WO2017098172A1 - Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien - Google Patents

Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien Download PDF

Info

Publication number
WO2017098172A1
WO2017098172A1 PCT/FR2016/053287 FR2016053287W WO2017098172A1 WO 2017098172 A1 WO2017098172 A1 WO 2017098172A1 FR 2016053287 W FR2016053287 W FR 2016053287W WO 2017098172 A1 WO2017098172 A1 WO 2017098172A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying device
unmanned flying
ads
transponder
onboard
Prior art date
Application number
PCT/FR2016/053287
Other languages
English (en)
Inventor
Arnaud LE MAOUT
Vincent CROZE
Eric DENÈLE
Original Assignee
Airborne Concept
Egis Avia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airborne Concept, Egis Avia filed Critical Airborne Concept
Priority to EP16819624.4A priority Critical patent/EP3386857A1/fr
Publication of WO2017098172A1 publication Critical patent/WO2017098172A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/40Undercarriages foldable or retractable
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft

Definitions

  • the invention relates to the field of onboard unmanned flying devices.
  • Unmanned flying devices are increasingly used in many fields. These drones are remotely piloted or programmed to perform a predetermined flight. UAVs are used, for example, for high-altitude shooting in cinemas, for monitoring sensitive sites, for surveying for agriculture or other purposes. Depending on the type of mission, drones integrate one or more sensors (camera, cameras, atmospheric survey device etc.) to collect the desired information during the flight. These UAVs can also carry material of reduced size and weight on target areas that are difficult to access using conventional means of transport.
  • UAVs make it possible to supplement the existing aerial surveillance means whose autonomy is limited and thus to ensure the permanent collection of information.
  • drones As the use of drones is increasing in many areas, a need to integrate these devices with air traffic control data has been identified. Indeed, the dimensions of a drone are such that a collision with a device such as an airliner or other could cause an air disaster. In addition, drones are increasingly accessible to the public, including people with no knowledge of aviation regulations. The use of drones by people who do not know the codes and obligations in the field of air traffic increases the risk of accidents and the difficulties of air traffic management. On the other hand, the identification of a drone owner requires a long and difficult investigation. There is no quick and easy way to link a drone with its owner.
  • the aim of the invention is to enable the simple and reliable integration of drones in air traffic management data.
  • the invention aims to provide a drone capable of communicating to the various actors of air traffic reliable positioning data and having a level of security adapted to the management of air traffic.
  • the invention also aims to make it possible to know the identity of the drone and its owner by a simple means. Obtaining the identity of the drone quickly and easily is particularly important for law enforcement, for example.
  • the invention proposes to correlate certain identification information from the air traffic management data to the identity data of the drone.
  • Such an identification system provides a consistent and unique identification for each drone both in flight and out of flight.
  • the invention provides an onboard unmanned flying device comprising:
  • a wing capable of allowing the flight and displacement of the unmanned flying device on board, the wing being mounted on the supporting structure,
  • a propulsion member capable of producing a driving force acting on the unmanned flying device on board
  • an electronic flight control module mounted on the support structure and able to control the propulsion member
  • a satellite positioning module able to generate position data
  • an ADS-B transponder connected to the positioning module and configured to transmit the position data of the onboard unmanned flying device via an antenna connected to the ADS-B transponder
  • a support leg connected to the supporting structure to support the bearing structure on the ground, wherein the antenna connected to the ADS-B transponder is mounted on the support leg.
  • an onboard unmanned flying device can send data relating to its position to any remote device requiring information on the presence of aircraft in a given airspace.
  • a ground station can thus manage the presence of onboard unmanned flying devices according to the invention and integrate these devices flying without a pilot on board its air traffic control.
  • an onboard unmanned device incorporating such an ADS-B transponder is compatible with the current air traffic management systems. For example, an aircraft such as an airliner equipped with a data receiver sent by an ADS-B transponder can be informed of the presence of a drone on its flight path and adapt its flight accordingly.
  • the positioning of the antenna connected to the ADS-B transponder on the support leg makes it possible to send the ADS-B transponder data without interfering with the electronic flight control module.
  • the distance separating the data transmission antenna from the ADS-B transponder and the electronic components of the electronic flight control module avoids the disturbances of the electronic flight control module by the antenna transmissions.
  • the positioning of the antenna on the support foot is all the more advantageous as the dimensions of the onboard unmanned flying device are reduced.
  • such an embedded unmanned flying device may have one or more of the following characteristics:
  • the onboard unmanned flying device further comprises a radio-tag configured to store in a memory and to provide identification data of the onboard unmanned flying device.
  • the radio-tag and the transponder ADS-B are arranged in a common box, the transponder ADS-B being connected to the radio-tag, the position data of the on-board unmanned flying device also comprising the identification data of the unmanned flying device on board.
  • the antenna connected to the transponder ADS-B is mounted on one end of the support leg opposite the carrier structure.
  • the support foot is mounted on the supporting structure rotatable between an unfolded position in which the support foot is developed under the supporting structure to support the supporting structure on the ground and a folded position in which the support foot is developed on a side of the carrier structure, the ADS-B transponder antenna comprising a receiving rod whose axis is arranged to be oriented vertically towards the ground when the foot is in the folded position and the unmanned flying device on board is in flight with a zero plate.
  • the mobility of the support leg between an unfolded position and a folded position allows the onboard unmanned flying device to carry an image capture apparatus such as a camera or a video camera under the supporting structure of the onboard unmanned flying device. and to capture images without the support foot remaining in the field of view of said image capture apparatus.
  • such a support foot optimally directs the antenna connected to the ADS-B transponder when the onboard unmanned flying device is in flight, thus ensuring better dissemination of ADS-B transponder data.
  • the satellite positioning module comprises a satellite receiving member mounted on the support leg, the satellite receiving member having a receiving axis configured to be oriented vertically towards the sky when the support leg is in the folded position and the unmanned flying device onboard is in flight with a zero attitude.
  • the supporting structure comprises: a central body, the electronic control module being mounted on the central body of the supporting structure,
  • the wing comprises a plurality of propellers, the end opposite the central body of each arm carrying a propeller of the respective wing; an actuator of the propulsion member being configured to rotate said helix about an axis of rotation perpendicular to a longitudinal direction of the arm,
  • the reception axis of the satellite reception unit of the satellite positioning module is located, in projection in a horizontal plane, out of a coverage area of the wing in projection in said horizontal plane when the support leg is in the folded position and that the unmanned flying device on board is in flight with a zero attitude.
  • the positioning of the satellite receiving member outside the coverage area of the wing allows better reception of the satellite positioning module. Indeed, such a configuration of the satellite receiving member prevents the propellers from disturbing the communication of the satellite positioning module with the satellites when the onboard unmanned flying device is in flight.
  • the ADS-B transponder is mounted on the support foot. By positioning the ADS-B transponder on the support leg, it is far enough away from the electronic flight control module not to disturb the various measuring devices of the onboard unmanned flying device.
  • the ADS-B transponders generally comprising a metal casing, the metal mass of the casing does not disturb elements such as the inertial unit or the compass of the onboard unmanned flying device.
  • the positioning of the ADS-B transponder on the support foot avoids the disturbances between the transponder ADS-B and the rotating wing, for example by avoiding disturbing the air flow around the transponder ADS-B and thus disturbing a possible static pressure intake associated with the transponder ADS-B.
  • the satellite positioning module and the ADS-B transponder are arranged in a common housing.
  • Such a positioning module may have positioning accuracy characteristics superior to the positioning characteristics of a satellite positioning module such as those generally incorporated into the onboard unmanned flying devices.
  • the supporting structure also bears:
  • a sensor configured to detect flight conditions of the onboard unmanned flying device and to generate flight data corresponding to the detected flight conditions
  • a radio communication module configured to transmit the flight data to a remote reception device
  • connection bus connecting the sensor to the radio communication module and the electronic flight control module.
  • the carrier structure comprises a plurality of sensors, said plurality of sensors including at least one of a gyroscope, a compass and an inertial unit.
  • the onboard unmanned flying device further comprises a first power supply system for powering the electronic flight module and a second power supply system for supplying the ADS-B transponder.
  • a separate power supply between the electronic flight control module and the ADS-B transponder provides an additional degree of security in case of failure of the onboard unmanned flying device.
  • the ADS-B transponder continues to communicate his position to any remote device interested. Such independence of the power supply means is even more interesting if the ADS-B transponder is connected to a dedicated satellite positioning module.
  • the radio communication module is configured to receive piloting instructions for controlling the propulsion member and the wing.
  • Some aspects of the invention are based on the idea of integrating position data of onboard unmanned flying devices with air traffic management data. Some aspects of the invention are based on the idea of allowing the sending of unmanned device position data compatible with the air traffic data of other types of aircraft. Certain aspects of the invention start from the idea of transmitting position data of an onboard pilotless flying device without loss of control quality of the onboard unmanned flying device. Some aspects of the invention are based on the idea of providing an on-board unmanned flying device incorporating a position data communication means having good position detection capabilities. Some aspects of the invention are based on the idea of providing an on-board unmanned flying device that does not disturb information gathering while having good communication with remote devices. Some aspects of the invention start from the idea of providing an onboard unmanned flying device identifiable in a secure manner. Some aspects of the invention depart from the idea of providing an identifiable unmanned flying device that is identifiable off-flight and in flight.
  • FIG. 1 is a top view of an unmanned flying device embedded in the unfolded position of the support legs.
  • FIG. 2 is a side view of the onboard unmanned flying device of FIG. 1.
  • FIG. 3 is a schematic representation of the various elements of the onboard unmanned flying device according to the invention.
  • FIG. 4 is a side view of an onboard unmanned flying device of FIG. 1 in unfolded position of the support stands illustrating the positioning of the ADS-B transponder and of the antenna connected to the ADS-B transponder.
  • FIG. 5 is a side view of the onboard pilotless flying device of Figure 4 in the folded position of the support legs.
  • FIG. 6 is a top view of the onboard unmanned flying device of FIG. 5.
  • “Lower”, “upper”, “above” and “below” to designate the relative position of one element relative to another, in the context of an on-board unmanned flying device with a zero trim or resting on a flat horizontal support such as flat ground or flat landing platform horizontal relative to the Earth's gravity.
  • a first element is described as inferior or below a second element if this first element is located between the ground and the second element when the onboard pilotless flying device is in flight with a zero attitude or that it rests on a horizontal support.
  • the second element is then qualified as superior or above the first element.
  • the terms “vertical” and “horizontal” refer to the Earth's gravity in the case of an unmanned flying device embarked on a horizontal ground or having in flight a zero attitude.
  • the invention is described below in the context of an unmanned flying device embarked rotary wing but could also be applied to an unmanned flying device onboard fixed wing.
  • FIGS. 1 and 2 illustrate an on-board unmanned flying device, hereinafter referred to as a drone 1.
  • a drone 1 comprises a carrying structure 2 comprising a main body 3 and a plurality of arms 4.
  • the main body 3 illustrated in the figures presents a circular cylindrical shape.
  • Each arm 4 develops radially from the main body 3, for example in the form of a straight bar connected to the main body 3.
  • the arms 4 are distributed circumferentially around the main body 3.
  • four arms 4 are illustrated in the figures and each arm 4 has with the arm 4 adjacent an angle of 90 °.
  • the UAV 1 comprises a rotary wing having a plurality of helices 5. More particularly, an end 6 of each arm 4 opposite the main body 3 carries an upper helix 5A and a lower helix 5B.
  • the upper propeller 5A and the lower propeller 5B are rotatably mounted about a vertical axis on either side of the end 6 of the corresponding arm 4.
  • Each propeller 5 is powered by a motor 7 for rotating said helix 5 about its axis of rotation.
  • the driving force provided by the motors 7 drives the propellers 5 in rotation about their respective axis of rotation allowing the flight and the displacement of the drone 1 in the air.
  • the drone 1 comprises support legs 8, of which there are two in FIG. 1.
  • Each support leg 8 has a rectilinear spreading leg 9 that extends from the main body 3
  • One end of the spacer leg 9 opposite the main body 3 has a straight support bar 10 extending perpendicularly to the spacer leg 9.
  • the support bars 10 of the two support legs 8 develop parallel to one another. the other.
  • the two support legs 8 are rotatably mounted on the main body 3.
  • each support leg 8 develops under the main body 3.
  • the support legs 8 In this unfolded position, the support legs 8 each have an inner face vis-à-vis the inner face of the other foot 8.
  • the unfolded position of the support legs 8 allows the drone 1 to rest on a stable support such as the ground or a landing platform.
  • the support legs 8 develop on the sides of the main body 3 in a plane parallel to the arms 4.
  • the support legs 8 are interposed in projection in a horizontal plane between two adjacent arms 4.
  • This folded position also called flight position, is particularly advantageous in the context of a drone 1 intended to carry a nacelle equipped with a shooting device such as a camera or a camera (not shown). Indeed, such a nacelle is generally installed under the main body 3 of the drone 1.
  • a nacelle is generally installed under the main body 3 of the drone 1.
  • the field of view of the camera is not obstructed by the presence of the support legs 8.
  • the drone 1 comprises a flight control module comprising a set of sensors for determining flight conditions of the drone 1.
  • sensors are integrated with the carrier structure 2 and include for example an inertial unit 11, a gyroscope 12, a compass 13, a satellite guide system 14, etc.
  • the inertial unit 11 and the gyroscope 12 are integrated in the main body 3 and the compass 13 and the satellite guide system 14 are integrated in an arm 4.
  • the satellite guidance system 14 comprises an antenna 15 mounted on an upper face of the main body 3.
  • the flight control module further comprises a control member 16 connected to all the elements of the flight control module via communication buses 17.
  • the control member 16 comprises, inter alia, an internal memory, a microcontroller, a telemetry module and a reception module (not shown).
  • the control member 16 is able to determine flight conditions according to the data measured by the sensors and then to communicate the flight conditions of the drone 1 to a remote operator, for example a pilot of the remote drone 1.
  • the control member is further adapted to actuate the motors 7 and direct the rotary wing 5 in response to flight instructions.
  • the control member 16 is also able to control the movement of the support legs 8 between the folded position and the unfolded position.
  • the flight instructions are stored in the internal memory of the control member 16, for example in the case of a drone 1 programmed to perform a predetermined flight.
  • the drone 1 is driven by a remote operator using, for example, a remote control 27.
  • the control member 16 receives via its receiving module flight instructions. sent from the remote control 27 and the microcontroller of the control member 16 processes these flight instructions to actuate the motors 7 and direct the wing 5.
  • this remote control is integrated with the remote member to which the control member communicates flight conditions.
  • Figures 3 to 6 illustrate the integration of an ADS-B transponder 18 in the onboard unmanned flying device.
  • Figure 3 schematically illustrates the components of the drone 1.
  • the drone 1 comprises an ADS-B transponder 18.
  • This ADS-B transponder 18 is connected to a communication antenna 19 intended to to transmit positioning information of the drone 1.
  • This information is for example intended for an air traffic management ground station or by a flying device having a suitable receiver such as an airliner (not shown).
  • the antenna 19 connected to the transponder ADS-B 18 is for example an omnidirectional antenna emitting at a power of 70W and at a frequency of 1090 MHz.
  • the ADS-B transponder 18 and the antenna 19 connected to the ADS-B transponder 18 are for example compatible with the EUROCADE ED 102A standard or the RTCA DO 260B standard.
  • the ADS-B transponder 18 is connected to the satellite guidance system 14 of the drone 1.
  • the ADS-B transponder 18 is powered by a supply 20 independent of the power supply of the other elements of the drone 1 (engine, wing actuators, flight control module, etc.). Thus, even in the event of a malfunction of the flight control module of the drone 1, the ADS-B transponder 18 can continue to emit a signal indicating the position of the drone 1 in the airspace. For example, in case of drift of the drone 1 following a loss of control due to an electrical problem, an electronic problem, a software failure, or any other malfunction, the ADS-B 18 transponder can continue to operate independently and broadcast. the positioning data of the drone 1. The various actors of air traffic such as air navigation services will have a position report of the drone 1 including if the drone is in distress. In addition, in the event of a drone 1 crash, the transponder ADS- B 18 remains able to emit and give position information to the persons responsible for his research.
  • the ADS-B transponder 18 is connected to a dedicated satellite positioning system 21 independent of the system. Satellite guide 14 of the drone 1.
  • the ADS-B transponder 18 comprises an altitude acquisition system 22.
  • Such an altitude acquisition system 22 comprises, for example, an integrated pressure tap at a housing in which is housed the transponder ADS-B 18.
  • the signals emitted by the antenna 19 connected to the ADS-B transponder 18 include information on the positioning integrity and the velocity of the drone 1.
  • the integrity for the positioning and the velocity of an aircraft is an important information for the aircraft. aeronautical surveillance systems. This information particularly informs radar monitoring applications on the precision that can be delivered by the ADS-B transponder 18.
  • the positioning integrity of the drone 1 is determined by a disk.
  • the drone 1 is pondered to be contained in this disc.
  • the radius of the disc is preferably a few meters.
  • the ADS-B transponder 18 obtains integrity information by measurement of atmospheric pressure (Baro Altitude) using the static pressure tap 22 or, preferably by the satellite positioning system 21.
  • the velocity of drone 1 is qualified in the horizontal plane and expressed with a horizontal speed error.
  • Ground-based monitoring systems use this integrity information to make the information presented to air traffic controllers more reliable. It is therefore important that the integrity of position and speed be as precise as possible in order to allow their exploitation by the actors of air traffic management.
  • the housing housing the transponder ADS-B 18 comprises a radio identification means such as a radio-tag 23, for example a chip RFID type electronics.
  • This radio identification means 23 comprises a unique identification associated with the drone 101.
  • the housing 24 housing the transponder ADS-B 18 comprises a non-volatile memory 29.
  • This non-volatile memory 29 is preferably removable.
  • this non-volatile memory 29 is a removable memory card, for example an SD type memory card.
  • This non-volatile memory 29 makes it possible to store data characterizing the flight of the drone 1, for example during the last 30 minutes or during the last hours. These data characterizing the flight of the drone 1 comprise for example the identification of the drone, its altitude, its position, and its speed, etc.
  • the identification of the drone 1 can be achieved in many ways.
  • the unique identification of the drone 1 includes an identification number issued by the International Civil Aviation Organization (ICAO). In one embodiment, this identification number is coded on 24 bits.
  • each identification number issued by ICAO is associated with a single drone 1.
  • each ICAO-issued identification number is associated with the manufacturer of the drone 1 for the first time. all the drones of said manufacturer and a unique number is associated with the corresponding ADS-B transponder 18.
  • the radio-tag is configured during the construction of the ADS-B transponder 18 so as to reliably and statically integrate the identification of the drone 1.
  • a flight plan identifier is stored in the radio identification means 23 before each flight.
  • This flight plan identifier is unique for each flight plan and is, for example, dynamically provided for the air traffic management actors in addition to the positioning information of the drone 1 via the antenna 19 connected to the ADS-B transponder. 18.
  • Such radio identification means 23 makes it possible to know the identity of the drone 1 by simply reading the radio-tag 23. This is particularly useful in the event of the loss or crash of the drone 1, the constructor identifier and the login recorded during the construction of the ADS-B transponder 18 and / or the flight plan identifier constituting a unique electronic registration of the drone 1.
  • FIGS 4 to 6 illustrate in more detail the integration of the transponder ADS-B and the antenna 19 connected to the transponder ADS-B.
  • the ADS-B transponder 18 is integrated in a housing 24 integrating the electronics of the ADS-B transponder as well as the satellite positioning system 21 (including its antenna for communication with the satellites), the radio-tag 23 or the static pressure plug 22.
  • the housing 24 is mounted on one of the support legs 8 of the drone 1 and, more particularly, on the leg 9 of one of the support legs 8.
  • the housing 24 and the Transponder electronics ADS-B 18 are sufficiently distant from the flight control module of the drone 1, including communication buses 17, to not disturb the operation of the flight control module.
  • the antenna 19 connected to the ADS-B transponder 18 is mounted on the same support leg 8 as the housing 24.
  • the antenna is mounted on the end of the leg 9 of the opposite support leg 8 to the main body 3 so as to be sufficiently far away from the flight control module of the drone 1 so as not to disturb the proper functioning of said flight control module.
  • this distance from the antenna 19 with the flight control module of the drone 1 prevents the emissions of the antenna 19 connected to the transponder ADS-B 18 does not disturb communications between the flight control module of the drone 1 and a remote device such as the remote control 27 for driving the drone 1.
  • the housing 24 is mounted on an outer face of the support leg 8.
  • the housing 24 is located on an upper face of the support leg 8.
  • the dedicated satellite positioning system 21 of the ADS-B transponder 18 is oriented towards the sky.
  • This orientation of the satellite positioning system 21 integrated in the housing 24 allows good communication with the satellites and therefore a better reliability of the positioning data transmitted by the ADS-B transponder.
  • the support leg 8 being interposed between two arms 4 of the drone 1
  • the housing 24 mounted on said support leg 8 is also interposed, in projection in a horizontal plane, between two arms 4 of the drone 1.
  • the positioning of the housing 24 on the support foot 8 makes it possible to shift the propellers 5 and the housing 24, in particular the mask 25 corresponding to the occupation surface of the propellers 5, shown in dashed line on the FIG. 6 is not located vertically on the housing 24 so that the propellers 5 do not disturb the communication between the satellites and the satellite positioning system 21 connected to the ADS-B transponder 18.
  • the distance between the housing 24, and therefore the static pressure tap, and the propellers 5 avoids that the data obtained by means of the static pressure measurement are disturbed by the rotation of the propellers 5.
  • the antenna 19 connected to the ADS-B transponder 18 is preferably located on an inner face of the support leg 8.
  • This antenna 19 is a rod-type antenna whose axis 26 develops perpendicularly to the leg 109 of the support leg 8 on which it is mounted.
  • the axis 26 of the antenna 19 connected to the ADS-B transponder 18 is oriented downwards, that is towards the ground .
  • This orientation of the antenna 19 is particularly advantageous for the transmission of data from the ADS-B transponder 18 to a remote device in the ground 28, such as for example an air traffic management station.
  • Positioning on the one hand of the housing 24 comprising the ADS-B transponder 18 on an outer face of the support leg 8 and, on the other hand, of the antenna 19 connected to the ADS-B transponder 18 on the inner face of the foot support 8 is particularly advantageous since in addition to allowing the transport of shooting equipment under the drone 1 whose field of vision is not obstructed by the support legs 8, the displacement of the support legs 8 to the position folded allows to orient both the housing 24 of the satellite positioning system 21 that the antenna 19 connected to the transponder ADS-B 18 optimally.
  • the drone according to the invention could be a fixed-wing drone in which the housing of the ADS-B transponder is mounted on an upper face of the fuselage or wings and the antenna connected to the ADS-B transponder is mounted on one side. lower fuselage or wings.
  • the ADS-B transponder and the antenna connected to the ADS-B transponder are mounted on the support foot of to be oriented respectively towards the sky and the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

L'invention concerne un dispositif volant sans pilote embarqué (1) comportant : - une structure porteuse, - une voilure (5) apte à permettre l'envol et le déplacement du dispositif volant sans pilote embarqué, la voilure étant montée sur la structure porteuse, - un organe de propulsion apte à produire une force motrice agissant sur le dispositif volant sans pilote embarqué, - un module électronique de commande de vol monté sur la structure porteuse et apte à commander l'organe de propulsion, - un module de positionnement par satellite apte à générer des données de position, - un transpondeur ADS-B (18) connecté au module de positionnement et configuré pour transmettre les données de position du dispositif volant sans pilote embarqué via une antenne (19) connectée au transpondeur ADS-B, et - un pied de support (8) lié à la structure porteuse pour supporter la structure porteuse au sol, dans lequel l'antenne connectée au transpondeur ADS-B est montée sur le pied de support.

Description

DISPOSITIF VOLANT SANS PILOTE EMBARQUÉ
COMPATIBLE AVEC LA GESTION DU TRAFIC AERIEN
Domaine technique
L'invention se rapporte au domaine des dispositifs volants sans pilote embarqué.
Arrière-plan technologique
Les appareils volants sans pilote embarqué, plus connus sous le nom de drones, sont de plus en plus utilisés dans de nombreux domaines. Ces drones sont pilotés à distance ou programmés pour effectuer un vol prédéterminé. Les drones sont utilisés par exemple pour la prise de vues en altitude dans le cinéma, pour la surveillance de sites sensibles, pour effectuer des relevés pour l'agriculture ou autre. Selon le type de mission, les drones intègrent un ou plusieurs capteurs (caméra, appareils photos, dispositif de relevés atmosphérique etc.) destinés à récolter les informations souhaitées durant le vol. Ces drones peuvent également acheminer du matériel de taille et poids réduit sur des zones cibles difficilement accessibles à l'aide de moyen de transports usuels.
L'intérêt du drone est de permettre des opérations de récolte d'information ou d'acheminement de matériel de manière plus simple et rapide que par voie terrestre ou par l'utilisation d'appareils avec pilotes. De plus, les drones permettent de compléter les moyens aériens de surveillance existants dont l'autonomie est limitée et ainsi d'assurer la permanence du recueil de l'information.
Résumé
L'utilisation des drones étant croissante dans de nombreux domaines, un besoin d'intégrer ces appareils aux données relatives au contrôle de la circulation aérienne a été identifié. En effet, les dimensions d'un drone sont telles qu'une collision avec un appareil tel qu'un avion de ligne ou autre pourrait engendrer une catastrophe aérienne. En outre, les drones sont de plus en plus accessibles au public, y compris à des personnes n'ayant aucune connaissance en matière de réglementation aérienne. L'utilisation des drones par des personnes ne maîtrisant pas les codes et obligations dans le domaine de la circulation aérienne augmente encore les risques d'accidents et les difficultés de gestion du trafic aérien. D'autre part, l'identification d'un propriétaire de drone nécessite une investigation longue et difficile. Il n'existe pas de moyen simple et rapide pour faire le lien entre un drone et son propriétaire.
L'invention vise à permettre l'intégration de manière simple et fiable des drones dans les données de gestion du trafic aérien. En particulier, l'invention vise à fournir un drone pouvant communiquer aux différents acteurs du trafic aérien des données de positionnement fiable et présentant un niveau de sécurité adapté à la gestion du trafic aérien. L'invention vise également à permettre de connaître l'identité du drone et de son propriétaire par un moyen simple. Obtenir l'identité du drone de manière simple et rapide est particulièrement important par exemple pour les forces de l'ordre. Enfin l'invention propose de corréler certaines informations d'identification issues des données de gestion du trafic aérien aux données d'identité du drone. Un tel système d'identification offre une identification cohérente et unique pour chaque drone à la fois en vol et hors vol.
Selon un mode de réalisation, l'invention fournit un dispositif volant sans pilote embarqué comportant :
- une structure porteuse,
une voilure apte à permettre l'envol et le déplacement du dispositif volant sans pilote embarqué, la voilure étant montée sur la structure porteuse,
- un organe de propulsion apte à produire une force motrice agissant sur le dispositif volant sans pilote embarqué,
un module électronique de commande de vol monté sur la structure porteuse et apte à commander l'organe de propulsion,
- un module de positionnement par satellite apte à générer des données de position,
un transpondeur ADS-B connecté au module de positionnement et configuré pour transmettre les données de position du dispositif volant sans pilote embarqué via une antenne connectée au transpondeur ADS-B, et
- un pied de support lié à la structure porteuse pour supporter la structure porteuse au sol, dans lequel l'antenne connectée au transpondeur ADS-B est montée sur le pied de support.
Ainsi, un tel dispositif volant sans pilote embarqué peut envoyer des données relatives à sa position à tout dispositif distant nécessitant des informations sur la présence d'appareil dans un espace aérien donné. En particulier, une station au sol peut ainsi gérer la présence de dispositifs volant sans pilote embarqué selon l'invention et intégrer ces dispositifs volant sans pilote embarqué à sa gestion du contrôle aérien. Qui plus est, un dispositif sans pilote embarqué intégrant un tel transpondeur ADS-B est compatible avec les systèmes de gestion du trafic aérien actuel. Par exemple, un appareil tel qu'un avion de ligne équipé d'un récepteur de données envoyée par un transpondeur ADS-B peut être informé de la présence d'un drone sur sa trajectoire de vol et adapter son vol en conséquence.
En outre, le positionnement de l'antenne connectée au transpondeur ADS- B sur le pied de support permet l'envoi des données du transpondeur ADS-B sans interférer avec le module électronique de commande de vol. En effet, la distance séparant l'antenne de transmission de données du transpondeur ADS-B et les composants électroniques du module électronique de commande de vol évite les perturbations du module électronique de commande de vol par les émissions de l'antenne. Le positionnement de l'antenne sur le pied de support est d'autant plus avantageux que les dimensions du dispositif volant sans pilote embarqué sont réduites.
Selon d'autres modes de réalisation avantageux, un tel dispositif volant sans pilote embarqué peut présenter une ou plusieurs des caractéristiques suivantes :
- le dispositif volant sans pilote embarqué comporte en outre une radio- étiquette configurée pour stocker dans une mémoire et fournir une donnée d'identification du dispositif volant sans pilote embarqué.
- la radio-étiquette et le transpondeur ADS-B sont agencés dans un boîtier commun, le transpondeur ADS-B étant connecté à la radio- étiquette, les données de position du dispositif volant sans pilote embarqué comportant en outre la donnée d'identification du dispositif volant sans pilote embarqué. l'antenne connectée au transpondeur ADS-B est montée sur une extrémité du pied de support opposée à la structure porteuse.
le pied de support est monté sur la structure porteuse mobile en rotation entre une position dépliée dans laquelle le pied de support se développe sous la structure porteuse pour supporter la structure porteuse au sol et une position repliée dans laquelle le pied de support se développe sur un côté de la structure porteuse, l'antenne du transpondeur ADS-B comportant une tige de réception dont l'axe est agencé pour être orienté verticalement vers le sol lorsque le pied est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle. La mobilité du pied de support entre une position dépliée et une position repliée permet au dispositif volant sans pilote embarqué de transporter un appareil de capture d'image tel qu'un appareil photo ou une caméra vidéo sous la structure porteuse du dispositif volant sans pilote embarqué et de réaliser des captures d'images sans que le pied de support ne demeure dans le champ de vision dudit appareil de capture d'image. En outre, un tel pied de support permet d'orienter de manière optimale l'antenne connectée au transpondeur ADS-B lorsque le dispositif volant sans pilote embarqué est en vol, assurant ainsi une meilleure diffusion des données du transpondeur ADS-B.
le module de positionnement par satellite comporte un organe de réception satellite montée sur le pied de support, l'organe de réception satellite présentant un axe de réception configuré pour être orienté verticalement vers le ciel lorsque le pied de support est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle. De manière analogue à l'antenne connectée au transpondeur ADS-B, un tel positionnement de l'organe de réception du module de positionnement permet une communication optimale entre le module de positionnement et les satellites permettant de déterminer la position du dispositif volant sans pilote embarqué dans l'espace aérien. la structure porteuse comporte : o un corps central, le module électronique de commande étant monté sur le corps central de la structure porteuse,
o une pluralité de bras montés sur le corps central, les bras étant répartis circonférentieilement autour du corps central, et dans lequel la voilure comporte une pluralité d'hélices, l'extrémité opposée au corps central de chaque bras portant une hélice de la voilure respective, un actionneur de l'organe de propulsion étant configuré pour faire tourner ladite hélice autour d'un axe de rotation perpendiculaire à une direction longitudinale du bras,
l'axe de réception de l'organe de réception satellite du module de positionnement par satellite est situé, en projection dans un plan horizontal, hors d'une zone de couverture de la voilure en projection dans ledit plan horizontal lorsque le pied de support est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle. Le positionnement de l'organe de réception satellite hors de la zone de couverture de la voilure permet une meilleure réception du module de positionnement par satellite. En effet, une telle configuration de l'organe de réception satellite évite que les hélices ne perturbent la communication du module de positionnement satellite avec les satellites lorsque le dispositif volant sans pilote embarqué est en vol.
le transpondeur ADS-B est monté sur le pied de support. En positionnant le transpondeur ADS-B sur le pied de support, celui-ci est suffisamment éloigné du module électronique de commande de vol pour ne pas perturber pas les différents appareils de mesure du dispositif volant sans pilote embarqué. En particulier, les transpondeurs ADS-B comportant généralement un boîtier métallique, la masse métallique du boîtier ne perturbe pas des éléments tels que la centrale inertielle ou le compas du dispositif volant sans pilote embarqué. En outre, dans le cas d'un dispositif volant sans pilote embarqué à voilure tournante, le positionnement du transpondeur ADS-B sur le pied de support évite les perturbations entre le transpondeur ADS-B et la voilure tournante, par exemple en évitant de perturber le flux d'air autour du transpondeur ADS-B et donc de perturber une éventuelle prise de pression statique associée au transpondeur ADS-B.
le module de positionnement par satellite et le transpondeur ADS-B sont agencés dans un boîtier commun. Un tel module de positionnement peut présenter des caractéristiques de précision de positionnement supérieures aux caractéristiques de positionnement d'un module de positionnement par satellite tel que ceux généralement intégrés aux dispositifs volant sans pilote embarqué.
la structure porteuse porte en outre :
o un capteur configuré pour détecter des conditions de vol du dispositif volant sans pilote embarqué et générer des données de vol correspondant aux conditions de vol détectées,
o un module de communication radio configuré pour transmettre les données de vol à un dispositif de réception distant,
o un bus de connexion reliant le capteur au module de communication radio et au module électronique de commande de vol.
la structure porteuse comporte une pluralité de capteur, ladite pluralité de capteur comportant au moins l'un parmi un gyroscope, un compas et une centrale inertielle.
Le dispositif volant sans pilote embarqué comporte en outre un premier système d'alimentation pour alimenter le module électronique de vol et un second système d'alimentation pour alimenter le transpondeur ADS- B. Une alimentation séparée entre le module électronique de commande de vol et le transpondeur ADS-B offre un degré de sécurité supplémentaire en cas de défaillance du dispositif volant sans pilote embarqué. Ainsi, en cas de perte de contrôle du dispositif volant sans pilote embarqué, de perte de communication entre le dispositif volant sans pilote embarqué et un organe de commande distant ou encore de défaillance générale du dispositif volant sans pilote embarqué, le transpondeur ADS-B continue de communiquer sa position à tout dispositif distant intéressé. Une telle indépendance des moyens d'alimentation est d'autant plus intéressante si le transpondeur ADS-B est connecté à un module de positionnement par satellite dédié.
le module de communication radio est configuré pour recevoir des instructions de pilotage destinée à commander l'organe de propulsion et la voilure.
Certains aspects de l'invention partent de l'idée d'intégrer les données de position de dispositifs volant sans pilote embarqué aux données de gestion de trafic aérien. Certains aspects de l'invention partent de l'idée de permettre l'envoi de données de position de dispositif sans pilote embarqué compatibles avec les données de trafic aérien d'autres types d'appareils. Certains aspects de l'invention partent de l'idée de transmettre des données de position d'un dispositif volant sans pilote embarqué sans perte de la qualité de contrôle du dispositif volant sans pilote embarqué. Certains aspects de l'invention partent de l'idée de fournir un dispositif volant sans pilote embarqué intégrant un moyen de communication de données de position présentant de bonnes capacités de détection de position. Certains aspects de l'invention partent de l'idée de fournir un dispositif volant sans pilote embarqué ne perturbant pas la récolte d'information tout en présentant une bonne communication avec des dispositifs distants. Certains aspects de l'invention partent de l'idée de fournir un dispositif volant sans pilote embarqué identifiable de manière sécurisée. Certains aspects de l'invention partent de l'idée de fournir un dispositif volant sans pilote embarqué identifiable hors vol et en vol.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La figure 1 est une vue de dessus d'un dispositif volant sans pilote embarqué en position dépliée des pieds de supports.
- La figure 2 est une vue de profil du dispositif volant sans pilote embarqué de la figure 1. - La figure 3 est une représentation schématique des différents éléments du dispositif volant sans pilote embarqué selon l'invention.
- La figure 4 est une vue de profil d'un dispositif volant sans pilote embarqué de la figure 1 en position dépliée des pieds de supports illustrant le positionnement du transpondeur ADS-B et de l'antenne connectée au transpondeur ADS-B.
- La figure 5 est une vue de profil du dispositif volant sans pilote embarqué de la figure 4 en position repliée des pieds de support.
- La figure 6 est une vue de dessus du dispositif volant sans pilote embarqué de la figure 5.
Description détaillée de modes de réalisation
« inférieur », « supérieur », « au-dessus » et « en-dessous » pour désigner la position relative d'un élément par rapport à un autre, dans le cadre d'un dispositif volant sans pilote embarqué présentant une assiette nulle ou reposant sur un support plat horizontal tel qu'un sol plat ou une plateforme d'atterrissage plane horizontale par rapport à la gravité terrestre. Ainsi, un premier élément est qualifié d'inférieur ou au-dessous d'un second élément si ce premier élément est situé entre le sol et le second élément lorsque le dispositif volant sans pilote embarqué est en vol avec une assiette nulle ou qu'il repose sur un support horizontal. Inversement, le second élément est alors qualifié de supérieur ou au-dessus du premier élément. De même, les termes « vertical » et « horizontal » s'entendent par rapport à la gravité terrestre dans le cas d'un dispositif volant sans pilote embarqué reposant sur un sol horizontal ou présentant en vol une assiette nulle.
L'invention est décrite ci-après dans le cadre d'un dispositif volant sans pilote embarqué à voilure tournante mais pourrait aussi s'appliquer à un dispositif volant sans pilote embarqué à voilure fixe.
Les figures 1 et 2 illustrent un dispositif volant sans pilote embarqué, ci- après dénommé drone 1. Un drone 1 comporte une structure porteuse 2 comportant un corps principal 3 et une pluralité de bras 4. Le corps principal 3 illustré sur les figures présente une forme cylindrique circulaire. Chaque bras 4 se développe radialement depuis le corps principal 3, par exemple sous la forme d'une barre rectiligne liée au corps principal 3. Les bras 4 sont répartis circonférentiellement autour du corps principal 3. Ainsi, quatre bras 4 sont illustrés sur les figures et chaque bras 4 présente avec le bras 4 adjacent un angle de 90°.
Le drone 1 comporte une voilure tournante présentant une pluralité d'hélices 5. Plus particulièrement une extrémité 6 de chaque bras 4 opposée au corps principal 3 porte une hélice supérieure 5A et une hélice inférieure 5B. L'hélice supérieure 5A et l'hélice inférieure 5B sont montées en rotation autour d'un axe vertical de part et d'autre de l'extrémité 6 du bras 4 correspondant. Chaque hélice 5 est alimentée par un moteur 7 permettant d'entraîner en rotation ladite hélice 5 autour de son axe de rotation. La force motrice fournie par les moteurs 7 entraîne les hélices 5 en rotation autour de leur axe de rotation respectif permettant l'envol et le déplacement du drone 1 dans les airs.
Par ailleurs, afin d'assurer sa stabilité au sol, le drone 1 comporte des pieds de support 8 au nombre de deux sur la figure 1. Chaque pied de support 8 comporte une jambe d'écartement 9 rectiligne se développant depuis le corps principal 3. Une extrémité de la jambe d'écartement 9 opposée au corps principal 3 comporte une barre de support 10 rectiligne se développant perpendiculairement à la jambe d'écartement 9. Les barres de support 10 des deux pieds de support 8 se développent parallèlement l'une de l'autre. En outre, les deux pieds de support 8 sont montés mobiles en rotation sur le corps principal 3.
Dans une position dépliée des pieds de support 8 (illustrée sur les figures
1 , 2 et 4), chaque pied de support 8 se développe sous le corps principal 3. Dans cette position dépliée, les pieds de support 8 présentent chacun une face interne en vis-à-vis de la face interne de l'autre pied de support 8. La position dépliée des pieds de support 8 permet au drone 1 de reposer sur un support stable tel que le sol ou une plateforme d'atterrissage.
Dans une position repliée des pieds de support 8, illustrée sur les figures 5 et 6, les pieds de support 8 se développent sur les côtés du corps principal 3 dans un plan parallèle aux bras 4. En outre, les pieds de supports 8 sont intercalés en projection dans un plan horizontal entre deux bras 4 adjacents. Cette position repliée, aussi appelée position de vol, est particulièrement avantageuse dans le cadre d'un drone 1 destiné à transporter une nacelle équipée d'un dispositif de prise de vue tel qu'un appareil photo ou une caméra (non illustrés). En effet, une telle nacelle est généralement installée sous le corps principal 3 du drone 1. Ainsi, En position repliée des pieds, le champ de vision du dispositif de prise de vue n'est pas obstrué par la présence des pieds de support 8.
Afin d'assurer son pilotage, le drone 1 comporte un module de commande de vol comportant un ensemble de capteurs permettant de déterminer des conditions de vols du drone 1. De tels capteurs sont intégrés à la structure porteuse 2 et comportent par exemple une centrale inertielle 11 , un gyroscope 12, un compas 13, un système de guidage par satellite 14, etc. Sur les figures 1 et 2, la centrale inertielle 11 et le gyroscope 12 sont intégrés au corps principal 3 et le compas 13 et le système de guidage par satellite 14 sont intégrés à un bras 4. En outre, le système de guidage par satellite 14 comporte une antenne 15 montée sur une face supérieure du corps principal 3. Le module de commande de vol comporte en outre un organe de commande 16 connecté à l'ensemble des éléments du module de commande de vol via des bus de communication 17. L'organe de commande 16 comporte, entre autre, une mémoire interne, un microcontrôleur, un module de télémétrie et un module de réception (non illustrés). L'organe de commande 16 est apte à déterminer des conditions de vols en fonction des données mesurées par les capteurs puis à communiquer les conditions de vol du drone 1 à un opérateur distant, par exemple un pilote du drone 1 distant. L'organe de commande est en outre apte à actionner les moteurs 7 et diriger la voilure tournante 5 en réponse à des instructions de vol. L'organe de commande de 16 est également apte à piloter le déplacement des pieds de support 8 entre la position repliée et la position dépliée.
Dans un mode de réalisation, les instructions de vol sont stockées dans la mémoire interne de l'organe de commande 16, par exemple dans le cas d'un drone 1 programmé pour effectuer un vol prédéterminé. Dans un autre mode de réalisation, le drone 1 est piloté par un opérateur distant à l'aide, par exemple, d'une télécommande 27. Dans ce cas, l'organe de commande 16 reçoit via son module de réception des instructions de vol envoyées depuis la télécommande 27 et le microcontrôleur de l'organe de commande 16 traite ces instructions de vol pour actionner les moteurs 7 et diriger la voilure 5. De préférence, cette télécommande est intégrée à l'organe distant auquel l'organe de commande communique les conditions de vol.
Les figures 3 à 6 illustrent l'intégration d'un transpondeur ADS-B 18 dans le dispositif volant sans pilote embarqué. La figure 3 illustre de façon schématique les composants du drone 1. En plus des capteurs tels que décrits ci-dessus en regard de la figure 1 et 2, le drone 1 comporte un transpondeur ADS-B 18. Ce transpondeur ADS-B 18 est connecté à une antenne de communication 19 destinée à émettre des informations de positionnement du drone 1. Ces informations sont par exemple destinées à une station au sol de gestion du trafic aérien ou encore par un appareil volant disposant d'un récepteur adapté tel qu'un avion de ligne (non illustrés).
Afin de permettre l'intégration des informations de positionnement du drone 1 dans les informations de gestion du trafic aérien actuelles, Il est nécessaire que les données émises par le transpondeur ADS-B 18 et les caractéristiques d'émission de l'antenne 19 connectée au transpondeur ADS-B 18 soient compatibles avec les caractéristiques de transmission des informations de gestion du trafic aérien actuel. Ainsi, la puissance d'émission de l'antenne 19 connectée au transpondeur ADS-B 18 doit permettre d'envoyer les informations de positionnement du drone 1 à de longues distances. Ainsi, l'antenne 19 connectée au transpondeur ADS-B 18 est par exemple une antenne omnidirectionnelle émettant à une puissance de 70W et à une fréquence de 1090 MHz. Le transpondeur ADS-B 18 et l'antenne 19 connectée au transpondeur ADS-B 18 sont par exemple compatibles avec la norme EUROCADE ED 102A ou la norme RTCA DO 260B. De préférence, dans une variante non illustrée, le transpondeur ADS-B 18 est connecté au système de guidage par satellite 14 du drone 1.
Le transpondeur ADS-B 18 est alimenté par une alimentation 20 indépendante de l'alimentation des autres éléments du drone 1 (moteur, actionneurs de voilure, module de commande de vol, etc.). Ainsi, même en cas de dysfonctionnement du module de commande de vol du drone 1 , le transpondeur ADS-B 18 peut continuer à émettre un signal indiquant la position du drone 1 dans l'espace aérien. Par exemple, en cas de dérive du drone 1 suite à une perte de contrôle lié à un problème électrique, un problème électronique, une panne logiciel, ou tout autre dysfonctionnement, le transpondeur ADS-B 18 pourra continuer à fonctionner de manière indépendante et diffuser les données de positionnement du drone 1. Les différents acteurs du trafic aérien comme par exemple des services de navigation aérienne auront ainsi un relevé de position du drone 1 y compris si le drone est en perdition. En outre, en cas de crash du drone 1 , le transpondeur ADS- B 18 reste apte à émettre et donner une information de position aux personnes chargées de sa recherche.
De préférence, afin de permettre cette indépendance du transpondeur ADS-B 18 par rapport aux autres éléments du drone 1 et comme illustré sur la figure 3, le transpondeur ADS-B 18 est connecté à un système de positionnement par satellite 21 dédié indépendant du système de guidage par satellite 14 du drone 1. En outre, le transpondeur ADS-B 18 comporte un système d'acquisition de l'altitude 22. Un tel système d'acquisition de l'altitude 22 comporte par exemple une prise de pression intégré à un boîtier dans lequel est logé le transpondeur ADS-B 18.
Les signaux émis par l'antenne 19 connectée au transpondeur ADS-B 18 comportent des informations sur l'intégrité de positionnement et la vélocité du drone 1. L'intégrité pour le positionnement et la vélocité d'un aéronef est une information importante pour les systèmes de surveillance aéronautique. Ces informations renseignent en particulier les applications de surveillance Radar sur la précision que peut délivrer le transpondeur ADS-B 18.
Dans le plan horizontal, l'intégrité de positionnement du drone 1 est déterminée par un disque. Plus le rayon du disque est large, plus la précision est faible. Inversement, plus le rayon est faible, plus la précision est forte. Le drone 1 est réputé être contenu dans ce disque. Le rayon du disque est de préférence de quelque mètres.
Dans le plan vertical, c'est-à-dire en altitude, le transpondeur ADS-B 18 obtient une information d'intégrité par mesure de pression atmosphérique (Baro Altitude) à l'aide de la prise de pression statique 22 ou, de préférence, par le système de positionnement par satellite 21.
La vélocité du drone 1 est qualifiée dans le plan horizontal et exprimée avec une erreur de vitesse horizontale.
Les systèmes de surveillance au sol exploitent ces informations d'intégrité pour fiabiliser les informations présentées aux contrôleurs aériens. Il est donc important que l'intégrité de position et de vitesse soient les plus précises possibles afin de permettre leur exploitation par les acteurs de la gestion du trafic aérien.
En outre, le boîtier logeant le transpondeur ADS-B 18 comporte un moyen de radio-identification tel qu'une radio-étiquette 23, par exemple une puce électronique de type RFID. Ce moyen de radio-identification 23 comporte une identification unique associé au drone 101.
Dans un mode de réalisation, le boîtier 24 logeant le transpondeur ADS-B 18 comporte une mémoire non volatile 29. Cette mémoire non volatile 29 est de préférence amovible. Dans un mode de réalisation, cette mémoire non volatile 29 est une carte mémoire amovible, par exemple une carte mémoire de type SD. Cette mémoire non volatile 29 permet de stocker des données caractérisant le vol du drone 1 , par exemple lors des dernières 30 minutes ou lors des dernières heures. Ces données caractérisant le vol du drone 1 comportent par exemple l'identification du drone, son altitude, sa position, et sa vitesse, etc.
L'identification du drone 1 peut être réalisée de nombreuse manière. Dans un mode de réalisation, l'identification unique du drone 1 comporte un numéro d'identification délivré par l'organisation de l'aviation civile internationale (OACI). Dans un mode de réalisation, ce numéro d'identification est codé sur 24bits. Dans un mode de réalisation, chaque numéro d'identification délivré par l'OACI est associé à un unique drone 1. Dans un autre mode de réalisation, chaque numéro d'identification délivré par l'OACI est associé au constructeur du drone 1 pour l'ensemble des drones dudit constructeur et un numéro unique est associé au transpondeur ADS-B 18 correspondant..
Dans un mode de réalisation, la radio-étiquette est configurée lors de la construction du transpondeur ADS-B 18 de manière à intégrer de manière fiable et statique l'identification du drone 1.
Dans un autre mode de réalisation, un identifiant de plan de vol est stocké dans le moyen de radio-identification 23 avant chaque vol. Cet identifiant de plan de vol est unique pour chaque plan de vol et est, par exemple, fourni dynamiquement pour les acteurs de la gestion du trafic aérien en sus des informations de positionnement du drone 1 via l'antenne 19 connectée au transpondeur ADS-B 18. Ainsi, il est possible d'identifier de manière fiable et sûre le drone 1 par une simple lecture de la radio-étiquette 23.
Un tel moyen de radio-identification 23 permet de connaître l'identité du drone 1 par simple lecture de la radio-étiquette 23. Cela est particulièrement utile en cas de perte ou de crash du drone 1 , l'identifiant de constructeur et l'identifiant enregistré lors de la construction du transpondeur ADS-B 18 et/ou l'identifiant de plan de vol constituant une immatriculation électronique unique du drone 1.
Les figures 4 à 6 illustrent plus en détail l'intégration du transpondeur ADS- B et de l'antenne 19 connectée au transpondeur ADS-B.
Le transpondeur ADS-B 18 est intégré à un boîtier 24 intégrant l'électronique du transpondeur ADS-B ainsi que le système de positionnement par satellite 21 (y compris son antenne de communication avec les satellites), la radio- étiquette 23 ou encore la prise de pression statique 22. Le boîtier 24 est monté sur l'un des pieds de support 8 du drone 1 et, plus particulièrement, sur la jambe 9 de l'un des pieds de support 8. Ainsi, le boîtier 24 et l'électronique du transpondeur ADS-B 18 sont suffisamment éloignés du module de commande de vol du drone 1 , y compris des bus de communications 17, pour ne pas perturber le fonctionnement du module de commande de vol.
De même, l'antenne 19 connectée au transpondeur ADS-B 18 est montée sur le même pied de support 8 que le boîtier 24. De préférence, l'antenne est montée sur l'extrémité de la jambe 9 du pied de support 8 opposée au corps principal 3 de manière être suffisamment éloigné du module de commande de vol du drone 1 pour ne pas perturber le bon fonctionnement dudit module de commande de vol. En particulier, cet éloignement de l'antenne 19 avec le module de commande de vol du drone 1 évite que les émissions de l'antenne 19 connectée au transpondeur ADS-B 18 ne perturbent les communications entre le module de commande de vol du drone 1 et un dispositif distant tel que la télécommande 27 de pilotage du drone 1.
De préférence, le boîtier 24 est monté sur une face externe du pied de support 8. Ainsi, lorsque le pied de support 8 est en position repliée, comme cela est illustré sur la figure 5, le boîtier 24 est situé sur une face supérieure du pied de support 8. En étant positionné sur la face supérieure du pied de support 8, le système de positionnement par satellite 21 dédié du transpondeur ADS-B 18 est orienté en direction du ciel. Cette orientation du système de positionnement par satellite 21 intégré au boîtier 24 permet une bonne communication avec les satellites et donc une meilleure fiabilité des données de positionnement émises par le transpondeur ADS-B. En outre, comme illustré sur la figure 6, le pied de support 8 étant intercalé entre deux bras 4 du drone 1 , le boîtier 24 monté sur ledit pied de support 8 est également intercalé, en projection dans un plan horizontal, entre deux bras 4 du drone 1. Ainsi, le positionnement du boîtier 24 sur le pied de support 8 permet de décaler les hélices 5 et le boîtier 24, En particulier, le masque 25 correspondant à la surface d'occupation des hélices 5, illustré en pointillé sur la figure 6, n'est pas situé à la verticale du boîtier 24 de sorte que les hélices 5 ne perturbent pas la communication entre les satellites et le système de positionnement par satellite 21 connecté au transpondeur ADS-B 18.
Par ailleurs, dans le cas d'un transpondeur ADS-B 18 obtenant une information d'altitude du drone 1 par une prise de pression statique, l'éloignement entre le boîtier 24, et donc la prise de pression statique, et les hélices 5 évite que les données obtenues à l'aide de la prise de pression statique ne soient perturbées par la rotation des hélices 5.
L'antenne 19 connectée au transpondeur ADS-B 18 est de préférence située sur une face interne du pied de support 8. Cette antenne 19 est une antenne de type tige dont l'axe 26 se développe perpendiculairement à la jambe 109 du pied de support 8 sur laquelle elle est montée. Ainsi, en position repliée des pieds de support 8, comme illustré sur la figure 6, l'axe 26 de l'antenne 19 connectée au transpondeur ADS-B 18 est orienté vers le bas, c'est-à-dire vers le sol. Cette orientation de l'antenne 19 est particulièrement avantageuse pour la transmission des données du transpondeur ADS-B 18 vers un dispositif distant au sol 28, comme par exemple une station de gestion du trafic aérien.
Le positionnement d'une part du boîtier 24 comportant le transpondeur ADS-B 18 sur une face externe du pied de support 8 et, d'autre part, de l'antenne 19 connectée au transpondeur ADS-B 18 sur la face interne du pied de support 8 est particulièrement avantageux puisqu'en plus de permettre le transport de matériel de prise de vue sous le drone 1 dont le champ de vision ne soit pas obstrué par les pieds de support 8, le déplacement des pieds de support 8 vers la position repliée permet d'orienter aussi bien le boîtier 24 du comportant le système de positionnement par satellite 21 que l'antenne 19 connectée au transpondeur ADS-B 18 de façon optimale. Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Ainsi, le drone selon l'invention pourrait être un drone à voilure fixe dans lequel le boîtier du transpondeur ADS-B est monté sur une face supérieure du fuselage ou des ailes et l'antenne connectée au transpondeur ADS-B est montée sur une face inférieure du fuselage ou des ailes. De même, dans le cadre d'un dispositif volant sans pilote embarqué à voilure tournante dont les pieds de support ne sont pas repliables, le transpondeur ADS-B et l'antenne connectée au transpondeur ADS-B sont montés sur le pied de support de façon à être orientés respectivement en direction du ciel et du sol.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Dispositif volant sans pilote embarqué (1 ) comportant :
- une structure porteuse (2),
- une voilure (5) apte à permettre l'envol et le déplacement du dispositif volant sans pilote embarqué, la voilure étant montée sur la structure porteuse,
- un organe de propulsion (7) apte à produire une force motrice agissant sur le dispositif volant sans pilote embarqué,
- un module électronique de commande de vol monté sur la structure porteuse et apte à commander l'organe de propulsion,
- un module de positionnement par satellite (14, 21) apte à générer des données de position,
- un transpondeur ADS-B (18) connecté au module de positionnement et configuré pour transmettre les données de position du dispositif volant sans pilote embarqué via une antenne (19) connectée au transpondeur
ADS-B, et
- un pied de support (8) lié à la structure porteuse pour supporter la structure porteuse au sol,
dans lequel l'antenne connectée au transpondeur ADS-B est montée sur le pied de support.
2. Dispositif volant sans pilote embarqué selon la revendication 2, dans lequel l'antenne (19) connectée au transpondeur ADS-B (18) est montée sur une extrémité du pied de support opposée à la structure porteuse.
3. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 2, dans lequel le pied de support est monté sur la structure porteuse mobile en rotation entre une position dépliée dans laquelle le pied de support se développe sous la structure porteuse pour supporter la structure porteuse au sol et une position repliée dans laquelle le pied de support se développe sur un côté de la structure porteuse, l'antenne du transpondeur ADS-B comportant une tige de réception dont l'axe est agencé pour être orienté verticalement vers le sol lorsque le pied de support est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle.
4. Dispositif volant sans pilote embarqué selon la revendication 3, dans lequel le module de positionnement par satellite (21) comporte un organe de réception satellite montée sur le pied de support (8), l'organe de réception satellite présentant un axe de réception configuré pour être orienté verticalement vers le ciel lorsque le pied de support est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle.
5. Dispositif volant sans pilote embarqué selon la revendication 4, dans lequel la structure porteuse comporte :
un corps central (3), le module électronique de commande étant monté sur le corps central de la structure porteuse,
une pluralité de bras (4) montés sur le corps central, les bras étant répartis circonférentiellement autour du corps central, et dans lequel la voilure comporte une pluralité d'hélices, l'extrémité opposée au corps central de chaque bras portant une hélice de la voilure respective et un actionneur de l'organe de propulsion configuré pour faire tourner ladite hélice autour d'un axe de rotation perpendiculaire à une direction longitudinale du bras, et dans lequel, lorsque le pied de support est en position repliée et que le dispositif volant sans pilote embarqué est en vol avec une assiette nulle, l'axe de réception de l'organe de réception satellite du module de positionnement par satellite est situé, en projection dans un plan horizontal, hors d'une zone de couverture (25) de la voilure en projection dans ledit plan horizontal.
6. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 5, dans lequel le transpondeur ADS-B est monté sur le pied de support.
7. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 6, comportant en outre une radio-étiquette (23) configurée pour stocker dans une mémoire et fournir une donnée d'identification du dispositif volant sans pilote embarqué.
8. Dispositif volant sans pilote embarqué selon la revendication 7, dans lequel la radio-étiquette (23) et le transpondeur ADS-B (18) sont agencés dans un boîtier commun, le transpondeur ADS-B (18) étant connecté à la radio-étiquette, les données de position du dispositif volant sans pilote embarqué comportant en outre la donnée d'identification du dispositif volant sans pilote embarqué.
9. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 7, dans lequel le module de positionnement par satellite et le transpondeur ADS-B sont agencés dans un boîtier commun.
10. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 9, dans lequel la structure porteuse porte en outre :
- un capteur configuré pour détecter des conditions de vol du dispositif volant sans pilote embarqué et générer des données de vol correspondant aux conditions de vol détectées,
- un module de communication radio configuré pour transmettre les données de vol à un dispositif de réception distant,
- un bus de connexion reliant le capteur au module de communication radio et au module électronique de commande de vol.
11. Dispositif volant sans pilote embarqué selon la revendication 10, dans lequel la structure porteuse comporte une pluralité de capteurs, ladite pluralité de capteurs comportant au moins l'un parmi un gyroscope, un compas et une centrale inertielle.
12. Dispositif volant sans pilote embarqué selon l'une des revendications 10 à 11 , dans lequel le module de communication radio est configuré pour recevoir des instructions de pilotage destinée à commander l'organe de propulsion et la voilure.
13. Dispositif volant sans pilote embarqué selon l'une des revendications 1 à 12, comportant en outre un premier système d'alimentation pour alimenter le module électronique de vol et un second système d'alimentation pour alimenter le transpondeur ADS-B.
PCT/FR2016/053287 2015-12-11 2016-12-08 Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien WO2017098172A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16819624.4A EP3386857A1 (fr) 2015-12-11 2016-12-08 Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562200 2015-12-11
FR1562200A FR3045005B1 (fr) 2015-12-11 2015-12-11 Dispositif volant sans pilote embarque compatible avec la gestion du trafic aerien

Publications (1)

Publication Number Publication Date
WO2017098172A1 true WO2017098172A1 (fr) 2017-06-15

Family

ID=55411576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053287 WO2017098172A1 (fr) 2015-12-11 2016-12-08 Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien

Country Status (3)

Country Link
EP (1) EP3386857A1 (fr)
FR (1) FR3045005B1 (fr)
WO (1) WO2017098172A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559580A (en) * 2017-02-09 2018-08-15 Jaguar Land Rover Ltd Aircraft
CN112298560A (zh) * 2020-12-04 2021-02-02 安徽天德无人机科技有限公司 一种团雾天气专用高速公路巡查无人机
WO2021017018A1 (fr) * 2019-07-30 2021-02-04 苏州领速电子科技有限公司 Antenne intégrée pour véhicule aérien sans pilote de course
CN113277063A (zh) * 2021-06-03 2021-08-20 中国人民解放军军事科学院国防科技创新研究院 一种折叠翼无人机空中投放控制系统设计方法
CN114082121A (zh) * 2021-11-21 2022-02-25 特斯联科技集团有限公司 用于森林草原的灭火无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461436A (en) * 1979-11-26 1984-07-24 Gene Messina Gyro stabilized flying saucer model
WO2007141795A1 (fr) * 2006-06-08 2007-12-13 Israel Aerospace Industries Ltd. Système de véhicule aérien sans pilote
US20100283661A1 (en) * 2007-01-16 2010-11-11 The Mitre Corporation Observability of unmanned aircraft and aircraft without electrical systems
US20140324255A1 (en) * 2013-03-15 2014-10-30 Shahid Siddiqi Aircraft emergency system using ads-b
WO2015175379A1 (fr) * 2014-05-10 2015-11-19 Aurora Flight Sciences Corporation Système et procédé d'évitement de collision pour véhicule aérien téléguidé

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461436A (en) * 1979-11-26 1984-07-24 Gene Messina Gyro stabilized flying saucer model
WO2007141795A1 (fr) * 2006-06-08 2007-12-13 Israel Aerospace Industries Ltd. Système de véhicule aérien sans pilote
US20100283661A1 (en) * 2007-01-16 2010-11-11 The Mitre Corporation Observability of unmanned aircraft and aircraft without electrical systems
US20140324255A1 (en) * 2013-03-15 2014-10-30 Shahid Siddiqi Aircraft emergency system using ads-b
WO2015175379A1 (fr) * 2014-05-10 2015-11-19 Aurora Flight Sciences Corporation Système et procédé d'évitement de collision pour véhicule aérien téléguidé

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559580A (en) * 2017-02-09 2018-08-15 Jaguar Land Rover Ltd Aircraft
GB2559580B (en) * 2017-02-09 2020-02-12 Jaguar Land Rover Ltd Unmanned Aircraft and Landing System Therefor
WO2021017018A1 (fr) * 2019-07-30 2021-02-04 苏州领速电子科技有限公司 Antenne intégrée pour véhicule aérien sans pilote de course
CN112298560A (zh) * 2020-12-04 2021-02-02 安徽天德无人机科技有限公司 一种团雾天气专用高速公路巡查无人机
CN112298560B (zh) * 2020-12-04 2022-01-07 安徽天德无人机科技有限公司 一种团雾天气专用高速公路巡查无人机
CN113277063A (zh) * 2021-06-03 2021-08-20 中国人民解放军军事科学院国防科技创新研究院 一种折叠翼无人机空中投放控制系统设计方法
CN113277063B (zh) * 2021-06-03 2022-03-08 中国人民解放军军事科学院国防科技创新研究院 一种折叠翼无人机空中投放控制系统设计方法
CN114082121A (zh) * 2021-11-21 2022-02-25 特斯联科技集团有限公司 用于森林草原的灭火无人机

Also Published As

Publication number Publication date
FR3045005A1 (fr) 2017-06-16
FR3045005B1 (fr) 2018-07-27
EP3386857A1 (fr) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2017098172A1 (fr) Dispositif volant sans pilote embarqué compatible avec la gestion du trafic aérien
AU2021204188B2 (en) A backup navigation system for unmanned aerial vehicles
US20200301449A1 (en) Survey migration system for vertical take-off and landing (vtol) unmanned aerial vehicles (uavs)
Toth et al. Remote sensing platforms and sensors: A survey
EP2375299B1 (fr) Système de gestion de vol d'un aéronef sans pilote à bord de l'aéronef
FR2953601A1 (fr) Procede et systeme de maitrise automatique de la formation de vol d'aeronefs sans pilote
US20220404272A1 (en) Airborne remote sensing with sensor arrays
FR3087134A1 (fr) Ensemble de detection d'obstacle pour drone, drone equipe d'un tel ensemble de detection d'obstacle et procede de detection d'obstacle
EP2253935B1 (fr) Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
Zhou Geo-referencing of video flow from small low-cost civilian UAV
FR2721458A1 (fr) Système d'observation par aéronef télépilote.
FR3107361A1 (fr) Take-off, navigation and landing support system for unmanned aerial vehicles
EP2407953B1 (fr) Procédé d'aide au pilotage amélioré pour aéronef
WO2014146884A1 (fr) Procede d'observation d'une zone au moyen d'un drone
FR3043789A1 (fr) Chargement de donnees d'ephemerides dans un drone.
US20220238987A1 (en) Mobile surveillance systems extendable mast control systems and methods
Guenzi et al. Open source, low-cost and modular fixed-wing UAV with BVLOS flight capabilities for geohazards monitoring and surveying
WO2018015684A2 (fr) Système de guidage pour guider un aéronef le long d'au moins une portion de route aérienne
FR3093573A1 (fr) Procédé et système de mise à jour automatique d’au moins une base de données aéroportuaires
US12007792B2 (en) Backup navigation system for unmanned aerial vehicles
FR3049730A1 (fr) Dispositif robotise d'aide a la collecte d'objets et/ou de drones et procede associe
FR3071624B1 (fr) Systeme d'affichage, procede d'affichage et programme d'ordinateur associes
US20220189319A1 (en) Mobile surveillance systems and methods for uas operational support
Goli et al. Development of an integrated uas for agricultural imaging applications
Choi et al. A UAV multi-sensor rapid mapping system for disaster management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016819624

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016819624

Country of ref document: EP

Effective date: 20180711