WO2021017524A1 - 一种红外选择性辐射降温纳米功能组合物及其制备方法 - Google Patents

一种红外选择性辐射降温纳米功能组合物及其制备方法 Download PDF

Info

Publication number
WO2021017524A1
WO2021017524A1 PCT/CN2020/084640 CN2020084640W WO2021017524A1 WO 2021017524 A1 WO2021017524 A1 WO 2021017524A1 CN 2020084640 W CN2020084640 W CN 2020084640W WO 2021017524 A1 WO2021017524 A1 WO 2021017524A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
rare earth
functional composition
infrared
selective radiation
Prior art date
Application number
PCT/CN2020/084640
Other languages
English (en)
French (fr)
Inventor
陆春华
倪亚茹
房正刚
许仲梓
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to JP2022506229A priority Critical patent/JP7255940B2/ja
Priority to DE112020003642.1T priority patent/DE112020003642B4/de
Priority to US17/631,071 priority patent/US20220274882A1/en
Publication of WO2021017524A1 publication Critical patent/WO2021017524A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the invention belongs to the technical field of thermal radiation, and relates to an infrared selective radiation cooling nano functional composition and a preparation method thereof.
  • Radiation cooling refers to the process by which objects on the earth transfer heat to outer space through the infrared atmospheric window. Radiation cooling materials are materials with spontaneous cooling function prepared based on this principle. In the process of heat propagation, the atmosphere is the main transmission medium for infrared radiation. Although the atmosphere is transparent to visible light, a large part of the infrared radiation cannot pass through the atmosphere in the infrared band.
  • the heat exchange of the radiation cooler during the working process mainly includes the following: first, the absorbed solar radiation; second, the absorption of infrared radiation in the atmosphere; third, the infrared radiation discharged through the infrared window ; Fourth, heat convection and heat conduction under natural air.
  • the radiation cooling material needs to have high emissivity in the infrared band of 8 to 14 ⁇ m and high reflectivity in the solar spectrum band of 0.38 to 2.5 ⁇ m.
  • the radiation cooler usually includes an infrared radiation layer and a sunlight reflection layer.
  • the function of the infrared radiation layer is to discharge the heat of the object to space through the infrared atmospheric window.
  • the function of the sunlight reflection layer is to efficiently reflect sunlight and reduce the absorption of sunlight and heat. .
  • the existing publicly reported radiation coolers mainly have the following methods: one is to construct a nano-structured radiation cooler through photolithography technology and nano-plasma deposition technology.
  • the photon radiation cooler of this structure has high cost and cannot be large. Large-scale production, and the photon radiation cooler has low structural strength, easy damage, and poor long-term stability.
  • the other is to composite and bond inorganic functional substances such as titanium dioxide and glass microspheres with polymers to a highly reflective metal substrate to obtain a radiation cooler.
  • the prepared radiation cooler has high absorptivity and emissivity in the non-infrared atmospheric window outside the range of 8-14 ⁇ m, and poor selective radiation ability. It is easy to absorb a large amount of additional atmospheric heat radiation from the environment, and then make radiation The overall cooling effect of the device is weakened, and the effective cooling power is not ideal.
  • the infrared selective radiation cooling nano-functional composition and its preparation process that can be used to meet the functional requirements of day and night double-effect radiation coolers and are easy to be manufactured on a large scale and low cost have not been reported.
  • the purpose of the present invention is to provide an infrared selective radiation cooling nano functional composition that can solve the defects in the prior art.
  • Another object of the present invention is to provide a preparation method of the above infrared selective radiation cooling nano functional composition.
  • an infrared selective radiation cooling nano functional composition the infrared selective radiation cooling nano functional composition is composed of nano silica, rare earth silicate compounds and molybdenum
  • the acid salt compound according to the mass ratio of 1:(0.5 ⁇ 2):(0.5 ⁇ 2), is uniformly mixed by ball milling; among them, nano-silica has strong infrared selective radiation performance in the range of 8-10 ⁇ m (infrared radiation The absorption coefficient is greater than 0.8);
  • the rare earth silicate compound meets the stoichiometric ratio of SiO 2 -(0.5 ⁇ 2)Re 2 O 3 -(0.1 ⁇ 1.0)Na 2 O and has strong infrared selective radiation in the range of 9 ⁇ 12 ⁇ m Performance (infrared radiation absorption coefficient greater than 0.8), where Re is La, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, Y or Sc; the molybdate compound meets the stoichiometric ratio
  • the rare earth silicate compound SiO 2 -(0.5 ⁇ 2.0)RE 2 O 3 -(0.1 ⁇ 1.0)Na 2 O, RE is any one or a combination of La, Gd, Tm, Y, Sc, and further Preferably any one or a combination of La, Gd, and Y.
  • the molybdate compound meets the stoichiometric ratio RMoO 4 in which R is preferably any one or a combination of Mg and Ca.
  • the nano-functional composition has strong selective absorption-radiation performance in an atmosphere window of 8-14 ⁇ m, and is transparent to ultraviolet-visible-near infrared sunlight.
  • the present invention also provides a method for preparing the above-mentioned infrared selective radiation cooling nano-functional composition, and the specific steps are as follows:
  • the temperature of the water bath in step (a) is 70-80°C.
  • the mass concentration of the citric acid solution in step (b) is 5%-10%; the pH is adjusted with ammonia water; the temperature of the water bath is 70-80°C.
  • the rotation speed of the high-speed grinding and dispersing machine in step (c) is 300 to 400 revolutions per minute, and the processing time is 2 to 6 hours.
  • the invention combines nano silica with strong infrared selective radiation performance in the range of 8 to 10 ⁇ m, rare earth silicate compounds with strong infrared selective radiation performance in the range of 9 to 12 ⁇ m, and rare earth silicate compounds with strong infrared selective radiation performance in the range of 10 to 14 ⁇ m.
  • the combination of molybdate compounds with strong infrared selective radiation performance obtains a nano-functional composition that is transparent to ultraviolet-visible-near-infrared sunlight and has strong infrared selective radiation cooling characteristics in an infrared atmospheric window of 8 to 14 ⁇ m, which is a low-cost and large
  • the large-scale manufacturing of high-performance day and night double-effect radiation coolers, autonomous radiation cooling coatings, etc. reduces the technical difficulty, providing zero-energy cooling and cooling for buildings, grain and oil depots, high-power electronic equipment, refrigerated bags, etc., to achieve large-scale energy conservation and efficiency New technological approach.
  • Figure 1 is an infrared selective absorption/radiation spectrum of Example 1.
  • This embodiment discloses an infrared selective radiation cooling nano-functional composition and its preparation process, including the following steps:
  • step (c) According to the weight ratio of the functional powder composition 1:1:1, respectively weigh 40g of nano-silica (50nm, commercially available), 40g of the rare earth lanthanum silicate compound in step (a) and 40g of step (b)
  • the calcium molybdate in the high-speed grinding and dispersing machine is added to the ball milling tank of the high-speed grinding and dispersing machine.
  • the ball milling speed is 300 rpm and the ball milling time is 6 hours to obtain the required infrared selective radiation cooling nano-functional composition.
  • the nano-functional composition The absorption/radiation rate is up to 0.90 in the infrared wavelength range of 8 to 14 ⁇ m. Its infrared selective absorption/radiation spectrum is shown in Figure 1.
  • This embodiment discloses an infrared selective radiation cooling nano-functional composition and its preparation process, including the following steps:
  • step (c) According to the weight ratio of the functional powder composition of 1:1.5:0.5, respectively weigh 40g of nano-silica (50nm, commercially available), 60g of the rare earth lanthanum silicate compound in step (a) and 15g of step (b) Calcium molybdate in the high-speed grinding and dispersing machine is jointly added to the ball milling tank, the ball milling speed is 350 rpm, the ball milling time is 4 hours, to obtain the desired infrared selective radiation cooling nano-functional composition, the nano-functional composition The absorption/radiation rate is up to 0.89 in the infrared wavelength range of 8 to 14 ⁇ m.
  • This embodiment discloses an infrared selective radiation cooling nano-functional composition and its preparation process, including the following steps:
  • step (c) According to the weight ratio of the functional powder composition of 1:0.5:2, respectively weigh 35g of nano-silica (50nm, commercially available), 17.5g of the rare earth lanthanum silicate compound in step (a) and 70g of step (b)
  • the calcium molybdate in) is added to the ball milling tank of the high-speed grinding and dispersing machine.
  • the ball milling speed is 300 rpm and the ball milling time is 6 hours to obtain the desired infrared selective radiation cooling nano-functional composition.
  • the absorption/emissivity of the material in the infrared wavelength range of 8-14 ⁇ m is up to 0.91.
  • This embodiment discloses a method for preparing a highly selective photon radiation cooler, which includes the following steps:
  • step (c) According to the weight ratio of the functional powder composition of 1:2:1.5, weigh 28g of nano silica (50nm, commercially available), 56g of the rare earth dysprosium gadolinium silicate compound in step (a) and 42g of step (b)
  • the calcium molybdate in) is added to the ball milling tank of the high-speed grinding and dispersing machine.
  • the ball milling speed is 300 rpm and the ball milling time is 6 hours to obtain the desired infrared selective radiation cooling nano-functional composition.
  • the absorption/radiation rate of the material in the infrared wavelength range of 8-14 ⁇ m is up to 0.92.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Luminescent Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种红外选择性辐射降温纳米功能组合物及其制备方法,该组合物由二氧化硅、稀土硅酸盐化合物和钼酸盐化合物按照质量比例1:(0.5~2):(0.5~2)通过球磨均匀混合而成,二氧化硅、稀土硅酸盐化合物和钼酸盐化合物分别在8~10μm、9~12μm和10~14μm范围内具有强的红外选择性辐射性能。根据化学计量比SiO 2-(0.5~2)Re2O3-(0.1~1.0)Na2O(Re=La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y、Sc)和RMoO 4(R=Mg、Ca、Sr、Ba),通过溶胶-凝胶和高温固相法制得稀土硅酸盐化合物和钼酸盐化合物。该红外选择性辐射降温纳米功能组合物可用于制备日夜双效辐射降温器等功能器件,实现建筑物、粮油库、太阳能电池背板等提供零耗能降温冷却和节能增效。

Description

一种红外选择性辐射降温纳米功能组合物及其制备方法 技术领域
本发明属于热辐射技术领域,涉及一种红外选择性辐射降温纳米功能组合物及其制备方法。
背景技术
随着全球经济的快速发展,能源危机问题日显突出,空调降温在能源消耗中占有相当的比例,发展高效辐射降温技术,对于减少电能消耗、保护环境具有重要意义。辐射降温是指地球上的物体通过红外大气窗口将热量传递至外太空的过程,辐射降温材料就是基于这一原理制备出的具有自发降温功能的材料。在热量传播过程中,大气是红外辐射的主要传输介质,虽然大气对可见光是透明的,但是在红外波段有很大一部分的红外辐射无法透过大气。这是由于大气中存在的H 2O、CO 2、O 3和CH 4等多原子气体分子在红外辐射传输过程中会引起分子中电偶极距的变化,导致红外辐射的吸收或散射,且实际大气中,还存在很多固体或液体的悬浮物,如烟、雾、雨、雪、灰尘等,它们也会对红外辐射的传输起阻碍作用。根据对大气透过率的研究,发现在8~14μm波段各种气体分子的吸收较弱,红外辐射可以透过大气层向远方传播,因此该区域被称为“大气窗口”。
在太阳光照环境下,辐射降温器在工作过程中的热量交换主要包括以下几种:第一,吸收的太阳辐射;第二,吸收大气中的红外辐射;第三,通过红外窗口排出的红外辐射;第四,自然空气下的热对流及热传导。为实现达到最佳的被动降温效果,辐射降温材料需要在8~14μm红外波段具有高的发射率以及在0.38~2.5μm太阳光谱波段具有高的反射率。辐射降温器通常包括红外辐射层和太阳光反射层,红外辐射层的作用是将物体的热量通过红外大气窗口排出至太空,太阳光反射层的作用是高效地反射太阳光,减少太阳光热吸收。
目前,在夜晚无光照条件下的辐射降温器已实现,但是在白天光照条件下达到满足实用性能要求的高性能辐射降温器尚未出现。现有公开报道的辐射降温器 主要有以下方法:一种是通过光刻蚀技术以及纳米等离子沉积技术,构筑纳米结构的辐射降温器,这种结构的光子辐射降温器造价成本高,无法实现大规模生产,且光子辐射降温器结构强度低、易破坏、长期稳定性差。另一种是将钛白粉、玻璃微球等无机功能物质与聚合物复合粘结到高反射金属基底上得到辐射降温器,但是由于钛白粉、玻璃微球等功能物质在红外光谱区的吸收选择性不够,制得的辐射降温器在8~14μm范围外的非红外大气窗口具有高的吸收率和发射率,选择性辐射能力差,易于从环境中吸收大量额外的大气热辐射,进而使辐射器整体降温效果减弱,有效降温功率不够理想。目前,可用于满足日夜双效辐射降温器功能要求,且易于大规模低成本制造的红外选择性辐射降温纳米功能组合物及其制备工艺还未见报道。
发明内容
本发明的目的是提供一种能解决现有技术中存在缺陷的红外选择性辐射降温纳米功能组合物,本发明的另一目的是提供上述红外选择性辐射降温纳米功能组合物的制备方法。
为达到上述目的,本发明是通过以下技术方案实现的:一种红外选择性辐射降温纳米功能组合物,该红外选择性辐射降温纳米功能组合物由纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,按质量比例1:(0.5~2):(0.5~2),经球磨均匀混合而成;其中纳米二氧化硅在8~10μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8);稀土硅酸盐化合物符合化学计量比SiO 2-(0.5~2)Re 2O 3-(0.1~1.0)Na 2O且在9~12μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8),其中Re为La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y或Sc;钼酸盐化合物符合化学计量比RMoO 4且在10~14μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8),其中R为Mg、Ca、Sr或Ba。
更优选稀土硅酸盐化合物SiO 2-(0.5~2.0)RE 2O 3-(0.1~1.0)Na 2O,RE为La、Gd、Tm、Y、Sc中任意一种或几种组合,进一步优选La、Gd、Y中任意一种或几种组合。
所述钼酸盐化合物符合化学计量比RMoO 4中R优选为Mg、Ca中任意一种或二种组合。
该纳米功能组合物在8~14μm大气窗口具有强的选择性吸收-辐射性能,且对紫外-可见-近红外太阳光透明。
本发明还提供了一种制备上述的一种红外选择性辐射降温纳米功能组合物的方法,其具体步骤如下:
(a)根据稀土硅酸盐化合物的化学计量比,准确称取纳米二氧化硅、稀土硝酸盐和硝酸钠,混合分散到乙醇水混合溶液中;在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再在600~900℃热处理3~12小时得到稀土硅酸盐化合物;
(b)根据钼酸盐化合物的化学计量比,准确称取钼酸铵和碱土金属硝酸盐,溶解到去离子水中;配置柠檬酸溶液,滴加入到上述溶液中,边加边剧烈搅拌,调节pH至3.0~4.0,在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再800~1000℃热处理3~12小时后,即得到钼酸盐化合物;
(c)按照纳米功能组合物质量比例,称取一定量纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,利用高速研磨分散机处理后,即获得红外选择性辐射降温纳米功能组合物。
优选步骤(a)中的水浴温度为70~80℃。优选步骤(b)中柠檬酸溶液的质量浓度为5%~10%;用氨水调节pH;水浴温度为70~80℃。优选步骤(c)中高速研磨分散机的转速为300~400转/分钟,处理时间为2~6小时。
有益效果:
本发明将在8~10μm范围内具有强红外选择性辐射性能的纳米二氧化硅、在9~12μm范围内具有强的红外选择性辐射性能的稀土硅酸盐化合物和在10~14μm范围内具有强的红外选择性辐射性能的钼酸盐化合物组合获得对紫外-可见- 近红外太阳光透明且在8~14μm红外大气窗口具有强红外选择性辐射降温特性的纳米功能组合物,为低成本大规模制造高性能日夜双效辐射降温器、自主辐射降温涂层等降低了技术难度,为建筑物、粮油库、大功率电子设备、冷藏箱包等零耗能冷却降温,实现大规模节能增效提供新的技术途径。
附图说明
图1是以实施例1的红外选择性吸收/辐射光谱图。
具体实施方式
为了更好地理解本发明,特例举以下实施例对本发明进行详细阐述,但本发明的内容绝不仅仅限于下面的实施例。本发明的优点和特点会随着描述而更加清楚,但并不作为对本发明做任何限制的依据。本领域技术人员应该理解的是,在阅读了本发明之后,对本发明的各种等价形式的修改或替换均落于本发明保护范围内。
实施例1
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO 2-La 2O 3-0.5Na 2O,准确称取30g纳米二氧化硅(50nm,市售)、324.9g硝酸镧和85g硝酸钠,溶解到乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到稀土硅酸镧预烧粉,在700℃热处理12小时得到颗粒平均尺寸为106nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式CaMoO 4,准确称取82g硝酸钙和170g二钼酸铵,溶解到去离子水中。配置8%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至3.5,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃ 热处理6小时得到钼酸钙预烧粉,在900℃热处理6小时得到颗粒平均尺寸为103nm钼酸钙。
(c)按功能粉体组合物重量比例1:1:1,分别称取40g纳米二氧化硅(50nm,市售)、40g步骤(a)中的稀土硅酸镧化合物和40g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.90。其红外选择性吸收/辐射光谱图如图1所示。
实施例2
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO 2-1.5Sm 2O 3-0.25Na 2O,准确称取24g纳米二氧化硅(50nm,市售)、134.5g硝酸钐和42.5g硝酸钠,溶解到乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到稀土硅酸镧预烧粉,在900℃热处理3小时得到颗粒平均尺寸为115nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式MgMoO 4,准确称取72.2g硝酸镁和85g二钼酸铵,溶解到去离子水中。配置10%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至3.0,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到钼酸钙预烧粉,在1000℃热处理3小时得到颗粒平均尺寸为103nm钼酸钙。
(c)按功能粉体组合物重量比例1:1.5:0.5,分别称取40g纳米二氧化硅(50nm,市售)、60g步骤(a)中的稀土硅酸镧化合物和15g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为350转/分钟,球磨时间为4小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.89。
实施例3
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO 2-1.5La 2O 3-0.5Na 2O,准确称取30g纳米二氧化硅(30nm,市售)、487.4g硝酸镧和42.5g硝酸钠,溶解到乙醇水混合溶液中,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到稀土硅酸镧预烧粉,在650℃热处理12小时得到颗粒平均尺寸为94nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式CaMoO 4,准确称取82g硝酸钙和170g二钼酸铵,溶解到去离子水中。配置8%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至4.0,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到钼酸钙预烧粉,在900℃热处理3小时得到颗粒平均尺寸为90nm钼酸钙。
(c)按功能粉体组合物重量比例1:0.5:2,分别称取35g纳米二氧化硅(50nm,市售)、17.5g步骤(a)中的稀土硅酸镧化合物和70g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.91。
实施例4
本实施例公开了一种高选择性光子辐射降温器的制备方法,包括以下步骤:
(a)根据稀土硅酸镝的化学计量比SiO 2-0.5La 2O 3-0.1Gd 2O 3-1.0Na 2O,准确称取30g纳米二氧化硅、162.5g硝酸镧、34.3g硝酸钆和85g硝酸钠,溶解到体积乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到稀土硅酸镝预烧粉,在750℃热处理10小时得到颗粒平均尺寸为120nm的稀土硅酸镝钆化合物。
(b)根据钼酸钙CaMoO 4化学式,准确称取41g硝酸钙和85g二钼酸铵,溶解到去离子水中。配置5%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至4.0,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理4小时得到钼酸钙预烧粉,在850℃热处理12小时得到颗粒平均尺寸为85nm钼酸钙。
(c)按功能粉体组合物重量比例1:2:1.5,分别称取28g纳米二氧化硅(50nm,市售)、56g步骤(a)中的稀土硅酸镝钆化合物和42g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.92。

Claims (6)

  1. 一种红外选择性辐射降温纳米功能组合物,该红外选择性辐射降温纳米功能组合物由纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,按质量比例1:(0.5~2):(0.5~2),经球磨均匀混合而成;其中稀土硅酸盐化合物符合化学计量比SiO 2-(0.5~2)Re 2O 3-(0.1~1.0)Na 2O且在9~12μm范围内具有强的红外选择性辐射性能,其中Re为La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y或Sc;钼酸盐化合物符合化学计量比RMoO 4且在10~14μm范围内具有强的红外选择性辐射性能,其中R为Mg、Ca、Sr或Ba。
  2. 根据权利要求1所述的一种红外选择性辐射降温纳米功能组合物,其特征在于该纳米功能组合物在8~14μm大气窗口具有强的选择性吸收-辐射性能,且对紫外-可见-近红外太阳光透明。
  3. 一种制备如权利要求1所述的一种红外选择性辐射降温纳米功能组合物的方法,其具体步骤如下:
    (a)根据稀土硅酸盐化合物的化学计量比,准确称取纳米二氧化硅、稀土硝酸盐和硝酸钠,混合分散到乙醇水混合溶液中;在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再在600~900℃热处理3~12小时得到稀土硅酸盐化合物;
    (b)根据钼酸盐化合物的化学计量比,准确称取钼酸铵和碱土金属硝酸盐,溶解到去离子水中;配置柠檬酸溶液,搅拌滴加入到上述溶液中,调节pH至3.0~4.0,在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再800~1000℃热处理3~12小时后,即得到钼酸盐化合物;
    (c)按照纳米功能组合物质量比例,称取一定量纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,利用高速研磨分散机处理后,即获得红外选择性辐射降温纳米功能组合物。
  4. 根据权利要求3所述的方法,其特征在于步骤(a)中的水浴温度为70~80℃。
  5. 根据权利要求3所述的方法,其特征在于步骤(b)中柠檬酸溶液的质量浓度为5%~10%;用氨水调节pH;水浴温度为70~80℃。
  6. 根据权利要求3所述的方法,其特征在于步骤(c)中高速研磨分散机的转速为300~400转/分钟,处理时间为2~6小时。
PCT/CN2020/084640 2019-07-30 2020-04-14 一种红外选择性辐射降温纳米功能组合物及其制备方法 WO2021017524A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022506229A JP7255940B2 (ja) 2019-07-30 2020-04-14 放射冷却のための赤外線選択的ナノ機能性組成物及びその製造方法
DE112020003642.1T DE112020003642B4 (de) 2019-07-30 2020-04-14 Infrarotselektive Strahlungskühlungs-Nanofunktions-Zusammensetzung und deren Herstellungsverfahren
US17/631,071 US20220274882A1 (en) 2019-07-30 2020-04-14 Infrared selective radiation cooling nano-functional composition and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910695003.4 2019-07-30
CN201910695003.4A CN110330818B (zh) 2019-07-30 2019-07-30 一种红外选择性辐射降温纳米功能组合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2021017524A1 true WO2021017524A1 (zh) 2021-02-04

Family

ID=68147899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084640 WO2021017524A1 (zh) 2019-07-30 2020-04-14 一种红外选择性辐射降温纳米功能组合物及其制备方法

Country Status (5)

Country Link
US (1) US20220274882A1 (zh)
JP (1) JP7255940B2 (zh)
CN (1) CN110330818B (zh)
DE (1) DE112020003642B4 (zh)
WO (1) WO2021017524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261606A (zh) * 2022-08-06 2022-11-01 江西理工大学 红土镍矿综合利用制备高发射率多元掺杂铁酸稀土的工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330818B (zh) * 2019-07-30 2021-04-20 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法
CN117586653A (zh) * 2023-12-12 2024-02-23 重庆大学 一种具有自清洁功能的辐射制冷涂层的制备方法及其应用
CN117567894B (zh) * 2024-01-11 2024-04-05 中稀易涂科技发展有限公司 一种高发射稀土基辐射制冷涂料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63485A (ja) * 1986-06-18 1988-01-05 Nok Corp 放射冷却膜
CN101815763A (zh) * 2007-06-19 2010-08-25 悉尼科技大学 冷却材料
CN105152537A (zh) * 2015-08-10 2015-12-16 昆明理工大学 一种稀土掺杂多孔氟氧硅酸盐玻璃陶瓷及其制备方法
CN110305539A (zh) * 2019-07-30 2019-10-08 南京工业大学 一种日夜双效能辐射降温器及其制备方法
CN110330818A (zh) * 2019-07-30 2019-10-15 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法
CN110373072A (zh) * 2019-07-30 2019-10-25 南京工业大学 一种辐射自降温功能涂料及其制备方法
CN110387751A (zh) * 2019-07-30 2019-10-29 南京工业大学 一种辐射自降温功能纤维织物及其制备方法
CN110391310A (zh) * 2019-07-30 2019-10-29 南京工业大学 一种辐射自降温太阳能电池背板膜及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018697A1 (de) 2000-04-14 2001-10-18 Inst Neue Mat Gemein Gmbh Substrate mit einer Dickschicht aus anorganischem Gel-, Glas-, Glaskeramik- oder Keramikmaterial, Verfahren zu deren Herstellung und ihre Verwendung
US20100285320A1 (en) * 2004-11-26 2010-11-11 Mohammed Saad Amorphous thin films and method of manufacturing same
WO2009036790A1 (en) * 2007-09-21 2009-03-26 Henkel Ag & Co. Kgaa Primer compositions for adhesive bonding systems and coatings
DE102010007566A1 (de) 2010-02-10 2011-08-11 Tailorlux GmbH, 48565 Lumineszentes Sicherheitselement für den Produktschutz
JP2015078338A (ja) * 2013-09-11 2015-04-23 ナガセケムテックス株式会社 機能性膜形成用組成物および機能性膜積層体
CN105038409B (zh) * 2015-09-02 2017-11-14 中钞油墨有限公司 多波段机读荧光防伪油墨组合物及其应用
CN109423105A (zh) * 2017-07-20 2019-03-05 端木顺娣 一种散热降温纳米粉新材料
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63485A (ja) * 1986-06-18 1988-01-05 Nok Corp 放射冷却膜
CN101815763A (zh) * 2007-06-19 2010-08-25 悉尼科技大学 冷却材料
CN105152537A (zh) * 2015-08-10 2015-12-16 昆明理工大学 一种稀土掺杂多孔氟氧硅酸盐玻璃陶瓷及其制备方法
CN110305539A (zh) * 2019-07-30 2019-10-08 南京工业大学 一种日夜双效能辐射降温器及其制备方法
CN110330818A (zh) * 2019-07-30 2019-10-15 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法
CN110373072A (zh) * 2019-07-30 2019-10-25 南京工业大学 一种辐射自降温功能涂料及其制备方法
CN110387751A (zh) * 2019-07-30 2019-10-29 南京工业大学 一种辐射自降温功能纤维织物及其制备方法
CN110391310A (zh) * 2019-07-30 2019-10-29 南京工业大学 一种辐射自降温太阳能电池背板膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENYAN ZHANG ET AL.: "Preparation and characterization of NaSm9(SiO4)6O2 powders with infrared absorptive properties", MATERIALS LETTERS, vol. 65, no. 11,, 11 March 2011 (2011-03-11), XP028198348, ISSN: 0167-577X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261606A (zh) * 2022-08-06 2022-11-01 江西理工大学 红土镍矿综合利用制备高发射率多元掺杂铁酸稀土的工艺
CN115261606B (zh) * 2022-08-06 2024-03-29 江西理工大学 红土镍矿综合利用制备高发射率多元掺杂铁酸稀土的工艺

Also Published As

Publication number Publication date
JP7255940B2 (ja) 2023-04-11
DE112020003642B4 (de) 2023-08-24
US20220274882A1 (en) 2022-09-01
DE112020003642T5 (de) 2022-04-21
CN110330818B (zh) 2021-04-20
CN110330818A (zh) 2019-10-15
JP2022542325A (ja) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2021017524A1 (zh) 一种红外选择性辐射降温纳米功能组合物及其制备方法
CN110305539B (zh) 一种日夜双效能辐射降温器及其制备方法
Liu et al. Synthesis and luminescence properties of YNbO4: A (A= Eu3+ and/or Tb3+) nanocrystalline phosphors via a sol–gel process
CN110387751A (zh) 一种辐射自降温功能纤维织物及其制备方法
CN103173208A (zh) 一种热致变色复合纳米粉体及其制备方法和用途
Chang et al. Dual-mode downconversion luminescence with broad near-ultraviolet and blue light excitation in Tm3+/Yb3+ codoped oxy-fluoride glasses for c-Si solar cells
CN114057947B (zh) 一种双向快速光热响应PVA-PNIPAM/MxWO3复合水凝胶及其制备方法
WO2022166345A1 (zh) 一种三维多孔纳米复合降温薄膜的规模化制备方法
Pang et al. Upconversion luminescence properties of Er3+–Bi3+ codoped CaSnO3 nanocrystals with perovskite structure
CN103274607B (zh) 纳米银修饰稀土掺杂频率转换的发光材料及其制备方法
Tian et al. Egg albumin assisted sol-gel synthesis of Eu3+ doped SnO2 phosphor for temperature sensing
CN103936071B (zh) 金红石相二氧化钒纳米粉体及其制备方法和用途
CN104710982A (zh) 一种稀土离子共掺杂的铝硅酸盐新型绿光荧光粉及其制备方法
CN104893724B (zh) 一种新型石榴石基高效黄色荧光粉
Xu et al. Morphology Tunable Self‐Assembled Sr 2 P 2 O 7: Ce 3+, Mn 2+ Phosphor and Luminescence Properties
CN110373072B (zh) 一种辐射自降温功能涂料及其制备方法
Cheng et al. Down-conversion emission of Ce3+-Tb3+ co-doped CaF2 hollow spheres and application for solar cells
Gu et al. Elaboration and characterization of transparent GdTaO4: Tb3+ thick films fabricated by sol–gel process
Zhang et al. Photovoltaic efficiency enhancement for crystalline silicon solar cells via a Bi-functional layer based on europium complex@ nanozeolite@ SiO2
CN103756679A (zh) 一种可被宽谱非相干光激发的上转换材料及其制备方法
CN103173207A (zh) 一种制备热致变色复合纳米粉体的方法
CN102766379B (zh) 一种纳米复合透明隔热涂料及其制备方法
Tang et al. An ion adsorption–diffusion process for preparing YVO4: Eu3+@ SiO2 core–shell nanoparticles with strong luminescence
CN104628025B (zh) 硅表面垂直组装CeO2纳米棒薄膜的溶剂热制备方法
CN107033897A (zh) 一种近紫外光激发的氟掺杂的钨钼酸盐发光材料及合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506229

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20847794

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20847794

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20847794

Country of ref document: EP

Kind code of ref document: A1