WO2021017002A1 - 机器人关节及机器人 - Google Patents

机器人关节及机器人 Download PDF

Info

Publication number
WO2021017002A1
WO2021017002A1 PCT/CN2019/098921 CN2019098921W WO2021017002A1 WO 2021017002 A1 WO2021017002 A1 WO 2021017002A1 CN 2019098921 W CN2019098921 W CN 2019098921W WO 2021017002 A1 WO2021017002 A1 WO 2021017002A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
robot joint
housing
output shaft
robot
Prior art date
Application number
PCT/CN2019/098921
Other languages
English (en)
French (fr)
Inventor
杨勇
张晟
姜超
Original Assignee
睿信科机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿信科机器人股份有限公司 filed Critical 睿信科机器人股份有限公司
Priority to EP19940029.2A priority Critical patent/EP4008502A4/en
Priority to CN201980098993.1A priority patent/CN114245768A/zh
Priority to PCT/CN2019/098921 priority patent/WO2021017002A1/zh
Priority to US17/630,812 priority patent/US11938627B2/en
Publication of WO2021017002A1 publication Critical patent/WO2021017002A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/108Bearings specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/361Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/50Hand tools, workshop equipment or manipulators
    • F16C2322/59Manipulators, e.g. robot arms

Definitions

  • the invention relates to a robot joint and a robot.
  • robots have become more and more common, and as the use of robots has become widespread, robots have been used in industries such as industry and service industries.
  • industries such as industry and service industries.
  • robots due to the complex structure of traditional robots, the maintenance of robots has become complicated, which hinders As a result, robots are widely used, making it impossible to quickly and large-scale applications.
  • the standardization and modularization of robots will reduce the cost of manufacturing and use of robots, and improving the accuracy of robots and simplifying the structure and maintenance of robots are the development trends of robots. Making the structure of the robot more streamlined and portable, and reducing its manufacturing and use costs are now the main focus. In this regard, the robot joint is an important part of the many components of the robot.
  • Robot joints can provide power and output the power to the load or actuator to drive the load or actuator to move.
  • different robot configurations can be formed, such as manipulators or biped robots.
  • the existing robot joints are bulky and heavy, which makes the transportation and assembly of the robot cumbersome, not easy to achieve standardization, and high cost, which hinders the rapid development of the robot.
  • the object of the present invention is to provide a robot joint and a robot, which has a simple and compact structure, is lighter and has a smaller size than traditional robot joints.
  • the present invention provides a robot joint, including: a housing; an output shaft, at least partially accommodated inside the housing, having a shaft portion and a flange portion at a first end of the shaft portion; A first bearing part is housed in the housing and supports a first position of the flange part of the output shaft; a second bearing part is housed in the housing and supports a second position of the output shaft in the axial direction; and A motor is accommodated in a housing, and the second bearing part is arranged between the motor and the first bearing part along the axial direction of the output shaft.
  • the robot joint according to the present invention adopts a beam-like support method, which can effectively support the output shaft at multiple points instead of a single point, so that the output shaft can more effectively and stably bear the moment or bending moment of the load, and the robot
  • the joint structure is compact and lighter than traditional robot joints, especially with smaller radial dimensions.
  • the second bearing portion includes: an inner bearing and an outer bearing located radially outside of the inner bearing, wherein the inner bearing supports the second position of the output shaft, and the inner bearing passes The outer bearing is supported on the bracket of the motor.
  • the outer bearing is supported on the housing by a bracket.
  • the outer bearing supports the output shaft at the second position of the output shaft and establishes a torque transmission path from the output shaft to the housing via the outer bearing.
  • the inner bearing includes a plurality of bearings arranged side by side.
  • the multiple side-by-side bearings of the inner bearing can support the second position of the output shaft more robustly than a single bearing arrangement, and can withstand and transmit larger moments.
  • the robot joint further includes: a harmonic reducer, wherein the harmonic reducer includes: a wave generator, wherein the wave generator is connected to the rotor of the motor through the rotor support, And supported between the inner bearing and the outer bearing.
  • the torque from the output shaft can be transmitted to the wave generator of the harmonic reducer via the inner bearing, and further transmitted to the outer bearing through the wave generator, and then to the housing via the outer bearing, thereby passing through the harmonic reducer and the second bearing
  • the combination of parts can effectively transmit torque.
  • the harmonic reducer further includes: a flexible wheel, the first end is connected with the first bearing part, the second end is connected with the wave generator; a flexible bearing, supporting in the radial direction Between the wave generator and the flexspline, and is connected with the wave generator through an interference fit; and a plurality of steel wheels are arranged radially on the outside of the flexspline and mesh with the flexspline.
  • the harmonic reducer is connected between the second bearing portion and the first bearing portion, and can transmit power from the motor to the output shaft.
  • the robot joint further includes a torque sensor fixed on the housing, and the steel wheel is fixed on the torque sensor.
  • the steel wheel is fixed to the housing by the torque sensor without rotating, so that the flexspline transmits power relative to the rotation of the steel wheel by meshing.
  • the inner bearing is a small deep groove ball bearing
  • the outer bearing is a large deep groove ball bearing.
  • Small deep groove ball bearings and large deep groove ball bearings can effectively and stably support the second position of the output shaft, and transmit the bending moment from the output shaft to the housing.
  • the first bearing part is a cross roller bearing.
  • the crossed roller bearings can be used in smaller and lighter models, so The mass of the robot joint is lighter and smaller.
  • the present invention provides a robot, wherein the robot includes a robot joint according to the above description.
  • Fig. 1 shows a schematic structural diagram of a robot joint according to an embodiment of the present invention.
  • Fig. 1 shows a schematic structural diagram of a robot joint according to an embodiment of the present invention.
  • the robot joint includes: a housing 1; an output shaft 5, which is at least partially accommodated inside the housing 1, and has a shaft portion 51 and a flange portion 52 located at the first end of the shaft portion 51;
  • the first bearing part 3 is housed in the housing 1 and supports a first position of the flange part 52 of the output shaft 5;
  • a second bearing part 20 is housed in the housing 1 and supports the output shaft 5 in the axial direction.
  • a motor 21 housed in the housing 1, wherein the second bearing portion 20 is arranged between the motor 21 and the first bearing portion 3 along the axial direction of the output shaft 5.
  • the second bearing part 20 includes: an inner bearing 15 and an outer bearing 14 located radially outside of the inner bearing 15, wherein the inner bearing 14 supports the second position of the output shaft 5, and the inner bearing 15 is supported by the outer bearing 14
  • the support of the motor 21 is supported on the stator support 13 of the motor 21, for example.
  • the inner bearing 15 and the outer bearing 14 are implemented as a small deep groove ball bearing 15 and a large deep groove ball bearing 14 in this embodiment, respectively.
  • the outer bearing 14 is supported on the housing 1 via the stator bracket 13.
  • the outer bearing 14 is supported on the housing 1 through a bracket.
  • the robot joint also includes: a harmonic reducer 22, wherein the harmonic reducer 22 includes: a wave generator 12, wherein the wave generator 12 is connected to the rotor 17 of the motor and supported on the inner bearing 15 and the outer bearing 14 between.
  • the harmonic reducer 22 also includes: a flexible wheel 7, the first end is connected with the first bearing part 3, the second end is connected with the wave generator 12; a flexible bearing 11, radially supported on the wave generator 12 and the flexible Between the wheels 7 and connected with the wave generator 12 by interference fit; and a plurality of steel wheels 10 are arranged radially on the outside of the flexible wheel 7 and mesh with the flexible wheel 7.
  • the robot joint also includes a torque sensor 8 fixed on the housing 1, and the steel wheel 10 is fixed on the torque sensor 8.
  • the load-carrying capacity of the first bearing part 3 implemented as a cross roller bearing can be improved, thereby reducing the radial size of the robot joint and reducing the robot joint the weight of.
  • the axial structure of the robot joint is mainly composed of the following components: housing 1; hexagon socket bolt 2; cross roller bearing 3; hexagon socket bolt 4; output shaft 5; hexagon socket bolt 6; Flexible wheel 7; Torque sensor 8; Hexagon socket bolt 9; Rigid wheel 10; Flexible bearing 11; Wave generator 12; Motor stator bracket 13; Large deep groove ball bearing 14; Small deep groove ball bearing 15; Motor stator 16; Motor Rotor 17; Motor rotor bracket 18; Hexagon socket bolt 19.
  • connection relationship of the parts of the robot joint is as follows: the cross roller bearing 3 and the torque sensor 8 are fixed on the housing 1 by the hexagon socket bolt 2; the output flange 5 is fixed on the inner ring of the cross roller bearing 3 by the hexagon socket bolt 4
  • the flexspline 7 is fixed on the inner ring of the cross roller bearing 3 by the hex socket bolt 6; the rigid wheel 10 is fixed on the torque sensor 8 by the hex socket bolt 9; the flexspline 7 meshes with the gear on the rigid wheel 10 for transmission;
  • the bearing 11 and the wave generator 12 are connected by interference fit; the wave generator 12 and the inner ring of the large deep groove ball bearing 14 are connected by interference fit; the outer ring of the large deep groove ball bearing 14 is in transitional fit with the motor stator bracket 13; the motor stator The bracket 13 is in transitional fit with the housing 1; the wave generator 12 is in transitional fit with the small deep groove ball bearing 15; the small deep groove ball bearing is in transitional fit with the output flange 5; the motor stat
  • the working principle of the auxiliary support realized by the second bearing part 20 of the robot joint is as follows: When the bending moment of the external load acts on the flange part of the output shaft 5, a part of the bending moment is borne by the cross roller bearing 3. , And the other part of the transmission route of the bending moment is: the flange of the output shaft 5, the small deep groove ball bearing 15, the wave generator 12, the large deep groove ball bearing 14, the motor stator bracket 13, and then back to the housing 1. . Due to the effect of the auxiliary support, the bending moment actually acting on the cross roller bearing 3 is reduced. Therefore, compared with the structure using only cross-roller bearings, the structure of the robot joint according to the embodiment of the present invention has a smaller volume and a lighter weight.
  • the disclosed technical content can be implemented in other ways.
  • the above-described device embodiments are merely illustrative, for example, the division of the units or modules is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or modules or components. Can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling may be indirect coupling through some interfaces, modules or units, and may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Rolling Contact Bearings (AREA)
  • Manipulator (AREA)

Abstract

一种机器人关节,包括:一壳体(1);一输出轴(5),至少部分地容纳于壳体(1)内部,具有轴部(51)和位于轴部的第一端的法兰部(52);一第一轴承部(3),容纳在壳体(1)中,支撑输出轴(5)的法兰部(52)的第一位置;一第二轴承部(20),容纳在壳体(1)中,支撑输出轴(5)的沿轴向的第二位置;以及一电机(21),容纳在壳体(1)中,其中第二轴承部(20)沿输出轴的轴向布置在电机(21)与第一轴承部(3)之间。还提供一种机器人。通过在多点对输出轴进行有效支撑,使得输出轴能够更有效和稳固的承受负载的力矩或弯矩,并使得机器人关节结构紧凑,质量更轻。

Description

机器人关节及机器人 技术领域
本发明涉及机器人关节和机器人。
背景技术
机器人的使用变得越来越普遍,而且随着机器人的使用变得广泛,在工业和服务业等行业都使用了机器人,但是由于传统机器人的结构复杂,造成机器人的维护变得复杂,这阻碍了机器人广泛应用,使其无法快速地大规模应用。机器人的标准化和模块化会降低机器人的制造和使用成本,而且提高机器人的精确度并简化机器人的结构和维护是机器人发展的趋势。将机器人的结构变得更加精简和轻便,降低其制造和使用成本是现在主要的关注重点。就此而言,机器人关节是机器人的多个组成部分中的一个重要组成部分。机器人关节能够提供动力并将动力输出至负载或执行机构,以带动负载或执行机构运动。通过搭建不同规格的机器人关节,能够形成不同的机器人的构型,例如机械臂或者双足机器人等。现有的机器人关节体积大,而且质量较重,这造成机器人的运输和组装变得繁琐,不容易实现标准化,而且成本高,阻碍了机器人的快速发展。
发明内容
本发明的目的在于提供一种机器人关节和机器人,该机器人关节具有简单和紧凑的结构,相比传统的机器人关节具有更轻的,而且具有更小的尺寸。
根据本发明的一方面,本发明提供了机器人关节,包括:一壳体;一输出轴,至少部分地容纳于壳体内部,具有轴部和位于轴部的第一端的法兰部;一第一轴承部,容纳在壳体中,支撑输出轴的法兰部的一第一位置;一第二轴承部,容纳在壳体中,支撑输出轴的沿轴向的一第二位置;以及一电机,容纳在壳体中,第二轴承部沿输出轴的轴向布置在电机与第一轴承部之间。根据本发明的机器人关节内部采用了类似横梁的支撑方式,能够在多点而非单点对输出轴进行有效支撑,使得输出轴能够更有效和稳固的承受负载的力矩或弯矩,而且该机器人关节结构紧凑,相比传统的机器人关节质量更轻,尤其具有更小的径向尺寸。
根据本发明的机器人关节的示例性实施例,第二轴承部包括:一内侧轴承和位于内侧轴承的径向外侧的一外侧轴承,其中,内侧轴承支撑输出轴的第二位置,并且内侧轴承通过外侧轴承支撑在电机的支架上。通过第二轴承部对输出轴的支撑,减轻了第一轴承部因为支撑输出轴所承受的负担,使得第一轴承部可以变得更轻并且体积变得更小,进而取消了第一轴承部的重量和体积对机器人关节的限制,使得机器人关节变得更轻和更小。
根据本发明的机器人关节的示例性实施例,外侧轴承通过支架支撑在壳体上。外侧轴承在输出轴的第二位置对输出轴进行支撑,并建立起从输出轴经由外侧轴承到壳体的力矩传递路径。
根据本发明的机器人关节的示例性实施例,内侧轴承包括多个并排布置的轴承。内侧轴承的多个并排轴承相比单个轴承布置能够更稳健地支撑输出轴的第二位置,并且能够承受和传递较大的力矩。
根据本发明的机器人关节的示例性实施例,机器人关节还包括:一谐波减速器,其中,谐波减速器包括:一波发生器,其中,波发生器通过转子支架与电机的转子连接,并支撑在内侧轴承和外侧轴承之间。来自输出轴的力矩能够经由内侧轴承传递至谐波减速器的波发生器,并借助波发生器进一步传递至外侧轴承,进而经过外侧轴承传递至壳体,从而通过谐波减速器和第二轴承部的结合,有效地传递力矩。
根据本发明的机器人关节的示例性实施例,谐波减速器还包括:一柔轮,第一端与第一轴承部连接,第二端与波发生器连接;一柔性轴承,沿径向支撑在波发生器与柔轮之间,并且与波发生器通过过盈配合连接;以及多个钢轮,沿径向布置在柔轮的外侧,并与柔轮啮合。谐波减速器连接在第二轴承部与第一轴承部之间,能够将来自电机的动力传递至输出轴。
根据本发明的机器人关节的示例性实施例,机器人关节还包括:一力矩传感器,固定在壳体上,并且钢轮固定在力矩传感器上。由此,钢轮借助力矩传感器被固定在壳体上,而不会发生旋转,使得柔轮借助啮合相对于钢轮旋转传递动力。
根据本发明的机器人关节的示例性实施例,内侧轴承是小深沟球轴承,外侧轴承是大深沟球轴承。小深沟球轴承和大深沟球轴承能够有效和稳固地支撑输出轴的第二位置,向壳体传递来自输出轴的弯矩。
根据本发明的机器人关节的示例性实施例,第一轴承部是交叉滚子轴承。相比传统的机器人关节中仅使用交叉滚子轴承来承受输出轴的弯矩,在本发明中由于采用了第二轴承部,交叉滚子轴承能够使用尺寸更小和质量更轻的型号,使得机器人关节的质量更轻并且体积更小。
根据本发明的另一方面,本发明提供了机器人,其中该机器人包括根据以上所描述的机器人关节。
附图说明
附图构成本说明书的一部分,用于帮助进一步理解本发明。这些附图图解了本发明的实施例,并与说明书一起用来说明本发明的原理。在附图中相同的部件用相同的标号表示。图中示出:
图1示出根据本发明的实施例的机器人关节的结构示意图。
附图标记说明:
1:壳体
2:内六角螺栓
3:交叉滚子轴承
4:内六角螺栓
5:输出轴
6:内六角螺栓
7:柔轮
8:力矩传感器
9:内六角螺栓
10:钢轮
11:柔性轴承
12:波发生器
13:电机定子支架
14:大深沟球轴承
15:小深沟球轴承
16:电机定子
17:电机转子
18:电机转子支架
19:内六角螺栓
20:第二轴承部
21:电机
22:谐波减速器
51:轴部
52:法兰部。
具体实施方式
为了使本技术领域的人员更好地理解本发明的方案,下面将结合本发明的实施例中的附图,对本发明的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他方案,都应当属于本发明的保护范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含一系列单元的产品或设备不 必限于清楚地列出的那些单元,而是可包括没有列出的或对于这些产品或设备固有的其它单元。
图1示出根据本发明的实施例的机器人关节的结构示意图。如图1所示,机器人关节包括:一壳体1;一输出轴5,至少部分地容纳于壳体1内部,具有轴部51和位于轴部51的第一端的法兰部52;一第一轴承部3,容纳在壳体1中,支撑输出轴5的法兰部52的一第一位置;一第二轴承部20,容纳在壳体1中,支撑输出轴5的沿轴向的一第二位置;以及一电机21,容纳在壳体1中,其中第二轴承部20沿输出轴5的轴向布置在电机21与第一轴承部3之间。第二轴承部20包括:一内侧轴承15和位于内侧轴承的15径向外侧的一外侧轴承14,其中,内侧轴承14支撑输出轴5的第二位置,并且内侧轴承15通过外侧轴承14支撑在电机21的支架上,例如支撑在电机21的定子支架13上。例如,内侧轴承15和外侧轴承14在本实施例中被分别实施为小深沟球轴承15和大深沟球轴承14。外侧轴承14通过定子支架13支撑在壳体1上。优选地,外侧轴承14通过支架支撑在壳体1上。机器人关节还包括:一谐波减速器22,其中,谐波减速器22包括:一波发生器12,其中,波发生器12与电机的转子17连接,并支撑在内侧轴承15和外侧轴承14之间。谐波减速器22还包括:一柔轮7,第一端与第一轴承部3连接,第二端与波发生器12连接;一柔性轴承11,沿径向支撑在波发生器12与柔轮7之间,并且与波发生器12通过过盈配合连接;以及多个钢轮10,沿径向布置在柔轮7的外侧,并与柔轮7啮合。机器人关节还包括:一力矩传感器8,固定在壳体1上,并且钢轮10固定在力矩传感器8上。
通过在机器人关节的轴系上增加作为辅助轴承的第二轴承部20,得以提高例如实施为交叉滚子轴承的第一轴承部3的承载能力,进而缩小机器人关节的径向尺寸,减轻机器人关节的重量。在本发明的实施例中,机器人关节的轴向结构主要由以下零部件组成:壳体1;内六角螺栓2;交叉滚子轴承3;内六角螺栓4;输出轴5;内六角螺栓6;柔轮7;力矩传感器8;内六角螺栓9;刚轮10;柔性轴承11;波发生器12;电机定子支架13;大深沟球轴承14;小深沟球轴承15;电机定子16;电机转子17;电机转子支架18;内六角螺栓19。
机器人关节的零部件的连接关系如下:交叉滚子轴承3和力矩传感器8通过内六角螺栓2固定在壳体1上;输出法兰5通过内六角螺栓4固定在交叉滚子轴承3内圈上;柔轮7通过内六角螺栓6固定在交叉滚子轴承3内圈上;刚轮10通过内六角螺栓9固定在力矩传感器8上;柔轮7与刚轮10上的齿轮进行啮合传动;柔性轴承11与波发生器12通过过盈配合连接;波发生器12与大深沟球轴承14内圈通过过盈配合连接;大深沟球轴承14外圈与电机定子支架13过渡配合;电机定子支架13与壳体1过渡配合;波发生器12与小深沟球轴承15 过渡配合;小深沟球轴承15与输出法兰5过渡配合;电机定子支架13与电机定子16过盈配合;电机转子17与电机转子支架18过盈配合;电机转子支架18通过内六角螺栓19与波发生器12固定连接。
利用机器人关节的第二轴承部20所实现的辅助支撑的工作原理如下所述:当外载荷的弯矩作用在输出轴5的法兰部上,一部分的弯矩被交叉滚子轴承3所承受,而另一部分的弯矩的传递路线是:输出轴5的法兰部、小深沟球轴承15、波发生器12、大深沟球轴承14、电机定子支架13,再回到壳体1。由于辅助支撑的作用,实际作用在交叉滚子轴承3上的弯矩减小。所以,与只使用交叉滚子轴承的结构想比较,根据本发明的实施例的机器人关节的这种结构的体积更小,重量更轻。
在本发明所提供的实施例中,应该理解,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合可以是通过一些接口,模块或单元的间接耦合,可以是电性或其它的形式。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 机器人关节,其特征在于,包括:
    一壳体(1);
    一输出轴(5),至少部分地容纳于所述壳体(1)内部,具有轴部(51)和位于所述轴部的第一端的法兰部(52);
    一第一轴承部(3),容纳在所述壳体(1)中,支撑所述输出轴(5)的所述法兰部的一第一位置;
    一第二轴承部(20),容纳在所述壳体(1)中,支撑所述输出轴(5)的沿轴向的一第二位置;以及
    一电机(21),容纳在所述壳体(1)中,其中,所述第二轴承部沿所述输出轴(5)的轴向布置在所述电机与所述第一轴承部之间。
  2. 根据权利要求1所述的机器人关节,其特征在于,所述第二轴承部包括:
    一内侧轴承(15)和位于所述内侧轴承的径向外侧的一外侧轴承(14),其中,所述内侧轴承支承所述输出轴(5)的所述第二位置,并且所述内侧轴承通过所述外侧轴承支撑在所述电机的支架(13)上。
  3. 根据权利要求2所述的机器人关节,其特征在于,所述外侧轴承(14)通过所述支架(13)支撑在所述壳体(1)上。
  4. 根据权利要求2所述的机器人关节,其特征在于,所述内侧轴承(15)包括多个并排布置的轴承。
  5. 根据权利要求2所述的机器人关节,其特征在于,所述机器人关节还包括:
    一谐波减速器(22),其中,所述谐波减速器(22)包括:
    一波发生器(12),其中,所述波发生器(12)通过转子支架(18)与所述电机的转子(17)连接,并支撑在所述内侧轴承和所述外侧轴承之间。
  6. 根据权利要求5所述的机器人关节,其特征在于,所述谐波减速器还包括:
    一柔轮(7),第一端与所述第一轴承部连接,第二端与所述波发生器连接;
    一柔性轴承(11),沿径向支撑在所述波发生器(12)与所述柔轮(7)之间,并且与所述波发生器(12)通过过盈配合连接;以及
    多个钢轮(10),沿径向布置在所述柔轮(7)的外侧,并与所述柔轮(7)啮合。
  7. 根据权利要求6所述的机器人关节,其特征主要,所述机器人关节还包括:
    一力矩传感器(8),固定在所述壳体(1)上,并且所述钢轮(10)固定在所述力矩传感器(8)上。
  8. 根据权利要求1至7中任一项所述的机器人关节,其特征在于,所述内侧轴承是小深沟球轴承,所述外侧轴承是大深沟球轴承。
  9. 根据权利要求1至7中任一项所述的机器人关节,其特征在于,所述第一轴承部是交叉滚子轴承(3)。
  10. 机器人,其特征在于,包括根据权利要求1至9中任一项所述的机器人关节。
PCT/CN2019/098921 2019-08-01 2019-08-01 机器人关节及机器人 WO2021017002A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19940029.2A EP4008502A4 (en) 2019-08-01 2019-08-01 ROBOT AND ROBOT ARTICULATION
CN201980098993.1A CN114245768A (zh) 2019-08-01 2019-08-01 机器人关节及机器人
PCT/CN2019/098921 WO2021017002A1 (zh) 2019-08-01 2019-08-01 机器人关节及机器人
US17/630,812 US11938627B2 (en) 2019-08-01 2019-08-01 Robot joint and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098921 WO2021017002A1 (zh) 2019-08-01 2019-08-01 机器人关节及机器人

Publications (1)

Publication Number Publication Date
WO2021017002A1 true WO2021017002A1 (zh) 2021-02-04

Family

ID=74229969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098921 WO2021017002A1 (zh) 2019-08-01 2019-08-01 机器人关节及机器人

Country Status (4)

Country Link
US (1) US11938627B2 (zh)
EP (1) EP4008502A4 (zh)
CN (1) CN114245768A (zh)
WO (1) WO2021017002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311014A (zh) * 2021-12-13 2022-04-12 珠海格力智能装备有限公司 一种锥齿轮传动的机器人关节机构及其形成的机器人

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117182960B (zh) * 2023-11-07 2024-01-19 睿尔曼智能科技(北京)有限公司 一种一体化关节及机械臂
CN117927634A (zh) * 2024-01-23 2024-04-26 天津朗道自动化技术有限公司 一种串联弹性执行器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312957A (ja) * 2005-05-06 2006-11-16 Nabtesco Corp 産業用ロボットの旋回部構造
WO2010115702A1 (de) * 2009-04-08 2010-10-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Motorgetriebeeinheit
CN103128746A (zh) * 2011-11-24 2013-06-05 上海电气集团股份有限公司 一种机械臂模块化关节
CN104476561A (zh) * 2014-12-30 2015-04-01 浙江琦星电子有限公司 一种机械臂的关节
KR101549879B1 (ko) * 2014-03-26 2015-09-14 주식회사 로보스타 중공 구동 모듈
CN109366480A (zh) * 2018-12-19 2019-02-22 浙江双环传动机械股份有限公司 一种高集成度机电控一体化机器人关节模组
CN208841447U (zh) * 2018-08-17 2019-05-10 北京卓誉科技有限公司 一种具有精确力控的双轴承支撑式机器人关节结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592697A (en) 1983-04-26 1986-06-03 Kabushiki Kaisha Kobe Seiko Sho Gravity balancing device for rocking arm
JP2002243000A (ja) * 2001-02-19 2002-08-28 Harmonic Drive Syst Ind Co Ltd 波動歯車減速機を備えたアクチュエータ
JP4483199B2 (ja) * 2003-04-24 2010-06-16 株式会社安川電機 モータ
CN101264603A (zh) 2008-03-31 2008-09-17 哈尔滨工程大学 基于谐波减速器的机器人关节
CN102218739B (zh) * 2011-05-23 2013-08-07 哈尔滨工业大学 具有力位感知功能的机械臂模块化关节
CN202684927U (zh) * 2012-05-23 2013-01-23 深圳众为兴技术股份有限公司 一种高精度机器人关节机构
CN103527720A (zh) 2012-07-05 2014-01-22 北京精密机电控制设备研究所 一种谐波减速器
CN103629306B (zh) * 2012-08-20 2016-03-30 刘旭训 电动自行车驱动器的谐波减速器
JP6028055B2 (ja) 2015-03-04 2016-11-16 上銀科技股▲分▼有限公司 モーターを有する減速機
CN204748646U (zh) * 2015-07-02 2015-11-11 成都三译智能技术有限公司 一种机器人关节减速器
KR101793141B1 (ko) * 2016-06-10 2017-11-03 한국기계연구원 관절구동모듈과 순응형 로봇의족
CN106230186B (zh) 2016-08-15 2019-05-24 广州市昊志机电股份有限公司 一种集合有电机的中空型谐波减速器
CN107795662B (zh) 2016-08-31 2020-06-19 比亚迪股份有限公司 用于谐波减速器的刚轮、谐波减速器以及机器人
CN107685341A (zh) 2017-08-10 2018-02-13 北京山思跃立科技有限公司 一种机械臂和机械臂关节
CN109515766A (zh) * 2018-11-15 2019-03-26 上海宇航系统工程研究所 二维指向机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312957A (ja) * 2005-05-06 2006-11-16 Nabtesco Corp 産業用ロボットの旋回部構造
WO2010115702A1 (de) * 2009-04-08 2010-10-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Motorgetriebeeinheit
CN103128746A (zh) * 2011-11-24 2013-06-05 上海电气集团股份有限公司 一种机械臂模块化关节
KR101549879B1 (ko) * 2014-03-26 2015-09-14 주식회사 로보스타 중공 구동 모듈
CN104476561A (zh) * 2014-12-30 2015-04-01 浙江琦星电子有限公司 一种机械臂的关节
CN208841447U (zh) * 2018-08-17 2019-05-10 北京卓誉科技有限公司 一种具有精确力控的双轴承支撑式机器人关节结构
CN109366480A (zh) * 2018-12-19 2019-02-22 浙江双环传动机械股份有限公司 一种高集成度机电控一体化机器人关节模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008502A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311014A (zh) * 2021-12-13 2022-04-12 珠海格力智能装备有限公司 一种锥齿轮传动的机器人关节机构及其形成的机器人

Also Published As

Publication number Publication date
US11938627B2 (en) 2024-03-26
CN114245768A (zh) 2022-03-25
EP4008502A1 (en) 2022-06-08
EP4008502A4 (en) 2022-08-03
US20220274249A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021017002A1 (zh) 机器人关节及机器人
WO2022001296A1 (zh) 一种驱动关节及机器人
CN104191434A (zh) 中空串联机械臂
WO2012075737A1 (zh) 蜗杆减速器、机器人关节及机器人
CN102536999A (zh) 自平衡式大直径螺栓及其专用机动扭矩扳手装置
CN104175329A (zh) 中空串联机械臂用模块化关节
CN106426264B (zh) 一种具有内置传动轴的机器人手腕
CN106426135A (zh) 一种轻型模块化机器人驱动关节
CN112720568A (zh) 一种带力感知的双模组集成关节
CN113977625A (zh) 一种集成双减速器控制于一体的电动关节模组
CN110861120B (zh) 基于双定子无框力矩电机的驱动关节及其应用
CN210233090U (zh) 一种机器人转动关节
WO2021212648A1 (zh) 一种协作机器人一体化关节的轴系结构
CN104669296A (zh) 一种高比功率空间机械臂模块化旋转关节
CN111376303A (zh) 一种三自由度绳轮驱动关节及机械臂
CN105526314A (zh) 一种直联偏移减速机
CN111376231A (zh) 一种协作机器人
WO2012075736A1 (zh) 蜗杆减速器、机器人关节及机器人
CN211139450U (zh) 一种轮式工程机械用液压转向驱动前桥及轮式工程机械
JPH02198789A (ja) 産業用ロボットの胴体構造
CN111810591A (zh) 一种可拆分紧凑型功率分流主传动系统
CN112171651A (zh) 一种6轴大负载工业机器人手腕结构
WO2023124730A1 (zh) 机器人关节及机器人
CN212044427U (zh) 一种万向变轴拧紧装置
CN215444982U (zh) 一种新型回转式减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019940029

Country of ref document: EP

Effective date: 20220301