WO2023124730A1 - 机器人关节及机器人 - Google Patents

机器人关节及机器人 Download PDF

Info

Publication number
WO2023124730A1
WO2023124730A1 PCT/CN2022/135609 CN2022135609W WO2023124730A1 WO 2023124730 A1 WO2023124730 A1 WO 2023124730A1 CN 2022135609 W CN2022135609 W CN 2022135609W WO 2023124730 A1 WO2023124730 A1 WO 2023124730A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
reducer
joint
section
Prior art date
Application number
PCT/CN2022/135609
Other languages
English (en)
French (fr)
Inventor
陈晓强
吴文镜
栗园园
侯澈
杨高
甘海宏
陈文杰
Original Assignee
美的集团股份有限公司
库卡机器人(广东)有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司, 库卡机器人(广东)有限公司, 广东美的制冷设备有限公司 filed Critical 美的集团股份有限公司
Publication of WO2023124730A1 publication Critical patent/WO2023124730A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators

Definitions

  • the application belongs to the technical field of drive equipment, and in particular relates to robot joints and robots.
  • the robot joint module composed of harmonic reducer, frameless torque motor, holding brake and dual encoder feedback has become the main development and goal of many robot designs. .
  • the hole diameter of the hollow shaft in the robot joint module is small, which is not conducive to the heat dissipation of the motor and the reducer, and is also not conducive to the cable arrangement.
  • the application provides a robot joint and a robot to solve the technical problems that the hollow shaft of the robot joint is small in diameter, which is not conducive to heat dissipation and cable arrangement.
  • a technical solution adopted by this application is: a robot joint, including: a motor, including a motor stator and a motor rotor that is rotatably arranged outside the motor stator; a hollow hollow shaft, fixedly embedded in the In the stator of the motor; reducer, the rigid wheel of the reducer is nested outside the motor, and is fixedly arranged on the hollow hollow shaft, and the wave generator of the reducer is fixedly arranged on the rotor of the motor, so as to Drive to the flexible spline of the reducer.
  • the hollow hollow shaft includes: a central shaft section, nested and fixed in the motor stator; an engaging section, connected to the end of the central shaft section, and Extending radially outward, the connecting section is connected to the rigid wheel.
  • the motor rotor includes: a rotor shaft that is rotatably nested outside the motor stator; an output flange that is connected to the end of the rotor shaft and extends along the radial direction of the rotor shaft. Extending inside, the output flange is used to connect the wave generator.
  • the wave generator is disposed between the connecting section and the output flange.
  • it includes: a first bearing disposed between the wave generator and the hollow shaft.
  • the flexible spline includes: an external tooth section, arranged between the wave generator and the rigid wheel; a transmission section, connected to the end of the external tooth section, and The radially outward extension of the outer tooth segments.
  • it includes: a fixed frame nested outside the rigid wheel and fixedly connected to the transmission section; a cross roller bearing disposed between the fixed frame and the rigid wheel.
  • it includes: an electromagnetic brake fixed relatively to the transmission section and sheathed outside the motor rotor; a second bearing arranged between the electromagnetic brake and the motor rotor.
  • it includes: a first encoder fixed coaxially with the motor rotor; a second encoder located outside the first encoder and fixed coaxially with the flexspline.
  • the arrangement direction of the first encoder and the second encoder is perpendicular to the axis direction of the motor.
  • a robot comprising the above-mentioned robot joints.
  • the beneficial effect of the application is: by adopting the outer rotor motor and adopting the method of nesting the reducer and the motor, the inner hollow aperture of the hollow hollow shaft can be relatively enlarged, and the heat dissipation area is increased, which is beneficial to the heat dissipation of the motor and the reducer .
  • the hollow hollow shaft and the motor stator remain relatively static, which is beneficial to provide feedback accuracy and facilitate the direct arrangement of cables in the hollow hollow shaft.
  • the output and fixed ends of the cables are relatively static, which can reduce the wear of the cables and improve the service life . Due to the application of the hollow shaft with a large hollow aperture, fans and air ducts can also be placed to further improve the heat dissipation efficiency.
  • Fig. 1 is a schematic diagram of a three-dimensional cross-sectional structure of an embodiment of a robot joint of the present application
  • Fig. 2 is a three-dimensional cross-sectional structural schematic diagram of an embodiment of a motor of a robot joint of the present application
  • Fig. 3 is a schematic cross-sectional structure diagram of an embodiment of the robot joint of the present application.
  • Fig. 4 is a schematic diagram of an exploded structure of an embodiment of a robot joint of the present application.
  • 100 robot joint; 110, motor; 111, motor stator; 112; motor rotor; 1121, rotor shaft; 1122, output flange; 120, hollow shaft; 121, shaft section; 122, connecting section; 130. Reducer; 131. Rigid wheel; 132. Flexible wheel; 1321. External gear section; 1322. Transmission section; 133. Wave generator; 134. Cross roller bearing; 140. First bearing; 150. Fixed frame; 160 , electromagnetic brake; 170, the second bearing; 181, the first encoder; 182, the second encoder.
  • Fig. 1 is a three-dimensional sectional structure schematic diagram of an embodiment of the robot joint of the present application
  • Fig. 2 is a three-dimensional sectional structural schematic diagram of an embodiment of the motor of the robot joint of the present application
  • Fig. 3 is a schematic diagram of the three-dimensional sectional structure of the present application
  • FIG. 4 is a schematic diagram of an exploded structure of an embodiment of a robot joint of the present application.
  • An embodiment of the present application provides a robot joint 100 , as shown in FIGS. 1 to 4 , including a motor 110 , a hollow shaft 120 and a reducer 130 .
  • the motor 110 includes a motor stator 111 and a motor rotor 112 rotatably disposed outside the motor stator 111 , and the hollow shaft 120 is fixedly embedded in the motor stator 111 .
  • the rigid wheel 131 of the reducer 130 is nested outside the motor 110 and is fixedly installed on the hollow shaft 120 .
  • the wave generator 133 of the reducer 130 is fixedly installed on the motor rotor 112 for transmission to the flexible spline 132 of the reducer 130 .
  • the motor rotor 112 and the motor stator 111 rotate relatively, the motor rotor 112 transmits the rotation to the wave generator 133, the rigid wheel 131 is relatively fixed to the motor stator 111, and the wave generator 133 drives the flexible wheel 132 meshed with the rigid wheel 131 to deform, thereby The motion and power are transmitted to realize the function of the harmonic reducer 130 .
  • the inventors have found through long-term research that the prior art usually uses an inner rotor frameless motor 110, and the motor 110 and the reducer 130 are connected in series in the axial direction. This arrangement limits the inner diameter of the hollow shaft 120, and the robot joint 100 The dimension in the axial direction is larger.
  • the motor 110 in the present application adopts the outer rotor motor 110, that is, the motor rotor 112 is rotated and arranged on the outside of the motor stator 111, the rigid wheel 131 of the reducer 130 is nested and arranged outside the motor 110, and the motor stator 111 positioned at the inside of the motor 110 directly It is fixedly connected with the hollow hollow shaft 120, and the hollow hollow shaft 120 and the rigid wheel 131 are fixedly arranged; the wave generator 133 of the reducer 130 is fixedly connected with the motor rotor 112, and outputs the motion of the motor rotor 112.
  • the inner hollow diameter of the hollow shaft 120 can be relatively enlarged to increase the heat dissipation area, which is beneficial to the heat dissipation of the motor 110 and the reducer 130 .
  • the hollow hollow shaft 120 and the motor stator 111 remain relatively stationary, which is beneficial to provide feedback accuracy, and facilitates the direct arrangement of cables in the hollow hollow shaft 120.
  • the output and fixed ends of the cables are relatively stationary, which can reduce the wear of the cables. Improve service life. Since the hollow shaft 120 with a large hollow aperture is applied for itself, fans and air ducts can also be placed to further improve heat dissipation efficiency.
  • the rigid wheel 131 of the reducer 130 is used to connect with one mechanical arm
  • the flexible wheel 132 of the reducer 130 is used to connect with another mechanical arm, so as to realize the relative movement between the two mechanical arms.
  • the hollow shaft 120 is not completely static, but relatively stationary with the rigid wheel 131 and the motor stator 111, and relatively rotates with the motor rotor 112, but the cables fixed in the hollow shaft 120 remain relatively stationary with the hollow shaft 120, Reduces wear and tear on cables.
  • the motor 110 and the reducer 130 are nested, compared with the prior art where the reducer 130 and the motor 110 are connected in series along the axis, the axial dimension of the robot joint 100 can be optimized and the cantilever of the encoder feedback can be reduced.
  • the size of the cantilever between the fixed end and the output end that is, the connection ends between the robot joint 100 and the two mechanical arms
  • the working force bias of the bearing is reduced
  • the positioning accuracy and positioning accuracy of the robot joint 100 are improved. Running stability.
  • the hollow hollow shaft 120 includes a central shaft end and an engaging segment 122 , the central shaft segment 121 is coaxially embedded in the motor stator 111 , and the engaging segment 122 connects the central shaft segment 121 and extends radially outward along the central axis section 121 , the connecting section 122 is used to connect with the rigid wheel 131 of the reducer 130 .
  • the hollow central shaft 120 can connect the motor stator 111 inside the motor 110 and the motor stator 111 nested outside the motor 110
  • the rigid wheel 131 is relatively fixed.
  • the hollow shaft 120 is fixed to the rigid wheel 131 of the speed reducer 130 through bolts.
  • the motor rotor 112 includes a rotor shaft 1121 and an output flange 1122 , the rotor shaft 1121 is rotatably nested outside the motor stator 111 , and the output flange 1122 is connected to the end of the rotor shaft 1121 end, and extend radially inwardly from the rotor shaft 1121 , for connecting to the wave generator 133 .
  • the output flange 1122 extends radially along the rotor shaft 1121 to facilitate connection with the wave generator 133 .
  • the wave generator 133 is disposed in the accommodation space between the connecting section 122 and the output flange 1122 , and is fixedly connected with the output flange 1122 . Since the wave generator 133 of the reducer 130 is arranged between the joint section 122 of the hollow shaft 120 and the output flange 1122 of the motor rotor 112, the overall radial size of the reducer 130 and the motor 110 is relatively small, and the robot joint 100 When the radial size of the whole machine is constant, the hollow aperture of the hollow shaft 120 can be relatively enlarged to further increase the heat dissipation area and improve the heat dissipation efficiency.
  • a first bearing 140 is arranged between the wave generator 133 and the hollow shaft 120 to carry the wave generator 133 and Relative rotation between hollow shafts 120 .
  • the first bearing 140 is disposed on the central shaft section 121 of the hollow hollow shaft 120 and the wave generator 133 .
  • the inner ring of the first bearing 140 is fixed on the hollow shaft 120, and the outer ring of the first bearing 140 is fixed on the wave generator 133.
  • the flex spline 132 includes an external tooth segment 1321 and a transmission segment 1322, the external tooth segment 1321 is arranged between the wave generator 133 and the rigid wheel 131, and the external tooth segment 1321 is used for Meshes with a rigid wheel 131 with matching internal teeth.
  • the transmission section 1322 is connected to the end of the outer tooth section 1321 and extends outward along the radial direction of the outer tooth section 1321 to output the transmission of the outer tooth section 1321 outward.
  • the robot joint 100 also includes a fixed frame 150 and a cross roller bearing 134 , wherein the fixed frame 150 is nested outside the rigid spline 131 and fixed to the transmission section 1322 of the flexible spline 132
  • the flexible spline 132 is fixed on the fixed frame 150 to output the transmission of the reducer 130 . Since the fixed frame 150 and the rigid wheel 131 rotate relatively, the cross roller bearing 134 is disposed between the fixed frame 150 and the rigid wheel 131 to support the relative rotation between the fixed frame 150 and the rigid wheel 131 .
  • the outer ring of the cross roller bearing 134 is fixed to the fixing frame 150
  • the inner ring of the cross roller bearing 134 is fixed to the rigid wheel 131 .
  • the cross roller bearing 134 is the main force bearing. Since the motor 110 and the reducer 130 are nested, the axial dimension of the robot joint 100 is relatively shortened, which can reduce the cantilever distance of the code feedback and reduce the working force of the cross roller bearing 134. The force offset improves the positioning accuracy and operation stability of the robot joint 100 as a whole.
  • the robot joint 100 also includes an electromagnetic brake 160 and a second bearing 170 , the electromagnetic brake 160 is relatively fixed to the transmission section 1322 of the flex spline 132 , and is sleeved on the outside of the motor rotor 112 , the electromagnetic brake 160 is used to brake the motor rotor 112 .
  • the second bearing 170 is disposed between the electromagnetic brake 160 and the motor rotor 112 to carry the relative rotation between the electromagnetic brake 160 and the motor rotor 112 . Since the axial dimension of the robot joint 100 of the present application is relatively shortened, the friction arm of the electromagnetic brake 160 is relatively enlarged, which can effectively reduce the demand for friction and further reduce the size of the magnetic coil.
  • the electromagnetic brake 160 and the fixing frame 150 are respectively arranged on two sides of the transmission section 1322 of the flexible spline 132 and fixed by the same bolt.
  • the motor 110 and the reducer 130 are nested, the components are arranged reasonably, the energy density of the robot components is high, the self-weight-to-load ratio of the entire robot joint 100 is effectively improved, and the eccentricity of the robot joint 100 after assembly is reduced. distance, and then optimize the rigidity of the robot joint 100 machine, improve the accuracy and load capacity of the running process, and optimize the indicators of the robot joint 100 machine.
  • the robot joint 100 includes a first encoder 181 and a second encoder 182 , the code disc of the first encoder 181 is fixed coaxially with the motor rotor 112 , and the second The second encoder 182 is coaxially fixed with the flexspline 132 , and the second encoder 182 is located outside the first encoder 181 . Therefore, the first encoder 181 is a high-speed shaft encoder, and the second encoder 182 is a low-speed shaft encoder to respectively detect the rotation of the motor rotor 112 and the flex spline 132 .
  • the arrangement direction of the first encoder 181 and the second encoder 182 is perpendicular to the axial direction of the motor 110, that is, the first encoder 181 and the second encoder 182 Coplanar setting, by setting the first encoder 181 and the second encoder 182 on the same plane, the feedback accuracy of the two encoders can be optimized, and the coaxiality of the feedback mode can be further ensured, and the accuracy of the installation of the robot joint 100 and the operation of the whole machine can be optimized. It has a large optimization effect, eliminates the thermal expansion difference of the subsequent temperature rise of the installation structure of different materials, and improves the stability of the code. Specifically, since the first encoder 181 and the second encoder 182 are coplanar, the reading heads of the first encoder 181 and the second encoder 182 can be integrated on the same PCB.
  • the robot joint 100 includes a motor 110 , a hollow shaft 120 and a reducer 130 .
  • the motor 110 includes a motor stator 111 and a motor rotor 112 rotatably disposed outside the motor stator 111 , and the hollow shaft 120 is fixedly embedded in the motor stator 111 .
  • the rigid wheel 131 of the reducer 130 is nested outside the motor 110 and is fixedly arranged on the hollow shaft 120 .
  • the first mechanical arm is relatively fixed to the rigid wheel 131
  • the second mechanical arm is relatively fixed to the flexible wheel 132 .
  • the first mechanical arm is relatively fixed with the motor stator 111 through the rigid wheel 131, and the motor rotor 112 and the motor stator 111 rotate relatively, and the motor rotor 112 transmits the rotation to the wave generator 133, and the wave generator 133 drives the flexible motor meshed with the rigid wheel 131.
  • the wheel 132 deforms, and the motion and power are transmitted to the second mechanical arm through the flexible spline 132 .
  • the inventors have found through long-term research that the prior art usually uses an inner rotor frameless motor 110, and the motor 110 and the reducer 130 are connected in series in the axial direction. This arrangement limits the inner diameter of the hollow shaft 120, and the robot joint 100 The dimension in the axial direction is larger.
  • the motor 110 in the present application adopts the outer rotor motor 110, that is, the motor rotor 112 is rotated and arranged on the outside of the motor stator 111, the rigid wheel 131 of the reducer 130 is nested and arranged outside the motor 110, and the motor stator 111 positioned at the inside of the motor 110 directly It is fixedly connected with the hollow hollow shaft 120, and the hollow hollow shaft 120 and the rigid wheel 131 are fixedly arranged; the wave generator 133 of the reducer 130 is fixedly connected with the motor rotor 112, and outputs the motion of the motor rotor 112.
  • the inner hollow diameter of the hollow shaft 120 can be relatively enlarged to increase the heat dissipation area, which is beneficial to the heat dissipation of the motor 110 and the reducer 130 .
  • the hollow hollow shaft 120 and the motor stator 111 remain relatively stationary, which is beneficial to provide feedback accuracy, and facilitates the direct arrangement of cables in the hollow hollow shaft 120.
  • the output and fixed ends of the cables are relatively stationary, which can reduce the wear of the cables. Improve service life. Since the hollow shaft 120 with a large hollow aperture is applied for itself, fans and air ducts can also be placed to further improve heat dissipation efficiency.
  • the rigid wheel 131 of the reducer 130 is used to connect with one mechanical arm
  • the flexible wheel 132 of the reducer 130 is used to connect with another mechanical arm, so as to realize the relative movement between the two mechanical arms.
  • the hollow shaft 120 is not completely static, but relatively stationary with the rigid wheel 131 and the motor stator 111, and relatively rotates with the motor rotor 112, but the cables fixed in the hollow shaft 120 remain relatively stationary with the hollow shaft 120, Reduces wear and tear on cables.
  • the motor 110 and the reducer 130 are nested, compared with the prior art where the reducer 130 and the motor 110 are connected in series along the axis, the axial dimension of the robot joint 100 can be optimized and the cantilever of the encoder feedback can be reduced.
  • the size of the cantilever between the fixed end and the output end that is, the connection ends between the robot joint 100 and the two mechanical arms
  • the working force bias of the bearing is reduced
  • the positioning accuracy and positioning accuracy of the robot joint 100 are improved. Running stability.
  • first”, “second”, and “third” in this application are used for description purposes only, and should not be understood as specifying the number of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly. Furthermore, the terms “include” and “have”, as well as any variations thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, system, product, or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes For other steps or units inherent in these processes, methods, products or apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

机器人关节(100)及机器人,其中,机器人关节(100)包括:电机(110),包括电机定子(111)和转动设置于电机定子(111)外侧的电机转子(112);中空中轴(120),固定嵌设于电机定子(111)内;减速机(130),减速机(130)的刚轮(131)嵌套设置于电机(110)外部,且固定设置于中空中轴(120),减速机(130)的波发生器(133)固定设置于电机转子(112),以传动至减速机(130)的柔轮(132)。

Description

机器人关节及机器人
本申请要求于2021年12月31日提交的申请号为2021116834889,发明名称为“机器人关节及机器人”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请属于驱动设备技术领域,具体涉及机器人关节及机器人。
【背景技术】
在协助轻便机器人需求下,谐波减速机技术广泛应用,由谐波减速机,无框力矩电机,保持抱闸,双编码器反馈组成的机器人关节模组成为众多机器人设计的主要发展和奋斗目标。现有技术中机器人关节模组中中空中轴孔径小,不利于电机和减速机的散热,也不利于线缆排布。
【发明内容】
本申请提供机器人关节及机器人,以解决机器人关节的中空中轴孔径小,不利于散热和线缆排布的技术问题。
为解决上述技术问题,本申请采用的一个技术方案是:一种机器人关节,包括:电机,包括电机定子和转动设置于所述电机定子外侧的电机转子;中空中轴,固定嵌设于所述电机定子内;减速机,所述减速机的刚轮嵌套设置于所述电机外部,且固定设置于所述中空中轴,所述减速机的波发生器固定设置于所述电机转子,以传动至所述减速机的柔轮。
根据本申请一实施方式,所述中空中轴包括:中轴段,嵌套固定于所述电机定子内;衔接段,连接于所述中轴段的端部,且沿所述中轴段的径向向外延伸,所述衔接段连接所述刚轮。
根据本申请一实施方式,所述电机转子包括:转子轴,转动嵌套于所述电机定子外侧;输出法兰,连接于所述转子轴的端部,且沿所述转子轴的径向向内延伸,所述输出法兰用于连接所述波发生器。
根据本申请一实施方式,所述波发生器设置于所述衔接段和所述输出法兰之间。
根据本申请一实施方式,包括:第一轴承,设置于所述波发生器和所述中空中轴之间。
根据本申请一实施方式,所述柔轮包括:外齿段,设置于所述波发生器和所述刚轮之间;传动段,连接于所述外齿段的端部,且沿所述外齿段的径向向外延伸。
根据本申请一实施方式,包括:固定架,嵌套设置于所述刚轮外侧,且与所述传动段固定连接;交叉辊子轴承,设置于所述固定架和所述刚轮之间。
根据本申请一实施方式,包括:电磁抱闸,与所述传动段相对固定,且套设于所述电机转子外侧;第二轴承,设置于所述电磁抱闸和所述电机转子之间。
根据本申请一实施方式,包括:第一编码器,与所述电机转子同轴固定;第二编码器,位于所述第一编码器外侧,与所述柔轮同轴固定。
根据本申请一实施方式,所述第一编码器和所述第二编码器的排列方向与所述电机的轴线方向垂直。
为解决上述技术问题,本申请采用的又一个技术方案是:一种机器人,包括上述的机器人关节。
本申请的有益效果是:通过采用外转子电机,并采用将减速机与电机嵌套设置的方式,中空中轴的内部中空孔径可相对扩大,增大散热面积,有利于电机和减速机的散热。并且,中空中轴与电机定子保持相对静止,有利于提供反馈精度,便于中空中轴内直接排布线缆,线缆的输出和固定端相对静止,可减小线缆的磨损,提高使用寿命。由于本身申请采用大中空孔径中空中轴,还可以安置风扇和风道,进一步提高散热效率。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请的机器人关节一实施例的立体剖面结构示意图;
图2是本申请的机器人关节的电机一实施例的立体剖面结构示意图;
图3是本申请的机器人关节一实施例的剖面结构示意图;
图4是本申请的机器人关节一实施例的爆炸结构示意图。
图中:100、机器人关节;110、电机;111、电机定子;112;电机转子;1121、转子轴;1122、输出法兰;120、中空中轴;121、中轴段;122、衔接段;130、减速机;131、刚轮;132、柔轮;1321、外齿段;1322、传动段;133、波发生器;134、交叉辊子轴承;140、第一轴承;150、固定架;160、电磁抱闸;170、第二轴承;181、第一编码器;182、第二编码器。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1至图4,图1是本申请的机器人关节一实施例的立体剖面结构示意图;图2是本申请的机器人关节的电机一实施例的立体剖面结构示意图;图3是本申请的机器人关节一实施例的剖面结构示意图;图4是本申请的机器人关节一实施例的爆炸结构示意图。
本申请一实施例提供了一种机器人关节100,如图1至图4所示,包括电机110、中空中轴120和减速机130。电机110包括电机定子111和转动设置于电机定子111外侧的电机转子112,中空中轴120固定嵌设于电机定子111内。减速机130的刚轮131嵌套于电机110外部,且固定设置于中空中轴120,减速机130的波发生器133固定设置于电机转子112,以传动至减速机130的柔轮132。电机转子112和电机定子111相对转动,电机转子112将转动传递至波发生器133上,刚轮131与电机定子111相对固定,波发生器133带动与刚轮131啮合的柔轮132变形,从而传递运动和动力,实现谐波减速机130的作用。
经本发明人长期研究发现,现有技术通常采用内转子无框电机110,电机110与减速机130在轴线方向上串联,此种排布方式限制了中空中轴120的内径,且机器人关节100轴线方向的尺寸较大。
由于本申请中电机110是采用外转子电机110,即电机转子112转动设置于电机定子111的外侧,减速机130的刚轮131嵌套设置于电机110外部,位于电机110内侧的电机定子111直接与中空中轴120固定连接,中空中轴120与刚轮131固定设置;减速机130的波发生器133与电机转子112固定连接,将电机转子112的运动输出。通过采用外转子电机110,并采用将减速机130与电机110嵌套设置的方式,中空中轴120的内部中空孔径可相对扩大,增大散热面积,有利于电机110和减速机130的散热。并且,中空中轴120与电机定子111保持相对静止,有利于提供反馈精度,便于中空中轴120内直接排布线缆,线缆的输出和固定端相对静止,可减小线缆的磨损,提高使用寿命。由于本身申请采用大中空孔径中空中轴120,还可以安置风扇和风道,进一步提高散热效率。
需要说明的是,减速机130的刚轮131用于与一个机械臂连接,减速机130的柔轮132用于与另一个机械臂连接,实现两个机械臂之间的相对运动。中空中轴120并非是完全静态,而是与刚轮131和电机定子111相对静止,并与电机转子112相对转动,但固定于中空中轴120内的线缆与中空中轴120保持相对静止,可减少线缆的磨损。
除此之外,由于电机110与减速机130嵌套设置,相较于现有技术中减速机130与电机110沿轴线方向串联,可优化机器人关节100的轴向尺寸,减小编码反馈的悬臂距离,同时减小固定端与输出端(即机器人关节100分别与两个机械臂的连接端)的悬臂尺寸,减小轴承的工作受力偏置,提高了机器人关节100整机的定位精度和运行稳定性。
以下将进一步说明减速机130和电机110的嵌套方式:
在一些实施例中,如图1和图3所示,中空中轴120包括中轴端和衔接段122,中轴段121同轴嵌设于电机定子111内,衔接段122连接中轴段121的端部,且沿中轴段121的径向向外延伸,衔接段122用于与减速机130的刚轮131连接。通过设置中轴段121与电机定子111嵌套固定,设置衔接段122与减速机130的刚轮131固定,中空中轴120可以将位于电机110内部的电机定子111和嵌套在电机110外部的刚轮131相对固定。具体地,中空中轴120通过螺栓与减速机130的刚轮131固定。
在一些实施例中,如图1和图3所示,电机转子112包括转子轴1121和输出法兰1122,转子轴1121转动嵌套于电机定子111外侧,输出法兰1122连接于转子轴1121的端部,且与转子轴1121的径向向内延伸,用于连接波发生器133。通过将转子轴1121设置为转子轴1121和输出法兰1122,输出法兰1122沿转子轴1121径向延伸,便于与波发生器133连接。
进一步地,波发生器133设置于衔接段122和输出法兰1122之间的容置空间内,且与输出法兰1122固定连接。由于减速机130的波发生器133设置在中空中轴120的衔接段122和电机转子112的输出法兰1122之间,减速机130和电机110的整体径向尺寸相对较小,在机器人关节100整机径向尺寸的一定的情况下,中空中轴120的中空孔径可相对扩大,进一步增大散热面积,提高散热效率。
由于波发生器133靠近中空中轴120设置,且波发生器133与中空中轴120相对转动,从而波发生器133和中空中轴120之间设置第一轴承140,以承载波发生器133和中空中轴120之间的相对转动。优选地,第一轴承140设置于中空中轴120的中轴段121和波发生器133上。具体地,第一轴承140的内圈固定于中空中轴120,第一轴承140的外圈固定于波发 生器133。
在一些实施例中,如图1和图3所示,柔轮132包括外齿段1321和传动段1322,外齿段1321设置于波发生器133和刚轮131之间,外齿段1321用于与具有相匹配内齿的刚轮131啮合。传动段1322连接于外齿段1321的端部,且沿外齿段1321的径向向外延伸,以将外齿段1321的传动向外输出。
进一步地,如图1和图3所示,机器人关节100还包括固定架150和交叉辊子轴承134,其中,固定架150嵌套设置于刚轮131外侧,并与柔轮132的传动段1322固定连接,柔轮132通过于固定架150固定,以将减速机130的传动输出。由于固定架150与刚轮131相对转动,交叉辊子轴承134设置于固定架150和刚轮131之间,以承载固定架150和刚轮131之间的相对转动。具体地,交叉辊子轴承134的外圈与固定架150固定,交叉辊子轴承134的内圈与刚轮131固定。交叉辊子轴承134即为主受力轴承,由于电机110与减速机130嵌套设置,机器人关节100的轴向尺寸相对缩短,可减小编码反馈的悬臂距离,减小交叉辊子轴承134的工作受力偏置,提高了机器人关节100整机的定位精度和运行稳定性。
进一步地,如图1和图3所示,机器人关节100还包括电磁抱闸160和第二轴承170,电磁抱闸160与柔轮132的传动段1322相对固定,且套设于电机转子112外侧,电磁抱闸160用于实现电机转子112的制动。第二轴承170设置于电磁抱闸160和电机转子112之间,以承载电磁抱闸160和电机转子112之间的相对转动。由于本申请的机器人关节100轴向尺寸相对缩短,电磁抱闸160制动的摩擦力臂相对加大,可以有效降低摩擦的需求,进而减小磁吸线圈的尺寸。具体地,电磁抱闸160和固定架150分别设置于柔轮132传动段1322的两侧,并通过同一螺栓固定。
通过上述结构所知,电机110与减速机130嵌套设置,各元件设置合理,机器人元件的能量密度高,有效提高整个机器人关节100的自重负载比,减小装配后机器人关节100整机的偏心距,进而优化机器人关节100整机的刚性,提高运行过程的精度和带负载能力,优化机器人关节100整机的指标。
在一些实施例中,如图1、图3和图4所示,机器人关节100包括第一编码器181和第二编码器182,第一编码器181码盘与电机转子112同轴固定,第二编码器182与柔轮132同轴固定,第二编码器182位于第一编码器181外侧。从而,第一编码器181为高速轴编码器,第二编码器182为低速轴编码器,以分别检测电机转子112和柔轮132的转动。
进一步地,如图1、图3和图4所示,第一编码器181和第二编码器182的排列方向与电机110的轴向方向垂直,即第一编码器181和第二编码器182共面设置,通过将第一编码器181和第二编码器182共面设置,可优化两个编码器反馈精度,进一步保证反馈方式的同轴,对机器人关节100的安装和整机运行的精度有较大的优化效果,消除后续温升不同材质的安装结构的热涨差,提高了编码的使用稳定性。具体地,由于第一编码器181和第二编码器182共面设置,第一编码器181和第二编码器182的读数头可集成于同一块PCB板上。
本申请又一实施例提供了一种机器人(图中未示出),包括上述任一实施例中的机器人关节100。具体地,机器人还包括第一机械臂和第二机械臂。机器人关节100包括电机110、中空中轴120和减速机130。电机110包括电机定子111和转动设置于电机定子111外侧的电机转子112,中空中轴120固定嵌设于电机定子111内。减速机130的刚轮131嵌套于电机110外部,且固定设置于中空中轴120,减速机130的波发生器133固定设置于电机转子112,以 传动至减速机130的柔轮132。其中,第一机械臂和刚轮131相对固定,第二机械臂与柔轮132相对固定。第一机械臂通过刚轮131与电机定子111相对固定,电机转子112和电机定子111相对转动,电机转子112将转动传递至波发生器133上,波发生器133带动与刚轮131啮合的柔轮132变形,通过柔轮132传递运动和动力至第二机械臂。
经本发明人长期研究发现,现有技术通常采用内转子无框电机110,电机110与减速机130在轴线方向上串联,此种排布方式限制了中空中轴120的内径,且机器人关节100轴线方向的尺寸较大。
由于本申请中电机110是采用外转子电机110,即电机转子112转动设置于电机定子111的外侧,减速机130的刚轮131嵌套设置于电机110外部,位于电机110内侧的电机定子111直接与中空中轴120固定连接,中空中轴120与刚轮131固定设置;减速机130的波发生器133与电机转子112固定连接,将电机转子112的运动输出。通过采用外转子电机110,并采用将减速机130与电机110嵌套设置的方式,中空中轴120的内部中空孔径可相对扩大,增大散热面积,有利于电机110和减速机130的散热。并且,中空中轴120与电机定子111保持相对静止,有利于提供反馈精度,便于中空中轴120内直接排布线缆,线缆的输出和固定端相对静止,可减小线缆的磨损,提高使用寿命。由于本身申请采用大中空孔径中空中轴120,还可以安置风扇和风道,进一步提高散热效率。
需要说明的是,减速机130的刚轮131用于与一个机械臂连接,减速机130的柔轮132用于与另一个机械臂连接,实现两个机械臂之间的相对运动。中空中轴120并非是完全静态,而是与刚轮131和电机定子111相对静止,并与电机转子112相对转动,但固定于中空中轴120内的线缆与中空中轴120保持相对静止,可减少线缆的磨损。
除此之外,由于电机110与减速机130嵌套设置,相较于现有技术中减速机130与电机110沿轴线方向串联,可优化机器人关节100的轴向尺寸,减小编码反馈的悬臂距离,同时减小固定端与输出端(即机器人关节100分别与两个机械臂的连接端)的悬臂尺寸,减小轴承的工作受力偏置,提高了机器人关节100整机的定位精度和运行稳定性。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种机器人关节,其特征在于,包括:
    电机,包括电机定子和转动设置于所述电机定子外侧的电机转子;
    中空中轴,固定嵌设于所述电机定子内;
    减速机,所述减速机的刚轮嵌套设置于所述电机外部,且固定设置于所述中空中轴,所述减速机的波发生器固定设置于所述电机转子,以传动至所述减速机的柔轮。
  2. 根据权利要求1所述的关节,其特征在于,所述中空中轴包括:
    中轴段,嵌套固定于所述电机定子内;
    衔接段,连接于所述中轴段的端部,且沿所述中轴段的径向向外延伸,所述衔接段连接所述刚轮。
  3. 根据权利要求2所述的关节,其特征在于,所述电机转子包括:
    转子轴,转动嵌套于所述电机定子外侧;
    输出法兰,连接于所述转子轴的端部,且沿所述转子轴的径向向内延伸,所述输出法兰用于连接所述波发生器。
  4. 根据权利要求3所述的关节,其特征在于,所述波发生器设置于所述衔接段和所述输出法兰之间。
  5. 根据权利要求1所述的关节,其特征在于,包括:
    第一轴承,设置于所述波发生器和所述中空中轴之间。
  6. 根据权利要求1所述的关节,其特征在于,所述柔轮包括:
    外齿段,设置于所述波发生器和所述刚轮之间;
    传动段,连接于所述外齿段的端部,且沿所述外齿段的径向向外延伸。
  7. 根据权利要求6所述的关节,其特征在于,包括:
    固定架,嵌套设置于所述刚轮外侧,且与所述传动段固定连接;
    交叉辊子轴承,设置于所述固定架和所述刚轮之间。
  8. 根据权利要求6所述的关节,其特征在于,包括:
    电磁抱闸,与所述传动段相对固定,且套设于所述电机转子外侧;
    第二轴承,设置于所述电磁抱闸和所述电机转子之间。
  9. 根据权利要求1所述的关节,其特征在于,包括:
    第一编码器,与所述电机转子同轴固定;
    第二编码器,位于所述第一编码器外侧,与所述柔轮同轴固定。
  10. 根据权利要求9所述的关节,其特征在于,所述第一编码器和所述第二编码器的排列方向与所述电机的轴线方向垂直。
  11. 一种机器人,其特征在于,包括权利要求1-10中任一项所述的机器人关节。
PCT/CN2022/135609 2021-12-31 2022-11-30 机器人关节及机器人 WO2023124730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111683488.9A CN116408828A (zh) 2021-12-31 2021-12-31 机器人关节及机器人
CN202111683488.9 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124730A1 true WO2023124730A1 (zh) 2023-07-06

Family

ID=86997571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135609 WO2023124730A1 (zh) 2021-12-31 2022-11-30 机器人关节及机器人

Country Status (2)

Country Link
CN (1) CN116408828A (zh)
WO (1) WO2023124730A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288870A (ja) * 2006-04-13 2007-11-01 Yaskawa Electric Corp 中空アクチュエータ
CN105322713A (zh) * 2014-07-24 2016-02-10 日本电产新宝株式会社 带电动机的减速机
CN207364221U (zh) * 2017-11-01 2018-05-15 深圳市山卓谐波传动科技有限公司 一种谐波减速器
CN110537037A (zh) * 2017-04-20 2019-12-03 日本电产新宝株式会社 谐波齿轮减速机单元以及具备所述单元的动力单元
CN113172655A (zh) * 2021-05-10 2021-07-27 福德机器人(成都)有限责任公司 一种一体化关节装置及其七轴机器人
CN113246112A (zh) * 2021-02-03 2021-08-13 杭州新剑机器人技术股份有限公司 高集成度一体式执行器装置及包含其的机器人关节

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288870A (ja) * 2006-04-13 2007-11-01 Yaskawa Electric Corp 中空アクチュエータ
CN105322713A (zh) * 2014-07-24 2016-02-10 日本电产新宝株式会社 带电动机的减速机
CN110537037A (zh) * 2017-04-20 2019-12-03 日本电产新宝株式会社 谐波齿轮减速机单元以及具备所述单元的动力单元
CN207364221U (zh) * 2017-11-01 2018-05-15 深圳市山卓谐波传动科技有限公司 一种谐波减速器
CN113246112A (zh) * 2021-02-03 2021-08-13 杭州新剑机器人技术股份有限公司 高集成度一体式执行器装置及包含其的机器人关节
CN113172655A (zh) * 2021-05-10 2021-07-27 福德机器人(成都)有限责任公司 一种一体化关节装置及其七轴机器人

Also Published As

Publication number Publication date
CN116408828A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP2007269129A (ja) インホイールモータ車のホイール回転装置
CN110774277A (zh) 蛇形臂三自由度手腕关节及运动方法
CN111409097B (zh) 一种机器人用紧凑型关节驱动装置
EP4190609A1 (en) Electric drive assembly for electric vehicle, and electric vehicle
CN113977625A (zh) 一种集成双减速器控制于一体的电动关节模组
WO2023124730A1 (zh) 机器人关节及机器人
CN110861120B (zh) 基于双定子无框力矩电机的驱动关节及其应用
WO2023116766A1 (zh) 用于转动关节的传动机构
CN211761645U (zh) 一种模块化机器人的关节及其扭矩传感器固定结构
US11938627B2 (en) Robot joint and robot
CN219788393U (zh) 机器人关节及机器人
KR100884274B1 (ko) 모듈형 로봇 구동부의 사용이 편리한 결합구조
CN111085985A (zh) 一种桌面级六轴协作机器人
CN216940766U (zh) 机器人关节及机器人
CN216682261U (zh) 模块化关节及机器人系统
JP2012097730A (ja) 流体発電装置
CN212155697U (zh) 一种谐波减速器及驱动器
CN211415236U (zh) 基于双定子无框力矩电机的驱动关节及工业机器人
CN211220700U (zh) 蛇形臂三自由度手腕关节
CN211709355U (zh) 一种双向输出仿人机器人用臂部一体化关节
CN216884036U (zh) 一种超扁平机器人关节模组
CN109623870B (zh) 一种矢量控制旋转关节
WO2023108528A1 (zh) 减速器、减速传动系统及包括减速传动系统的机器人关节和机器人
CN112104149A (zh) 一种双足机器人模块化关节
CN218488404U (zh) 一种动力关节及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913985

Country of ref document: EP

Kind code of ref document: A1