WO2021017210A1 - 室内换热器以及空调器 - Google Patents

室内换热器以及空调器 Download PDF

Info

Publication number
WO2021017210A1
WO2021017210A1 PCT/CN2019/113243 CN2019113243W WO2021017210A1 WO 2021017210 A1 WO2021017210 A1 WO 2021017210A1 CN 2019113243 W CN2019113243 W CN 2019113243W WO 2021017210 A1 WO2021017210 A1 WO 2021017210A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
heat
flow paths
flow path
Prior art date
Application number
PCT/CN2019/113243
Other languages
English (en)
French (fr)
Inventor
赵夫峰
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921222816.3U external-priority patent/CN210688502U/zh
Priority claimed from CN201921220436.6U external-priority patent/CN210441337U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021017210A1 publication Critical patent/WO2021017210A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present application relates to the field of air conditioning, and in particular to an indoor heat exchanger and an air conditioner having the same.
  • the heat exchanger of the indoor unit uses refrigerant to flow in the tube to achieve the heat exchange effect.
  • the volume of the heat exchanger continues to shrink, and the refrigerant is exchanging heat.
  • the effect of heat exchange through the traditional flow method in the heat exchanger is not ideal and cannot meet the energy efficiency requirements of the heat exchanger.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • the present application proposes an indoor heat exchanger, which achieves a better heat exchange effect by arranging a flow path structure of multiple processes and multiple branches in the indoor heat exchanger.
  • This application also proposes an air conditioner.
  • the indoor heat exchanger includes: a first heat exchange module, a second heat exchange module, and a third heat exchange module.
  • the first heat exchange module has a first heat exchange flow path;
  • the second heat exchange module has a plurality of independent second heat exchange flow paths, the plurality of second heat exchange flow paths are respectively connected to the first heat exchange flow path, and the number of the second heat exchange flow paths is greater than The number of the first heat exchange flow paths;
  • the third heat exchange module has a plurality of independent third heat exchange flow paths, at least one of the second heat exchange flow paths and at least two of the third heat exchange flow paths
  • the heat flow paths are in communication, each of the third heat exchange flow paths is in communication with at least one of the second heat exchange flow paths, and the number of the third heat exchange flow paths is greater than the number of the second heat exchange flow paths. number.
  • a plurality of independent second heat exchange flow paths are formed by the division of the first heat exchange flow path, and at least one second heat exchange flow path is divided to form a plurality of independent third heat exchange flow paths.
  • Flow path so that the flow path of the indoor heat exchanger has multiple processes and multiple branches.
  • the indoor heat exchanger further includes a fourth heat exchange module
  • the fourth heat exchange module has a plurality of independent fourth heat exchange flow paths, at least one of the third heat exchange flow paths Is connected to at least two of the fourth heat exchange flow paths, each of the fourth heat exchange flow paths is communicated with at least one of the third heat exchange flow paths, and the number of the fourth heat exchange flow paths is greater than all Describe the number of third heat exchange flow paths.
  • the number of the first heat exchange flow path is M1
  • the number of the second heat exchange flow path is M2
  • the number of the third heat exchange flow path is M3
  • the number of the fourth heat exchange flow paths is M4
  • the indoor heat exchanger satisfies the following relationship: 2 ⁇ M2/M1 ⁇ 4, 3 ⁇ M3/M1 ⁇ 6, 6 ⁇ M4/M1 ⁇ 8.
  • the number of the first heat exchange flow path is M1
  • the number of the second heat exchange flow path is M2
  • the number of the third heat exchange flow path is M3
  • the indoor heat exchanger satisfies the following relationship: 2 ⁇ M2/M1 ⁇ 4, 3 ⁇ M3/M1 ⁇ 6.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form the first heat exchange flow path, and the The number of first heat exchange tubes is N1
  • the second heat exchange module includes a plurality of second heat exchange tubes, and the total number of second heat exchange tubes flowing through the plurality of second heat exchange flow paths is N2 Total, wherein the indoor heat exchanger satisfies the following relationship: 1 ⁇ N2 total/N1 ⁇ 3.2.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form the first heat exchange flow path, and the The number of first heat exchange tubes is N1
  • the third heat exchange module includes a plurality of third heat exchange tubes, and the total number of third heat exchange tubes flowing through the plurality of third heat exchange channels is N3 Total, wherein the indoor heat exchanger satisfies the following relationship: 2 ⁇ N3 total/N1 ⁇ 3.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form the first heat exchange flow path, and the The number of first heat exchange tubes is N1
  • the fourth heat exchange module includes a plurality of fourth heat exchange tubes, and the total number of fourth heat exchange tubes flowing through the plurality of fourth heat exchange channels is N4 Total, wherein the indoor heat exchanger satisfies the following relationship: 2 ⁇ N4 total/N1 ⁇ 4.5.
  • the indoor heat exchanger has a windward side and a windward side
  • the indoor heat exchanger includes a plurality of heat exchangers
  • each of the heat exchangers includes a heat exchange tube and The heat exchange fins contacted by the heat exchange tube
  • the plurality of heat exchangers include: a first heat exchanger, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a fifth heat exchanger;
  • the first end of the first heat exchanger is connected to the first end of the second heat exchanger, and there is an angle between the first heat exchanger and the second heat exchanger to define a direction out An open air duct space on the wind side;
  • the third heat exchanger is arranged on the windward side of the first heat exchanger;
  • the fourth heat exchanger is arranged on the windward side of the second heat exchanger;
  • the fifth heat exchanger is arranged at the second end of the second heat exchanger;
  • the third heat exchanger communicates with the heat exchange tubes in the fourth heat exchanger to define the first heat exchange flow path; a part of the heat exchange tubes in the first heat exchanger is connected to the first A part of the heat exchange tubes in the second heat exchanger communicate to define a plurality of the second heat exchange flow paths; a part of the heat exchange tubes in the first heat exchanger define a plurality of the third heat exchange flow paths ; A part of the heat exchange tubes in the second heat exchanger and the heat exchange tubes in the fifth heat exchanger define a plurality of the fourth heat exchange flow paths.
  • the third heat exchanger and the fourth heat exchanger are single-row heat exchange tube heat exchangers, and the first heat exchanger, the second heat exchanger and The fifth heat exchangers are all three-row heat exchange tube heat exchangers.
  • the heat exchange tube of the fourth heat exchanger is directly connected to the heat exchange tube of the second heat exchanger adjacent to the fourth heat exchanger, so that the plurality of The second heat exchange flow paths are respectively communicated with the first heat exchange flow paths;
  • the heat exchange tube of the second heat exchange flow path in the first heat exchanger directly communicates with the heat exchange tube of the third heat exchange flow path in the first heat exchanger, so that each of the third heat exchange tubes
  • the heat exchange flow path communicates with at least one of the second heat exchange flow paths.
  • the air conditioner according to the embodiment of the present application includes the indoor heat exchanger described in the foregoing embodiment of the present application.
  • a plurality of independent second heat exchange flow paths are formed by dividing the first heat exchange flow path, and at least one second heat exchange flow path is divided to form a plurality of independent third heat exchange flow paths Therefore, the flow path of the indoor heat exchanger has multiple processes and multiple branches, and the heat exchange effect can be better realized when the refrigerant flows through the indoor heat exchanger.
  • the air conditioner includes a housing, a wind wheel, and an indoor heat exchanger.
  • the housing has an air inlet, the width of the air inlet in the front and rear direction is M; the wind wheel is arranged in the housing, and the diameter of the wind wheel is D; the indoor heat exchanger is arranged at In the casing, the indoor heat exchanger surrounds the outer circumference of the wind wheel, and the indoor heat exchanger includes: a first heat exchanger, a second heat exchanger, and a fifth heat exchanger that are sequentially connected and communicated, The first end of the first heat exchanger is connected to the first end of the second heat exchanger, and there is an angle between the first heat exchanger and the second heat exchanger to define a direction out In the open air duct space on the wind side, the fifth heat exchanger is arranged at the second end of the second heat exchanger; in the front-to-rear direction, the width of the first heat exchanger is L1, and the second The width of the heat exchanger is L2, the
  • the first heat exchanger, the second heat exchanger and the fifth heat exchanger are arranged in sequence, and satisfy that the width L1 of the first heat exchanger and the diameter D of the wind wheel exist 1.15 ⁇ L1/D ⁇ 1.52, the width L2 of the second heat exchanger and the diameter D of the rotor exist 1.24 ⁇ L2/D ⁇ 1.61, the width L3 of the fifth heat exchanger and the diameter D of the rotor exist 0.46 ⁇ L3/D ⁇ 0.68, It can not only enable the indoor heat exchanger to fully heat the airflow to improve the energy efficiency of the indoor heat exchanger, thereby improving the working efficiency of the air conditioner, but also optimize the internal space of the shell and reduce the indoor heat exchanger and other components in the shell. The probability that a part will interfere.
  • the height of the first heat exchanger is H1
  • the height of the second heat exchanger is H2
  • the height of the fifth heat exchanger is H3,
  • said H1, said H2 and said H3 satisfy: 0.4 ⁇ H1/(H2+H3) ⁇ 0.85.
  • the D satisfies: 118-130 mm.
  • the width of the indoor heat exchanger in the front-rear direction is L, and the L and the M satisfy: 1.1 ⁇ M/L ⁇ 1.56.
  • the included angle between the first heat exchanger and the second heat exchanger is A
  • the included angle between the second heat exchanger and the fifth heat exchanger Is B, where 170° ⁇ A+B ⁇ 210°.
  • the diameter of the heat exchange tube of the first heat exchanger is D1, and the D1 ⁇ 6.35mm.
  • the D1 5mm.
  • the indoor heat exchanger further includes a fourth heat exchanger, and the fourth heat exchanger is provided in the second heat exchanger.
  • the tube diameter of the heat exchange tube of the fourth heat exchanger is D2, and the D2 satisfies: 6.35 ⁇ D2 ⁇ 8mm.
  • the number of heat exchange tubes of the fourth heat exchanger is 2-4.
  • the L2 and the L3 satisfy: 1.5 ⁇ L2/L3 ⁇ 2.3.
  • Fig. 1 is a schematic diagram of an air conditioner according to an embodiment of the present application
  • Figure 2 is a schematic diagram of an indoor heat exchanger according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an air conditioner with a heat exchange flow path according to an embodiment of the present application
  • Figure 4 is a schematic diagram of the mating state of the first heat exchanger and the second heat exchanger according to an embodiment of the present application
  • Figure 5 is a bar graph showing the change of the APF value with the number of branches in the flow path
  • Figure 6 is a linear graph of the APF value changing with the change of the tube diameter of the heat exchange tube
  • Figure 7 is a bar graph showing the change of the APF value with the change of the tube diameter of the heat exchange tube
  • FIG. 8 is a corresponding curve diagram of energy efficiency and D1 value of an air conditioner according to an embodiment of the present application.
  • Fig. 9 is a corresponding curve diagram of energy efficiency and D3 value of an air conditioner according to an embodiment of the present application.
  • Fig. 10 is a graph showing the energy efficiency of an air conditioner according to an embodiment of the present application and the corresponding curves of D1 and D3 values.
  • Air conditioner 100
  • Shell 110 Air inlet 111;
  • the first heat exchange flow path 150 The first heat exchange flow path 150
  • the second heat exchange flow path 160 The second heat exchange flow path 160;
  • the third heat exchange flow path 170 The third heat exchange flow path 170;
  • the fourth heat exchange flow path 180 The fourth heat exchange flow path 180;
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the indoor heat exchanger 130 according to the embodiments of the present application is described below with reference to FIGS. 1 to 10.
  • the indoor heat exchanger 130 realizes heat exchange between indoor air and the pipes of the air-conditioning system, so as to realize indoor air cooling or heating.
  • the indoor heat exchanger 130 includes: a first heat exchange module, a second heat exchange module, and a third heat exchange module.
  • the first heat exchange module has a first heat exchange flow path 150;
  • the thermal module has a plurality of independent second heat exchange flow paths 160, the plurality of second heat exchange flow paths 160 are respectively connected to the first heat exchange flow path 150, and the number of the second heat exchange flow paths 160 is greater than that of the first heat exchange flow path.
  • the number of flow paths 150; the third heat exchange module has a plurality of independent third heat exchange flow paths 170, at least one second heat exchange flow path 160 communicates with at least two third heat exchange flow paths 170, each The three heat exchange flow paths 170 are in communication with at least one second heat exchange flow path 160, and the number of the third heat exchange flow paths 170 is greater than the number of the second heat exchange flow paths 160.
  • the first heat exchange flow path 150 of the first heat exchange module is respectively communicated with a plurality of independent second heat exchange flow paths 160 of the second heat exchange module, so as to realize the first flow division, and the second heat exchange module At least one second heat exchange flow path 160 of the third heat exchange module communicates with at least two third heat exchange flow paths 170 of the third heat exchange module to achieve a second flow split, so that the indoor heat exchanger 130 has multiple flow paths
  • the process and multiple branches can better realize the heat exchange effect when the refrigerant flows through the indoor heat exchanger 130.
  • the refrigerant flows from the first heat exchange flow path 150 to the plurality of third heat exchange flow paths 170, and the refrigerant flows from the first heat exchange flow path 150 to the third heat exchange flow path 170.
  • the refrigerant gradually changes from a liquid state to a gaseous state, and at the same time, the volume also increases.
  • the increase in the number of flow paths matches the gradually increasing change in the volume of the refrigerant.
  • the volume of the refrigerant gradually increases, which makes the refrigeration
  • the heat exchange effect of the refrigerant is better, and because the number of flow paths gradually increases, the flow speed of the refrigerant also increases, thereby further making the heat exchange effect of the refrigerant better.
  • the dryness of the refrigerant gradually changes from 0.15-1.
  • the proportion of gas in the refrigerant gradually changes from 0.15 to 1, so that the refrigerant can conduct better heat exchange.
  • the refrigerant flows from the plurality of third heat exchange flow paths 170 to the first heat exchange flow path 150, so that the heat in the plurality of branches is integrated into the first heat exchange flow path 150 In order to achieve better heating effect.
  • a plurality of independent second heat exchange flow paths 160 are formed by the division of the first heat exchange flow path 150, and at least one second heat exchange flow path 160 is divided to form a plurality of independent
  • the third heat exchange flow path 170 allows the flow path of the indoor heat exchanger 130 to have multiple processes and multiple branches. When the refrigerant flows through the indoor heat exchanger 130, the heat exchange effect can be better achieved.
  • the indoor heat exchanger 130 further includes a fourth heat exchange module.
  • the fourth heat exchange module has a plurality of independent fourth heat exchange flow paths 180, and at least one third heat exchange flow path 170 is connected to At least two fourth heat exchange flow paths 180 are connected, each fourth heat exchange flow path 180 is connected to at least one third heat exchange flow path 170, and the number of fourth heat exchange flow paths 180 is greater than that of the third heat exchange flow paths. The number of 170.
  • the third heat exchange flow path 170 of the third heat exchange module communicates with at least two fourth heat exchange flow paths 180 of the fourth heat exchange module to realize the third flow division, so that the indoor heat exchanger 130
  • the inner flow path has more processes and more branches, so that when the refrigerant flows through the indoor heat exchanger 130, a better heat exchange effect can be achieved.
  • the number of flow paths is not limited to three.
  • the number of flow paths can be set according to the specific usage of the indoor heat exchanger 130, so as to obtain the corresponding number of branches and the number of processes. Therefore, the flow path
  • the number of diversions is not limited here.
  • the number of the first heat exchange flow path 150 is M1
  • the number of the second heat exchange flow path 160 is M2
  • the number of the third heat exchange flow path 170 is M3
  • the number of the third heat exchange flow path 170 is M3.
  • the number of heat exchange flow paths 180 is M4, and the indoor heat exchanger 130 satisfies the following relationship: 2 ⁇ M2/M1 ⁇ 4, 3 ⁇ M3/M1 ⁇ 6, 6 ⁇ M4/M1 ⁇ 8. It should be noted that by changing the number of each flow path, different heat transfer performances can be achieved. See Experiment 1 to Experiment 3 for details.
  • the number of the first heat exchange flow path 150 is M1
  • the number of the second heat exchange flow path 160 is M2
  • the number of the third heat exchange flow path 170 is M3.
  • the heat exchanger 130 satisfies the following relationship: 2 ⁇ M2/M1 ⁇ 4, 3 ⁇ M3/M1 ⁇ 6. It should be noted that by changing the number of each flow path, different heat transfer performance can be achieved. See Experiment 1 and Experiment 2 for details.
  • the first heat exchange flow path 150 does not perform flow splitting, but only increases the flow length of the first heat exchange flow path 150, resulting in poor heat exchange performance;
  • the volume of the refrigerant gas-liquid phase is smaller than the sum of the cross-sectional areas of the multiple second heat exchange flow paths 160, resulting in a decrease in the flow rate of the refrigerant and a decrease in the heat transfer coefficient in the flow path, resulting in Performance drops.
  • the number of process branches of the second heat exchange flow path 160 is the same as the number of third branches, which is equivalent to lengthening the process length of the second heat exchange flow path 160, and the pressure drop in the flow path becomes larger.
  • M3/M1 the number of process branches of the second heat exchange flow path 160
  • the refrigerant gas-liquid two-phase volume is smaller than the sum of the cross-sectional areas of the third heat exchange flow paths 170, resulting in a decrease in the flow rate of the refrigerant and a decrease in the heat transfer coefficient in the flow path, resulting in performance decline.
  • the ratio of the number of branches of the fourth heat exchange flow path 180 and the first heat exchange flow path 150 5 ⁇ M4/M1 ⁇ 8.
  • the refrigerant gas-liquid two-phase volume is greater than the sum of the cross-sectional areas of the fourth heat exchange flow paths 180, and the pressure drop in the flow paths becomes larger, resulting in a decrease in the heat exchange temperature difference and overall performance changes. difference;
  • the refrigerant gas-liquid two-phase volume is smaller than the sum of the cross-sectional areas of the multiple fourth heat exchange flow paths 180, the flow velocity is reduced, and the heat transfer coefficient in the flow path is reduced, resulting in performance degradation.
  • one first heat exchange flow path 150 is divided to form two second heat exchange flow paths 160, and each second heat exchange flow path 160 is divided to form two third heat exchange flow paths 170, four
  • the third heat exchange flow path 170 is divided to form six fourth heat exchange flow paths 180, which are the 1-2-4-6 shown in Figure 5, through the 1-2-4-6 flow splitting method, so that the APF The performance is better, so the refrigerant has the best heat exchange effect.
  • the indoor heat exchanger 130 of the present application has a higher APF value than a flow path that only splits once, and has a better realization of heat exchange. effect.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form a first heat exchange flow path 150, and the plurality of first heat exchange tubes
  • the number is N1
  • the second heat exchange module includes a plurality of second heat exchange tubes, the total number of second heat exchange tubes flowing through the plurality of second heat exchange flow paths 160 is N2 total
  • the indoor heat exchanger 130 satisfies the following Relationship: 1 ⁇ N2total/N1 ⁇ 3.2.
  • N1 represents the number of first heat exchange tubes flowing through the first heat exchange flow path 150
  • N2 always represents the total number of second heat exchange tubes flowing through the plurality of second heat exchange flow paths 160.
  • there are two second heat exchange flow paths 160, and the number of second heat exchange tubes through which the two second heat exchange flow paths 160 flow are respectively N21 and N22, that is, N21 +N22 N2 total, through the change of the ratio of N2 total to N1, so as to achieve different heat transfer performance, see Experiment 4 for details.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form a first heat exchange flow path 150, and the plurality of first heat exchange tubes
  • the number is N1
  • the third heat exchange module includes a plurality of third heat exchange tubes, the total number of third heat exchange tubes flowing through the plurality of third heat exchange flow paths 170 is N3 total
  • the indoor heat exchanger 130 satisfies the following Relationship: 2 ⁇ N3total/N1 ⁇ 3.
  • N1 represents the number of first heat exchange tubes flowing through the first heat exchange flow path 150
  • N3 always represents the total number of third heat exchange tubes flowing through the plurality of third heat exchange flow paths 170.
  • there are four third heat exchange flow paths 170, and the number of third heat exchange tubes through which the four third heat exchange flow paths 170 flow are respectively N31, N32, N33 and N34, that is to say , N31+N32+N33+N34 N3 total, through the change of the ratio of N3 total to N1, so as to achieve different heat transfer performance, see Experiment 5 for details.
  • the first heat exchange module includes a plurality of first heat exchange tubes, the plurality of first heat exchange tubes communicate with each other to form a first heat exchange flow path 150, and the plurality of first heat exchange tubes
  • the number is N1
  • the fourth heat exchange module includes a plurality of fourth heat exchange tubes, the total number of fourth heat exchange tubes flowing through the plurality of fourth heat exchange flow paths 180 is N4 total
  • the indoor heat exchanger 130 satisfies the following Relationship: 2 ⁇ N4total/N1 ⁇ 4.5.
  • N1 represents the number of first heat exchange tubes flowing through the first heat exchange flow path 150
  • N4 always represents the total number of fourth heat exchange tubes flowing through the plurality of fourth heat exchange flow paths 180.
  • there are six fourth heat exchange flow paths 180, and the number of fourth heat exchange tubes flowing through the six fourth heat exchange flow paths 180 are N41, N42, N43, N44, N45, and N46, respectively. That is to say, N41+N42+N43+N44+N45+N46 N4 total, through the change of the ratio of N4 total to N1, so as to achieve different heat transfer performance, see Experiment 6 for details.
  • the indoor heat exchanger 130 has a windward side and a windward side.
  • the indoor heat exchanger 130 includes a plurality of heat exchangers, and each heat exchanger includes The heat pipe and the heat exchange fins in contact with the heat exchange pipe, the plurality of heat exchangers include: a first heat exchanger 131, a second heat exchanger 132, a third heat exchanger 135, a fourth heat exchanger 134, and a Five heat exchanger 133;
  • the first end of the first heat exchanger 131 and the first end of the second heat exchanger 132 are connected, and there is an angle between the first heat exchanger 131 and the second heat exchanger 132 to define an open side toward the air outlet.
  • indoor fans can be placed in the air duct space.
  • the third heat exchanger 135 is arranged on the windward side of the first heat exchanger 131; the fourth heat exchanger 134 is arranged on the windward side of the second heat exchanger 132; the fifth heat exchanger 133 is arranged on the second heat exchanger 132 The second end.
  • the heat exchange tubes in the third heat exchanger 135 and the fourth heat exchanger 134 communicate to define a first heat exchange flow path 150.
  • a part of the heat exchange tubes in the first heat exchanger 131 communicate with a part of the heat exchange tubes in the second heat exchanger 132 to define a plurality of second heat exchange flow paths 160; a part of the heat exchange tubes in the first heat exchanger 131
  • the tubes define a plurality of third heat exchange flow paths 170; a part of the heat exchange tubes in the second heat exchanger 132 and the heat exchange tubes in the fifth heat exchanger 133 define a plurality of fourth heat exchange flow paths 180.
  • the indoor heat exchanger 130 includes a first heat exchanger 131, a second heat exchanger 132, a third heat exchanger 135, a fourth heat exchanger 134, and a fifth heat exchanger 133.
  • the third heat exchanger 135 and the fourth heat exchanger 134 define a first heat exchange module, a part of the first heat exchanger 131 and a part of the second heat exchanger 132 define a second heat exchange module, the first heat exchanger 131 Another part of the inside defines a third heat exchange module, and another part of the second heat exchanger 132 and the fifth heat exchanger 133 define a fourth heat exchange module.
  • the first heat exchange flow path 150 is divided to form a plurality of independent second heat exchange flow paths 160, and at least one second heat exchange flow path 160 is divided to form a plurality of independent third heat exchange flow paths 170, so that
  • the flow paths in multiple heat exchangers have multiple processes and multiple branches, so that multiple branches flow in the heat exchange tubes of multiple heat exchangers, and the refrigerant flows through the heat exchange tubes.
  • the first heat exchanger 131, the second heat exchanger 132, the third heat exchanger 135, the fourth heat exchanger 134, and the fifth heat exchanger 133 can be provided. Increase the heat exchange area between the indoor heat exchanger and the air to further increase the heat exchange effect.
  • the refrigerant first flows through the third heat exchanger 135 and the fourth heat exchanger 134 through the first heat exchange flow path 150.
  • the refrigerant flowing out of the fourth heat exchanger 134 flows into the two second heat exchange flow paths 160 respectively, and the refrigerant flows through a part of the first heat exchanger 131 through the two second heat exchange flow paths 160 respectively.
  • the two second heat exchange flow paths 160 are respectively divided into two third heat exchange flow paths 170 in the first heat exchanger 131, and the refrigerant flows through the third heat exchange flow path 170 through the first heat exchanger 131
  • Another part of the heat exchange tubes, the outlets of the four second heat exchange flow paths 160 (2AH and 2BH in Figure 4) are all connected to the inlet of the distributor 190, and the outlet of the distributor 190 is divided into six fourth heat exchange flow paths 180, Part of the refrigerant flows through the four fourth heat exchange flow paths 180 through the other part of the heat exchange tubes in the second heat exchanger 132 and then flows out of the indoor heat exchanger, and the other part of the refrigerant flows through the two fourth heat exchange flow paths 180 After passing through the fifth heat exchanger 133, it flows out of the indoor heat exchanger, thereby achieving a better cooling effect.
  • the third heat exchanger 135 and the fourth heat exchanger 134 are single-row heat exchanger tube heat exchangers, and the first heat exchanger 131, the second heat exchanger 132 and the fifth heat exchanger
  • the devices 133 are all three-row heat exchange tube heat exchangers.
  • the refrigerant flows from the single-row heat exchange tube heat exchanger to the three-row heat exchange tube heat exchanger, thereby increasing the cross-sectional area of the refrigerant and the heat exchange tube heat exchanger to achieve a better cooling effect. From the three-row heat exchange tube heat exchanger to the single-row heat exchange tube heat exchanger, so that the heat carried by the refrigerant is integrated to the third heat exchanger 135 and the fourth heat exchanger 134, so as to achieve better Warming effect.
  • the diameters of the heat exchange tubes of the third heat exchanger 135 and the fourth heat exchanger 134 are larger than those of the first heat exchanger 131, the second heat exchanger 132, and the fifth heat exchanger
  • the diameter of the heat exchange tube is 133, so that when cooling, the refrigerant can enter the heat exchange tube with a large diameter into multiple heat exchange tubes with a small diameter to increase the flow speed of the refrigerant and achieve better The heat transfer effect.
  • the diameter of the heat exchange tube can produce different heat exchange effects.
  • the APF value changes as shown in Figure 6 and Figure 7 below;
  • the heat exchange tubes of the fourth heat exchanger 134 and the heat exchange tubes of the second heat exchanger 132 adjacent to the fourth heat exchanger 134 are directly connected, so that multiple second heat exchange flows
  • the paths 160 are respectively connected to the first heat exchange flow path 150; the heat exchange tubes of the second heat exchange flow path 160 in the first heat exchanger 131 exchange with the third heat exchange flow path 170 in the first heat exchanger 131
  • the heat pipes are directly connected, so that each third heat exchange flow path 170 communicates with at least one second heat exchange flow path 160.
  • the heat exchange tubes of the fourth heat exchanger 134 are communicated with the heat exchange tubes of the second heat exchanger 132, so that the first heat exchange flow path 150 is respectively connected to the plurality of second heat exchange flow paths 160,
  • the refrigerant can flow in the first heat exchange flow path 150 to the multiple second heat exchange flow paths 160.
  • the heat exchange tubes of the second heat exchange flow path 160 in the first heat exchanger 131 communicate with the heat exchange tubes of the third heat exchange flow path 170 in the first heat exchanger 131 to facilitate each third heat exchange
  • the flow path 170 communicates with at least one second heat exchange flow path 160. Therefore, the connection relationship between the multiple heat exchangers of the indoor heat exchanger is simple.
  • the air conditioner according to the embodiment of the present application includes the indoor heat exchanger 130 according to the foregoing embodiment of the present application.
  • a plurality of independent second heat exchange flow paths 160 are formed by the diversion of the first heat exchange flow path 150, and at least one second heat exchange flow path 160 Split flows to form multiple independent third heat exchange flow paths 170, so that the flow path of the indoor heat exchanger 130 has multiple processes and multiple branches.
  • the refrigerant flows through the indoor heat exchanger 130, it can better Achieve heat exchange effect.
  • the air conditioner 100 includes a housing 110, a wind wheel 120, and an indoor heat exchanger 130.
  • the housing 110 has an air inlet 111, and the width of the air inlet 111 in the front-rear direction (the front-rear direction shown in FIG. 1) is M.
  • the wind wheel 120 may be arranged in the housing 110, and the diameter of the wind wheel 120 may be D.
  • the indoor heat exchanger 130 may be arranged in the housing 110, and the indoor heat exchanger 130 may surround the outer circumference of the wind wheel.
  • the indoor heat exchanger 130 includes: a first heat exchanger 131 connected and connected in sequence , The second heat exchanger 132 and the fifth heat exchanger 133.
  • the first end of the first heat exchanger 131 and the first end of the second heat exchanger 132 are connected, and there is an angle between the first heat exchanger 131 and the second heat exchanger 132 to define an open side toward the air outlet.
  • the fifth heat exchanger 133 is arranged at the second end of the second heat exchanger 132; it is understandable that by arranging the indoor heat exchanger 130 around the outer circumference of the wind wheel 120, it is convenient to make the air flow to the wind wheel 120 It can fully flow through the indoor heat exchanger 130, which can reduce the probability of insufficient heat exchange of part of the airflow, thereby improving the heat exchange efficiency of the indoor heat exchanger 130, thereby improving the energy efficiency of the indoor heat exchanger 130 (here "energy efficiency" can be It is understood as the ratio of the amount of heat exchange completed by the indoor heat exchanger 130 to the airflow to the input power of the indoor heat exchanger 130).
  • the housing 110 may define an installation space, and the upper end surface (the upper end shown in FIG. 1) of the housing 110 is configured with an air inlet 111.
  • the indoor heat exchanger 130 is installed in the installation space inside the housing 110, and the indoor heat exchanger 130 is located downstream of the air inlet 111 (here "downstream” may refer to the position where the airflow flows when the airflow is flowing downstream).
  • a wind wheel 120 is provided downstream of the indoor heat exchanger 130, and the indoor heat exchanger 130 is arranged around the outer circumference of the wind wheel 120. That is, as shown in FIG. 1, the first heat exchanger 131, the second heat exchanger 132 and the fifth heat exchanger 133 are distributed along the outer circumference of the wind wheel 120.
  • the wind wheel 120 can drive the external airflow from the air inlet 111 to the housing 110, the airflow flowing into the housing 110 preferentially flows through the indoor heat exchanger 130 and exchanges heat, and the rear wind wheel 120 can drive The airflow after the heat exchange blows toward the indoor space.
  • the width of the first heat exchanger 131 in the front-to-rear direction may be L1
  • the width of the second heat exchanger 132 may be L2
  • the width of the fifth heat exchanger 133 may be L3, where, L1 and D can satisfy: 1.15 ⁇ L1/D ⁇ 1.52, L2 and D can satisfy: 1.24 ⁇ L2/D ⁇ 1.61, L3 and D can satisfy: 0.46 ⁇ L3/D ⁇ 0.68.
  • L1/D can be 1.3 or 1.4.
  • L2/D can be 1.38 or 1.5.
  • L1/D and L2/D are fixed values and 0.46 ⁇ L3/D ⁇ 0.68, the indoor heat exchanger 130 has a higher energy efficiency.
  • L3/D can be 0.53 or 0.61.
  • the structure and installation space of the air conditioner 100 should be considered. It is understandable that the size of the diameter D of the wind wheel 120 can determine the size of the wind wheel 120. Therefore, by setting reasonable values of L1/D, L2/D and L3/D, the indoor heat exchanger 130 can be Being sufficiently arranged around the outer periphery of the wind wheel 120 can reduce the probability of interference between the indoor heat exchanger 130 and other components in the housing 110, thereby optimizing the internal space of the housing 110.
  • APF Annual Performance Factor, annual energy consumption efficiency evaluation index not only considers the cooling capacity of the air conditioner but also includes the heating factor. It is a change from the previous evaluation of the energy efficiency index of the inverter air conditioner only to assess the energy consumption of the air conditioner during the cooling season. , APF assesses the level of energy consumption throughout the year, and has a more comprehensive assessment of air conditioning performance.
  • the first heat exchanger 131, the second heat exchanger 132, and the fifth heat exchanger 133 are arranged in order to meet the width L1 of the first heat exchanger and the diameter D of the wind wheel.
  • the width L2 of the second heat exchanger and the rotor diameter D exist 1.24 ⁇ L2/D ⁇ 1.61
  • the width L3 of the fifth heat exchanger and the rotor diameter D exist 0.46 ⁇ L3/D ⁇ 0.68, it can not only enable the indoor heat exchanger 130 to fully heat the airflow, so as to improve the energy efficiency of the indoor heat exchanger 130, thereby improving the working efficiency of the air conditioner 100, but also optimize the internal space of the housing 110 and reduce the indoor The probability of interference between the heat exchanger 130 and other components in the housing 110.
  • the height of the first heat exchanger 131 may be H1, and the height of the second heat exchanger 132 may be H2, the height of the fifth heat exchanger 133 may be H3, and H1, H2, and H3 may satisfy 0.4 ⁇ H1/(H2+H3) ⁇ 0.85.
  • the experiment by conducting multiple experiments on the ratio of the height H1 of the first heat exchanger 131 to the height of the second heat exchanger 132, and the total height of the fifth heat exchanger 133 H2+H3, the experiment The results are as follows:
  • the diameter D of the wind wheel 120 satisfies: 118-130 mm.
  • D can be 120mm, 122mm, 124mm, 126mm, or 128mm. Therefore, a reasonable diameter of the wind wheel 120 can be selected according to the size of the casing 110 or the air supply requirements of the air conditioner 100, which can reduce the interference between the wind wheel 120 and other components in the casing 110 (such as the electric control box 140). With the probability of, the air conditioner 100 can have a better ventilation effect.
  • the layout of the internal space of the housing 110 can also be optimized, thereby saving costs.
  • the width of the indoor heat exchanger 130 in the front-rear direction may be L, and then L and M may satisfy 1.1 ⁇ M/L ⁇ 1.56.
  • L and M may satisfy 1.1 ⁇ M/L ⁇ 1.56.
  • multiple experiments are performed on the ratio of the width M of the air inlet 111 to the width L of the indoor heat exchanger 130, and the experimental results are as follows:
  • the indoor heat exchanger 130 has higher energy efficiency.
  • M/L can be 1.28 or 1.45. Therefore, by setting a reasonable value of M/L, the inlet air volume can be adapted to the heat exchange efficiency of the indoor heat exchanger 130, which can not only meet the user's demand for the air supply volume of the air conditioner 100, but also enable the indoor heat exchange
  • the heat exchanger 130 can fully heat the air flow to improve the energy efficiency of the indoor heat exchanger 130 (here "energy efficiency" can be understood as the energy consumed by the indoor heat exchanger 130 to complete the airflow heat exchange and the energy actually consumed by the indoor heat exchanger 130 Ratio), thereby improving the working efficiency of the air conditioner 100 and improving the air supply effect.
  • the angle between the first heat exchanger 131 and the second heat exchanger 132 may be A, and the angle between the second heat exchanger 132 and the fifth heat exchanger 133
  • the included angle can be B, where 170° ⁇ A+B ⁇ 210°.
  • A+B can be 180°, 190°, or 200°.
  • the indoor heat exchanger 130 is arranged around the outer circumference of the wind wheel 120. As the value of A+B changes, the size of the surrounding space defined by the indoor heat exchanger 130 will also change.
  • the indoor heat exchanger 130 can not only define the surrounding space for the wind wheel 120, but also make the indoor heat exchanger 130 fit the outer circumference of the wind wheel 120, thereby The air flow to the wind wheel 120 can fully exchange heat with the indoor heat exchanger 130, thereby improving the energy efficiency of the indoor heat exchanger 130.
  • the size of the wind wheel 120 depends on the size of D, and the size of the surrounding space defined by the indoor heat exchanger 130 is affected by A+B. In some embodiments, 1.48 ⁇ (A+B)/ D ⁇ 1.7.
  • the indoor heat exchanger 130 has higher energy efficiency.
  • M/L can be 1.55 or 1.62. Therefore, when 1.48 ⁇ (A+B)/D ⁇ 1.7, the indoor heat exchanger 130 can not only define the surrounding space for the wind wheel 120, but also make the indoor heat exchanger 130 and the outer circumference of the wind wheel 120 correspond to each other. By adapting, the energy efficiency of the indoor heat exchanger 130 can be improved.
  • the diameter of the heat exchange tube of the first heat exchanger 131 may be D1, and then D1 ⁇ 6.35mm.
  • D1 can be 2mm, 4mm, or 6mm.
  • the energy efficiency of the indoor heat exchanger 130 is affected by the value of D1, and its change curve is shown in FIG. 8.
  • the flow rate and heat exchange efficiency of the refrigerant in the heat exchange tube can be controlled by controlling the change in tube diameter, thereby increasing the heat exchange capacity of the entire first heat exchanger 131 and increasing indoor heat exchange The energy efficiency of the device 130.
  • D1 5 mm
  • the heat exchange effect of the first heat exchanger 131 is better.
  • the indoor heat exchanger 130 may further include a fourth heat exchanger 134, and the fourth heat exchanger 134 may be provided in the second heat exchanger 132. Therefore, by arranging the fourth heat exchanger 134 on the second heat exchanger 132, the contact area between the indoor heat exchanger 130 and the airflow can be increased, and the heat exchange capacity of the indoor heat exchanger 130 can be further improved, thereby increasing the indoor heat exchange. Energy efficiency of heat exchanger 130.
  • the tube diameter of the heat exchange tube of the fourth heat exchanger 134 may be D2, so 6.35 ⁇ D2 ⁇ 8mm.
  • D2 can be 6.5mm, 7.0mm, or 7.5mm.
  • the indoor heat exchanger 130 may further include a third heat exchanger 135, and the third heat exchanger 135 may be provided in the first heat exchanger 131. Therefore, by arranging the fourth heat exchanger 134 on the first heat exchanger 131, the contact area between the indoor heat exchanger 130 and the air flow can be further increased, and the heat exchange capacity of the indoor heat exchanger 130 can be further improved, thereby increasing the indoor Energy efficiency of heat exchanger 130.
  • the diameter of the heat exchange tube of the third heat exchanger 135 can be D3, then 6.35 ⁇ D3 ⁇ 8mm. It should be noted that the energy efficiency of the indoor heat exchanger 130 is affected by the value of D3, and its change curve is as follows Shown in Figure 9.
  • the number of heat exchange tubes of the fourth heat exchanger 134 may be 2-4. Therefore, by controlling the number of heat exchange tubes of the fourth heat exchanger 134, the heat exchange requirements of the fourth heat exchanger 134 can be met and the cost can be saved.
  • L2 and L3 may satisfy: 1.5 ⁇ L2/L3 ⁇ 2.3. It should be noted that, considering the distribution of the internal installation space of the housing 110 and the installation position of the wind wheel 120, the width of the second heat exchanger 132 is larger than that of the fifth heat exchanger 133. For example, L2/L3 can be 1.6, 1.8, 2.0, or 2.2. Therefore, by setting a reasonable value of L2/L3, the combination of the second heat exchanger 132 and the fifth heat exchanger 133 can be more closely wrapped around the outer circumference of the wind wheel 120, and the internal space of the air conditioner 100 can be optimized. cut costs.
  • the air conditioner 100 according to the embodiment of the present application will be described in detail below with reference to FIGS. 1 to 2. It should be understood that the following description is only an exemplary description, rather than a specific limitation to the application.
  • the air conditioner 100 includes a housing 110, a wind wheel 120 and an indoor heat exchanger 130.
  • the housing 110 can define an installation space.
  • an indoor heat exchanger 130 is provided downstream of the air inlet 111.
  • the indoor heat exchange A wind wheel 120 is provided downstream of the device 130.
  • the indoor heat exchanger 130 includes a first heat exchanger 131, a second heat exchanger 132 and a fifth heat exchanger 133, and the indoor heat exchanger 130 is arranged around the outer circumference of the wind wheel 120.
  • the air conditioner 100 When the air conditioner 100 is working, the external airflow flows toward the indoor heat exchanger 130 through the air inlet 111.
  • the airflow can exchange heat with the evaporator when passing through the indoor heat exchanger 130, and the rear wind wheel 120 can drive the heat exchanged airflow , Blow the airflow to the indoor space.
  • the diameter of the wind wheel 120 is D, then D satisfies: 118-130 mm.
  • the width of the indoor heat exchanger 130 in the front-rear direction (the front-rear direction shown in FIG. 1) is L, and the width of the air inlet 111 in the front-rear direction (the front-rear direction shown in FIG. 1) is M.
  • the height of the first heat exchanger 131 is H1
  • the height of the second heat exchanger 132 is H2
  • the height of the fifth heat exchanger 133 is H3, so 0.4 ⁇ H1/(H2+H3) ⁇ 0.85.
  • the width of the first heat exchanger 131 is L1
  • the width of the second heat exchanger 132 is L2
  • the width of the fifth heat exchanger 133 is L3, where 1.5 ⁇ L2/L3 ⁇ 2.3.
  • L2/D, L3/D are fixed values, and 1.15 ⁇ L1/D ⁇ 1.52, the energy efficiency of the indoor heat exchanger 130 is higher;
  • L1/D, L3/D are fixed values, 1.24 ⁇ L2/D ⁇ 1.61, the energy efficiency of the indoor heat exchanger 130 is higher;
  • the angle between the first heat exchanger 131 and the second heat exchanger 132 is A
  • the angle between the second heat exchanger 132 and the fifth heat exchanger 133 is B, then 170° ⁇ A +B ⁇ 210°.
  • the diameter of the wind wheel 120 is D, then 1.48 ⁇ (A+B)/D ⁇ 1.7.
  • the diameter of the heat exchange tube of the first heat exchanger 131 is D1, and then D1 ⁇ 6.35mm.
  • a fourth heat exchanger 134 is provided above the second heat exchanger 132.
  • the diameter of the heat exchange tube of the fourth heat exchanger 134 is D2, which is 6.35 ⁇ D2 ⁇ 8mm.
  • a third heat exchanger 135 is arranged above the first heat exchanger 131, and the diameter of the heat exchange tube of the third heat exchanger 135 is D3, so 6.35 ⁇ D3 ⁇ 8mm.
  • the fourth heat exchanger 134 is provided with 4 connection holes, and the 4 connection holes can be used for the installation of 2 heat exchange tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种室内换热器(130)以及空调器(100)。室内换热器(130)包括:第一换热模块、第二换热模块以及第三换热模块,第一换热模块具有一条第一换热流路(150);第二换热模块具有多条独立的第二换热流路(160),多条第二换热流路(160)分别与第一换热流路(150)连通,第二换热流路(160)的个数大于第一换热流路(150)的个数;第三换热模块具有多条独立的第三换热流路(170),至少一条第二换热流路(160)与至少两条第三换热流路(170)连通,每条第三换热流路(170)与至少一条第二换热流路(160)连通,第三换热流路(170)的个数大于第二换热流路(160)的个数。

Description

室内换热器以及空调器
相关申请的交叉引用
本申请基于申请号为:201921222816.3和201921220436.6,申请日为2019年7月30日的两件中国专利申请提出,并要求该两件中国专利申请的优先权,该两件中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调领域,尤其是涉及一种室内换热器以及具有其的空调器。
背景技术
在相关技术中,室内机的换热器是通过制冷剂在管内流动,从而实现换热的效果,但是随着设备机身的不断缩小,换热器的体积也不断缩小,制冷剂在换热器内通过传统的流动方式以实现换热的效果并不理想,无法满足换热器中对能效的要求。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请提出一种室内换热器,通过在室内换热器内设置多个流程以及多个支路的流路结构,以实现更好的换热效果。
本申请还提出一种空调器。
根据本申请实施例的室内换热器,包括:第一换热模块、第二换热模块以及第三换热模块,所述第一换热模块具有一条第一换热流路;所述第二换热模块具有多条独立的第二换热流路,所述多条第二换热流路分别与所述第一换热流路连通,所述第二换热流路的个数大于所述第一换热流路的个数;所述第三换热模块具有多条独立的第三换热流路,至少一条所述第二换热流路与至少两条所述第三换热流路连通,每条所述第三换热流路与至少一条所述第二换热流路连通,所述第三换热流路的个数大于所述第二换热流路的个数。
根据本申请实施例的室内换热器,通过第一换热流路的分流形成多条独立的第二换热流路,至少一条第二换热流路分流形成多条独立的第三换热流路,从而使得室内换热器的流路具有多个流程以及多个支路,在制冷剂流经室内换热器时,能更好的实 现换热效果。
在本申请的一些实施例中,室内换热器还包括第四换热模块,所述第四换热模块具有多条独立的第四换热流路,至少一条所述第三换热流路与至少两条所述第四换热流路连通,每条所述第四换热流路与至少一条所述第三换热流路连通,所述第四换热流路的个数大于所述第三换热流路的个数。
在本申请的一些实施例中,所述第一换热流路的个数为M1,所述第二换热流路的个数为M2,所述第三换热流路的个数为M3,所述第四换热流路的个数为M4,所述室内换热器满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6,6≤M4/M1≤8。
在本申请的一些实施例中,所述第一换热流路的个数为M1,所述第二换热流路的个数为M2,所述第三换热流路的个数为M3,其中所述室内换热器满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6。
在本申请的一些实施例中,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第二换热模块包括多个第二换热管,多个所述第二换热流路流过的第二换热管的总数为N2总,其中所述室内换热器满足如下关系:1≤N2总/N1≤3.2。
在本申请的一些实施例中,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第三换热模块包括多个第三换热管,多个所述第三换热流路流过的第三换热管的总数为N3总,其中所述室内换热器满足如下关系:2≤N3总/N1≤3。
在本申请的一些实施例中,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第四换热模块包括多个第四换热管,多个所述第四换热流路流过的第四换热管的总数为N4总,其中所述室内换热器满足如下关系:2≤N4总/N1≤4.5。
在本申请的一些实施例中,所述室内换热器具有迎风侧和出风侧,所述室内换热器包括多个换热器,每个所述换热器包括换热管和与所述换热管接触的换热翅片,所述多个换热器包括:第一换热器、第二换热器、第三换热器、第四换热器以及第五换热器;
所述第一换热器的第一端和所述第二换热器的第一端相连,所述第一换热器和所述第二换热器之间具有夹角以限定出朝向出风侧敞开的风道空间;所述第三换热器设在所述第一换热器的迎风侧;所述第四换热器设在所述第二换热器的迎风侧;所述第五换热器设在所述第二换热器的第二端;
所述第三换热器和所述第四换热器内的换热管连通以限定出所述第一换热流路; 所述第一换热器内的一部分换热管与所述第二换热器内的一部分换热管连通以限定出多条所述第二换热流路;所述第一换热器内的一部分换热管限定出多条所述第三换热流路;所述第二换热器中的一部分换热管和所述第五换热器中的换热管限定出多条所述第四换热流路。
在本申请的一些实施例中,所述第三换热器和所述第四换热器为单排换热管换热器,所述第一换热器、所述第二换热器和所述第五换热器均为三排换热管换热器。
在本申请的一些实施例中,所述第四换热器的换热管与所述第二换热器的邻近所述第四换热器的换热管直接连通、以使得所述多条第二换热流路分别与所述第一换热流路连通;
所述第一换热器中的第二换热流路的换热管与所述第一换热器中的第三换热流路的换热管直接连通、以使每条所述第三换热流路与至少一条所述第二换热流路连通。
根据本申请实施例的空调器,包括根据本申请上述实施例中所述的室内换热器。
根据本申请实施例的空调器,通过第一换热流路的分流形成多条独立的第二换热流路,至少一条第二换热流路分流形成多条独立的第三换热流路,从而使得室内换热器的流路具有多个流程以及多个支路,在制冷剂流经室内换热器时,能更好的实现换热效果。
在本申请的一些实施例中,所述空调器包括壳体、风轮和室内换热器。其中,所述壳体具有进风口,在前后方向上所述进风口的宽度为M;所述风轮设于所述壳体内,所述风轮直径为D;所述室内换热器设于所述壳体内,所述室内换热器环绕于所述风轮外周,所述室内换热器包括:依次连接且连通的第一换热器、第二换热器和第五换热器,所述第一换热器的第一端和所述第二换热器的第一端相连,所述第一换热器和所述第二换热器之间具有夹角以限定出朝向出风侧敞开的风道空间,所述第五换热器设在所述第二换热器的第二端;在前后方向上,所述第一换热器的宽度为L1,所述第二换热器的宽度为L2,所述第五换热器的宽度为L3,其中,所述L1与所述D满足:1.15≤L1/D≤1.52,所述L2与所述D满足:1.24≤L2/D≤1.61,所述L3与所述D满足:0.46≤L3/D≤0.68。
根据本申请实施例的空调器,通过设置依次连通的第一换热器、第二换热器和第五换热器,并满足第一换热器的宽度L1与风轮直径D存在1.15≤L1/D≤1.52,第二换热器的宽度L2与风轮直径D存在1.24≤L2/D≤1.61,第五换热器的宽度L3与风轮直径D存在0.46≤L3/D≤0.68,既可以使室内换热器能够对气流进行充分换热,以提升室内换热器的能效,从而提高空调器的工作效率,又可以优化壳体的内部空间,降低室内换热器与壳体内其他部件发生干涉的概率。
在本申请的一些实施例中,在上下方向上,所述第一换热器的高度为H1,所述第二换热器的高度为H2,所述第五换热器的高度为H3,其中,所述H1、所述H2与所述H3满足:0.4≤H1/(H2+H3)≤0.85。
在本申请的一些实施例中,所述D满足:118-130mm。
在本申请的一些实施例中,在前后方向上所述室内换热器的宽度为L,所述L与所述M满足:1.1≤M/L≤1.56。
在本申请的一些实施例中,所述第一换热器与所述第二换热器之间的夹角为A,所述第二换热器与所述第五换热器的夹角为B,其中170°≤A+B≤210°。
在本申请的一些实施例中,1.48≤(A+B)/D≤1.7。
在本申请的一些实施例中,所述第一换热器的换热管的管径为D1,所述D1≤6.35mm。
在本申请的一些实施例中,所述D1=5mm。
在本申请的一些实施例中,所述室内换热器还包括第四换热器,所述第四换热器设于所述第二换热器。
在本申请的一些实施例中,所述第四换热器的换热管的管径为D2,所述D2满足:6.35≤D2≤8mm。
在本申请的一些实施例中,所述第四换热器的换热管的根数为2-4根。
在本申请的一些实施例中,所述L2和所述L3满足:1.5≤L2/L3≤2.3。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的空调器的示意图;
图2为根据本申请实施例的室内换热器的示意图;
图3为根据本申请实施例的带有换热流路的空调器的示意图;
图4为根据本申请实施例的第一换热器和第二换热器的配合状态示意图;
图5为APF数值随着流路的支路数的变化而变化的条形图;
图6为APF数值随着换热管的管径的变化而变化的线性图;
图7为APF数值随着换热管的管径的变化而变化的条形图;
图8为根据本申请实施例的空调器的能效与D1数值的对应曲线图;
图9为根据本申请实施例的空调器的能效与D3数值的对应曲线图;
图10为根据本申请实施例的空调器的能效与D1、D3数值的对应曲线图。
附图标记:
空调器100;
壳体110;进风口111;
风轮120;
室内换热器130;第一换热器131;第二换热器132;第五换热器133;第四换热器134;第三换热器135;
电控盒140;
第一换热流路150;
第二换热流路160;
第三换热流路170;
第四换热流路180;
配流器190。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可 以具体情况理解上述术语在本申请中的具体含义。
下面参考图1至图10描述根据本申请实施例的室内换热器130,室内换热器130是实现室内空气和空调系统管路内的热量交换,从而实现室内空气降温或升温。
根据本申请实施例的室内换热器130,包括:第一换热模块、第二换热模块以及第三换热模块,第一换热模块具有一条第一换热流路150;第二换热模块具有多条独立的第二换热流路160,多条第二换热流路160分别与第一换热流路150连通,第二换热流路160的个数大于第一换热流路150的个数;第三换热模块具有多条独立的第三换热流路170,至少一条第二换热流路160与至少两条第三换热流路170连通,每条第三换热流路170与至少一条第二换热流路160连通,第三换热流路170的个数大于第二换热流路160的个数。
也就是说,第一换热模块的第一换热流路150分别与第二换热模块的多条独立的第二换热流路160连通,以实现第一次分流,第二换热模块的至少一条第二换热流路160与第三换热模块的至少两条第三换热流路170连通,以实现第二次分流,从而使得室内换热器130内的流路具有多个流程以及多个支路,在制冷剂流经室内换热器130时,能更好的实现换热效果。
需要说明的是,在制冷时,制冷剂从第一换热流路150流向多个第三换热流路170,并且制冷剂在从第一换热流路150流向第三换热流路170的过程中进行蒸发,制冷剂由液态逐渐形成气态,同时体积也随之增加,通过流路数量的增加,以匹配制冷剂体积逐步变大的变化,由于制冷剂的体积逐渐增加,从而使得制冷剂的换热效果更好,并且由于流路数量逐渐增加,从而使得制冷剂的流动速度也随之增加,从而进一步使得制冷剂的换热效果变得更好。
在本申请的一些具体实施例中,在制冷时,制冷剂从第一换热流路150流向第三换热流路170的过程中,制冷剂的干度由0.15-1逐渐变化,既制冷剂中气态的比例由0.15逐渐变化至1,从而使得制冷剂能进行更好地换热。
另外,需要说明的是,在制热时,制冷剂从多个第三换热流路170流向第一换热流路150,以使多个支路上的热量汇总至第一换热流路150内,从而实现更好的制热效果。
根据本申请实施例的室内换热器130,通过第一换热流路150的分流形成多条独立的第二换热流路160,至少一条第二换热流路160分流形成多条独立的第三换热流路170,从而使得室内换热器130的流路具有多个流程以及多个支路,在制冷剂流经室内换热器130时,能更好的实现换热效果。
在本申请的一些实施例中,室内换热器130还包括第四换热模块,第四换热模块具 有多条独立的第四换热流路180,至少一条第三换热流路170与至少两条第四换热流路180连通,每条第四换热流路180与至少一条第三换热流路170连通,第四换热流路180的个数大于第三换热流路170的个数。
也就是说,第三换热模块的第三换热流路170与第四换热模块的至少两条第四换热流路180连通,以实现第三次分流,从而使室内换热器130内的流路具有更多个流程以及更多个支路,进一步使制冷剂流经室内换热器130时,能实现更好的换热效果。
需要说明的是,流路分流的次数并不限制为三次,可根据室内换热器130的具体使用情况进行设置流路的分流次数,从而得到相应的支路数量以及流程数量,因此,流路的分流次数在此不做限制。
在本申请的一些实施例中,第一换热流路150的个数为M1,第二换热流路160的个数为M2,第三换热流路170的个数为M3,第四换热流路180的个数为M4,室内换热器130满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6,6≤M4/M1≤8。需要说明的是,通过各个流路的个数变化,从而实现不同的换热性能,详见实验一至实验三。
在本申请的一些实施例中,第一换热流路150的个数为M1,第二换热流路160的个数为M2,第三换热流路170的个数为M3,其中室内换热器130满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6。需要说明的是,通过各个流路的个数变化,从而实现不同的换热性能,详见实验一和实验二。
根据第一换热流路150与第二换热流路160、第三换热流路170以及第四换热流路180之间的支路数比进行如下实验;
实验一;
1、第二换热流路160和第一换热流路150支路数比值范围:2≤M2/M1≤4。
2、实验条件:其中M3、M4以及室内换热器130固定不变,调整第二换热流路160支路数M2;M2获得不同的比值,得出表1中的数据:
表1;
Figure PCTCN2019113243-appb-000001
3、结论;
当M2/M1小于1时,第一换热流路150不进行分流,只是增加第一换热流路150 的流程长度,导致换热性能变差;
当M2/M1大于4时,制冷剂气液两相的体积小于多个第二换热流路160的横截面积之和,从而导致制冷剂的流速降低,流路内换热系数降低,导致性能下降。
因此,在M2/M1为2时,APF的性能较佳,以使制冷剂的换热效果最好。
实验二;
1、第三换热流路170和第一换热流路150支路数比值:3≤M3/M1≤6,
2、实验条件:其中M2、M4以及室内换热器130固定不变,调整第三换热流路170支路数M3,M3获得不同的比值,得出表2中的数据:
表2;
Figure PCTCN2019113243-appb-000002
3、结论;
当M3/M1小于2时,第二换热流路160的流程支路数与第三支路数相同,相当于加长第二换热流路160的流程长度,流路内压降变大,导致换热温差降低,从而导致整体性能变差;
当M3/M1大于6时,制冷剂气液两相体积小于多个第三换热流路170的横截面积之和,从而导致制冷剂的流速降低,流路内换热系数降低,导致性能下降。
因此,在M3/M1为4时,APF的性能较佳,以使制冷剂的换热效果最好。
实验三;
1、第四换热流路180和第一换热流路150支路数比值:5≤M4/M1≤8。
2、实验条件:其中M2、M3以及室内换热器130固定不变,调整第三换热流路170支路数M4,M4获得不同的比值,得出表3中的数据:
表3;
Figure PCTCN2019113243-appb-000003
3、结论;
当M4/M1小于5时,制冷剂气液两相体积大于多个第四换热流路180的横截面积之和,流路内压降变大,导致换热温差降低,导致整体性能变差;
当M4/M1大于8时,制冷剂气液两相体积小于多个第四换热流路180的横截面积之和,流速降低,流路内换热系数降低,导致性能下降。
因此,在M3/M1为6时,APF的性能较佳,以使制冷剂的换热效果最好。
另外,通过三种不同流程和不同支路数进行测试,测试结果如图2所示;
从图2中可以看出,一条第一换热流路150分流形成两条第二换热流路160,每条第二换热流路160分流形成两条第三换热流路170,四条第三换热流路170分流形成六条第四换热流路180,既图5中所示的1-2-4-6,通过1-2-4-6这种分流方式,以使APF的性能较佳,从而制冷剂的换热效果最好。
综上所述,本申请的室内换热器130通过将流路分成多个流程以及多个支路,和只进行一次分流的流路相比,APF数值更高,具有更好的实现换热效果。
在本申请的一些实施例中,第一换热模块包括多个第一换热管,多个第一换热管彼此连通以形成第一换热流路150,多个第一换热管的个数为N1,第二换热模块包括多个第二换热管,多个第二换热流路160流过的第二换热管的总数为N2总,其中室内换热器130满足如下关系:1≤N2总/N1≤3.2。
需要说明的是,N1表示第一换热流路150流过第一换热管的个数,N2总表示多个第二换热流路160流过的第二换热管的总数,在本申请的一些具体实施例中,第二换热流路160为两条,两条第二换热流路160流过的第二换热管的个数分别为N21和N22,也就是说,N21+N22=N2总,通过N2总与N1的比值变化,从而实现不同的换热性能,详见实验四。
实验四;
1、第一换热流路150流过第一换热管的个数与第二换热流路160流过的第二换热管的个数的比值范围;1≤N2总/N1≤3.2
2、实验条件:固定第一换热流路150的流程中N1的个数,调整第二换热流路160的流程中N21、N22的个数;
或者,固定第二换热流路160的流程中N21、N22的个数,调整第一换热流路150的流程中N1的个数,获得不同的比值,得出表4中的数据:
表4;
Figure PCTCN2019113243-appb-000004
3、结论;
当(N21+N22)/N1小于1时,制冷剂的单相区流程过长,导致进入第二换热流路160的流程制冷剂气液两相体积大于多个第二换热管的横截面积之和,整体换热性能会变差;
当(N21+N22)/N1大于3.2时,制冷剂的单相区流程过短,导致进入第二换热流路160的流程制冷剂气液两相体积小于多个第二换热管的横截面积之和,导致性能下降。
因此,(N21+N22)/N1为2.5时,APF的性能较佳,以使制冷剂的换热效果最好。
在本申请的一些实施例中,第一换热模块包括多个第一换热管,多个第一换热管彼此连通以形成第一换热流路150,多个第一换热管的个数为N1,第三换热模块包括多个第三换热管,多个第三换热流路170流过的第三换热管的总数为N3总,其中室内换热器130满足如下关系:2≤N3总/N1≤3。
需要说明的是,N1表示第一换热流路150流过第一换热管的个数,N3总表示多个第三换热流路170流过的第三换热管的总数,在本申请的一些具体实施例中,第三换热流路170为四条,四条第三换热流路170流过的第三换热管的个数分别为N31、N32、N33和N34,也就是说,N31+N32+N33+N34=N3总,通过N3总与N1的比值变化,从而实现不同的换热性能,详见实验五。
实验五;
1、第一换热流路150流过第一换热管的个数与第三换热流路170流过的第三换热管的个数的比值范围;2≤N3总/N1≤3
2、实验条件:固定第一换热流路150的流程中N1的个数,调整第三换热流路170的流程中N31、N32、N33和N34的个数;
或者,固定第三换热流路170的流程中N31、N32、N33和N34的个数,调整第一换热流路150的流程中N1的个数,获得不同的比值,得出表5中的数据:
表5;
Figure PCTCN2019113243-appb-000005
Figure PCTCN2019113243-appb-000006
3、结论;
当(N31+N32+N33+N34)/N1小于2时,第三换热流路170的流程变短,导致进入第二换热流路160的制冷剂气液两相体积小于多个第二换热管的横截面积之和,整体换热性能会变差;
当(N31+N32+N33+N34)/N1大于3时,第三换热流路170的流程变长,导致进入第二换热流路160的制冷剂气液两相体积大于多个第二换热管的横截面积之和,压降增加,换热温差降低,整体换热性能降低。
因此,(N31+N32+N33+N34)/N1为2.5时,APF的性能较佳,以使制冷剂的换热效果最好。
在本申请的一些实施例中,第一换热模块包括多个第一换热管,多个第一换热管彼此连通以形成第一换热流路150,多个第一换热管的个数为N1,第四换热模块包括多个第四换热管,多个第四换热流路180流过的第四换热管的总数为N4总,其中室内换热器130满足如下关系:2≤N4总/N1≤4.5。
需要说明的是,N1表示第一换热流路150流过第一换热管的个数,N4总表示多个第四换热流路180流过的第四换热管的总数,在本申请的一些具体实施例中,第四换热流路180为六条,六条第四换热流路180流过的第四换热管的个数分别为N41、N42、N43、N44、N45和N46,也就是说,N41+N42+N43+N44+N45+N46=N4总,通过N4总与N1的比值变化,从而实现不同的换热性能,详见实验六。
实验六;
1、第一换热流路150流过第一换热管的个数与第四换热流路180流过的第四换热管的个数的比值范围;2≤N4总/N1≤4.5
2、实验条件:固定第一换热流路150的流程中N1的个数,调整第四换热流路180的流程中N41、N42、N43、N44、N45和N46的个数;
或者,固定第四换热流路180的流程中N41、N42、N43、N44、N45和N46的个数,调整第一换热流路150的流程中N1的个数,获得不同的比值,得出表6中的数据:
表6;
Figure PCTCN2019113243-appb-000007
3、结论;
当(N41+N42+N43+N44+N45+N46)/N1小于2时,第四换热流路180的流程变短,换热面积降低,制冷剂没有完全蒸发,整体换热性能会变差;
当(N41+N42+N43+N44+N45+N46)/N1大于4.5时,第四换热流路180的流程变长,以使第三换热流路170的流程会过短,导致进入第三换热流路170的制冷剂气液两相体积小于多个第三换热管的横截面积之和,整体换热性能降低。
因此,当(N41+N42+N43+N44+N45+N46)/N1大于3.5时,APF的性能较佳,以使制冷剂的换热效果最好。
如图1至图3所示,在本申请的一些实施例中,室内换热器130具有迎风侧和出风侧,室内换热器130包括多个换热器,每个换热器包括换热管和与换热管接触的换热翅片,多个换热器包括:第一换热器131、第二换热器132、第三换热器135、第四换热器134以及第五换热器133;
第一换热器131的第一端和第二换热器132的第一端相连,第一换热器131和第二换热器132之间具有夹角以限定出朝向出风侧敞开的风道空间,室内风机可以放置在风道空间内。第三换热器135设在第一换热器131的迎风侧;第四换热器134设在第二换热器132的迎风侧;第五换热器133设在第二换热器132的第二端。
第三换热器135和第四换热器134内的换热管连通以限定出第一换热流路150。第一换热器131内的一部分换热管与第二换热器132内的一部分换热管连通以限定出多条第二换热流路160;第一换热器131内的一部分换热管限定出多条第三换热流路170;第二换热器132中的一部分换热管和第五换热器133中的换热管限定出多条第四换热流路180。
需要说明的是,室内换热器130包括第一换热器131、第二换热器132、第三换热器135、第四换热器134以及第五换热器133,第三换热器135和第四换热器134限定出第一换热模块,第一换热器131内的一部分和第二换热器132内的一部分限定出第 二换热模块,第一换热器131内的另一部分限定出第三换热模块,第二换热器132中的另一部分和第五换热器133限定出第四换热模块。
具体而言,第一换热流路150分流形成多条独立的第二换热流路160,至少一条第二换热流路160分流形成多条独立的第三换热流路170,从而使得多个换热器内的流路具有多个流程以及多个支路,从而使得多个支路在多个换热器的换热管内流动,在制冷剂流经换热管时,能更好的实现换热效果。
根据本申请实施例的室内换热器,通过设置第一换热器131、第二换热器132、第三换热器135、第四换热器134以及第五换热器133,从而可以提高室内换热器与空气的换热面积,进一步增加换热效果。
如图1和图10所示,在本申请的一些具体实施例中,在制冷时,制冷剂先通过第一换热流路150依次流经第三换热器135、第四换热器134,从第四换热器134流出的制冷剂分别流入到两条第二换热流路160内,制冷剂通过两条第二换热流路160分别流经第一换热器131的一部分换热管和第二换热器132的一部分换热管,既如图5所示,从第二换热器132的2A和2B的换热管流向第一换热器131的2A和2B的换热管,两条第二换热流路160分别在第一换热器131分成两条第三换热流路170,制冷剂通过第三换热流路170流经第一换热器131的另一部分换热管,四条第二换热流路160的出口(如图4中的2AH和2BH)均与配流器190的进口连通,配流器190的出口分成六条第四换热流路180,其中一部分制冷剂通过四条第四换热流路180流经第二换热器132中的另一部分换热管后流出室内换热器,另一部分制冷剂通过两条第四换热流路180流经第五换热器133后流出室内换热器,从而实现更好的制冷效果。
在本申请的一些实施例中,第三换热器135和第四换热器134为单排换热管换热器,第一换热器131、第二换热器132和第五换热器133均为三排换热管换热器。也就是说,制冷剂从单排的换热管换热器流向三排换热管换热器,从而增加制冷剂与换热管换热器截面积,以实现更好的制冷效果,制冷剂从三排换热管换热器汇总至单排换热管换热器,以使制冷剂将携带的热量汇总至第三换热器135和第四换热器134上,从而实现更好的加温效果。
在本申请的一些具体实施例中,第三换热器135和第四换热器134的换热管的管径大于第一换热器131、第二换热器132和第五换热器133的换热管的管径,以使在制冷时,制冷剂能从大管径的换热管进入到多个小管径的换热管内,以增加制冷剂的流动速度,从而实现更好的换热效果。也就是说,换热管的管径不同,能产生不同的换热效果,随着换热管的管径变化,APF数值的变化如下图6和图7所示;
从图6中可以看出,在多个换热器内的换热管的管径相同时,换热管的管径为5mm至6mm时,APF的性能较佳,从而制冷剂的换热效果最好。
从图7中可以看出,多个换热器内的具有两种管径的换热管时,其中,第三换热器135和第四换热器134的管径为7mm,第一换热器131、第二换热器132和第五换热器133的换热管的管径为5mm时,APF的性能较佳,从而制冷剂的换热效果最好。
在本申请的一些实施例中,第四换热器134的换热管与第二换热器132的邻近第四换热器134的换热管直接连通、以使得多条第二换热流路160分别与第一换热流路150连通;第一换热器131中的第二换热流路160的换热管与第一换热器131中的第三换热流路170的换热管直接连通、以使每条第三换热流路170与至少一条第二换热流路160连通。
也就是说,通过第四换热器134的换热管与第二换热器132换热管连通,以便于第一换热流路150分别与多条第二换热流路160相连通,从而使得制冷剂能在第一换热流路150流动至多条第二换热流路160内。通过第一换热器131中的第二换热流路160的换热管与第一换热器131中的第三换热流路170的换热管连通,以便于每条第三换热流路170与至少一条第二换热流路160连通。从而使得室内换热器的多个换热器之间的连接关系简单。
根据本申请实施例的空调器,包括根据本申请上述实施例中的室内换热器130。
如图1至图10所示,根据本申请实施例的空调器,通过第一换热流路150的分流形成多条独立的第二换热流路160,至少一条第二换热流路160分流形成多条独立的第三换热流路170,从而使得室内换热器130的流路具有多个流程以及多个支路,在制冷剂流经室内换热器130时,能更好的实现换热效果。
如图1-图2所示,根据本申请的一些实施例,空调器100包括壳体110、风轮120和室内换热器130。
具体而言,如图1所示,壳体110具有进风口111,且在前后方向(如图1所示的前后方向)上进风口111的宽度为M。风轮120可以设于壳体110内,且风轮120的直径可以为D。
如图1所示,室内换热器130可以设于壳体110内,且室内换热器130可以环绕于风轮外周,室内换热器130包括:依次连接且连通的第一换热器131、第二换热器132和第五换热器133。第一换热器131的第一端和第二换热器132的第一端相连,第一换热器131和第二换热器132之间具有夹角以限定出朝向出风侧敞开的风道空间,第五换热器133设在第二换热器132的第二端;可以理解的是,通过将室内换热器130 环绕风轮120外周设置,便于使流向风轮120的气流能够充分流经室内换热器130,可以降低部分气流换热不充分的概率,从而可以提高室内换热器130的换热效率,进而提高室内换热器130的能效(此处“能效”可以理解为室内换热器130对气流完成的换热量与室内换热器130的输入功率的比值)。
例如,如图1所示,壳体110可以限定出安装空间,壳体110的上端面(如图1所示的上端)构造出进风口111。室内换热器130设于壳体110内部的安装空间,且室内换热器130位于进风口111的下游(此处“下游”可以指气流在流动时,气流流向的位置即为下游),在室内换热器130的下游设有风轮120,且室内换热器130环设于风轮120的外周。也即,如图1所示的,第一换热器131、第二换热器132和第五换热器133沿风轮120的外周分布。需要说明的是,风轮120可以驱动外部气流从进风口111流如到壳体110内,流入壳体110内的气流优先流经室内换热器130并进行换热,而后风轮120可以驱动换热后的气流吹向室内空间。
另外,如图1所示,在前后方向上第一换热器131的宽度可以为L1,第二换热器132的宽度可以为L2,第五换热器133的宽度可以为L3,其中,L1与D可以满足:1.15≤L1/D≤1.52,L2与D可以满足:1.24≤L2/D≤1.61,L3与D可以满足:0.46≤L3/D≤0.68。
需要说明的是,为了较为准确地显示L1/D、L2/D和L3/D的数值变化对室内换热器130的能效的影响,在本实施例中,当D保持不变时,通过对第一换热器131的宽度L1、第二换热器132的宽度L2和第五换热器133的宽度L3与风轮120直径D的比值进行多次实验,其实验结果如下:
Figure PCTCN2019113243-appb-000008
Figure PCTCN2019113243-appb-000009
Figure PCTCN2019113243-appb-000010
由实验3.1-3.3的结果可知,当L2/D、L3/D为定值、1.15≤L1/D≤1.52时,室内换热器130具有较高的能效。例如,L1/D可以为1.3或1.4。
由实验3.4-3.6的结果可知,当L1/D、L3/D为定值、1.24≤L2/D≤1.61时,室内换热器130具有较高的能效。例如,L2/D可以为1.38或1.5。
由实验3.7-3.9的结果可知,当L1/D、L2/D为定值、0.46≤L3/D≤0.68时,室内换热器130具有较高的能效。例如,L3/D可以为0.53或0.61。
需要说明的是,在提高室内换热器130的能效的同时,要考虑到空调器100的结构和安装空间。可以理解的是,风轮120的直径D的大小可以决定风轮120的大小,由此,通过设置合理数值的L1/D、L2/D和L3/D,既可以使室内换热器130能够充分环设于风轮120的外周,又可以降低室内换热器130与壳体110内其他部件发生干涉的概率,从而可以优化壳体110的内部空间。
需要说明的是,APF(Annual PerformanceFactor,全年能源消耗效率)评价指标,既考虑了空调的制冷能力又包含制热因素,一改以往考核变频空调的能效指标仅考核制冷季节内空调的能耗,APF考核的是全年的能耗水平,对空调性能的评估更加全面。
根据本申请实施例的空调器,通过设置依次连通的第一换热器131、第二换热器132和第五换热器133,并满足第一换热器的宽度L1与风轮直径D存在1.15≤L1/D≤1.52,第二换热器的宽度L2与风轮直径D存在1.24≤L2/D≤1.61,第五换热器的宽度L3与风轮直径D存在0.46≤L3/D≤0.68,既可以使室内换热器130能够对气流进行充分换热,以提升室内换热器130的能效,从而提高空调器100的工作效率,又可以优化壳体110的内部空间,降低室内换热器130与壳体110内其他部件发生干涉的概率。
如图1所示,根据本申请的一些实施例,在上下方向上(如图1所示的上下方向),第一换热器131的高度可以为H1,第二换热器132的高度可以为H2,第五换热器133的高度可以为H3,则H1、H2与H3可以满足0.4≤H1/(H2+H3)≤0.85。例如,在本实施例中,通过对第一换热器131的高度H1与第二换热器132的高度、第五换热器133的总高度H2+H3的比值进行多次实验,其实验结果如下:
Figure PCTCN2019113243-appb-000011
由实验2的结果可知,当0.4≤H1/(H2+H3)≤0.85时,室内换热器130具有较高的能效。例如,H1/(H2+H3)可以为0.55或0.7。
如图2所示,在一些实施例中,风轮120的直径D满足:118-130mm。例如,D可以为120mm、122mm、124mm、126mm或128mm。由此,可以根据壳体110的尺寸或空调器100的送风要求,选择合理数值的风轮120直径,既可以降低风轮120与壳体110内其他部件(例如电控盒140)发生干涉的概率,又可以使空调器100具有较好的送风效果。另外,通过设置合理数值的风轮120直径,还可以优化壳体110内部空间的布局,节省成本。
根据本申请的一些实施例,在前后方向上(如图1所示的前后方向)室内换热器130的宽度可以为L,则L与M可以满足1.1≤M/L≤1.56。例如,在本实施例中,通过对进风口111的宽度为M与室内换热器130的宽度L的比值进行多次实验,其实验结果如下:
Figure PCTCN2019113243-appb-000012
由实验1的结果可知,当1.1≤M/L≤1.56时,室内换热器130具有较高的能效。例如,M/L可以为1.28或1.45。由此通过设置合理数值的M/L,可以使进风量与室内换热器130的换热效率相适配,既可以满足用户对空调器100的送风量的需求,又可以使室内换热器130能够对气流进行充分换热,以提升室内换热器130的能效(此处“能效”可以理解为室内换热器130完成气流换热消耗的能量与室内换热器130实际消耗的能量的比值),从而提高空调器100的工作效率,提升送风效果。
如图2所示,根据本申请的一些实施例,第一换热器131与第二换热器132之间的夹角可以为A,第二换热器132与第五换热器133的夹角可以为B,其中170°≤A+B≤210°。例如,A+B可以为180°、190°或200°。可以理解的是,室内换热器130环绕设置于风轮120的外周,随着A+B数值的变动,室内换热器130限定的环绕空间 的大小也会变动。由此,通过设置合理数值的A+B,既可以使室内换热器130限定出可供风轮120设置的环绕空间,又可以使室内换热器130与风轮120外周相适配,从而使流向风轮120的气流能够与室内换热器130充分换热,进而提高室内换热器130的能效。
可以理解的是,风轮120的大小取决于D的大小,室内换热器130限定出的环绕空间的大小受A+B的影响,在一些实施例中,存在1.48≤(A+B)/D≤1.7。
例如,在本实施例中,通过对夹角A和夹角B的总和与风轮120的直径D的比值进行多次实验,其实验结果如下:
Figure PCTCN2019113243-appb-000013
由实验4的结果可知,当1.48≤(A+B)/D≤1.7时,室内换热器130具有较高的能效。例如,M/L可以为1.55或1.62。由此,当1.48≤(A+B)/D≤1.7,既可以使室内换热器130限定出可供风轮120设置的环绕空间,又可以使室内换热器130与风轮120外周相适配,从而可以提高室内换热器130的能效。
如图2所示,根据本申请的一些实施例,第一换热器131的换热管的管径可以为D1,则D1≤6.35mm。例如,D1可以为2mm、4mm或6mm。需要说明的是,室内换热器130的能效受D1的数值的影响,其变化曲线如图8所示。由此,根据图8所示的结果,可以通过控制管径大小的变换,控制换热管内冷媒的流速和换热效率,从而提高整个第一换热器131的换热能力,提高室内换热器130的能效。需要说明的是,在实际应用中,当D1=5mm,第一换热器131的换热效果更好。
如图1所示,根据本申请的一些实施例。室内换热器130还可以包括第四换热器134,且第四换热器134可以设于第二换热器132。由此,通过在第二换热器132上设置第四换热器134,可以增大室内换热器130与气流的接触面积,进一步提高室内换热器130的换热能力,从而提高室内换热器130的能效。
如图2所示,在一些实施例中,第四换热器134的换热管的管径可以为D2,则6.35≤D2≤8mm。例如,D2可以为6.5mm、7.0mm或7.5mm。由此,通过控制管径的大小,可以控制换热管内冷媒的流速和换热效率,进而提高第四换热器134的换热能力。
如图2所示,在一些实施例中,室内换热器130还可以包括第三换热器135,且第三换热器135可以设于第一换热器131。由此,通过在第一换热器131上设置第四换热 器134,可以进一步增大室内换热器130与气流的接触面积,进一步提高室内换热器130的换热能力,从而提高室内换热器130的能效。
进一步地,第三换热器135的换热管的管径可以为D3,则6.35≤D3≤8mm,需要说明的是,室内换热器130的能效受D3的数值的影响,其变化曲线如图9所示。
另外,D3与D1之间存在最优数值搭配,以使室内换热器130的换热效果更好。例如,在本实施例中,通过对D1和D3的数值搭配进行多次实验,其实验结果如图10所示,由图10所示的实验结果可知,当D1=5mm、D3=7mm时,室内换热器130具有较高的能效。
在一些实施例,第四换热器134的换热管的根数可以为2-4根。由此,通过控制第四换热器134的换热管的数量,既可以满足第四换热器134的换热要求,又可以节省成本。
如图2所示,根据本申请的一些实施例,L2和L3可以满足:1.5≤L2/L3≤2.3。需要说明的是,考虑到壳体110的内部安装空间的分布以及风轮120的安装位置,第二换热器132的宽度相较于第五换热器133的宽度较大。例如,L2/L3可以为1.6、1.8、2.0或2.2。由此,通过设置合理数值的L2/L3,可以使第二换热器132与第五换热器133的组合能够较为紧密地环绕于风轮120外周,且可以优化空调器100的内部空间,节省成本。
下面参照图1-图2详细描述根据本申请实施例的空调器100。值得理解的是,下述描述仅是示例性说明,而不是对本申请的具体限制。
如图1-图2所示,空调器100包括壳体110、风轮120和室内换热器130。
如图1所示,壳体110上方具有进风口111,壳体110可以限定出安装空间,在壳体110限定的安装空间内,进风口111的下游设置有室内换热器130,室内换热器130的下游设有风轮120。如图2所示,室内换热器130包括第一换热器131、第二换热器132和第五换热器133,且室内换热器130环设于风轮120的外周。当空调器100工作时,外部气流通过进风口111朝向室内换热器130流动,气流在流经室内换热器130时可以与蒸发器进行换热,而后风轮120可以驱动换热后的气流,将气流吹向室内空间。
如图1所示,风轮120的直径为D,则D满足:118-130mm。在前后方向上(如图1所示的前后方向)室内换热器130的宽度为L,在前后方向上(如图1所示的前后方向)进风口111的宽度为M,当D保持不变时,则有1.1≤M/L≤1.56。第一换热器131的高度为H1,第二换热器132的高度为H2,第五换热器133的高度为H3,则有0.4≤H1/(H2+H3)≤0.85。
如图1所示,第一换热器131的宽度为L1,第二换热器132的宽度为L2,第五换热器133的宽度为L3,其中1.5≤L2/L3≤2.3。
当D保持不变、L2/D、L3/D为定值、1.15≤L1/D≤1.52时,室内换热器130的能效较高;
当D保持不变、L1/D、L3/D为定值、1.24≤L2/D≤1.61时,室内换热器130的能效较高;
当D保持不变、L1/D、L2/D为定值、0.46≤L3/D≤0.68时,室内换热器130的能效较高。
如图2所示,第一换热器131与第二换热器132的夹角为A,第二换热器132与第五换热器133的夹角为B,则有170°≤A+B≤210°。风轮120直径为D,则有1.48≤(A+B)/D≤1.7。
如图2所示,第一换热器131的换热管的管径为D1,则有D1≤6.35mm。第二换热器132的上方设有第四换热器134,第四换热器134的换热管的管径为D2,则有6.35≤D2≤8mm。第一换热器131上方设有第三换热器135,第三换热器135的换热管的管径为D3,则有6.35≤D3≤8mm。如图2所示,第四换热器134上设有4个连接孔,4个连接孔可以供2根换热管安装。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种室内换热器,其特征在于,包括:
    第一换热模块,所述第一换热模块具有一条第一换热流路;
    第二换热模块,所述第二换热模块具有多条独立的第二换热流路,所述多条第二换热流路分别与所述第一换热流路连通,所述第二换热流路的个数大于所述第一换热流路的个数;
    第三换热模块,所述第三换热模块具有多条独立的第三换热流路,至少一条所述第二换热流路与至少两条所述第三换热流路连通,每条所述第三换热流路与至少一条所述第二换热流路连通,所述第三换热流路的个数大于所述第二换热流路的个数。
  2. 根据权利要求1所述的室内换热器,其特征在于,还包括第四换热模块,所述第四换热模块具有多条独立的第四换热流路,至少一条所述第三换热流路与至少两条所述第四换热流路连通,每条所述第四换热流路与至少一条所述第三换热流路连通,所述第四换热流路的个数大于所述第三换热流路的个数。
  3. 根据权利要求2所述的室内换热器,其特征在于,所述第一换热流路的个数为M1,所述第二换热流路的个数为M2,所述第三换热流路的个数为M3,所述第四换热流路的个数为M4,所述室内换热器满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6,6≤M4/M1≤8。
  4. 根据权利要求1至3中任一项所述的室内换热器,其特征在于,所述第一换热流路的个数为M1,所述第二换热流路的个数为M2,所述第三换热流路的个数为M3,其中所述室内换热器满足如下关系:2≤M2/M1≤4,3≤M3/M1≤6。
  5. 根据权利要求1至4中任一项所述的室内换热器,其特征在于,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第二换热模块包括多个第二换热管,多个所述第二换热流路流过的第二换热管的总数为N2总,其中所述室内换热器满足如下关系:1≤N2总/N1≤3.2。
  6. 根据权利要求1至5中任一项所述的室内换热器,其特征在于,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第三换热模块包括多个第三换热管,多个所述第三换热流路流过的第三换热管的总数为N3总,其中所述室内换热器满足如下关系: 2≤N3总/N1≤3。
  7. 根据权利要求2所述的室内换热器,其特征在于,所述第一换热模块包括多个第一换热管,所述多个第一换热管彼此连通以形成所述第一换热流路,所述多个第一换热管的个数为N1,所述第四换热模块包括多个第四换热管,多个所述第四换热流路流过的第四换热管的总数为N4总,其中所述室内换热器满足如下关系:2≤N4总/N1≤4.5。
  8. 根据权利要求2至7中任一项所述的室内换热器,其特征在于,所述室内换热器具有迎风侧和出风侧,所述室内换热器包括多个换热器,每个所述换热器包括换热管和与所述换热管接触的换热翅片,所述多个换热器包括:
    第一换热器和第二换热器,所述第一换热器的第一端和所述第二换热器的第一端相连,所述第一换热器和所述第二换热器之间具有夹角以限定出朝向出风侧敞开的风道空间;
    第三换热器,所述第三换热器设在所述第一换热器的迎风侧;
    第四换热器,所述第四换热器设在所述第二换热器的迎风侧;
    第五换热器,所述第五换热器设在所述第二换热器的第二端;
    所述第三换热器和所述第四换热器内的换热管连通以限定出所述第一换热流路;
    所述第一换热器内的一部分换热管与所述第二换热器内的一部分换热管连通以限定出多条所述第二换热流路;
    所述第一换热器内的一部分换热管限定出多条所述第三换热流路;
    所述第二换热器中的一部分换热管和所述第五换热器中的换热管限定出多条所述第四换热流路。
  9. 根据权利要求8所述的室内换热器,其特征在于,所述第三换热器和所述第四换热器为单排换热管换热器,所述第一换热器、所述第二换热器和所述第五换热器均为三排换热管换热器。
  10. 根据权利要求9所述的室内换热器,其特征在于,所述第四换热器的换热管与所述第二换热器的邻近所述第四换热器的换热管直接连通、以使得所述多条第二换热流路分别与所述第一换热流路连通;
    所述第一换热器中的第二换热流路的换热管与所述第一换热器中的第三换热流路的换热管直接连通、以使每条所述第三换热流路与至少一条所述第二换热流路连通。
  11. 一种空调器,其特征在于,包括根据权利要求1-10中任一项所述的室内换热器。
  12. 根据权利要求11所述的空调器,其特征在于,还包括:
    壳体,所述壳体具有进风口,在前后方向上所述进风口的宽度为M;
    风轮,所述风轮设于所述壳体内,所述风轮直径为D;
    所述室内换热器设于所述壳体内,所述室内换热器环绕于所述风轮外周,所述室内换热器包括:依次连接且连通的第一换热器、第二换热器和第五换热器,所述第一换热器的第一端和所述第二换热器的第一端相连,所述第一换热器和所述第二换热器之间具有夹角以限定出朝向出风侧敞开的风道空间,所述第五换热器设在所述第二换热器的第二端;
    在前后方向上,所述第一换热器的宽度为L1,所述第二换热器的宽度为L2,所述第五换热器的宽度为L3,
    其中,所述L1与所述D满足:1.15≤L1/D≤1.52,所述L2与所述D满足:1.24≤L2/D≤1.61,所述L3与所述D满足:0.46≤L3/D≤0.68。
  13. 根据权利要求12所述的空调器,其特征在于,在上下方向上,所述第一换热器的高度为H1,所述第二换热器的高度为H2,所述第五换热器的高度为H3,
    其中,所述H1、所述H2与所述H3满足:0.4≤H1/(H2+H3)≤0.85。
  14. 根据权利要求12所述的空调器,其特征在于,所述D满足:118-130mm。
  15. 根据权利要求12至14中任一项所述的空调器,其特征在于,在前后方向上所述室内换热器的宽度为L,所述L与所述M满足:1.1≤M/L≤1.56。
  16. 根据权利要求12至15中任一项所述的空调器,其特征在于,所述第一换热器与所述第二换热器之间的夹角为A,所述第二换热器与所述第五换热器的夹角为B,其中170°≤A+B≤210°。
  17. 根据权利要求16所述的空调器,其特征在于,1.48≤(A+B)/D≤1.7。
  18. 根据权利要求12至17中任一项所述的空调器,其特征在于,所述第一换热器的换热管的管径为D1,所述D1≤6.35mm。
  19. 根据权利要求12至18中任一项所述的空调器,其特征在于,所述室内换热器还包括第四换热器,所述第四换热器设于所述第二换热器;
    所述第四换热器的换热管的管径为D2,所述D2满足:6.35≤D2≤8mm。
  20. 根据权利要求12至19中任一项所述的空调器,其特征在于,所述L2和所述L3满足:1.5≤L2/L3≤2.3。
PCT/CN2019/113243 2019-07-30 2019-10-25 室内换热器以及空调器 WO2021017210A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921222816.3U CN210688502U (zh) 2019-07-30 2019-07-30 空调器
CN201921220436.6 2019-07-30
CN201921220436.6U CN210441337U (zh) 2019-07-30 2019-07-30 室内换热器以及空调器
CN201921222816.3 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017210A1 true WO2021017210A1 (zh) 2021-02-04

Family

ID=74229035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113243 WO2021017210A1 (zh) 2019-07-30 2019-10-25 室内换热器以及空调器

Country Status (1)

Country Link
WO (1) WO2021017210A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375114A (zh) * 2006-03-08 2009-02-25 大金工业株式会社 冷冻装置用热交换器的制冷剂分流装置
JP2015105771A (ja) * 2013-11-29 2015-06-08 株式会社富士通ゼネラル 熱交換器
EP2916086A1 (en) * 2014-03-07 2015-09-09 Mitsubishi Heavy Industries, Ltd. Heat exchanger and air conditioner employing the same
JP2017083115A (ja) * 2015-10-30 2017-05-18 東芝キヤリア株式会社 空気調和装置の室内ユニット
CN109282482A (zh) * 2018-09-03 2019-01-29 广东美的制冷设备有限公司 换热器组件和空调室内机
CN209042729U (zh) * 2018-09-03 2019-06-28 广东美的制冷设备有限公司 换热器组件、空调室内机以及空气调节装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375114A (zh) * 2006-03-08 2009-02-25 大金工业株式会社 冷冻装置用热交换器的制冷剂分流装置
JP2015105771A (ja) * 2013-11-29 2015-06-08 株式会社富士通ゼネラル 熱交換器
EP2916086A1 (en) * 2014-03-07 2015-09-09 Mitsubishi Heavy Industries, Ltd. Heat exchanger and air conditioner employing the same
JP2017083115A (ja) * 2015-10-30 2017-05-18 東芝キヤリア株式会社 空気調和装置の室内ユニット
CN109282482A (zh) * 2018-09-03 2019-01-29 广东美的制冷设备有限公司 换热器组件和空调室内机
CN209042729U (zh) * 2018-09-03 2019-06-28 广东美的制冷设备有限公司 换热器组件、空调室内机以及空气调节装置

Similar Documents

Publication Publication Date Title
CN202133039U (zh) 一种空调器
US10168083B2 (en) Refrigeration system and heat exchanger thereof
CN103486711A (zh) 室内机
CN109890183B (zh) 一种数据中心机房散热机柜
WO2023029596A1 (zh) 空调及其控制方法
WO2021103827A1 (zh) 换热器组件和具有其的空调室内机
WO2021103967A1 (zh) 换热器组件和具有其的空调室内机
CN210861410U (zh) 换热器组件和具有其的空调室内机
WO2021017210A1 (zh) 室内换热器以及空调器
WO2018152963A1 (zh) 蒸发器流路结构、蒸发器、空调器室内机及空调器
CN215260159U (zh) 换热器组件及具有其的空调室内机
CN202813668U (zh) 一种具有新型芯片散热装置的变频空调
CN206037493U (zh) 一种铝质平行流顶蒸发器
CN201819373U (zh) 空调机组
CN211977312U (zh) 蒸发组件和家电设备
JP2002235993A (ja) スパイラルフィンチューブ及び冷凍空調装置
CN103574803B (zh) 水蒸发制冷空调
CN202392899U (zh) 空调风柜及带有该风柜的空调系统
CN210688502U (zh) 空调器
CN212618778U (zh) 换热器组件和空调室内机
CN218544598U (zh) 空调室内机
CN210441337U (zh) 室内换热器以及空调器
CN216159159U (zh) 空调室内机
CN216159167U (zh) 空调室内机
CN220061931U (zh) 换热器组件和空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939945

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19939945

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2022)