb를 전송하는 방법 및 장치
KR20240056840A (ko) * 2021-10-21 2024-04-30 후지쯔 가부시끼가이샤 신호 송신 방법 및 장치, 및 통신 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893925B1 (en) * 2016-04-01 2018-02-13 Mbit Wireless, Inc. Method and apparatus for joint time and frequency synchronization in wireless communication systems
WO2019022574A1 (ko) * 2017-07-28 2019-01-31 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
CN109588062A (zh) * 2017-07-28 2019-04-05 Lg电子株式会社 发送和接收广播信道的方法及其装置
CN110050506A (zh) * 2017-11-17 2019-07-23 Lg电子株式会社 发送和接收物理随机接入信道的方法及其装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767594A (zh) * 2014-01-03 2015-07-08 北京三星通信技术研究有限公司 Lte系统中上行传输的方法和设备
CN104936166B (zh) * 2014-03-20 2018-07-20 电信科学技术研究院 一种信号发送、接收方法及装置
CN106411445B (zh) * 2015-07-31 2019-08-27 南京中兴软件有限责任公司 一种通信系统中同步信号的发送方法、同步方法及装置
WO2017132993A1 (zh) * 2016-02-05 2017-08-10 华为技术有限公司 一种控制信息的传输方法及装置
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN107634925B (zh) * 2016-07-18 2020-10-02 中兴通讯股份有限公司 同步信道的发送、接收方法及装置、传输系统
US10425264B2 (en) * 2017-01-09 2019-09-24 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
JP7005618B2 (ja) * 2017-06-16 2022-01-21 エルジー エレクトロニクス インコーポレイティド 下りリンクチャネルを送受信する方法及びそのための装置
CN109495413B (zh) * 2017-09-11 2022-04-01 中国移动通信有限公司研究院 同步信号块的传输、小区质量的测量方法、基站及终端
WO2019054755A1 (ko) * 2017-09-12 2019-03-21 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR102201758B1 (ko) * 2017-11-17 2021-01-15 엘지전자 주식회사 시스템 정보를 송수신하는 방법 및 이를 위한 장치
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110035028B (zh) * 2019-03-29 2020-02-21 宇龙计算机通信科技(深圳)有限公司 基于非授权频谱的同步信号传输方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893925B1 (en) * 2016-04-01 2018-02-13 Mbit Wireless, Inc. Method and apparatus for joint time and frequency synchronization in wireless communication systems
WO2019022574A1 (ko) * 2017-07-28 2019-01-31 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
CN109588062A (zh) * 2017-07-28 2019-04-05 Lg电子株式会社 发送和接收广播信道的方法及其装置
CN110050506A (zh) * 2017-11-17 2019-07-23 Lg电子株式会社 发送和接收物理随机接入信道的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Design on Synchronization Mechanism for NR V2X Sidelink", 3GPP DRAFT; R1-1812619, vol. RAN WG1, 3 November 2018 (2018-11-03), Spokane, USA, pages 1 - 10, XP051478860 *

Also Published As

Publication number Publication date
TW202107927A (zh) 2021-02-16
CN112311712B (zh) 2022-02-08
CN114268530B (zh) 2023-10-20
TWI767273B (zh) 2022-06-11
CN114268530A (zh) 2022-04-01
US20220295425A1 (en) 2022-09-15
EP4009598A1 (en) 2022-06-08
EP4009598A4 (en) 2022-09-28
CN112311712A (zh) 2021-02-02
KR20220038731A (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021121058A1 (zh) 直通链路定位参考信号的发送、接收方法及终端
WO2019096291A1 (zh) 信息发送、接收方法及装置
JP7130030B2 (ja) 共通制御ブロックの通信
CN110365461B (zh) 一种信号发送、接收方法及设备
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2022028616A1 (zh) 码本确定方法、装置、设备和存储介质
CN110035028B (zh) 基于非授权频谱的同步信号传输方法、装置和存储介质
WO2019063007A1 (zh) 随机接入方法及装置
KR20190126338A (ko) 신호를 전송하는 방법, 단말 장비 및 네트워크 장비
CN111565471A (zh) 一种信息传输方法、装置及设备
WO2009155859A1 (zh) 多载波系统信号发射方法、接收方法、发射装置和接收装置
WO2017211228A1 (zh) 一种无线通信中的方法和装置
WO2021017729A1 (zh) 信号的发送、接收方法、终端及装置
KR102470742B1 (ko) 절전 신호의 전송 방법, 단말 및 네트워크측 기기
WO2019134096A1 (zh) 车联网中用于传输数据的方法、终端设备和网络设备
CN103916812A (zh) 用于扩展lte网络中的控制信令的方法和装置
TWI795597B (zh) 節能訊號傳輸方法、終端和網路側設備
JP2019526966A (ja) 信号送信方法、ネットワークデバイス、及び端末デバイス
WO2009082127A2 (en) Method of multiplexing multiple access region
WO2020063471A1 (zh) 波束扫描方法、波束配置方法、终端及网络设备
US20100284339A1 (en) Method of transmitting cyclic prefix length information
CN113766648B (zh) 一种ssb传输方法和装置及设备
CN107872254B (zh) 一种用于随机接入的ue、基站中的方法和装置
KR20180026164A (ko) 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치
WO2020088636A1 (zh) 信号的发送方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005954

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020848671

Country of ref document: EP

Effective date: 20220301