WO2021017064A1 - 一种转子相位可精确调控的电机系统 - Google Patents

一种转子相位可精确调控的电机系统 Download PDF

Info

Publication number
WO2021017064A1
WO2021017064A1 PCT/CN2019/102445 CN2019102445W WO2021017064A1 WO 2021017064 A1 WO2021017064 A1 WO 2021017064A1 CN 2019102445 W CN2019102445 W CN 2019102445W WO 2021017064 A1 WO2021017064 A1 WO 2021017064A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
bevel gear
steel belt
side wall
rotor phase
Prior art date
Application number
PCT/CN2019/102445
Other languages
English (en)
French (fr)
Inventor
朱志宇
魏海峰
张懿
智鹏飞
李可礼
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2021017064A1 publication Critical patent/WO2021017064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the invention relates to the technical field of motors, in particular to a motor system whose rotor phase can be precisely regulated.
  • the servo motor has the advantages of small size, light weight, large torque output, low inertia and good controllability, it has been widely used in automatic control systems and automatic detection systems.
  • the role of servo motors It converts the control voltage signal into mechanical movement, that is, converts the received voltage signal into a certain speed or angular displacement of the motor, so the central processing unit can be used to control the servo motor.
  • the output speed of the existing servo motor is usually controlled by the excitation signal, and it is applied to the industrial body after being decelerated by a reducer.
  • the reduction ratio of the reducer has a large jump, which makes the output speed of the motor jump larger, thus making this
  • the rotor position accuracy of the output mode is not high, which makes it difficult to apply to the occasions that require high precision of the output rotor position.
  • An object of the present invention is to solve at least the above-mentioned problems and provide at least the advantages described later.
  • the purpose of the present invention is to provide a motor system that can precisely control the phase of the rotor.
  • the output end of the motor is provided with a gearbox with a continuously adjustable variable ratio, so that the gearbox can continuously adjust the reduction ratio and improve the smoothness of the output speed of the motor. It can solve the technical problem of the motor output speed jump.
  • a motor system with precisely adjustable rotor phase including:
  • Bevel gear which is slidably arranged on the motor shaft in the axial direction;
  • a pair of planetary gears are symmetrically distributed on the outer circumference of the bevel gear. The position of the planetary gears is fixed. A pair of planetary gears are linked with the bevel gears through a steel belt. The outer side of the steel belt is provided with elasticity. A pressing mechanism, the elastic pressing mechanism deflects the steel belt inward a certain distance;
  • the inner gear plate is sleeved on the outer periphery of a pair of the planetary wheels, the inner peripheral wall of the inner gear plate is meshed with the planetary gears, and the servo motor is outputted outward through the inner gear plate.
  • the outer circumference of the motor shaft is at least symmetrically provided with a pair of guide protrusions along the axial direction, and the length of the guide protrusions is not less than the axial length of the bevel gear;
  • a pair of guide grooves are formed at least symmetrically along the axial direction on the inner side wall of the through hole, the bevel gear is sleeved and slid on the motor shaft, and the guide protrusion slides in the guide groove;
  • a limit block is protrudingly provided on the motor shaft at both axial ends of the guide protrusion.
  • a cavity is formed in the motor shaft in the axial direction, and at least one first through slot is formed in the bevel gear on the outer periphery of the cavity, and the axial length of the first through slot is different. It is smaller than the axial length of the bevel gear, and the first through groove and the guide protrusion are staggered.
  • the axial length of the cavity is not less than the axial length of the bevel gear
  • the first end of the cavity is provided with a telescopic drive mechanism
  • the telescopic end of the telescopic drive mechanism is provided with a linkage rod
  • the linkage rod is perpendicular to the axial direction of the motor shaft, and the linkage rod penetrates the first through slot from the telescopic end and is connected with the inner side wall of the bevel gear.
  • the axial direction of the planetary gear is parallel to the axial direction of the motor shaft, a bearing is arranged in the center of the planetary gear, and a fixed shaft is arranged in the bearing, and the fixed shaft is installed on the servo motor.
  • the shell On the shell.
  • the outer peripheries of both axial ends of the planetary gear are protrudingly provided with teeth, and the teeth are meshed with the inner peripheral wall of the inner gear plate, and the steel belt connects the bevel gear and the pair of The planetary gears are synchronously linked.
  • a first connecting rod is vertically connected to one of the fixed shafts
  • a second connecting rod is vertically arranged at the end of the first connecting rod, and the center between the first connecting rod and the pair of planetary wheels
  • the lines are parallel
  • the first connecting rod is connected to the center of the second connecting rod
  • the length of the second connecting rod is not less than the diameter of the planetary gear
  • the two ends of the second connecting rod are vertically arranged
  • the third link, the third link is elastically stretchable along the length direction of the second link
  • the third link extends in the direction of the inner gear wheel, and the inner end of the third link presses Immediately outside the steel belt.
  • a second through groove is formed through the second connecting rod, and the end of the third connecting rod penetrates the second through groove to extend toward the inner gear wheel, and the third connecting rod can Moving in the second through groove, a spring is sandwiched between the third connecting rod and the end of the second through groove, the spring is in a compressed state, and the ends of the two third connecting rods are telescopic Set of rod connection.
  • a mounting block protrudes from the inner end of the third connecting rod end, and a cylindrical head protrudes from the inner end of the mounting block.
  • the cylindrical head is rounded, and the center of the outer side wall of the steel belt is provided A chute, and the cylinder head is movably arranged in the chute.
  • the longitudinal section of the steel belt is set in a trapezoidal shape, wherein the plane of the outer side wall of the steel belt is parallel to the axial direction of the motor shaft, the inner side wall of the steel belt is inclined to one side, and the steel belt
  • the inclination angle of the inner side wall is consistent with the inclination angle of the outer surface of the bevel gear.
  • the inner side wall of the steel belt is attached and linked to the outer side wall of the bevel gear, and along with the axial movement of the bevel gear, The inner side wall of the steel belt fits and moves on the outer side wall of the bevel gear; the circumferential side wall of the planetary gear is arranged in an inclined structure corresponding to the inner side wall of the steel belt.
  • the present invention contains the following beneficial effects:
  • the present invention improves the smoothness of the output speed of the motor and avoids the jump of the output speed
  • the output speed can be controlled by the excitation control and the variable ratio control, with more control methods and higher control accuracy.
  • Figure 1 is a schematic diagram of the installation structure of the motor shaft and the bevel gear
  • Figure 2 is a schematic diagram of the connection structure between the telescopic drive mechanism and the bevel gear
  • Figure 3 is a front view of the bevel gear
  • Figure 4 is a schematic diagram of the installation structure of the bevel gear and the planetary gear
  • Figure 5 is a schematic diagram of the installation structure of the planetary gear and the internal gear plate
  • Figure 6 is a schematic view of the structure of the elastic pressing mechanism
  • Figure 7 is a schematic structural view of the inner end of the third connecting rod
  • Figure 8 is a schematic diagram of the structure of the steel belt.
  • the present invention provides a motor system with precisely adjustable rotor phase.
  • the bevel gear 200 is slidably arranged on the motor shaft 100 along the axial direction.
  • the diameter of the bevel gear 200 is from the side close to the motor to the outside. slowing shrieking.
  • the motor shaft 100 is provided with at least a pair of guide protrusions 130 symmetrically along the axial direction on the outer circumference of the motor shaft 100.
  • the length of the guide protrusions 130 is not less than the axial length of the bevel gear 200;
  • a through hole 210 is penetrated toward the center.
  • a pair of guide grooves 211 are formed on the inner side wall of the through hole 210 at least symmetrically along the axial direction.
  • the bevel gear 200 is sleeved and slid on the motor shaft 100, and the guide protrusion
  • the block 130 slides in the guide groove 211, so that the bevel gear 200 can move axially along the direction of the guide protrusion 130 while being restricted in the radial direction to rotate synchronously with the motor shaft 100.
  • Limiting blocks 140 are protrudingly provided on the motor shaft 100 at both axial ends of the guide protrusion 130 to provide an axial limit for the bevel gear 200.
  • a cavity 110 is opened in the axial direction inside the motor shaft 100, and at least a first pass is formed in the bevel gear 200 on the outer periphery of the cavity 110.
  • the groove 150, the first through groove 150 allows the cavity 110 to communicate with the outside, and the axial length of the cavity 110 and the first through groove 150 is not less than the axial length of the bevel gear 200, and is a bevel gear
  • the axial movement of 200 provides moving space, and the first through groove 150 and the guide protrusion 130 are staggered on the outer peripheral surface of the motor shaft 100.
  • the first end of the cavity 110 is provided with a telescopic drive mechanism 120, the screw rod 121 of the telescopic drive mechanism 120 is built-in on the axis center line of the cavity 110, and the telescopic end 122 of the telescopic drive mechanism 120 moves axially
  • a linkage rod 123 is provided on the telescopic end 122, the linkage rod 123 is perpendicular to the axial direction of the motor shaft 100, and the linkage rod 123 is drawn out from the telescopic end 122 and penetrates
  • the first through slot 150 is connected to the inner side wall of the bevel gear 200, so that the telescopic end 122 and the bevel gear 200 move axially synchronously, and the bevel gear 200 is driven to move on the motor shaft 100.
  • a pair of planet gears 300 are symmetrically distributed on the outer circumference of the bevel gear 200, and the position of the planet gears 300 is fixed.
  • the axis of the planet gears 300 is parallel to the axis of the motor shaft 100
  • the planet gears A bearing 330 is arranged in the center of the shaft of 300
  • a fixed shaft 320 is arranged in the bearing 330.
  • the fixed shaft 320 is installed on the housing of the servo motor, so that the installation position of the planetary gear 300 is fixed, and the planetary gear 300 can It rotates around the fixed shaft 320.
  • the plane of a pair of planetary gears 300 is perpendicular to the motor shaft 100.
  • a pair of planetary gears 300 are linked with the bevel gear 200 through a steel belt 600, that is, the steel belt 600 goes around the outer circumferences of the two planetary wheels 300 in turn.
  • the bevel gear 200 is linked to the steel belt 600 at the center of the two planetary gears 300, so that the three are linked together.
  • the servo motor drives the bevel gear 200 to rotate, which in turn drives the planetary gear 300 to rotate.
  • the diameter of the bevel gear 200 cut into the steel belt 600 can be changed, that is, the diameter of the drive wheel is changed.
  • the output speed of the planetary gear 300 can be changed.
  • the present invention is provided with an elastic pressure outside the steel belt 600
  • the elastic pressing mechanism deflects the steel belt 600 inward for a certain distance.
  • the elastic pressing mechanism pushes the steel belt 600 inward to push the steel belt 600 inward. 600 is tightened; when the cutting diameter of the bevel gear 200 becomes larger, the steel belt 600 compresses the elastic pressing mechanism outwards, so that the steel belt 600 moves to the outside, and the steel belt 600 is tightened.
  • the inner toothed disk 400 is sleeved on the outer periphery of the pair of planetary wheels 300, and the inner diameter of the inner toothed disk 400 is consistent with the distributed outer diameters of the two planetary wheels 300, so that the inner peripheral wall of the inner toothed disk 400 and the planetary wheels 300 When meshing, the inner gear plate 400 is finally driven to rotate, and the servo motor is output through the inner gear plate 400 to the outside.
  • teeth 310 are protrudingly provided on the outer periphery of both axial ends of the planetary gear 300, a steel belt 600 is wound on the planetary gear 300 inside the teeth 310, and the teeth 310 and the inner gear plate 400 The inner peripheral wall meshes, so that the steel belt 600 does not affect the meshing transmission of the planetary gear 300 and the inner gear plate 400.
  • the steel belt 600 synchronously links the bevel gear 200 and a pair of the planetary gears 300, the servo motor drives the bevel gear 200 to rotate, and then drives the planetary gear 300 to rotate through the steel belt 600, and then drives the inner gear plate 400 to rotate Output. Due to the deceleration effect of the gearbox, the output speed of the internal gear plate 400 is less than the speed of the servo motor. At the same time, the reduction ratio of the gearbox can be continuously adjusted by axially moving the bevel gear 200, that is, the final output speed of the servo motor is continuously adjusted to make It is used in occasions where high precision position control is required.
  • the specific structure of the elastic pressing mechanism is:
  • One of the fixed shafts 320 is vertically connected to a first connecting rod 520, the end of the first connecting rod 520 is vertically provided with a second connecting rod 510, and the first connecting rod 520 and a pair of the planetary gears 300
  • the line between the centers is parallel, the first connecting rod 520 is connected to the center of the second connecting rod 510, and the length of the second connecting rod 510 is not less than the diameter of the planetary gear 300, so that the elastic pressing mechanism It can be clamped outside the steel belt 600.
  • a third connecting rod 530 is vertically arranged at both ends of the second connecting rod 510, the third connecting rod 530 is parallel to the axial direction of the planetary gear 300, and the third connecting rod 530 extends toward the inner gear wheel 400. , So that the extended end of the third link 530 is located outside the steel belt 600 on both sides, and finally the inner end of the third link 530 is pressed against the outside of the steel belt 600, and the steel belt 600 is bent inwardly. distance.
  • the third connecting rod 530 is elastically stretchable along the length direction of the second connecting rod 510.
  • the second connecting rod 510 is provided with a second through slot 511, and the third connecting rod 530
  • the end passes through the second through slot 511 and extends in the direction of the inner gear plate 400, and the third link 530 can move in the second through slot 511.
  • the third link 530 and the second through slot 511 A spring 512 is sandwiched between the ends. The spring 512 is in a compressed state and keeps the inner end of the third connecting rod 530 pressed against the outer side of the steel belt 600.
  • the ends of the two third connecting rods 530 are connected by a telescopic sleeve rod. It includes a telescopic rod 541 and a sleeve 542.
  • the end of the third connecting rod 530 is a telescopic sleeve rod connecting rod, and the end is compressed on the outside of the steel belt 600, so that the two third connecting rods 530 remain parallel to avoid shaking The steel belt 600 cannot be pressed tightly.
  • a mounting block 531 protrudes from the inner end of the end of the third connecting rod 530, and a cylindrical head 532 protrudes from the inner end of the mounting block 531.
  • the cylindrical head 532 is rounded.
  • a chute 620 is provided in the center of the outer side wall of the steel belt 600. As the steel belt 600 rotates, the cylinder head 532 slides in the chute 620. After the cylinder head 532 is rounded, the cylinder head 532 is reduced to the sliding groove 620. Therefore, the end of the third connecting rod 530 can press the steel belt 600 inwardly without affecting the rotation of the steel belt 600.
  • the longitudinal section of the steel belt 600 of the present invention is set in a trapezoid shape, wherein the plane of the outer side wall of the steel belt 600 is parallel to the axial direction of the motor shaft 100, and the inner side wall of the steel belt 600 is inclined to one side to form an inclined surface structure 610 , And the inclination angle of the inner side wall of the steel belt 600 is consistent with the inclination angle of the outer surface of the bevel gear 200, so that the inner side wall of the steel belt 600 fits and linkages on the outer side wall of the bevel gear 200, and follow With the axial movement of the bevel gear 200, the inner side wall of the steel belt 600 is moved in contact with the outer side wall of the bevel gear 200, and finally the inner side wall of the steel belt 600 is always attached to the outer side wall of the bevel gear 200 Above; the circumferential side wall of the planetary gear 300 is arranged in an inclined structure corresponding to the inner side wall of the steel belt 600 to facilitate the transmission connection of the steel belt 600 and the planetary gear 300.
  • the output speed and position of the servo motor can be changed through the control strategy, or the output speed and position of the servo motor can be changed by changing the gearbox ratio by moving the bevel gear 200, by changing the gearbox ratio , Improve the smoothness of the motor output speed change, avoid the output speed jump; at the same time, improve the control accuracy of the motor output speed, the application range is wider; the output speed can be controlled by the excitation control with the variable ratio control, and the control methods are more abundant , And the control accuracy is higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Retarders (AREA)

Abstract

本发明公开一种转子相位可精确调控的电机系统,包括锥形齿轮,其沿轴向滑动设置在电机转轴上;一对行星轮,其对称分布在所述锥形齿轮的外周,所述行星轮位置固定,一对所述行星轮通过一钢带与所述锥形齿轮联动,所述钢带外侧设置有弹性压紧机构,所述弹性压紧机构将所述钢带向内侧偏转一定距离;内齿盘,其套设在一对所述行星轮的外周,所述内齿盘内周壁与所述行星轮啮合,伺服电机通过所述内齿盘向外输出。提高电机输出转速变动的顺滑性,解决电机输出转速跳变的技术问题。

Description

一种转子相位可精确调控的电机系统 技术领域
本发明涉及电机技术领域,具体涉及一种转子相位可精确调控的电机系统。
背景技术
由于伺服电机具有体积小、重量轻、大转矩输出、低惯量和良好的控制性等优点,因此已被广泛应用于自动控制系统和自动检测系统中,在自动控制系统中,伺服电机的作用是把控制电压信号转换为机械移动,也就是把接收到的电压信号转变成该电机的一定转速或角位移,因此可以用中央处理器实现对伺服电机的控制。
现有的伺服电机输出转速通常是由励磁信号控制,通过减速机减速后应用于工业机体中,但减速机的减速比跳变较大,使得电机输出转速的跳变较大,从而使得这种输出方式的转子位置精度不高,导致很难应用于对输出转子位置高精度要求的场合。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
本发明的目的是提供一种转子相位可精确调控的电机系统,在电机输出端设置有变比连续可调的减速箱,使得通过减速箱对减速比连续调整,提高电机输出转速变动的顺滑性,解决电机输出转速跳变的技术问题。
为了实现根据本发明的这些目的和其他优点,提供了一种转子相位可精确调控的电机系统,包括:
锥形齿轮,其沿轴向滑动设置在电机转轴上;
一对行星轮,其对称分布在所述锥形齿轮的外周,所述行星轮位置固定,一对所述行星轮通过一钢带与所述锥形齿轮联动,所述钢带外侧设置有弹性压紧机构,所述弹性压紧机构将所述钢带向内侧偏转一定距离;
内齿盘,其套设在一对所述行星轮的外周,所述内齿盘内周壁与所述行星轮 啮合,伺服电机通过所述内齿盘向外输出。
优选的,所述电机转轴外周沿轴向至少对称设置有一对导向凸块,所述导向凸块的长度不小于所述锥形齿轮的轴向长度;所述锥形齿轮轴向中心贯穿开设一通孔,所述通孔内侧壁上沿轴向至少对称开设有一对导向槽,所述锥形齿轮套设滑动在所述电机转轴上,且所述导向凸块滑动在所述导向槽中;所述导向凸块轴向两端的所述电机转轴上凸出设置有限位块。
优选的,所述电机转轴内部沿轴向开设一空腔,所述空腔外周的所述锥形齿轮中至少径向贯穿开设有一个第一通槽,所述第一通槽的轴向长度不小于所述锥形齿轮的轴向长度,且所述第一通槽与所述导向凸块错开设置。
优选的,所述空腔的轴向长度不小于所述锥形齿轮的轴向长度,所述空腔的第一端设置一伸缩驱动机构,所述伸缩驱动机构的伸缩端上设置有联动杆,所述联动杆与所述电机转轴的轴向垂直,所述联动杆从所述伸缩端上贯穿所述第一通槽后与所述锥形齿轮内侧壁连接。
优选的,所述行星轮的轴向与所述电机转轴轴向平行,所述行星轮的轴中心设置一轴承,所述轴承中设置有一固定轴,所述固定轴安装在所述伺服电机的外壳上。
优选的,所述行星轮的轴向两端外周凸出设置有齿牙,所述齿牙与所述内齿盘的内周壁啮合,所述钢带将所述锥形齿轮以及一对所述行星轮同步联动。
优选的,其中一个所述固定轴上垂直连接一第一连杆,所述第一连杆末端垂直设置一第二连杆,所述第一连杆与一对所述行星轮之间的中心连线平行,所述第一连杆连接在所述第二连杆的中心,所述第二连杆的长度不小于所述行星轮的直径,所述第二连杆的两端垂直设置一第三连杆,所述第三连杆沿所述第二连杆的长度方向可弹性伸缩,所述第三连杆向所述内齿盘方向延伸,所述第三连杆的内侧端压紧在所述钢带外侧。
优选的,所述第二连杆上贯穿开设有第二通槽,所述第三连杆的端头贯穿所述第二通槽向内齿盘方向延伸,且所述第三连杆可在所述第二通槽中移动,所述第三连杆与第二通槽端头之间夹设有弹簧,所述弹簧处于压缩状态,两个所述第三连杆的端尾之间通过伸缩套杆连接。
优选的,所述第三连杆端头内侧端凸出设置一安装块,所述安装块的内侧端凸出设置一圆柱头,所述圆柱头磨圆处理,所述钢带外侧壁中心开设一滑槽,所述圆柱头活动设置在所述滑槽中。
优选的,所述钢带的纵截面设置为梯形,其中所述钢带外侧壁平面与所述电机转轴的轴向平行,所述钢带的内侧壁向一侧倾斜设置,且所述钢带内侧壁的倾斜角度与所述锥形齿轮外表面的倾斜角度一致,所述钢带内侧壁贴合联动在所述锥形齿轮外侧壁上,且随着所述锥形齿轮的轴向移动,所述钢带内侧壁贴合移动在所述锥形齿轮外侧壁上;所述行星轮周向侧壁设置成与所述钢带内侧壁对应的倾斜式结构。
与现有技术相比,本发明包含的有益效果在于:
1、本发明提高了电机输出转速的顺滑性,避免输出转速跳变;
2、提高了对电机输出转速的控制精度,应用范围更广;
3、输出转速可以通过励磁控制配合变比控制,控制方式更丰富,且控制精度更高。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是电机转轴与锥形齿轮的安装结构示意图;
图2是伸缩驱动机构与锥形齿轮的连接结构示意图;
图3是锥形齿轮的前视图;
图4是锥形齿轮与行星轮的安装结构示意图;
图5是行星轮与内齿盘的安装结构示意图;
图6是弹性压紧机构的结构示意图;
图7是第三连杆内侧端的结构示意图;
图8是钢带的结构示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明文字能够据以实施。
如图1-8所示,本发明提供了一种转子相位可精确调控的电机系统,锥形齿轮200沿轴向滑动设置在电机转轴100上,锥形齿轮200的直径从靠近电机侧向外侧逐渐减小。具体的,所述电机转轴100外周沿轴向至少对称设置有一对导向凸块130,所述导向凸块130的长度不小于所述锥形齿轮200的轴向长度;所述锥形齿轮200轴向中心贯穿开设一通孔210,所述通孔210内侧壁上沿轴向至少对称开设有一对导向槽211,所述锥形齿轮200套设滑动在所述电机转轴100上,且所述导向凸块130滑动在所述导向槽211中,从而使得锥形齿轮200可以沿着导向凸块130方向轴向移动,同时在径向上受限而与电机转轴100同步转动。所述导向凸块130轴向两端的所述电机转轴100上凸出设置有限位块140,为锥形齿轮200提供轴向限位。
为了驱动锥形齿轮200的轴向移动,在所述电机转轴100内部沿轴向开设一空腔110,所述空腔110外周的所述锥形齿轮200中至少径向贯穿开设有一个第一通槽150,第一通槽150使得空腔110与外界连通,所述空腔110和所述第一通槽150的轴向长度不小于所述锥形齿轮200的轴向长度,为锥形齿轮200的轴向移动提供移动空间,且所述第一通槽150与所述导向凸块130在电机转轴100的外周面错开设置。
所述空腔110的第一端设置一伸缩驱动机构120,所述伸缩驱动机构120的丝杆121内置在空腔110的轴中心线上,所述伸缩驱动机构120的伸缩端122轴向移动在丝杆121上,伸缩端122上设置有联动杆123,所述联动杆123与所述电机转轴100的轴向垂直,所述联动杆123从所述伸缩端122上向外引出,并贯穿所述第一通槽150后与所述锥形齿轮200内侧壁连接,从而使得伸缩端122与锥形齿轮200同步轴向移动,驱动锥形齿轮200移动在电机转轴100上。
一对行星轮300对称分布在所述锥形齿轮200的外周,所述行星轮300位置固定,具体的,所述行星轮300的轴向与所述电机转轴100轴向平行,所述行星轮300的轴中心设置一轴承330,所述轴承330中设置有一固定轴320,所述固定轴320安装在所述伺服电机的外壳上,从而使得行星轮300的安装位置固定,且行星轮300可以绕着固定轴320转动。
一对行星轮300所处平面与电机转轴100垂直,一对所述行星轮300通过一钢带600与所述锥形齿轮200联动,也就是钢带600依次绕过两个行星轮300外周,锥形齿轮200联动联动在两个行星轮300中心位置的钢带600上,使得三者联动,伺服电机带动锥形齿轮200转动,进而带动行星轮300转动。
由于锥形齿轮200外周直径不同,当驱动锥形齿轮200轴向移动时,即可改变切入钢带600中锥形齿轮200的所处直径,也就是改变驱动轮的直径,在伺服电机转速不变的情况下,即可改变行星轮300的输出转速。
同时由于锥形齿轮200的切入直径不同,为了钢带600能够自行调整松紧度,使得钢带600始终与行星轮300和锥形齿轮200联动,本发明在所述钢带600外侧设置有弹性压紧机构,所述弹性压紧机构将所述钢带600向内侧偏转一定距离,当锥形齿轮200的切入直径变小时,则弹性压紧机构将所述钢带600向内侧推进,将钢带600绷紧;当锥形齿轮200的切入直径变大时,则钢带600向外压缩弹性压紧机构,使得所述钢带600向外侧移动,将钢带600绷紧。
内齿盘400套设在一对所述行星轮300的外周,内齿盘400的内径与两个行星轮300的分布外径一致,使得所述内齿盘400内周壁与所述行星轮300啮合,最终驱动内齿盘400转动,伺服电机通过所述内齿盘400向外输出。
具体的,所述行星轮300的轴向两端外周凸出设置有齿牙310,齿牙310内侧的行星轮300上绕设钢带600,所述齿牙310与所述内齿盘400的内周壁啮合,从而钢带600不影响行星轮300与内齿盘400的啮合传动。
所述钢带600将所述锥形齿轮200以及一对所述行星轮300同步联动,伺服电机驱动锥形齿轮200转动,进而通过钢带600带动行星轮300转动,进而带动内齿盘400转动输出。由于减速箱的减速作用,内齿盘400的输出转速小于伺服电机的转速,同时通过轴向移动锥形齿轮200可以连续调整减速箱的减速比,也就是连续调整伺服电机最终的输出转速,使其应用于位置高精度要求控制的场合。
弹性压紧机构的具体结构为:
其中一个所述固定轴320上垂直连接一第一连杆520,所述第一连杆520末端垂直设置一第二连杆510,所述第一连杆520与一对所述行星轮300之间的中心连线平行,所述第一连杆520连接在所述第二连杆510的中心,所述第二连杆 510的长度不小于所述行星轮300的直径,使得弹性压紧机构能够夹设在钢带600外侧。所述第二连杆510的两端垂直设置一第三连杆530,第三连杆530与行星轮300的轴向平行,且所述第三连杆530向所述内齿盘400方向延伸,使得第三连杆530的延伸端位于两侧钢带600的外侧,最终使得所述第三连杆530的内侧端压紧在所述钢带600外侧,将钢带600向内侧弯曲第一距离。
所述第三连杆530沿所述第二连杆510的长度方向可弹性伸缩,具体的,所述第二连杆510上贯穿开设有第二通槽511,所述第三连杆530的端头贯穿所述第二通槽511向内齿盘400方向延伸,且所述第三连杆530可在所述第二通槽511中移动,所述第三连杆530与第二通槽511端头之间夹设有弹簧512,所述弹簧512处于压缩状态,将第三连杆530的内侧端保持压紧在所述钢带600外侧。
同时为了防止第三连杆530的端尾晃动,造成无法将钢带600压紧,本发明中,在两个所述第三连杆530的端尾之间通过伸缩套杆连接,伸缩套杆包括伸缩杆541和套筒542,第三连杆530端尾为伸缩套杆连杆,端头压紧在所述钢带600外侧,从而使得两根第三连杆530保持平行状态,避免晃动而无法将钢带600压紧。
上述技术方案中,所述第三连杆530端头内侧端凸出设置一安装块531,所述安装块531的内侧端凸出设置一圆柱头532,所述圆柱头532磨圆处理,所述钢带600外侧壁中心开设一滑槽620,随着钢带600的转动,所述圆柱头532滑动在所述滑槽620中,圆柱头532磨圆处理后,减小了与滑槽620的摩擦阻力,从而使得第三连杆530端头既能将钢带600向内压紧,同时又不会影响钢带600的转动。
本发明的钢带600的纵截面设置为梯形,其中所述钢带600外侧壁平面与所述电机转轴100的轴向平行,所述钢带600的内侧壁向一侧倾斜设置成斜面结构610,且所述钢带600内侧壁的倾斜角度与所述锥形齿轮200外表面的倾斜角度一致,使得所述钢带600内侧壁贴合联动在所述锥形齿轮200外侧壁上,且随着所述锥形齿轮200的轴向移动,所述钢带600内侧壁贴合移动在所述锥形齿轮200外侧壁上,最终将钢带600内侧壁始终贴合在锥形齿轮200外侧壁上;所述行星轮300周向侧壁设置成与所述钢带600内侧壁对应的倾斜式结构,便于钢带600与行星轮300的传动连接。
工作过程中,可通过控制策略来改变伺服电机的输出转速和位置,也可以通过移动锥形齿轮200,改变减速箱的变比来改变伺服电机的输出转速和位置,通过改变减速箱的变比,提高了电机输出转速变动的顺滑性,避免输出转速跳变;同时,提高了对电机输出转速的控制精度,应用范围更广;输出转速可以通过励磁控制配合变比控制,控制方式更丰富,且控制精度更高。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易的实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

  1. 一种转子相位可精确调控的电机系统,其特征在于,包括:
    锥形齿轮,其沿轴向滑动设置在电机转轴上;
    一对行星轮,其对称分布在所述锥形齿轮的外周,所述行星轮位置固定,一对所述行星轮通过一钢带与所述锥形齿轮联动,所述钢带外侧设置有弹性压紧机构,所述弹性压紧机构将所述钢带向内侧偏转一定距离;
    内齿盘,其套设在一对所述行星轮的外周,所述内齿盘内周壁与所述行星轮啮合,伺服电机通过所述内齿盘向外输出。
  2. 如权利要求1所述的转子相位可精确调控的电机系统,其特征在于,所述电机转轴外周沿轴向至少对称设置有一对导向凸块,所述导向凸块的长度不小于所述锥形齿轮的轴向长度;所述锥形齿轮轴向中心贯穿开设一通孔,所述通孔内侧壁上沿轴向至少对称开设有一对导向槽,所述锥形齿轮套设滑动在所述电机转轴上,且所述导向凸块滑动在所述导向槽中;所述导向凸块轴向两端的所述电机转轴上凸出设置有限位块。
  3. 如权利要求2所述的转子相位可精确调控的电机系统,其特征在于,所述电机转轴内部沿轴向开设一空腔,所述空腔外周的所述锥形齿轮中至少径向贯穿开设有一个第一通槽,所述第一通槽的轴向长度不小于所述锥形齿轮的轴向长度,且所述第一通槽与所述导向凸块错开设置。
  4. 如权利要求3所述的转子相位可精确调控的电机系统,其特征在于,所述空腔的轴向长度不小于所述锥形齿轮的轴向长度,所述空腔的第一端设置一伸缩驱动机构,所述伸缩驱动机构的伸缩端上设置有联动杆,所述联动杆与所述电机转轴的轴向垂直,所述联动杆从所述伸缩端上贯穿所述第一通槽后与所述锥形齿轮内侧壁连接。
  5. 如权利要求4所述的转子相位可精确调控的电机系统,其特征在于,所述行星轮的轴向与所述电机转轴轴向平行,所述行星轮的轴中心设置一轴承,所述轴承中设置有一固定轴,所述固定轴安装在所述伺服电机的外壳上。
  6. 如权利要求5所述的转子相位可精确调控的电机系统,其特征在于,所述行星轮的轴向两端外周凸出设置有齿牙,所述齿牙与所述内齿盘的内周壁啮合,所述钢带将所述锥形齿轮以及一对所述行星轮同步联动。
  7. 如权利要求6所述的转子相位可精确调控的电机系统,其特征在于,其中一个所述固定轴上垂直连接一第一连杆,所述第一连杆末端垂直设置一第二连杆,所述第一连杆与一对所述行星轮之间的中心连线平行,所述第一连杆连接在所述第二连杆的中心,所述第二连杆的长度不小于所述行星轮的直径,所述第二连杆的两端垂直设置一第三连杆,所述第三连杆沿所述第二连杆的长度方向可弹性伸缩,所述第三连杆向所述内齿盘方向延伸,所述第三连杆的内侧端压紧在所述钢带外侧。
  8. 如权利要求7所述的转子相位可精确调控的电机系统,其特征在于,所述第二连杆上贯穿开设有第二通槽,所述第三连杆的端头贯穿所述第二通槽向内齿盘方向延伸,且所述第三连杆可在所述第二通槽中移动,所述第三连杆与第二通槽端头之间夹设有弹簧,所述弹簧处于压缩状态,两个所述第三连杆的端尾之间通过伸缩套杆连接。
  9. 如权利要求8所述的转子相位可精确调控的电机系统,其特征在于,所述第三连杆端头内侧端凸出设置一安装块,所述安装块的内侧端凸出设置一圆柱头,所述圆柱头磨圆处理,所述钢带外侧壁中心开设一滑槽,所述圆柱头活动设置在所述滑槽中。
  10. 如权利要求9所述的转子相位可精确调控的电机系统,其特征在于,所述钢带的纵截面设置为梯形,其中所述钢带外侧壁平面与所述电机转轴的轴向平行,所述钢带的内侧壁向一侧倾斜设置,且所述钢带内侧壁的倾斜角度与所述锥形齿轮外表面的倾斜角度一致,所述钢带内侧壁贴合联动在所述锥形齿轮外侧壁上,且随着所述锥形齿轮的轴向移动,所述钢带内侧壁贴合移动在所述锥形齿轮外侧壁上;所述行星轮周向侧壁设置成与所述钢带内侧壁对应的倾斜式结构。
PCT/CN2019/102445 2019-07-29 2019-08-26 一种转子相位可精确调控的电机系统 WO2021017064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910688745.4 2019-07-29
CN201910688745.4A CN110336414A (zh) 2019-07-29 2019-07-29 一种转子相位可精确调控的电机系统

Publications (1)

Publication Number Publication Date
WO2021017064A1 true WO2021017064A1 (zh) 2021-02-04

Family

ID=68147843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102445 WO2021017064A1 (zh) 2019-07-29 2019-08-26 一种转子相位可精确调控的电机系统

Country Status (2)

Country Link
CN (1) CN110336414A (zh)
WO (1) WO2021017064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111734798A (zh) * 2020-04-08 2020-10-02 江苏川钿明椿电气机械有限公司 一种高可靠性的减速电机铝线马达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740401A1 (fr) * 1995-04-27 1996-10-30 Valeo Systemes D'essuyage Motoréducteur, notamment pour un dispositif d'essuie-glace de véhicule automobile
WO2016137418A1 (en) * 2015-02-27 2016-09-01 Ahmet Degirmenci Rotating stator motor
CN109274209A (zh) * 2018-10-10 2019-01-25 浙江东方机电有限公司 一种具有转速自调节功能的电机
CN109873528A (zh) * 2019-03-01 2019-06-11 常州工程职业技术学院 一种具有状态自监测功能的电机系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617726B1 (en) * 2002-05-02 2003-09-09 Molon Motor & Coil Corporation Motor gear box
CN103711864A (zh) * 2012-10-08 2014-04-09 李志强 锥带式无级变速器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740401A1 (fr) * 1995-04-27 1996-10-30 Valeo Systemes D'essuyage Motoréducteur, notamment pour un dispositif d'essuie-glace de véhicule automobile
WO2016137418A1 (en) * 2015-02-27 2016-09-01 Ahmet Degirmenci Rotating stator motor
CN109274209A (zh) * 2018-10-10 2019-01-25 浙江东方机电有限公司 一种具有转速自调节功能的电机
CN109873528A (zh) * 2019-03-01 2019-06-11 常州工程职业技术学院 一种具有状态自监测功能的电机系统

Also Published As

Publication number Publication date
CN110336414A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN109873528B (zh) 一种具有状态自监测功能的电机系统
US2716357A (en) Continuously variable speed gears
CN108612810A (zh) 一种驱动装置及其减速机构
WO2021017064A1 (zh) 一种转子相位可精确调控的电机系统
CN1041454C (zh) 机械传动装置
CN209642489U (zh) 一种具有状态自监测功能的电机系统
CN208519124U (zh) 一种驱动装置及其减速机构
CN105784358A (zh) 一种扇形齿式万向联轴器试验台
CN207673846U (zh) 一种拉索式离合器控制执行机构
CN110439982A (zh) 一种连杆齿啮式无级变速器
JPH0348054A (ja) アクチュエータ
CN209430701U (zh) 一种同轴减速装置
CN111692306B (zh) 一种滚压式无级变速器
RU2550928C2 (ru) Планетарно лобовой вариатор
CN116104922B (zh) 一种驱动减速机构
CN111734798A (zh) 一种高可靠性的减速电机铝线马达
CN105485277B (zh) 圆锥式变径带轮无级变速器
CN109340331A (zh) 一种同轴减速装置
CN109451996A (zh) 一种草坪机的变速机构
JP2843931B2 (ja) 直線駆動装置
SU1452633A1 (ru) Рабоча клеть дискового стана
CN202867714U (zh) 焊接变位器齿轮减速机构的转动零回差自适应装置
CN111313605A (zh) 一种用于立体车库的减速电机铝线马达
CN208138351U (zh) 一种离心式离合器
JP2002257204A (ja) 旋回制御歯車式自動無段変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939619

Country of ref document: EP

Kind code of ref document: A1