WO2021017018A1 - 一种竞速无人机用内置天线 - Google Patents

一种竞速无人机用内置天线 Download PDF

Info

Publication number
WO2021017018A1
WO2021017018A1 PCT/CN2019/098987 CN2019098987W WO2021017018A1 WO 2021017018 A1 WO2021017018 A1 WO 2021017018A1 CN 2019098987 W CN2019098987 W CN 2019098987W WO 2021017018 A1 WO2021017018 A1 WO 2021017018A1
Authority
WO
WIPO (PCT)
Prior art keywords
support arm
antenna
built
main support
racing
Prior art date
Application number
PCT/CN2019/098987
Other languages
English (en)
French (fr)
Inventor
罗佳文
Original Assignee
苏州领速电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州领速电子科技有限公司 filed Critical 苏州领速电子科技有限公司
Publication of WO2021017018A1 publication Critical patent/WO2021017018A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/05UAVs specially adapted for particular uses or applications for sports or gaming, e.g. drone racing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the utility model relates to the technical field of drone antennas, in particular to a built-in antenna for racing drones.
  • UAV unmanned aircraft
  • UAV unmanned aircraft operated by radio remote control equipment and self-provided program control device, or it is completely or intermittently operated by onboard computer autonomously;
  • UAV racing is an emerging technology sport in recent years. Together with e-sports and robot fighting, it is also called the “three emerging intelligent technology sports.” Different from the plane track of traditional racing sports, drone racing competition has an additional dimension of vertical direction, so it is also called “3D racing.” The drone used in the drone racing competition pursues extreme speed.
  • the top speed can exceed 140 kilometers per hour, and the acceleration from 0 to 100 kilometers can be completed in 1.6 seconds. There is no GPS navigation and intelligent obstacle avoidance.
  • the thrust-to-weight ratio is as high as 8:1. It is manually controlled by the UAV racing pilot, so extremely high requirements are put forward for the pilot's adjustment and assembly, on-the-spot reaction and control skills.
  • the existing racing drones will set the antenna outside, but such a setting will increase the wind resistance of the fuselage during the competition, thereby affecting the performance of the competition; therefore, it does not satisfy the existing For this, we have proposed a built-in antenna for racing drones.
  • This utility model is to provide a built-in antenna for racing drones, so as to solve the problem that the racing drones proposed in the background art will install the antenna outside in order to ensure the reception of signals, but such a setting will increase the competition.
  • the wind resistance of the fuselage at the time which affects the performance of the event.
  • a built-in antenna for a racing drone including a drone wing panel, the drone wing panel includes a main support arm, and one end of the main support arm A fuselage assembly block is provided, the outer surface of the main support arm is provided with a wind resistance airflow slot, and there are multiple wind resistance airflow slots, the main support arm is provided with a telescopic storage slot, one end of the telescopic storage slot A wiring port is provided, the other end of the main support arm is provided with an auxiliary support arm, a movable shaft is provided above one end of the auxiliary support arm, and both sides of the movable shaft are provided with blades, and the lower part of the movable shaft A driving element is provided, an antenna card sleeve is provided under the driving element, a built-in inductive antenna is provided inside the antenna card sleeve, and a signal line is provided on one side of the built-in inductive antenna.
  • the main support arm and the auxiliary support arm are both arranged in a hollow structure, and the main support arm and the body assembly block are rotatably connected by a rotating shaft.
  • the main support arm and the auxiliary support arm are connected by a telescopic storage slot, and the auxiliary support arm and the movable shaft are connected by a card slot.
  • the movable shaft is connected with the blade in combination, and the movable shaft is fixedly connected with the driving element.
  • the antenna card sleeve is connected with the auxiliary support arm through a card slot, the antenna card sleeve is connected with the built-in inductive antenna in combination, and the built-in inductive antenna is electrically connected with the signal line.
  • This utility model installs the built-in sensing antenna in the drone wing panel, and then combines the wing panel with the drone.
  • the weight of each wing is the same, which can ensure the balance of the fuselage, and at the same time, the built-in
  • the modernized setting reduces the wind resistance of the UAV, and the signal sensing direction is also located under the wing, which reduces the signal receiving distance and facilitates the rapid transmission and reception of control signals;
  • the utility model can divert the airflow on the main support arm through the wind resistance airflow groove provided on the outer surface of the main support arm when the drone is flying to reduce the wind resistance.
  • the main support arm and the auxiliary support arm of the present invention can be adjusted and controlled through the telescopic storage slot, thereby controlling and adjusting the total length of the main support arm and the auxiliary support arm according to the situation, saving space and reducing the obstructed area of the drone.
  • Figure 1 is the overall front view of the utility model
  • Figure 2 is a schematic diagram of the overall internal structure of the utility model
  • Figure 3 is a schematic diagram of the built-in induction antenna structure of the utility model.
  • UAV wing panel In the figure: 1. UAV wing panel; 2. Main support arm; 3. Wind resistance air flow slot; 4. Sub-support arm; 5. Blade; 6. Movable shaft; 7. Antenna card sleeve; 8. Fuselage assembly Block; 9. Telescopic storage slot; 10. Built-in induction antenna; 11. Drive element; 12. Wiring port; 13. Signal line.
  • a built-in antenna for a racing drone including a drone wing plate 1, which includes a main support arm 2
  • the main supporting function is that one end of the main support arm 2 is provided with a fuselage assembly block 8, which can be connected to the fuselage of the drone.
  • the outer surface of the main support arm 2 is provided with a wind resistance airflow groove 3, which can be used during flight.
  • the main support arm 2 Divert the airflow on the main support arm 2 to reduce wind resistance, and there are multiple wind resistance airflow slots 3, and the main support arm 2 is provided with a telescopic storage slot 9 inside, which can be used to adjust the length of the drone wing 1 ,
  • One end of the retractable storage slot 9 is provided with a wiring port 12, which is convenient for line layout and series connection.
  • the other end of the main support arm 2 is provided with a secondary support arm 4, which can carry antennas and flight drive components.
  • a movable shaft 6 is provided on the upper side, blades 5 are provided on both sides of the movable shaft 6, a driving element 11 is provided under the movable shaft 6, and an antenna card sleeve 7 is provided under the driving element 11 to ensure that the antenna signal reception is not hindered
  • the antenna is fixed, the antenna card sleeve 7 is provided with a built-in inductive antenna 10 for receiving signal commands sent by the user, and a signal line 13 is provided on one side of the built-in inductive antenna 10.
  • main support arm 2 and the auxiliary support arm 4 are both set as a hollow structure. The first is to occupy the space for the layout of internal components and lines. The second is to reduce the mass of the entire UAV wing panel 1 as much as possible to ensure the flight speed.
  • the main support arm 2 and the fuselage assembly block 8 are rotatably connected by a rotating shaft to facilitate transmission.
  • main support arm 2 and the auxiliary support arm 4 are connected by a telescopic storage slot 9, and the total length of the main support arm 2 and the auxiliary support arm 4 can be controlled and adjusted according to the situation, which saves space and reduces the blocked area of the drone.
  • the arm 4 and the movable shaft 6 are connected by a card slot, which is convenient for combined installation.
  • the movable rotating shaft 6 is connected with the blade 5 in combination, and the movable rotating shaft 6 is fixedly connected with the driving element 11.
  • the antenna card sleeve 7 and the auxiliary support arm 4 are connected by a card slot to enhance stability and facilitate fixed installation.
  • the antenna card sleeve 7 is combined with the built-in induction antenna 10 to fix and protect the antenna.
  • the built-in induction antenna 10 is connected to The signal line 13 is electrically connected to facilitate signal transmission and control.
  • the four built-in sensing antennas 10 are located in the wing, which reduces the wind resistance of the drone, and the signal sensing port is also located under the wing, reducing the signal receiving distance, which is beneficial Fast transmission and reception of control signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Details Of Aerials (AREA)
  • Toys (AREA)

Abstract

本实用新型公开了一种竞速无人机用内置天线,涉及无人机天线技术领域,为解决现有技术中的竞速无人机为了保障信号的接受会将天线设置在外部,但这样的设置会增加比赛时机身所承受的风阻,从而影响赛事的发挥的问题。所述无人机翼板包括主支撑臂,所述主支撑臂的一端设置有机身组接块,所述主支撑臂的外表面设置有风阻气流槽,且风阻气流槽有多个,所述主支撑臂的内部设置有伸缩收纳槽,所述伸缩收纳槽的一端设置有接线端口,所述主支撑臂的另一端设置有副支撑臂,所述副支撑臂一端的上方设置有活动转轴,所述活动转轴的两侧均设置有叶片,所述活动转轴的下方设置有驱动元件,所述驱动元件的下方设置有天线卡套。

Description

一种竞速无人机用内置天线 技术领域
本实用新型涉及无人机天线技术领域,具体为一种竞速无人机用内置天线。
背景技术
无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作;与有人驾驶飞机相比,无人机往往更适合那些太“愚钝,肮脏或危险”的任务。无人机竞速运动是近年新兴的科技运动,与电竞、机器人格斗一起,并称“三大新兴智能科技运动”。与传统竞速运动的平面赛道不同,无人机竞速比赛多了垂直方向这条维度,因此也被称为“3D竞速”。无人机竞速比赛使用的无人机追求极速,最高时速可超过140公里,0到100公里的加速可在1.6秒内完成,没有GPS导航和智能避障,推重比高达8比1,完全由无人机竞速飞手手动操控,因此对飞手的调校拼装、临场反应和操控技巧提出了极高的要求。
但是,现有的竞速无人机为了保障信号的接受会将天线设置在外部,但这样的设置会增加比赛时机身所承受的风阻,从而影响赛事的发挥;因此,不满足现有的需求,对此我们提出了一种竞速无人机用内置天线。
实用新型内容
本实用新型的目的在于提供一种竞速无人机用内置天线,以解决上述背景技术中提出的竞速无人机为了保障信号的接受会将天线设置在外部,但这样的设置会增加比赛时机身所承受的风阻,从而影响赛事的发挥的问题。
为实现上述目的,本实用新型提供如下技术方案:一种竞速无人机用内置天线,包括无人机翼板,所述无人机翼板包括主支撑臂,所述主支撑臂的一端 设置有机身组接块,所述主支撑臂的外表面设置有风阻气流槽,且风阻气流槽有多个,所述主支撑臂的内部设置有伸缩收纳槽,所述伸缩收纳槽的一端设置有接线端口,所述主支撑臂的另一端设置有副支撑臂,所述副支撑臂一端的上方设置有活动转轴,所述活动转轴的两侧均设置有叶片,所述活动转轴的下方设置有驱动元件,所述驱动元件的下方设置有天线卡套,所述天线卡套的内部设置有内置感应天线,所述内置感应天线的一侧设置有信号线路。
优选的,所述主支撑臂和副支撑臂均设置为中空结构,所述主支撑臂与机身组接块通过转轴转动连接。
优选的,所述主支撑臂与副支撑臂通过伸缩收纳槽连接,所述副支撑臂与活动转轴通过卡槽连接。
优选的,所述活动转轴与叶片组合连接,所述活动转轴与驱动元件固定连接。
优选的,所述天线卡套与副支撑臂通过卡槽连接,所述天线卡套与内置感应天线组合连接,所述内置感应天线与信号线路电性连接。
与现有技术相比,本实用新型的有益效果是:
1、本实用新型通过将内置感应天线安装在无人机翼板之中,之后将翼板与无人机进行组合,每个机翼的重量均相同,这样可以保障机身的平衡,同时内置化的设置减少了无人机的风阻,而且信号感应方向也是位于机翼的下方,减少了信号的接收距离,有利于控制信号的快速传递接收;
2、本实用新型通过主支撑臂外表面设置的风阻气流槽,可以无人机在飞行时将主支撑臂上的气流进行导流,减少风阻,
3、本实用新型主支撑臂与副支撑臂可以通过伸缩收纳槽进行调节控制,从而根据情况控制调节主支撑臂与副支撑臂的总长度,节省占用空间,减少无人 机的受阻面积。
附图说明
图1为本实用新型的整体主视图;
图2为本实用新型的整体内部结构示意图;
图3为本实用新型的内置感应天线结构示意图。
图中:1、无人机翼板;2、主支撑臂;3、风阻气流槽;4、副支撑臂;5、叶片;6、活动转轴;7、天线卡套;8、机身组接块;9、伸缩收纳槽;10、内置感应天线;11、驱动元件;12、接线端口;13、信号线路。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。
请参阅图1-3,本实用新型提供的一种实施例:一种竞速无人机用内置天线,包括无人机翼板1,无人机翼板1包括主支撑臂2,起到主要的支撑作用,主支撑臂2的一端设置有机身组接块8,可以同无人机的机身进行连接使用,主支撑臂2的外表面设置有风阻气流槽3,在飞行时可以将主支撑臂2上的气流进行导流,减少风阻,且风阻气流槽3有多个,主支撑臂2的内部设置有伸缩收纳槽9,可以用来调节控制无人机翼板1的长度,可以伸缩收纳槽9的一端设置有接线端口12,便于线路的布置和串接,主支撑臂2的另一端设置有副支撑臂4,可以承载天线以及飞行驱动组件,副支撑臂4一端的上方设置有活动转轴6,活动转轴6的两侧均设置有叶片5,活动转轴6的下方设置有驱动元件11,驱动元件11的下方设置有天线卡套7,在保障不阻碍天线信号接收的前提下,对天线进行固定,天线卡套7的内部设置有内置感应天线10,用来接收使用者所发出 的信号指令,内置感应天线10的一侧设置有信号线路13。
进一步,主支撑臂2和副支撑臂4均设置为中空结构,第一是为了内部元件以及线路的布置的空间占用,第二尽可能的减轻整个无人机翼板1的质量,保障飞行速度,主支撑臂2与机身组接块8通过转轴转动连接,便于进行传动。
进一步,主支撑臂2与副支撑臂4通过伸缩收纳槽9连接,可以根据情况控制调节主支撑臂2与副支撑臂4的总长度,节省占用空间,减少无人机的受阻面积,副支撑臂4与活动转轴6通过卡槽连接,便于进行组合安装。
进一步,活动转轴6与叶片5组合连接,活动转轴6与驱动元件11固定连接。
进一步,天线卡套7与副支撑臂4通过卡槽连接,增强稳定性,同时便于进行固定安装,天线卡套7与内置感应天线10组合连接,对天线进行固定和保护,内置感应天线10与信号线路13电性连接,便于实现信号的传递和控制。
工作原理:使用时,将内置感应天线10安装在副支撑臂4最外侧底部的天线卡套7中,之后将信号线路13拉出并从主支撑臂2的开口端塞入伸缩收纳槽9中,再从伸缩收纳槽9另一端的接线端口12处拉出,天线布置好后,将副支撑臂4与主支撑臂2上的伸缩收纳槽9进行组合安装,然后将组装完整的无人机翼板1与无人机的机身进行安装,常规状态下为四个无人机翼板1,打开无人机内部的机盒,将四条信号线路13分别与信号接收控制组件进行连接,连接检测可用后,便可以进行实际操作使用,四个内置感应天线10位于机翼之中,减少了无人机的风阻,而且信号感应口也是位于机翼的下方,减少信号的接收距离,有利于控制信号的快速传递接收。
对于本领域技术人员而言,显然本实用新型不限于上述示范性实施例的细节,而且在不背离本实用新型的精神或基本特征的情况下,能够以其他的具体 形式实现本实用新型。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本实用新型的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本实用新型内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (5)

  1. 一种竞速无人机用内置天线,包括无人机翼板(1),其特征在于:所述无人机翼板(1)包括主支撑臂(2),所述主支撑臂(2)的一端设置有机身组接块(8),所述主支撑臂(2)的外表面设置有风阻气流槽(3),且风阻气流槽(3)有多个,所述主支撑臂(2)的内部设置有伸缩收纳槽(9),所述伸缩收纳槽(9)的一端设置有接线端口(12),所述主支撑臂(2)的另一端设置有副支撑臂(4),所述副支撑臂(4)一端的上方设置有活动转轴(6),所述活动转轴(6)的两侧均设置有叶片(5),所述活动转轴(6)的下方设置有驱动元件(11),所述驱动元件(11)的下方设置有天线卡套(7),所述天线卡套(7)的内部设置有内置感应天线(10),所述内置感应天线(10)的一侧设置有信号线路(13)。
  2. 根据权利要求1所述的一种竞速无人机用内置天线,其特征在于:所述主支撑臂(2)和副支撑臂(4)均设置为中空结构,所述主支撑臂(2)与机身组接块(8)通过转轴转动连接。
  3. 根据权利要求1所述的一种竞速无人机用内置天线,其特征在于:所述主支撑臂(2)与副支撑臂(4)通过伸缩收纳槽(9)连接,所述副支撑臂(4)与活动转轴(6)通过卡槽连接。
  4. 根据权利要求1所述的一种竞速无人机用内置天线,其特征在于:所述活动转轴(6)与叶片(5)组合连接,所述活动转轴(6)与驱动元件(11)固定连接。
  5. 根据权利要求1所述的一种竞速无人机用内置天线,其特征在于:所述天线卡套(7)与副支撑臂(4)通过卡槽连接,所述天线卡套(7)与内置感应天线(10)组合连接,所述内置感应天线(10)与信号线路(13)电性连接。
PCT/CN2019/098987 2019-07-30 2019-08-02 一种竞速无人机用内置天线 WO2021017018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921212396.0U CN210284586U (zh) 2019-07-30 2019-07-30 一种竞速无人机用内置天线
CN201921212396.0 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017018A1 true WO2021017018A1 (zh) 2021-02-04

Family

ID=69227022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098987 WO2021017018A1 (zh) 2019-07-30 2019-08-02 一种竞速无人机用内置天线

Country Status (3)

Country Link
CN (1) CN210284586U (zh)
DE (1) DE202019105804U1 (zh)
WO (1) WO2021017018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690564A (zh) * 2021-08-26 2021-11-23 昆山锐诚达电子有限公司 一种防干扰高增益稳定型无人机天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229120A (zh) * 2014-09-22 2014-12-24 北京航空航天大学 一种基于光热一体化复合能源的太阳能飞机机翼结构
CN205044947U (zh) * 2015-09-02 2016-02-24 惠州市东阳智能技术股份有限公司 飞行器
CN205931231U (zh) * 2016-05-13 2017-02-08 黄剑锋 一种多天线机身融合无人机
CN106785357A (zh) * 2015-10-23 2017-05-31 鹦鹉无人机股份有限公司 具有容纳天线的支撑的无人机
WO2017098172A1 (fr) * 2015-12-11 2017-06-15 Airborne Concept Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien
CN107856851A (zh) * 2017-11-30 2018-03-30 广州市华科尔科技股份有限公司 一种紧凑型可折叠无人机
CN207773434U (zh) * 2017-12-30 2018-08-28 汇星海科技(天津)有限公司 一种无人机折叠式机翼
CN207985227U (zh) * 2018-03-13 2018-10-19 清远市巨劲科技有限公司 一种摄像头便于拆卸的航拍无人机
CN209023099U (zh) * 2018-08-21 2019-06-25 邵阳圆宇创新电子科技有限公司 一种机翼可折叠的多轴无人机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229120A (zh) * 2014-09-22 2014-12-24 北京航空航天大学 一种基于光热一体化复合能源的太阳能飞机机翼结构
CN205044947U (zh) * 2015-09-02 2016-02-24 惠州市东阳智能技术股份有限公司 飞行器
CN106785357A (zh) * 2015-10-23 2017-05-31 鹦鹉无人机股份有限公司 具有容纳天线的支撑的无人机
WO2017098172A1 (fr) * 2015-12-11 2017-06-15 Airborne Concept Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien
CN205931231U (zh) * 2016-05-13 2017-02-08 黄剑锋 一种多天线机身融合无人机
CN107856851A (zh) * 2017-11-30 2018-03-30 广州市华科尔科技股份有限公司 一种紧凑型可折叠无人机
CN207773434U (zh) * 2017-12-30 2018-08-28 汇星海科技(天津)有限公司 一种无人机折叠式机翼
CN207985227U (zh) * 2018-03-13 2018-10-19 清远市巨劲科技有限公司 一种摄像头便于拆卸的航拍无人机
CN209023099U (zh) * 2018-08-21 2019-06-25 邵阳圆宇创新电子科技有限公司 一种机翼可折叠的多轴无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690564A (zh) * 2021-08-26 2021-11-23 昆山锐诚达电子有限公司 一种防干扰高增益稳定型无人机天线
CN113690564B (zh) * 2021-08-26 2024-01-26 昆山锐诚达电子有限公司 一种防干扰高增益稳定型无人机天线

Also Published As

Publication number Publication date
DE202019105804U1 (de) 2019-12-10
CN210284586U (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US10279904B2 (en) Fixed structure type vertical take-off and landing aircraft based on dual flying control systems and control method therefor
CN102806990B (zh) 便捷型测绘无人机
CN205916329U (zh) 一种共轴双桨无人飞行器
CN105691606B (zh) 一种高续航时间的无人机装置及控制方法
CN105116933A (zh) 一种无人飞行器及防止该无人飞行器脱离控制区域的方法
US20220380045A1 (en) Combination UAV
US12097949B2 (en) Methods and unmanned aerial vehicles for longer duration flights
US20170113796A1 (en) Aircraft with integrated single sensor
CN105775122A (zh) 一种倾转旋翼式飞行器
CN107512394A (zh) 一种尾坐式垂直起降无人机及飞行控制方法
CN107963209A (zh) 串列翼倾转旋翼无人机
CN105129097A (zh) 一种可垂直起降的无人机布局
WO2021017018A1 (zh) 一种竞速无人机用内置天线
CN105129088A (zh) 一种球形单轴舵导向智能飞行器
CN106828911A (zh) 串翼无人机
CN111152919B (zh) 一种可垂直起降的无人机的控制方法
CN103523197A (zh) 无人机机底相机仓
CN203486130U (zh) 无人机机底相机仓
CN208102362U (zh) 一种带有吊舱的飞行器
CN206954510U (zh) 一种可垂直起降的固定翼无人机
CN110861770A (zh) 一种无人自转旋翼机
TWI688520B (zh) 具降落機制之定翼機及其方法
CN205440866U (zh) 一种倾转旋翼式飞行器
CN211253005U (zh) 一种无人自转旋翼机
CN205837176U (zh) 一种飞行模态可转换的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940033

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19940033

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 21.09.2022

122 Ep: pct application non-entry in european phase

Ref document number: 19940033

Country of ref document: EP

Kind code of ref document: A1