CN110330818A - 一种红外选择性辐射降温纳米功能组合物及其制备方法 - Google Patents

一种红外选择性辐射降温纳米功能组合物及其制备方法 Download PDF

Info

Publication number
CN110330818A
CN110330818A CN201910695003.4A CN201910695003A CN110330818A CN 110330818 A CN110330818 A CN 110330818A CN 201910695003 A CN201910695003 A CN 201910695003A CN 110330818 A CN110330818 A CN 110330818A
Authority
CN
China
Prior art keywords
rare earth
selective radiation
infrared
compound
functional composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910695003.4A
Other languages
English (en)
Other versions
CN110330818B (zh
Inventor
陆春华
倪亚茹
房正刚
许仲梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910695003.4A priority Critical patent/CN110330818B/zh
Publication of CN110330818A publication Critical patent/CN110330818A/zh
Priority to JP2022506229A priority patent/JP7255940B2/ja
Priority to DE112020003642.1T priority patent/DE112020003642B4/de
Priority to PCT/CN2020/084640 priority patent/WO2021017524A1/zh
Priority to US17/631,071 priority patent/US20220274882A1/en
Application granted granted Critical
Publication of CN110330818B publication Critical patent/CN110330818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Abstract

本发明公开了一种红外选择性辐射降温纳米功能组合物及其制备方法,该组合物由二氧化硅、稀土硅酸盐化合物和钼酸盐化合物按照质量比例1:(0.5~2):(0.5~2)通过球磨均匀混合而成,二氧化硅、稀土硅酸盐化合物和钼酸盐化合物分别在8~10μm、9~12μm和10~14μm范围内具有强的红外选择性辐射性能。根据化学计量比SiO2‑(0.5~2)Re2O3‑(0.1~1.0)Na2O(Re=La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y、Sc)和RMoO4(R=Mg、Ca、Sr、Ba),通过溶胶‑凝胶和高温固相法制得稀土硅酸盐化合物和钼酸盐化合物。该红外选择性辐射降温纳米功能组合物可用于制备日夜双效辐射降温器等功能器件,实现建筑物、粮油库、太阳能电池背板等提供零耗能降温冷却和节能增效。

Description

一种红外选择性辐射降温纳米功能组合物及其制备方法
技术领域
本发明属于热辐射技术领域,涉及一种红外选择性辐射降温纳米功能组合物及其制备方法。
背景技术
随着全球经济的快速发展,能源危机问题日显突出,空调降温在能源消耗中占有相当的比例,发展高效辐射降温技术,对于减少电能消耗、保护环境具有重要意义。辐射降温是指地球上的物体通过红外大气窗口将热量传递至外太空的过程,辐射降温材料就是基于这一原理制备出的具有自发降温功能的材料。在热量传播过程中,大气是红外辐射的主要传输介质,虽然大气对可见光是透明的,但是在红外波段有很大一部分的红外辐射无法透过大气。这是由于大气中存在的H2O、CO2、O3和CH4等多原子气体分子在红外辐射传输过程中会引起分子中电偶极距的变化,导致红外辐射的吸收或散射,且实际大气中,还存在很多固体或液体的悬浮物,如烟、雾、雨、雪、灰尘等,它们也会对红外辐射的传输起阻碍作用。根据对大气透过率的研究,发现在8~14μm波段各种气体分子的吸收较弱,红外辐射可以透过大气层向远方传播,因此该区域被称为“大气窗口”。
在太阳光照环境下,辐射降温器在工作过程中的热量交换主要包括以下几种:第一,吸收的太阳辐射;第二,吸收大气中的红外辐射;第三,通过红外窗口排出的红外辐射;第四,自然空气下的热对流及热传导。为实现达到最佳的被动降温效果,辐射降温材料需要在8~14μm红外波段具有高的发射率以及在0.38~2.5μm太阳光谱波段具有高的反射率。辐射降温器通常包括红外辐射层和太阳光反射层,红外辐射层的作用是将物体的热量通过红外大气窗口排出至太空,太阳光反射层的作用是高效地反射太阳光,减少太阳光热吸收。
目前,在夜晚无光照条件下的辐射降温器已实现,但是在白天光照条件下达到满足实用性能要求的高性能辐射降温器尚未出现。现有公开报道的辐射降温器主要有以下方法:一种是通过光刻蚀技术以及纳米等离子沉积技术,构筑纳米结构的辐射降温器,这种结构的光子辐射降温器造价成本高,无法实现大规模生产,且光子辐射降温器结构强度低、易破坏、长期稳定性差。另一种是将钛白粉、玻璃微球等无机功能物质与聚合物复合粘结到高反射金属基底上得到辐射降温器,但是由于钛白粉、玻璃微球等功能物质在红外光谱区的吸收选择性不够,制得的辐射降温器在8~14μm范围外的非红外大气窗口具有高的吸收率和发射率,选择性辐射能力差,易于从环境中吸收大量额外的大气热辐射,进而使辐射器整体降温效果减弱,有效降温功率不够理想。目前,可用于满足日夜双效辐射降温器功能要求,且易于大规模低成本制造的红外选择性辐射降温纳米功能组合物及其制备工艺还未见报道。
发明内容
本发明的目的是提供一种能解决现有技术中存在缺陷的红外选择性辐射降温纳米功能组合物,本发明的另一目的是提供上述红外选择性辐射降温纳米功能组合物的制备方法。
为达到上述目的,本发明是通过以下技术方案实现的:一种红外选择性辐射降温纳米功能组合物,该红外选择性辐射降温纳米功能组合物由纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,按质量比例1:(0.5~2):(0.5~2),经球磨均匀混合而成;其中纳米二氧化硅在8~10μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8);稀土硅酸盐化合物符合化学计量比SiO2-(0.5~2)Re2O3-(0.1~1.0)Na2O且在9~12μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8),其中Re为La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y或Sc;钼酸盐化合物符合化学计量比RMoO4且在10~14μm范围内具有强的红外选择性辐射性能(红外辐射吸收系数大于0.8),其中R为Mg、Ca、Sr或Ba。
更优选稀土硅酸盐化合物SiO2-(0.5~2.0)RE2O3-(0.1~1.0)Na2O,RE为La、Gd、Tm、Y、Sc中任意一种或几种组合,进一步优选La、Gd、Y中任意一种或几种组合。
所述钼酸盐化合物符合化学计量比RMoO4中R优选为Mg、Ca中任意一种或二种组合。
该纳米功能组合物在8~14μm大气窗口具有强的选择性吸收-辐射性能,且对紫外-可见-近红外太阳光透明。
本发明还提供了一种制备上述的一种红外选择性辐射降温纳米功能组合物的方法,其具体步骤如下:
(a)根据稀土硅酸盐化合物的化学计量比,准确称取纳米二氧化硅、稀土硝酸盐和硝酸钠,混合分散到乙醇水混合溶液中;在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再在600~900℃热处理3~12小时得到稀土硅酸盐化合物;
(b)根据钼酸盐化合物的化学计量比,准确称取钼酸铵和碱土金属硝酸盐,溶解到去离子水中;配置柠檬酸溶液,滴加入到上述溶液中,边加边剧烈搅拌,调节pH至3.0~4.0,在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再800~1000℃热处理3~12小时后,即得到钼酸盐化合物;
(c)按照纳米功能组合物质量比例,称取一定量纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,利用高速研磨分散机处理后,即获得红外选择性辐射降温纳米功能组合物。
优选步骤(a)中的水浴温度为70~80℃。优选步骤(b)中柠檬酸溶液的质量浓度为5%~10%;用氨水调节pH;水浴温度为70~80℃。优选步骤(c)中高速研磨分散机的转速为300~400转/分钟,处理时间为2~6小时。
有益效果:
本发明将在8~10μm范围内具有强红外选择性辐射性能的纳米二氧化硅、在9~12μm范围内具有强的红外选择性辐射性能的稀土硅酸盐化合物和在10~14μm范围内具有强的红外选择性辐射性能的钼酸盐化合物组合获得对紫外-可见-近红外太阳光透明且在8~14μm红外大气窗口具有强红外选择性辐射降温特性的纳米功能组合物,为低成本大规模制造高性能日夜双效辐射降温器、自主辐射降温涂层等降低了技术难度,为建筑物、粮油库、大功率电子设备、冷藏箱包等零耗能冷却降温,实现大规模节能增效提供新的技术途径。
附图说明
图1是以实施例1的红外选择性吸收/辐射光谱图。
具体实施方式
为了更好地理解本发明,特例举以下实施例对本发明进行详细阐述,但本发明的内容绝不仅仅限于下面的实施例。本发明的优点和特点会随着描述而更加清楚,但并不作为对本发明做任何限制的依据。本领域技术人员应该理解的是,在阅读了本发明之后,对本发明的各种等价形式的修改或替换均落于本发明保护范围内。
实施例1
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO2-La2O3-0.5Na2O,准确称取30g纳米二氧化硅(50nm,市售)、324.9g硝酸镧和85g硝酸钠,溶解到乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到稀土硅酸镧预烧粉,在700℃热处理12小时得到颗粒平均尺寸为106nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式CaMoO4,准确称取82g硝酸钙和170g二钼酸铵,溶解到去离子水中。配置8%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至3.5,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理6小时得到钼酸钙预烧粉,在900℃热处理6小时得到颗粒平均尺寸为103nm钼酸钙。
(c)按功能粉体组合物重量比例1:1:1,分别称取40g纳米二氧化硅(50nm,市售)、40g步骤(a)中的稀土硅酸镧化合物和40g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.90。其红外选择性吸收/辐射光谱图如图1所示。
实施例2
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO2-1.5Sm2O3-0.25Na2O,准确称取24g纳米二氧化硅(50nm,市售)、134.5g硝酸钐和42.5g硝酸钠,溶解到乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到稀土硅酸镧预烧粉,在900℃热处理3小时得到颗粒平均尺寸为115nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式MgMoO4,准确称取72.2g硝酸镁和85g二钼酸铵,溶解到去离子水中。配置10%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至3.0,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到钼酸钙预烧粉,在1000℃热处理3小时得到颗粒平均尺寸为103nm钼酸钙。
(c)按功能粉体组合物重量比例1:1.5:0.5,分别称取40g纳米二氧化硅(50nm,市售)、60g步骤(a)中的稀土硅酸镧化合物和15g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为350转/分钟,球磨时间为4小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.89。
实施例3
本实施例公开了一种红外选择性辐射降温纳米功能组合物及其制备工艺,包括以下步骤:
(a)根据稀土硅酸镧化合物化学计量比SiO2-1.5La2O3-0.5Na2O,准确称取30g纳米二氧化硅(30nm,市售)、487.4g硝酸镧和42.5g硝酸钠,溶解到乙醇水混合溶液中,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在120℃热处理6小时得到稀土硅酸镧预烧粉,在650℃热处理12小时得到颗粒平均尺寸为94nm稀土硅酸镧化合物。
(b)根据钼酸钙化学式CaMoO4,准确称取82g硝酸钙和170g二钼酸铵,溶解到去离子水中。配置8%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至4.0,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到钼酸钙预烧粉,在900℃热处理3小时得到颗粒平均尺寸为90nm钼酸钙。
(c)按功能粉体组合物重量比例1:0.5:2,分别称取35g纳米二氧化硅(50nm,市售)、17.5g步骤(a)中的稀土硅酸镧化合物和70g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.91。
实施例4
本实施例公开了一种高选择性光子辐射降温器的制备方法,包括以下步骤:
(a)根据稀土硅酸镝的化学计量比SiO2-0.5La2O3-0.1Gd2O3-1.0Na2O,准确称取30g纳米二氧化硅、162.5g硝酸镧、34.3g硝酸钆和85g硝酸钠,溶解到体积乙醇水混合溶液中,在水浴70℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理3小时得到稀土硅酸镝预烧粉,在750℃热处理10小时得到颗粒平均尺寸为120nm的稀土硅酸镝钆化合物。
(b)根据钼酸钙CaMoO4化学式,准确称取41g硝酸钙和85g二钼酸铵,溶解到去离子水中。配置5%柠檬酸溶液,逐滴加入到上述溶液中,边加边剧烈搅拌,用氨水调节pH至4.0,在水浴80℃搅拌条件下蒸发溶剂得到凝胶,在150℃热处理4小时得到钼酸钙预烧粉,在850℃热处理12小时得到颗粒平均尺寸为85nm钼酸钙。
(c)按功能粉体组合物重量比例1:2:1.5,分别称取28g纳米二氧化硅(50nm,市售)、56g步骤(a)中的稀土硅酸镝钆化合物和42g步骤(b)中的钼酸钙,共同加入高速研磨分散机的球磨罐中,球磨转速为300转/分钟,球磨时间为6小时,得到所需的红外选择性辐射降温纳米功能组合物,该纳米功能组合物在8~14μm红外波长范围的吸收/辐射率最高达0.92。

Claims (6)

1.一种红外选择性辐射降温纳米功能组合物,该红外选择性辐射降温纳米功能组合物由纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,按质量比例1:(0.5~2):(0.5~2),经球磨均匀混合而成;其中稀土硅酸盐化合物符合化学计量比SiO2-(0.5~2)Re2O3-(0.1~1.0)Na2O且在9~12μm范围内具有强的红外选择性辐射性能,其中Re为La、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb、Y或Sc;钼酸盐化合物符合化学计量比RMoO4且在10~14μm范围内具有强的红外选择性辐射性能,其中R为Mg、Ca、Sr或Ba。
2.根据权利要求1所述的一种红外选择性辐射降温纳米功能组合物,其特征在于该纳米功能组合物在8~14μm大气窗口具有强的选择性吸收-辐射性能,且对紫外-可见-近红外太阳光透明。
3.一种制备如权利要求1所述的一种红外选择性辐射降温纳米功能组合物的方法,其具体步骤如下:
(a)根据稀土硅酸盐化合物的化学计量比,准确称取纳米二氧化硅、稀土硝酸盐和硝酸钠,混合分散到乙醇水混合溶液中;在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再在600~900℃热处理3~12小时得到稀土硅酸盐化合物;
(b)根据钼酸盐化合物的化学计量比,准确称取钼酸铵和碱土金属硝酸盐,溶解到去离子水中;配置柠檬酸溶液,搅拌滴加入到上述溶液中,调节pH至3.0~4.0,在水浴搅拌条件下蒸发溶剂得到凝胶;经120~150℃低温预烧处理3~6小时后,再800~1000℃热处理3~12小时后,即得到钼酸盐化合物;
(c)按照纳米功能组合物质量比例,称取一定量纳米二氧化硅、稀土硅酸盐化合物和钼酸盐化合物,利用高速研磨分散机处理后,即获得红外选择性辐射降温纳米功能组合物。
4.根据权利要求3所述的方法,其特征在于步骤(a)中的水浴温度为70~80℃。
5.根据权利要求3所述的方法,其特征在于步骤(b)中柠檬酸溶液的质量浓度为5%~10%;用氨水调节pH;水浴温度为70~80℃。
6.根据权利要求3所述的方法,其特征在于步骤(c)中高速研磨分散机的转速为300~400转/分钟,处理时间为2~6小时。
CN201910695003.4A 2019-07-30 2019-07-30 一种红外选择性辐射降温纳米功能组合物及其制备方法 Active CN110330818B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910695003.4A CN110330818B (zh) 2019-07-30 2019-07-30 一种红外选择性辐射降温纳米功能组合物及其制备方法
JP2022506229A JP7255940B2 (ja) 2019-07-30 2020-04-14 放射冷却のための赤外線選択的ナノ機能性組成物及びその製造方法
DE112020003642.1T DE112020003642B4 (de) 2019-07-30 2020-04-14 Infrarotselektive Strahlungskühlungs-Nanofunktions-Zusammensetzung und deren Herstellungsverfahren
PCT/CN2020/084640 WO2021017524A1 (zh) 2019-07-30 2020-04-14 一种红外选择性辐射降温纳米功能组合物及其制备方法
US17/631,071 US20220274882A1 (en) 2019-07-30 2020-04-14 Infrared selective radiation cooling nano-functional composition and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910695003.4A CN110330818B (zh) 2019-07-30 2019-07-30 一种红外选择性辐射降温纳米功能组合物及其制备方法

Publications (2)

Publication Number Publication Date
CN110330818A true CN110330818A (zh) 2019-10-15
CN110330818B CN110330818B (zh) 2021-04-20

Family

ID=68147899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910695003.4A Active CN110330818B (zh) 2019-07-30 2019-07-30 一种红外选择性辐射降温纳米功能组合物及其制备方法

Country Status (5)

Country Link
US (1) US20220274882A1 (zh)
JP (1) JP7255940B2 (zh)
CN (1) CN110330818B (zh)
DE (1) DE112020003642B4 (zh)
WO (1) WO2021017524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017524A1 (zh) * 2019-07-30 2021-02-04 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261606B (zh) * 2022-08-06 2024-03-29 江西理工大学 红土镍矿综合利用制备高发射率多元掺杂铁酸稀土的工艺
CN117567894B (zh) * 2024-01-11 2024-04-05 中稀易涂科技发展有限公司 一种高发射稀土基辐射制冷涂料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036790A1 (en) * 2007-09-21 2009-03-26 Henkel Ag & Co. Kgaa Primer compositions for adhesive bonding systems and coatings
US20100285320A1 (en) * 2004-11-26 2010-11-11 Mohammed Saad Amorphous thin films and method of manufacturing same
CN105038409A (zh) * 2015-09-02 2015-11-11 中钞油墨有限公司 多波段机读荧光防伪油墨组合物及其应用
CN109423105A (zh) * 2017-07-20 2019-03-05 端木顺娣 一种散热降温纳米粉新材料
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63485A (ja) * 1986-06-18 1988-01-05 Nok Corp 放射冷却膜
DE10018697A1 (de) 2000-04-14 2001-10-18 Inst Neue Mat Gemein Gmbh Substrate mit einer Dickschicht aus anorganischem Gel-, Glas-, Glaskeramik- oder Keramikmaterial, Verfahren zu deren Herstellung und ihre Verwendung
US20110042052A1 (en) * 2007-06-19 2011-02-24 Geoffrey Burton Smith cooling material
DE102010007566A1 (de) 2010-02-10 2011-08-11 Tailorlux GmbH, 48565 Lumineszentes Sicherheitselement für den Produktschutz
JP2015078338A (ja) * 2013-09-11 2015-04-23 ナガセケムテックス株式会社 機能性膜形成用組成物および機能性膜積層体
CN105152537A (zh) * 2015-08-10 2015-12-16 昆明理工大学 一种稀土掺杂多孔氟氧硅酸盐玻璃陶瓷及其制备方法
CN110305539B (zh) * 2019-07-30 2021-04-20 南京工业大学 一种日夜双效能辐射降温器及其制备方法
CN110387751B (zh) * 2019-07-30 2021-10-29 南京工业大学 一种辐射自降温功能纤维织物及其制备方法
CN110391310B (zh) * 2019-07-30 2021-02-19 南京工业大学 一种辐射自降温太阳能电池背板膜及其制备方法
CN110373072B (zh) * 2019-07-30 2021-04-20 南京工业大学 一种辐射自降温功能涂料及其制备方法
CN110330818B (zh) * 2019-07-30 2021-04-20 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285320A1 (en) * 2004-11-26 2010-11-11 Mohammed Saad Amorphous thin films and method of manufacturing same
WO2009036790A1 (en) * 2007-09-21 2009-03-26 Henkel Ag & Co. Kgaa Primer compositions for adhesive bonding systems and coatings
CN105038409A (zh) * 2015-09-02 2015-11-11 中钞油墨有限公司 多波段机读荧光防伪油墨组合物及其应用
CN109423105A (zh) * 2017-07-20 2019-03-05 端木顺娣 一种散热降温纳米粉新材料
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017524A1 (zh) * 2019-07-30 2021-02-04 南京工业大学 一种红外选择性辐射降温纳米功能组合物及其制备方法

Also Published As

Publication number Publication date
JP7255940B2 (ja) 2023-04-11
US20220274882A1 (en) 2022-09-01
JP2022542325A (ja) 2022-09-30
DE112020003642T5 (de) 2022-04-21
WO2021017524A1 (zh) 2021-02-04
CN110330818B (zh) 2021-04-20
DE112020003642B4 (de) 2023-08-24

Similar Documents

Publication Publication Date Title
CN110305539A (zh) 一种日夜双效能辐射降温器及其制备方法
CN110330818A (zh) 一种红外选择性辐射降温纳米功能组合物及其制备方法
CN105348892B (zh) 一种辐射制冷双层纳米涂层及其制备方法
CN110387751A (zh) 一种辐射自降温功能纤维织物及其制备方法
CN102585572B (zh) 一种热反射反射隔热无机复合材料及其制备方法和应用
CN103554997B (zh) 碳包覆二氧化钒纳米颗粒及其制备方法
CN111285380B (zh) 多稀土共掺杂硼化物及其纳米隔热粉的制备方法和应用
CN110607015B (zh) 一种转光效果持久的塑料转光农膜及制备方法
CN117567894B (zh) 一种高发射稀土基辐射制冷涂料
CN106111108A (zh) 一种掺杂纳米氧化锌的制备方法及其在光催化方向的应用
CN103936071B (zh) 金红石相二氧化钒纳米粉体及其制备方法和用途
WO2022166345A1 (zh) 一种三维多孔纳米复合降温薄膜的规模化制备方法
CN102660281B (zh) 一种二氧化硅包覆的橙红色荧光粉及其制备方法
CN113502106B (zh) 一种VO2/SiO2气凝胶复合薄膜及其制备方法
Wang et al. SiO2: Tb3+@ Lu2O3: Eu3+ Core–Shell Phosphors: Interfacial Energy Transfer for Enhanced Multicolor Luminescence
CN105668625B (zh) 一种被纳米氧化铝包覆的二氧化钒纳米颗粒及其制备方法
CN115386273B (zh) 一种日间辐射制冷涂料
CN115772351B (zh) 一种被动辐射制冷材料、制备方法和用途
CN107603594A (zh) 制备Y2Ti2O7@SiO2壳‑核结构上转换材料的方法
CN110373072A (zh) 一种辐射自降温功能涂料及其制备方法
Takeshita et al. Optical properties of transparent wavelength-conversion film prepared from YVO4: Bi3+, Eu3+ nanophosphors
CN115537056A (zh) 稀土硅酸盐、辐射制冷组合物、辐射制冷涂料及制备方法
Guo et al. SUPERCRITICAL SOLVOTHERMAL SYNTHESIS AND NEAR-INFRARED ABSORBING PROPERTIES OF Cs x WO 3
CN111471359A (zh) 一种广谱高发射颗粒材料的制备方法及应用
CN104628025B (zh) 硅表面垂直组装CeO2纳米棒薄膜的溶剂热制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191015

Assignee: JIANGSU BOLIN PLASTICS Co.,Ltd.

Assignor: NANJING University OF TECHNOLOGY

Contract record no.: X2021320000124

Denomination of invention: The invention relates to an infrared selective radiation cooling nano functional composition and a preparation method thereof

Granted publication date: 20210420

License type: Exclusive License

Record date: 20211125