WO2021017093A1 - 隔震装置和隔震方法 - Google Patents

隔震装置和隔震方法 Download PDF

Info

Publication number
WO2021017093A1
WO2021017093A1 PCT/CN2019/103721 CN2019103721W WO2021017093A1 WO 2021017093 A1 WO2021017093 A1 WO 2021017093A1 CN 2019103721 W CN2019103721 W CN 2019103721W WO 2021017093 A1 WO2021017093 A1 WO 2021017093A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
isolation device
wall surface
seismic isolation
horizontal
Prior art date
Application number
PCT/CN2019/103721
Other languages
English (en)
French (fr)
Inventor
程永锋
朱祝兵
卢智成
刘振林
王海菠
孟宪政
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2021017093A1 publication Critical patent/WO2021017093A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/10Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction
    • F16F3/12Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction the steel spring being in contact with the rubber spring
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/54Anti-seismic devices or installations

Definitions

  • the present disclosure relates to the technical field of disaster prevention and reduction of electrical equipment, for example, to a seismic isolation device and a seismic isolation method.
  • seismic isolation devices are often installed between the transformer equipment and the foundation to reduce the seismic response of the transformer equipment.
  • the seismic isolation devices used in transformer equipment in the past can meet engineering needs, but such seismic isolation devices cannot be used for transformer bushings with diagonal arrangements.
  • the present disclosure provides a seismic isolation device for transformer-type equipment.
  • the seismic isolation device includes a plurality of three-dimensional seismic isolation devices and a plurality of horizontal limit mechanisms, wherein:
  • the multiple three-dimensional seismic isolation devices are evenly arranged between the transformer-type equipment and the foundation, and each of the horizontal limit mechanisms is arranged outside the corresponding three-dimensional seismic isolation device;
  • Each of the three-dimensional seismic isolation devices includes a horizontal seismic isolation device and a vertical seismic damping device, the horizontal seismic isolation device is configured to prevent part of the horizontal seismic energy from being transmitted to the transformer-like equipment, and the vertical seismic damping device is provided In order to consume part of the vertical seismic energy transfer to the transformer type equipment.
  • the present disclosure provides a seismic isolation method, which is implemented based on the foregoing seismic isolation device, and the method includes:
  • the horizontal seismic isolation device of the seismic isolation device prevents part of the horizontal seismic energy from being transmitted to the transformer equipment, and the horizontal limit mechanism of the seismic isolation device is used to limit the horizontal seismic isolation device.
  • Figure 1 is a plan view of the installation layer of the seismic isolation device in the embodiment of the present invention.
  • Figure 2 is an elevation view of transformer equipment with seismic isolation devices installed in an embodiment of the present invention
  • Figure 3 is an elevation view of the seismic isolation device in the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the seismic isolation device in the embodiment of the present invention.
  • Figure 5 is an elevation view of the spring in the embodiment of the present invention.
  • Figure 6 is a top view of the lead core, the upper sleeve and the first vertical limit mechanism in the embodiment of the present invention
  • Figure 7 is a top view of the lead core, the lower sleeve and the second vertical limit mechanism in the embodiment of the present invention.
  • Figure 8 is a top plan view of the shock isolation device in the embodiment of the present invention.
  • the seismic isolation device applied to transformer equipment was a two-dimensional seismic isolation device, which could only reduce the horizontal seismic response of transformer equipment under earthquake action.
  • the vertical seismic response is relatively small compared to the horizontal seismic response, and the two-dimensional seismic isolation device can meet engineering requirements.
  • the two-dimensional seismic isolation device does not have the effect of isolating the vertical earthquake, which causes the vertical earthquake to be transmitted to the upper transformer equipment. Therefore, the two-dimensional seismic isolation device has a poor seismic isolation effect, and transformer-type equipment may be damaged due to earthquakes.
  • an embodiment of the present invention provides a seismic isolation device for transformer equipment.
  • the seismic isolation device includes multiple three-dimensional seismic isolation devices 2 and multiple horizontal limits.
  • Location agency 3 As shown in FIGS. 1 and 2, a plurality of three-dimensional seismic isolation devices 2 are evenly arranged between the transformer-like equipment 1 and the foundation 4, and the horizontal limit mechanism 3 is arranged outside the corresponding three-dimensional seismic isolation device 2.
  • the corresponding horizontal limit mechanism 3 is installed in cooperation.
  • a plurality of three-dimensional seismic isolation devices 2 constitute a seismic isolation layer, which can reduce the transmission of seismic energy to the transformer equipment 1.
  • Transformer equipment 1 refers to substation coil equipment such as power transformers (including station transformers), series (parallel) reactors, voltage transformers (including capacitive voltage transformers), and current transformers.
  • the foundation 4 can be made into a strip foundation, the three-dimensional seismic isolation device 2 is installed on the strip foundation beam, and the gap between the strip foundations can be installed and installed by the three-dimensional seismic isolation device 2. Provide a certain space for maintenance, and the foundation 4 should have sufficient bearing capacity.
  • the three-dimensional seismic isolation device 2 includes a horizontal seismic isolation device 6 and a vertical seismic damping device 5.
  • the horizontal seismic isolation device 6 is set to prevent part of the horizontal seismic energy from being transmitted to the transformer-like equipment 1
  • the vertical shock absorbing device 5 is set to consume part of the vertical Transmission of seismic energy to transformer-like equipment 1.
  • the three-dimensional seismic isolation device 2 further includes an intermediate connecting plate 13 connecting the horizontal seismic isolation device 6 and the vertical seismic isolation device 5. Both the horizontal shock isolation device 6 and the vertical shock absorption device 5 are cylindrical structures.
  • the horizontal vibration isolation device 6 includes a support 14 and a lower flange plate 15.
  • the material of the support 14 may be rubber.
  • the top end of the support 14 is connected to the middle connecting plate 13, and the bottom end of the support 14 is connected to the foundation 4 through the lower flange plate 15.
  • the horizontal limit mechanism 3 includes a horizontal limit support 17 and a rubber pad 16.
  • the rubber pad 16 can be selected from the same rubber material as the rubber used in the support 14.
  • the bottom end of the horizontal limit support 17 is connected with the foundation 4, and a rubber pad 16 is installed on the top of the horizontal limit support 17.
  • the height between the horizontal centerline of the rubber pad 16 and the foundation 4 is the same as the height between the horizontal centerline of the intermediate connecting plate 13 and the foundation 4.
  • the performance parameters of the support 14 are determined according to the maximum horizontal displacement of the transformer equipment 1 under rare earthquakes and the vertical average compressive stress value under normal use when no earthquake occurs, and then the performance parameters of the support 14 are determined according to the requirements of the design parameters. Other performance requirements such as the horizontal stiffness of the support 14 and the equivalent viscous damping ratio.
  • the material of the support 14 is laminated rubber steel plate, that is, formed by overlapping rubber and steel plate.
  • the distance between the rubber pad 16 and the intermediate connecting plate 13 ranges from 150 mm to 200 mm to prevent the three-dimensional seismic isolation device 2 and the upper transformer equipment 1 from being excessively displaced under the action of an earthquake.
  • the thickness of the rubber pad 16 is greater than or equal to 200 mm, and the value range of the width of the rubber pad is 300 mm to 500 mm.
  • the vertical shock absorber 5 includes an upper sleeve 8, a lower sleeve 12, an elastic member 11, a lead core 10 and an upper flange plate 7.
  • the top of the upper sleeve 8 is connected with the upper flange plate 7, the bottom of the lower sleeve 12 is connected with the middle connecting plate 13, and the upper flange plate 7 is connected with the transformer type equipment 1.
  • the top of the lower sleeve 12 is inserted into the upper sleeve 8, and the outer wall of the lower sleeve 12 is close to the inner wall of the upper sleeve 8, and the upper sleeve 8 and the lower sleeve 12 can slide freely with each other.
  • the position of the lead core 10 is the space formed by the inside of the upper sleeve 8 and the inside of the lower sleeve 12.
  • the bottom end of the lead core 10 is located inside the lower sleeve 12, and the bottom end of the lead core 10 is connected to the bottom end of the lower sleeve 12, the top end of the lead core 10 extends to the inside of the upper sleeve 8, and the top end of the lead core 10 Connect with the top end of the upper sleeve 8.
  • the elastic member 11 is located in the space enclosed between the upper sleeve 8 and the lower sleeve 12. As shown in FIG. 4, the top end of the elastic member 11 of the upper sleeve 8 is connected with the top end of the upper sleeve 8, and the bottom end of the elastic member 11 is connected with the bottom end of the lower sleeve 12.
  • the elastic member 11 can be a spring, as shown in FIG. 5.
  • the lengths of the upper sleeve 8 and the lower sleeve 12 are both smaller than the length of the lead core 10, and the inner diameter of the upper sleeve 8 is larger than the inner diameter of the lower sleeve 12.
  • the inner wall of the upper sleeve 8 includes a first inner wall surface 19 and a second inner wall surface 20.
  • the first inner wall surface 19 is the inner wall surface close to the lead core 10, and the second inner wall surface 20 is far away from the lead core 10.
  • the outer wall of the upper sleeve 8 includes a first outer wall surface 21 and a second outer wall surface 22.
  • the first outer wall surface 21 is an outer wall surface close to the lead core 10, and the second outer wall surface 22 is an outer wall surface away from the lead core 10.
  • the inner wall of the lower sleeve 12 includes a third inner wall surface 23 and a fourth inner wall surface 24.
  • the third inner wall surface 23 is the inner wall surface close to the lead core 10, and the fourth inner wall surface 24 is far away from the lead core 10
  • the outer wall of the lower sleeve 12 includes a third outer wall surface 25 and a fourth outer wall surface 26.
  • the third outer wall surface 25 is an outer wall surface close to the lead core 10
  • the fourth outer wall surface 26 is an outer wall surface away from the lead core 10.
  • the vertical shock absorber 5 also includes a vertical limit mechanism.
  • the vertical limiting mechanism includes a first vertical limiting mechanism 9 and a second vertical limiting mechanism 18.
  • the first vertical limiting mechanism 9 and the second vertical limiting mechanism 18 are both circular.
  • the first vertical limit mechanism 9 is shown in the shaded part in FIG. 6 and is located on the first inner wall surface 19 of the upper sleeve 8.
  • the second vertical limit mechanism 18 is shown in the shaded part in FIG. The third outer wall surface 25 of the sleeve 12.
  • the outer parts of the first vertical limit mechanism 9 and the second vertical limit mechanism 18 are respectively wrapped with a rubber layer, which can play a buffering effect in the event of a collision, and the thickness of the rubber layer is greater than 10 mm.
  • the purity of lead in the lead core 10 is greater than 99.99%, the diameter of the lead core 10 is greater than 150 mm, and the distance between the lead core 10 and the first outer wall 21 of the upper sleeve 8 , And the distance between the lead core 10 and the third outer wall surface 25 of the lower sleeve 12 are greater than 150 mm, so as to ensure that the lead core 10 does not collide with the outer walls of the upper sleeve 8 and the lower sleeve 12 when compressed.
  • the bearing capacity of a single vertical shock-absorbing device 5 is greater than 20 kN (kN), so as to meet the requirements of supporting transformer-type equipment 1.
  • the vertical limit mechanism should ensure that the displacement range of the vertical shock absorber 5 in the vertical direction is -50mm ⁇ +50mm after the installation of the transformer equipment 1 is completed.
  • the vertical shock absorber 5 can be its own position as a balance point, and the freely movable displacement in the vertical direction is ⁇ 50 mm.
  • the upper sleeve 8 and the lower sleeve 12 should have a stiffness greater than 105N/m (N/m), so that the vertical shock absorber 5 will not undergo relatively horizontal deformation under the action of an earthquake. Relative sliding occurred between 12.
  • the free sliding of the upper sleeve 8 and the lower sleeve 12 drives the elastic member 11 and the lead core 10 to displace, thereby consuming vertical seismic energy.
  • the sliding end of the upper sleeve 8 collides with the second vertical limit mechanism 18, and the sliding end of the lower sleeve 12 collides with the first vertical limit mechanism 9 to prevent excessive The occurrence of displacement.
  • the material of the upper sleeve 8, the lower sleeve 12 and the vertical limit mechanism can be Q345 steel (Q represents the yield strength, and 345 represents the yield strength of 345 MPa).
  • the top view of the three-dimensional seismic isolation device 2 is shown in Figure 8.
  • the layout of the three-dimensional seismic isolation device 2 should be completed according to the mass distribution and plane force condition of the upper transformer equipment 1, and strive for uniform symmetry.
  • the rigidity center of the seismic isolation layer formed by the coordinated work coincides with the mass center of the transformer equipment 1 as much as possible.
  • the horizontal seismic isolation device 6 When an earthquake occurs, the horizontal seismic isolation device 6 first prevents part of the horizontal seismic energy from being transmitted to the upper transformer equipment 1, and also makes the superstructure present an overall displacement form under the action of the earthquake, avoiding relative movement between different components and increasing Seismic response of equipment. Under the action of a vertical earthquake, the upper sleeve 8 and the lower sleeve 12 of the vertical shock absorber 5 slide relatively vertically, thereby driving the elastic member 11 and the lead core 10 to shift and consume the vertical seismic energy, which reduces Horizontal seismic action consumes vertical seismic energy and achieves three-dimensional seismic isolation effect. When the horizontal displacement is too large, the horizontal limit mechanism 3 prevents the horizontal vibration isolation device 6 from continuing to deform and displace.
  • the vertical limit mechanism prevents the upper sleeve 8 and the lower sleeve 12 from continuing to occur Relative sliding protects the vertical shock absorber 5 and also prevents the equipment from displacement beyond the design allowable.
  • Different parts of the seismic isolation device work together under the action of an earthquake to achieve the purpose of reducing seismic force transmission and dissipating seismic energy, and improve the seismic performance of the transformer equipment 1.
  • an embodiment of the present invention also provides a seismic isolation method, which is implemented based on the foregoing seismic isolation device, and includes:
  • the horizontal seismic isolation device 6 of the aforementioned seismic isolation device prevents part of the horizontal seismic energy from being transmitted to the transformer equipment 1, and the horizontal limit mechanism 3 of the aforementioned seismic isolation device is used to limit the horizontal seismic isolation device 6 Bit
  • the vertical shock absorption device 5 of the aforementioned shock isolation device consumes part of the vertical seismic energy to be transmitted to the transformer-like equipment 1.
  • the step of transferring part of the vertical seismic energy consumed by the vertical shock absorption device 5 of the aforementioned seismic isolation device to the transformer equipment 1 includes:
  • the upper sleeve 8 and the lower sleeve 12 of the vertical shock absorber 5 slide vertically, which drives the elastic member 11 and the lead core 10 of the vertical shock absorber 5 to shift and consume the vertical To earthquake energy.
  • the seismic isolation device provided in this application is used for transformer-type equipment.
  • the seismic isolation device includes multiple three-dimensional seismic isolation devices and multiple horizontal limit mechanisms.
  • the multiple three-dimensional seismic isolation devices are evenly arranged between the transformer-type equipment and the foundation.
  • the horizontal limit mechanism is set on the outside of the corresponding three-dimensional seismic isolation device.
  • the three-dimensional seismic isolation device includes a horizontal seismic isolation device and a vertical seismic damping device.
  • the horizontal seismic isolation device is set to prevent part of the horizontal seismic energy from being transmitted to transformer equipment.
  • the damping device is set to consume part of the vertical seismic energy to be transmitted to transformer-like equipment.
  • the horizontal seismic isolation device in this application can prevent part of the horizontal seismic energy from being transmitted to transformer-like equipment, and at the same time make the superstructure present an overall displacement form under the action of an earthquake, avoiding relative motion between different components and increasing the seismic response of the equipment .
  • the vertical shock absorption device of the present application causes the upper sleeve and the lower sleeve to slide relatively vertically, thereby driving the elastic member and the lead core to move and consuming vertical seismic energy, which reduces the horizontal seismic effect. It also consumes vertical seismic energy.
  • the horizontal limit mechanism in this application prevents the horizontal shock isolation device from continuing to deform and displace.
  • the vertical limit mechanism prevents the upper sleeve and the lower sleeve from continuing to slide relative to each other to protect the vertical shock absorption
  • the device also avoids the displacement of the equipment exceeding the design allowable.
  • the seismic isolation device provided in the present application works collaboratively through different parts under the action of an earthquake to achieve the purpose of reducing the transmission of seismic force and dissipating seismic energy, and improving the seismic performance of transformer equipment.
  • the technical solution of the present application is convenient for construction, relatively low engineering cost, clear shock absorption and isolation mechanism, simple structure, easy production and processing, can effectively reduce the seismic response of transformer equipment, and protect transformer equipment from earthquakes
  • the safety and stability of the product have a broad engineering application space.

Abstract

本公开提供了一种隔震装置和隔震方法,该隔震装置用于变压器类设备,包括多个三维隔震装置和多个水平限位机构,多个三维隔震装置均匀设置于变压器类设备与地基基础之间,每个水平限位机构设置于对应的三维隔震装置外侧,每个三维隔震装置包括水平隔震装置和竖向减震装置,水平隔震装置设置为阻止部分水平地震能量向所述变压器类设备的传递,竖向减震装置设置为消耗部分竖向地震能量向所述变压器类设备的传递。

Description

隔震装置和隔震方法
本申请要求在2019年07月31日提交中国专利局、申请号为201910698779.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及电气设备防灾减灾技术领域,例如涉及一种隔震装置和隔震方法。
背景技术
中国位于亚欧地震带和环太平洋地震带之间,属于地震多发国家。近几年震害调研显示,电气设备尤其是陶瓷材料构成的电气设备在地震作用下具有较高的易损性。变压器类设备具有体积和重量大等特点,且套管多由陶瓷材料组成,在地震作用下承受较大的地震力,易造成变压器套管损坏或使设备产生较大的位移而丧失电气功能。
为减轻变压器类设备的震害,在以往研究中往往在变压器类设备与地基基础之间安装隔震装置,从而降低变压器类设备的地震响应。对只有竖向布置的变压器套管来说,以往应用于变压器类设备的隔震装置能满足工程需求,但这样的隔震装置不能用于设有斜向布置的变压器套管。
发明内容
一方面,本公开提供一种隔震装置,用于变压器类设备,所述隔震装置包括多个三维隔震装置和多个水平限位机构,其中:
所述多个三维隔震装置均匀设置于变压器类设备与地基基础之间,每个所述水平限位机构设置于对应的三维隔震装置外侧;
每个所述三维隔震装置包括水平隔震装置和竖向减震装置,所述水平隔震装置设置为阻止部分水平地震能量向所述变压器类设备的传递,所述竖向减震装置设置为消耗部分竖向地震能量向所述变压器类设备的传递。
另一方面,本公开提供一种隔震方法,所述隔震方法基于前述隔震装置实现,所述方法包括:
在地震发生的情况下,通过所述隔震装置的水平隔震装置阻止部分水平地震能量向变压器类设备的传递,利用所述隔震装置的水平限位机构对所述水平隔震装置进行限位;
通过所述隔震装置的竖向减震装置消耗部分竖向地震能量向变压器类设备的传递。
附图说明
图1是本发明实施例中隔震装置安装层平面布置图;
图2是本发明实施例中安装隔震装置的变压器类设备立面图;
图3是本发明实施例中隔震装置立面图;
图4是本发明实施例中隔震装置剖面图;
图5是本发明实施例中弹簧立面图;
图6是本发明实施例中铅芯、上套筒和第一竖向限位机构的俯视图;
图7是本发明实施例中铅芯、下套筒和第二竖向限位机构的俯视图;
图8是本发明实施例中隔震装置顶部俯视图。
图中,1、变压器类设备;2、三维隔震装置;3、水平限位机构;4、地基 基础;5、竖向减震装置;6、水平隔震装置;7、上翼缘板;8、上套筒;9、第一竖向限位机构;10、铅芯;11、弹性构件;12、下套筒;13、中间连接板;14、支座;15、下翼缘板;16、橡胶垫;17、水平限位支撑;18、第二竖向限位机构;19、第一内壁面;20、第二内壁面;21、第一外壁面;22、第二外壁面;23、第三内壁面;24、第四内壁面;25、第三外壁面;26、第四外壁面。
具体实施方式
下面结合附图对本申请作详细说明。
以往应用于变压器类设备的隔震装置为二维隔震装置,只能减小地震作用下变压器类设备的水平地震响应。例如,对只有竖向布置的变压器套管来说,其竖向地震响应相对水平向地震响应来说较小,二维隔震装置能够满足工程需求。然而,二维隔震装置对竖向地震作用起不到隔震效果,导致竖向地震作用向上部变压器类设备传递。因此,二维隔震装置的隔震效果差,且变压器类设备会因为地震作用而损坏。
为了克服上述相关技术中实用性及隔震效果差的不足,本发明实施例提供了一种隔震装置,用于变压器类设备,隔震装置包括多个三维隔震装置2和多个水平限位机构3。如图1和图2所示,多个三维隔震装置2均匀设置于变压器类设备1与地基基础4之间,水平限位机构3设置于对应的三维隔震装置2外侧。如图2所示,对分别安装在变压器类设备1的外围的三维隔震装置2,配合安装对应的水平限位机构3。
多个三维隔震装置2构成隔震层,可以减少地震能量向变压器类设备1传递。变压器类设备1是指电力变压器(含站用变压器)、串(并)联电抗器、电压互感器(包括电容式电压互感器)、电流互感器等变电站线圈类设备。考虑到三 维隔震装置2安装的方便性,地基基础4可做成条形基础,三维隔震装置2安装在条形基础梁上,条形基础间的空隙可为三维隔震装置2安装和检修提供一定的空间,地基基础4应具有足够的承载力。
三维隔震装置2包括水平隔震装置6和竖向减震装置5,水平隔震装置6设置为阻止部分水平地震能量向变压器类设备1的传递,竖向减震装置5设置为消耗部分竖向地震能量向变压器类设备1的传递。
如图3所示,三维隔震装置2还包括连接水平隔震装置6和竖向减震装置5的中间连接板13。水平隔震装置6和竖向减震装置5均为圆柱形结构。
如图4所示,水平隔震装置6包括支座14和下翼缘板15。支座14的材料可以为橡胶。
支座14的顶端和中间连接板13连接,支座14的底端通过下翼缘板15与地基基础4连接。
水平限位机构3包括水平限位支撑17和橡胶垫16。橡胶垫16可选用与支座14所采用的橡胶相同的橡胶材料。水平限位支撑17的底端与地基基础4连接,橡胶垫16安装于水平限位支撑17的顶部。橡胶垫16的水平中心线与地基基础4之间的高度与中间连接板13的水平中心线与地基基础4之间的高度一致。
通常,根据变压器类设备1在罕遇地震作用下的最大水平位移和未发生地震时正常使用状态下的竖向平均压应力值,确定支座14的性能参数,再按照设计参数的要求,确定支座14的水平刚度、等效粘滞阻尼比等其他性能要求。本发明实施例中支座14的材料采用叠层橡胶钢板,即由橡胶和钢板交叉叠加形成。
橡胶垫16与中间连接板13之间的距离的取值范围为150mm~200mm,以防三维隔震装置2及上部变压器类设备1在地震作用下发生过大的位移。橡胶垫16的厚度大于或等于200mm,橡胶垫的宽度的取值范围为300mm~500mm。
竖向减震装置5包括上套筒8、下套筒12、弹性构件11、铅芯10和上翼缘板7。
上套筒8的顶部与上翼缘板7连接,下套筒12的底部与中间连接板13连接,上翼缘板7与变压器类设备1连接。
下套筒12的顶部插入上套筒8,且下套筒12的外壁紧贴上套筒8的内壁,上套路8和下套筒12能相互自由滑动。
如图4所示,铅芯10所处的位置为上套筒8的内部和下套筒12的内部形成的空间。铅芯10的底端位于下套筒12的内部,且铅芯10的底端和下套筒12的底端连接,铅芯10的顶端延伸至上套筒8的内部,且铅芯10的顶端与上套筒8的顶端连接。
弹性构件11位于上套筒8和下套筒12之间围成的空隙内。如图4所示,上套筒8弹性构件11的顶端与上套筒8的顶端连接,弹性构件11的底端与下套筒12的底端连接。弹性构件11可采用弹簧,如图5所示。
上套筒8和下套筒12的长度均小于铅芯10的长度,上套筒8的内径大于下套筒12的内径。
如图6所示,上套筒8的内壁包括第一内壁面19和第二内壁面20,第一内壁面19为靠近铅芯10的内壁面,第二内壁面20为远离铅芯10的内壁面。上套筒8的外壁包括第一外壁面21和第二外壁面22,第一外壁面21为靠近铅芯10的外壁面,第二外壁面22为远离铅芯10的外壁面。
如图7所示,下套筒12的内壁包括第三内壁面23和第四内壁面24,第三内壁面23为靠近铅芯10的内壁面,第四内壁面24为远离铅芯10的内壁面。下套筒12的外壁包括第三外壁面25和第四外壁面26,第三外壁面25为靠近铅芯10的外壁面,第四外壁面26为远离铅芯10的外壁面。
竖向减震装置5还包括竖向限位机构。竖向限位机构包括第一竖向限位机构9和第二竖向限位机构18,第一竖向限位机构9和第二竖向限位机构18均为圆形。第一竖向限位机构9如图6中的阴影部分所示,位于上套筒8的第一内壁面19,第二竖向限位机构18如图7中的阴影部分所示,位于下套筒12的第三外壁面25。
第一竖向限位机构9和第二竖向限位机构18的外部分别包裹有橡胶层,发生碰撞时可起到缓冲作用,橡胶层的厚度大于10mm。
以“追随大变形、高阻尼力”为目标,铅芯10中铅的纯度大于99.99%,铅芯10的直径大于150mm,铅芯10与上套筒8的第一外壁面21之间的距离,以及铅芯10与下套筒12的第三外壁面25之间的距离均大于150mm,以保证铅芯10在压缩时不与上套筒8和下套筒12的外壁发生碰撞。
通过选择弹性构件11的减震弹簧参数和铅芯10的截面参数,使单个竖向减震装置5的承载力大于20kN(千牛),以满足支撑变压器类设备1的要求。
竖向限位机构应保证变压器类设备1在安装完成后,竖向减震装置5在竖直方向上移动的位移范围为-50mm~+50mm。换言之,在安装好变压器类设备1后,竖向减震装置5可以自身位置为平衡点,在竖向方位上自由移动的位移为±50mm。
上套筒8和下套筒12应具有大于105N/m(牛每米)的刚度,使竖向减震装置5在地震作用下不发生相对水平变形,仅在上套筒8和下套筒12间发生相对滑动。上套筒8和下套筒12的相互自由滑动带动弹性构件11和铅芯10发生位移,从而消耗竖向地震能量。在竖向地震力过大的情况下,上套筒8的滑动端与第二竖向限位机构18碰撞,下套筒12的滑动端与第一竖向限位机构9碰撞,防止过大位移的发生。上套筒8、下套筒12和竖向限位机构的材料可采用 Q345钢(Q表示屈服强度,345表示屈服强度为345兆帕)。
三维隔震装置2顶部俯视图如图8,三维隔震装置2的布置要根据上部变压器类设备1的质量分布和平面受力状况来完成,力求均匀对称,要使多个三维隔震装置2共同协调工作所形成的隔震层的刚度中心与变压器类设备1的质量中心尽量重合。
本发明实施例提供的隔震装置的工作原理如下:
地震发生时,水平隔震装置6首先阻止了部分水平地震能量向上部变压器类设备1的传递,同时也使上部结构在地震作用下呈现整体位移形式,避免不同构件之间产生相对运动而增大设备的地震响应。在竖向地震作用下,竖向减震装置5的上套筒8和下套筒12发生竖向相对滑动,从而带动弹性构件11和铅芯10发生位移而消耗竖向地震能量,既减小水平地震作用又消耗竖向地震能量,达到了三维隔震效果。当水平位移过大时,水平限位机构3阻止水平隔震装置6继续发生变形和位移,当竖向位移过大时,竖向限位机构阻止上套筒8和下套筒12间继续发生相对滑动,保护竖向减震装置5的同时也避免设备发生超过设计允许的位移。地震作用下该隔震装置的不同部位协同工作以达到减小地震力传递和耗散地震能量的目的,提高了变压器类设备1的抗震性能。
另一方面,本发明实施例还提供一种隔震方法,该方法基于前述隔震装置实现,包括:
在地震发生的情况下,通过前述隔震装置的水平隔震装置6阻止部分水平地震能量向变压器类设备1的传递,利用前述隔震装置的水平限位机构3对水平隔震装置6进行限位;
通过前述隔震装置的竖向减震装置5消耗部分竖向地震能量向变压器类设备1的传递。
通过前述隔震装置的竖向减震装置5消耗部分竖向地震能量向变压器类设备1的传递的步骤,包括:
在竖向地震作用下,通过竖向减震装置5的上套筒8和下套筒12发生竖向相对滑动,带动竖向减震装置5的弹性构件11和铅芯10发生位移而消耗竖向地震能量。
本申请提供的隔震装置,用于变压器类设备,隔震装置包括多个三维隔震装置和多个水平限位机构,多个三维隔震装置均匀设置于变压器类设备与地基基础之间,水平限位机构设置于对应的三维隔震装置外侧,三维隔震装置包括水平隔震装置和竖向减震装置,水平隔震装置设置为阻止部分水平地震能量向变压器类设备的传递,竖向减震装置设置为消耗部分竖向地震能量向变压器类设备的传递。本申请对竖向地震作用起到较好的隔震效果,避免地震作用向上部变压器类设备传递,隔震效果好,减小了对变压器类设备的损坏,且能够用于设有斜向布置的变压器套管。
本申请中的水平隔震装置可阻止部分水平地震能量向变压器类设备的传递,同时也使上部结构在地震作用下呈现整体位移形式,避免不同构件之间产生相对运动而增大设备的地震反应。
本申请的竖向减震装置在竖向地震作用下,上套筒和下套筒发生竖向相对滑动,从而带动弹性构件和铅芯发生位移而消耗竖向地震能量,既减小水平地震作用又消耗竖向地震能量。
本申请中的水平限位机构阻止水平隔震装置继续发生变形和位移,竖向位移过大时,竖向限位机构阻止上套筒和下套筒间继续发生相对滑动,保护竖向减震装置的同时也避免设备发生超过设计允许的位移。
本申请提供的隔震装置在地震作用下通过不同部位协同工作以达到减小地 震力传递和耗散地震能量的目的,提高变压器类设备的抗震性能。
本申请的技术方案在实现上施工方便,工程造价相对低廉,减震与隔震机理明确,结构造型简洁,易于生产加工,能够有效降低变压器类设备的地震反应,保护变压器类设备在地震作用下的安全性和稳定性,具有广阔的工程应用空间。

Claims (17)

  1. 一种隔震装置,用于变压器类设备,所述隔震装置包括多个三维隔震装置和多个水平限位机构,其中:
    所述多个三维隔震装置均匀设置于变压器类设备与地基基础之间,每个所述水平限位机构设置于对应的三维隔震装置外侧;
    每个所述三维隔震装置包括水平隔震装置和竖向减震装置,所述水平隔震装置设置为阻止部分水平地震能量向所述变压器类设备的传递,所述竖向减震装置设置为消耗部分竖向地震能量向所述变压器类设备的传递。
  2. 根据权利要求1所述的隔震装置,其中,所述三维隔震装置还包括连接所述水平隔震装置和所述竖向减震装置的中间连接板。
  3. 根据权利要求1或2所述的隔震装置,其中:
    所述水平隔震装置包括支座和下翼缘板;
    所述支座的顶端和中间连接板连接,所述支座的底端通过所述下翼缘板与所述地基基础连接;
    所述支座由橡胶和钢板交叉叠加构成。
  4. 根据权利要求3所述的隔震装置,其中:
    所述水平限位机构包括水平限位支撑和橡胶垫,所述水平限位支撑的底端与所述地基基础连接,所述橡胶垫安装于所述水平限位支撑的顶部。
  5. 根据权利要求4所述的隔震装置,其中,所述橡胶垫的水平中心线与地基基础之间的高度与中间连接板的水平中心线与地基基础之间的高度一致。
  6. 根据权利要求1或2所述的隔震装置,其中:
    所述竖向减震装置包括上套筒、下套筒、弹性构件、铅芯和上翼缘板;
    所述上套筒的顶部与所述上翼缘板连接,所述下套筒的底部与中间连接板连接,所述上翼缘板与所述变压器类设备连接;
    所述下套筒的顶部插入所述上套筒,且所述下套筒的外壁紧贴所述上套筒的内壁,所述上套筒与所述下套筒能相互自由滑动;
    所述铅芯的底端位于所述下套筒的内部,且所述铅芯的底端和所述下套筒的底端连接,所述铅芯的顶端延伸至所述上套筒的内部,且所述铅芯的顶端与所述上套筒的顶端连接;
    所述弹性构件位于所述上套筒和所述下套筒之间围成的空隙内,所述弹性构件的顶端与所述上套筒的顶端连接,所述弹性构件的底端与所述下套筒的底端连接。
  7. 根据权利要求6所述的隔震装置,其中,所述上套筒和所述下套筒的长度均小于所述铅芯的长度,所述上套筒的内径大于所述下套筒的内径。
  8. 根据权利要求6所述的隔震装置,其中:
    所述上套筒的内壁包括第一内壁面和第二内壁面,所述第一内壁面为靠近所述铅芯的内壁面,所述第二内壁面为远离所述铅芯的内壁面;
    所述上套筒的外壁包括第一外壁面和第二外壁面,所述第一外壁面为靠近所述铅芯的外壁面,所述第二外壁面为远离所述铅芯的外壁面;
    所述下套筒的内壁包括第三内壁面和第四内壁面,所述第三内壁面为靠近所述铅芯的内壁面,所述第四内壁面为远离所述铅芯的内壁面;
    所述下套筒的外壁包括第三外壁面和第四外壁面,所述第三外壁面为靠近所述铅芯的外壁面,所述第四外壁面为远离所述铅芯的外壁面。
  9. 根据权利要求8所述的隔震装置,其中:
    所述竖向减震装置还包括竖向限位机构,所述竖向限位机构包括第一竖向 限位机构和第二竖向限位机构;
    所述第一竖向限位机构位于所述上套筒的第一内壁面,所述第二竖向限位机构位于所述下套筒的第三外壁面。
  10. 根据权利要求6所述的隔震装置,其中,所述弹性构件为弹簧。
  11. 根据权利要求9所述的隔震装置,其中,所述第一竖向限位机构和所述第二竖向限位机构的外部分别包裹有橡胶层,所述橡胶层的厚度大于10mm。
  12. 根据权利要求8所述的隔震装置,其中:
    所述铅芯中铅的纯度大于99.99%,所述铅芯的直径大于150mm;
    所述铅芯与所述上套筒的第一外壁面之间的距离,以及所述铅芯和所述下套筒的第三外壁面之间的距离均大于150mm。
  13. 根据权利要求4所述的隔震装置,其中:
    所述橡胶垫与中间连接板之间的距离的取值范围为150mm~200mm;
    所述橡胶垫的厚度大于或等于200mm,所述橡胶垫的宽度的取值范围为300mm~500mm。
  14. 根据权利要求1或5所述的隔震装置,其中,所述竖向减震装置在竖直方向上移动的位移范围为-50mm~+50mm。
  15. 根据权利要求9所述的隔震装置,其中:
    所述水平隔震装置和所述竖向减震装置均为圆柱形结构,所述第一竖向限位机构和所述第二竖向限位机构均为圆形。
  16. 一种隔震方法,所述方法基于权利要求1-15中任一项所述的隔震装置实现,所述方法包括:
    在地震发生的情况下,通过所述隔震装置的水平隔震装置阻止部分水平地震能量向变压器类设备的传递,利用所述隔震装置的水平限位机构对所述水平 隔震装置进行限位;
    通过所述隔震装置的竖向减震装置消耗部分竖向地震能量向变压器类设备的传递。
  17. 根据权利要求16所述的方法,其中,所述通过所述隔震装置的竖向减震装置消耗部分竖向地震能量向变压器类设备的传递的步骤,包括:
    在竖向地震作用下,通过所述竖向减震装置的上套筒和下套筒发生竖向相对滑动,带动所述竖向减震装置的弹性构件和铅芯发生位移而消耗竖向地震能量。
PCT/CN2019/103721 2019-07-31 2019-08-30 隔震装置和隔震方法 WO2021017093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910698779.1A CN112303165B (zh) 2019-07-31 2019-07-31 一种用于变压器类设备的隔震装置和隔震方法
CN201910698779.1 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021017093A1 true WO2021017093A1 (zh) 2021-02-04

Family

ID=74228535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103721 WO2021017093A1 (zh) 2019-07-31 2019-08-30 隔震装置和隔震方法

Country Status (2)

Country Link
CN (1) CN112303165B (zh)
WO (1) WO2021017093A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306050A (zh) * 2022-07-11 2022-11-08 路安交科(北京)监测科技有限公司 一种刷型三维隔震器
CN115370030A (zh) * 2022-09-05 2022-11-22 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173955A (ja) * 1993-12-20 1995-07-11 Japan Atom Energy Res Inst 免震装置
JPH09144810A (ja) * 1995-11-27 1997-06-03 Kawasaki Heavy Ind Ltd 構造物用3次元免震装置
CN103195168A (zh) * 2013-03-26 2013-07-10 东南大学 夹层橡胶-高阻尼碟形弹簧复合三维隔震支座
CN105443652A (zh) * 2015-11-12 2016-03-30 中国电力科学研究院 一种带限位装置的减隔震系统及其安装布置方法
CN205153136U (zh) * 2015-11-11 2016-04-13 西安达盛隔震技术有限公司 一种竖向隔震支座
CN106895107A (zh) * 2017-03-15 2017-06-27 中国电力科学研究院 用于电气设备的隔震装置
CN207743596U (zh) * 2017-08-31 2018-08-17 河源输变电工程公司 一种箱式变电站用多级高效减震底座
CN108643672A (zh) * 2018-06-04 2018-10-12 华北理工大学 三维减隔震装置及安装施工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065140A (ja) * 1998-08-24 2000-03-03 Nitta Ind Corp 免震材
JP2000145884A (ja) * 1998-11-04 2000-05-26 Showa Electric Wire & Cable Co Ltd 積層ゴム支承体
CN201013820Y (zh) * 2007-03-22 2008-01-30 大连明日环境工程有限公司 橡胶减振器
CN201198886Y (zh) * 2008-05-06 2009-02-25 孟庆利 三维隔震装置
CN102653120B (zh) * 2011-03-02 2015-02-11 株式会社普利司通 隔震塞的制造方法、隔震塞以及隔震塞的制造装置
CN204570978U (zh) * 2014-12-10 2015-08-19 中国建材国际工程集团有限公司 碟簧铅芯橡胶三维减震支座
CN104405058A (zh) * 2014-12-10 2015-03-11 中国建材国际工程集团有限公司 碟簧铅芯橡胶三维减震支座
CN106869568A (zh) * 2017-04-06 2017-06-20 杨维国 一种三维隔震减振装置及其隔震减振方法
CN107084223B (zh) * 2017-05-25 2022-11-22 天津大学 一种变刚度液压三维隔震装置及方法
CN108331880A (zh) * 2018-04-26 2018-07-27 沭阳县官墩乡祥红木业制品厂 一种建筑设备橡胶隔振装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173955A (ja) * 1993-12-20 1995-07-11 Japan Atom Energy Res Inst 免震装置
JPH09144810A (ja) * 1995-11-27 1997-06-03 Kawasaki Heavy Ind Ltd 構造物用3次元免震装置
CN103195168A (zh) * 2013-03-26 2013-07-10 东南大学 夹层橡胶-高阻尼碟形弹簧复合三维隔震支座
CN205153136U (zh) * 2015-11-11 2016-04-13 西安达盛隔震技术有限公司 一种竖向隔震支座
CN105443652A (zh) * 2015-11-12 2016-03-30 中国电力科学研究院 一种带限位装置的减隔震系统及其安装布置方法
CN106895107A (zh) * 2017-03-15 2017-06-27 中国电力科学研究院 用于电气设备的隔震装置
CN207743596U (zh) * 2017-08-31 2018-08-17 河源输变电工程公司 一种箱式变电站用多级高效减震底座
CN108643672A (zh) * 2018-06-04 2018-10-12 华北理工大学 三维减隔震装置及安装施工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306050A (zh) * 2022-07-11 2022-11-08 路安交科(北京)监测科技有限公司 一种刷型三维隔震器
CN115370030A (zh) * 2022-09-05 2022-11-22 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座
CN115370030B (zh) * 2022-09-05 2024-03-29 安徽工业大学 地震预警后启动并移动平衡位置的防碰撞三维隔震支座

Also Published As

Publication number Publication date
CN112303165B (zh) 2023-09-08
CN112303165A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021017093A1 (zh) 隔震装置和隔震方法
CN103195168A (zh) 夹层橡胶-高阻尼碟形弹簧复合三维隔震支座
CN106936080A (zh) 一种具有减震功能的电气控制设备柜
CN109972667B (zh) 一种复合结构磁流变弹性体负刚度隔震器
CN107327535A (zh) 一种用于变电站电气设备的叠层式金属橡胶隔震支座
CN204590297U (zh) 一种多维粘弹性减隔震装置
CN112281643A (zh) 一种复合型隔震耗能支座
KR101127938B1 (ko) 면진 장치
CN107881906B (zh) 一种桥梁抗震钢支座
CN113389996A (zh) 一种便于升降和移动的支座
CN104652259A (zh) 一种阻尼弹簧盆式支座
CN108842920A (zh) 一种装配式隔震结构
CN105545057A (zh) 具有抗提离功能的摩擦滑移摆隔震支座
JP2016216906A (ja) 免震構造
CN104674975A (zh) 摩擦耗能式防屈曲支撑
CN104805922A (zh) 一种多维粘弹性减隔震装置
CN203247501U (zh) 一种消能型减隔震盆式支座
CN209779436U (zh) 一种桥梁减隔震支座
CN209907638U (zh) 一种用于地基不均匀沉降与地震耦合下的工程减震装置
CN107816134A (zh) 一种基于杆式阻尼器的永磁体磁悬浮隔震支座
CN114790785A (zh) 一种适用于建筑结构的大承载力高耗能三维隔震支座
KR20110072412A (ko) 면진 장치
CN214368209U (zh) 一种抗震自复位管道支座
CN205348921U (zh) 具有抗提离功能的摩擦滑移摆隔震支座
CN211231387U (zh) 一种高效的磁浮隔震器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939088

Country of ref document: EP

Kind code of ref document: A1