WO2021014896A1 - 低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法 - Google Patents

低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法 Download PDF

Info

Publication number
WO2021014896A1
WO2021014896A1 PCT/JP2020/025501 JP2020025501W WO2021014896A1 WO 2021014896 A1 WO2021014896 A1 WO 2021014896A1 JP 2020025501 W JP2020025501 W JP 2020025501W WO 2021014896 A1 WO2021014896 A1 WO 2021014896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
carbon nanotubes
defects
cnts
separation
Prior art date
Application number
PCT/JP2020/025501
Other languages
English (en)
French (fr)
Inventor
片浦 弘道
真由美 都築
丈士 田中
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2021014896A1 publication Critical patent/WO2021014896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents

Definitions

  • the present invention relates to a method of separating and recovering raw carbon nanotubes into carbon nanotubes having few defects and carbon nanotubes having many defects, and carbon nanotubes having few defects obtained by the method.
  • the present invention also relates to a method for estimating and evaluating the concentration of defects contained in raw carbon nanotubes using the separation results obtained by the above method.
  • Carbon nanotubes are excellent in optical properties, electrical conductivity properties, thermal conductivity properties, mechanical strength, etc., and are being researched and developed as a new material with a wide range of uses.
  • CNTs have different electrical properties depending on the structure and can be either metals or semiconductors (Non-Patent Document 1). By separating them (Patent Document 1), the metal mold is thinned into a conductive film and becomes a semiconductor mold. Is being researched for applications in transistors and integrated circuits.
  • CNT synthesis methods include the arc discharge method, which synthesizes carbon by evaporating it by discharging it between graphite electrodes, and the metal fine particle catalyst in an electric furnace using organic molecules such as methane and alcohol and carbon monoxide as raw materials.
  • arc discharge method which synthesizes carbon by evaporating it by discharging it between graphite electrodes, and the metal fine particle catalyst in an electric furnace using organic molecules such as methane and alcohol and carbon monoxide as raw materials.
  • organic molecules such as methane and alcohol and carbon monoxide as raw materials.
  • Non-Patent Document 2 Non-Patent Document 2
  • the CNTs synthesized by either method contain defects on the surface.
  • the intensity of the optically active mode called the G band observed near the frequency of 1590 cm -1 and the frequency of the frequency changed around 1300 cm -1 depending on the wavelength of the excitation laser light are observed.
  • the ratio with the intensity of the vibration mode derived from the defect called the band is called the G / D ratio, and by comparing the magnitude of the ratio, it is used as a guideline for how many defects are introduced (Non-Patent Document 3). Since the D band is always observed when Raman scattering of CNTs is measured, it can be seen that the CNTs produced by any synthetic method contain defects.
  • the CNT aggregate immediately after synthesis contains the catalyst metal used for synthesis, the carbon film surrounding it, the fragments of CNT that were not synthesized well, graphite, amorphous carbon, and the like. By removing these impurities, it has been possible to improve the purity of CNTs and relatively improve G / D.
  • a method of removing CNT aggregates by heating them in a gas containing oxygen to preferentially oxidatively burn amorphous carbon, which is considered to contain a relatively large number of defects, and converting it into carbon dioxide gas.
  • Non-Patent Document 8 There is also a method of oxidizing CNTs dispersed in a solvent using an oxidizing agent.
  • the resulting purified CNT aggregate has improved G / D compared to before purification.
  • the CNTs to be purified are also oxidized at the same time, so if only the CNTs are focused on, the defect concentration will be higher than that before the oxidation treatment.
  • a dispersant such as a surfactant is used to irradiate the CNTs with ultrasonic waves in water or an organic solvent to disperse the CNTs, and the dispersion is applied to a centrifuge or an ultracentrifuge to increase the sedimentation rate.
  • the supernatant obtained by this method has an improved G / D ratio as compared with that before centrifugation, indicating that the CNTs have been purified.
  • the above-mentioned method that combines ultrasonic dispersion and centrifugation is further developed, and a method called density gradient ultracentrifugation method is used to separate by the difference in effective density by applying ultracentrifugation in a solvent with a density gradient. There is. Even with this method, CNTs can be purified due to the difference in effective densities of CNTs and impurities.
  • the present invention has been made in view of the above circumstances, and is a method of separating and recovering raw CNTs into CNTs having few defects and CNTs having many defects, and CNTs having few defects obtained by the method.
  • the purpose is to provide. Furthermore, it is an object of further, by quantitatively analyzing the separation result, the proportion of CNTs having few defects contained in the raw material CNTs is investigated, and the evaluation of the defect concentration of the raw material CNTs is realized. ..
  • the present inventors dispersed the raw material CNT aggregate in water with a surfactant and allowed it to act with hydrogel particles containing a hydrophobic group to obtain a CNT containing many defects. It was found that the CNT with few defects remained in the solution without being adsorbed on the hydrogel particles, whereas it was adsorbed on the hydrogel particles.
  • the adsorbed CNTs can be collected by flowing out from the hydrogel particles by allowing an aqueous solution in which the type and concentration of the surfactant are adjusted to act, and as a result, the raw material CNT dispersion liquid is collected from the raw material CNT dispersion liquid.
  • This separation method utilizes the fact that the defective portion of the CNT side wall having a hydrophobic property becomes locally hydrophilic, and therefore the type of surfactant is basically limited. There is no. In CNTs dispersed in water, carboxyl groups and the like are naturally formed in defective portions such as atomic vacancies, so that the hydrophilicity is higher than that in the defective portions. When a surfactant is added, the surfactant is adsorbed on the CNT surface so as to reduce the hydrophobic surface of the CNT by hydrophobic interaction, but since it is hydrophilic around the defect, even if the surfactant is adsorbed. Since the free energy does not decrease, the number of adsorbed surfactant molecules decreases.
  • the number of surfactant molecules adsorbed on a CNT having many defects and a narrow hydrophobic surface is smaller than that of a surfactant molecule adsorbing on a CNT having few defects and a wide hydrophobic surface. If the coverage of the surfactant is low, it will be adsorbed on the hydrophobic group of the hydrogel, so that CNTs with many defects will be adsorbed on the hydrogel. This is the principle of the present invention. Therefore, when the concentration of the surfactant to be added is lowered, the coverage of the surfactant on the surface of the CNT is lowered as a whole, so that the amount of CNTs adsorbed increases and the number of CNTs not adsorbed decreases.
  • the defect concentration of the non-adsorbed CNT becomes lower as the concentration of the surfactant is lower, that is, a CNT with a lower defect can be obtained.
  • the present invention has been made based on such novel findings. That is, according to this application, the following invention is provided.
  • the carbon nanotubes having many defects contained in the dispersion liquid are selectively adsorbed on the hydrogel, and adsorption.
  • a method for separating and recovering carbon nanotubes having fewer defects than raw carbon nanotubes which comprises recovering carbon nanotubes having few defects remaining in the aqueous solution without using them.
  • the concentration of the surfactant By lowering the concentration of the surfactant, the amount of carbon nanotubes having many defects adsorbed on the hydrogel is increased, and only carbon nanotubes having less defects are left in the aqueous solution to recover them.
  • ⁇ 3> A carbon nanotube having fewer defects than a raw carbon nanotube obtained by the separation and recovery method according to ⁇ 1> or ⁇ 2>.
  • ⁇ 4> By allowing the raw material carbon nanotubes dispersed in water using a surfactant to act on the hydrogel, the carbon nanotubes having many defects contained in the dispersion liquid can be selectively adsorbed on the hydrogel, and the above.
  • Defects in raw carbon nanotubes including the recovery of carbon nanotubes with many defects adsorbed on the hydrogel, which are eluted and recovered in the solution by reacting the hydrogel with an aqueous surfactant solution of a type and concentration different from that at the time of adsorption.
  • a method for separating and recovering carbon nanotubes which are often used.
  • ⁇ 5> A carbon nanotube having many defects in the raw material carbon nanotubes obtained by the separation and recovery method according to ⁇ 4>.
  • the amount ratio of the carbon nanotubes having fewer defects than the raw carbon nanotubes described in ⁇ 6> and ⁇ 3> to the carbon nanotubes having many defects in the raw carbon nanotubes described in ⁇ 5> is determined by the raw carbon nanotubes before separation.
  • a method for evaluating the defect concentration of carbon nanotubes which comprises estimating and evaluating the concentration of defects contained in the raw material carbon nanotubes by deriving a plurality of the dispersion treatment times of carbon nanotubes.
  • CNTs with few defects and CNTs with many defects can be obtained. It becomes possible to separate. In CNTs with few defects, electron scattering and lattice vibration scattering due to defects are reduced. Therefore, CNTs with high electron and hole mobility and high thermal conductivity due to lattice vibration should be selected and sorted. Is possible.
  • a metal type or a semiconductor type By further separating and purifying the CNT obtained by this separation method with a metal type or a semiconductor type, a high-speed operation transistor having high mobility, an integrated circuit in which the CNT is integrated, a conductive thin film having low resistance, and the like can be realized.
  • This defect concentration evaluation method enables quality evaluation of CNTs that does not depend on the synthesis method or diameter distribution, which was not possible with the evaluation method using Raman scattering.
  • Example 1 the chromatogram showing the fractionated result (vertical axis left) and the G / D ratio in the Raman spectrum of each fraction (vertical axis right) symbols R, S, and T indicate representative fractions.
  • Raman scattering spectrum of fractions R, S, T and unseparated CNT dispersion P of Example 1 Chromatogram showing the results of fractionation with a 0.25% SC aqueous solution of Example 2. Chromatogram showing the results of fractionation with 0.5% SC aqueous solution of Example 2.
  • the CNT dispersion obtained by dispersing CNTs in an aqueous surfactant solution is allowed to act with the hydrogel to selectively convert the CNTs contained in the CNT dispersion into a hydrogel having a stationary phase. It is characterized in that CNTs with few defects are separated and recovered by adsorbing and fixing them and leaving CNTs with few defects in an aqueous solution which is a fluid phase.
  • the separation principle is described below.
  • the CNT side wall is hydrophobic, and the surfactant is adsorbed on the side wall by the hydrophobic interaction to be stably dispersed in water.
  • hydrophilic groups such as carboxyl groups are naturally formed and become locally hydrophilic. Since the hydrophobic interaction does not work effectively on the hydrophilic surface and the surfactant is not adsorbed, the amount of the surfactant adsorbed on the CNT side wall in the vicinity of the defect is reduced. Therefore, the amount of the surfactant adsorbed on the CNTs having many defects is smaller than the amount of the surfactant adsorbed on the CNTs having few defects.
  • the CNT When the amount of the surfactant adsorbed on the surface of the CNT is small, the CNT is adsorbed on the hydrogel, so that the CNTs having many defects and a small amount of the surfactant adsorbed are selectively adsorbed on the hydrogel. Since the present invention is based on such a principle, there is no limitation on the type of surfactant used.
  • the CNTs with few defects are not adsorbed on the hydrogel and remain dispersed in the aqueous solution. Therefore, the CNTs with few defects are separated by collecting them, but the CNTs dispersed in the solution are recovered. Chromatography may be used, or another method may be used. There are no restrictions on the collection method.
  • the solvent may be water, an organic solvent containing water, or any liquid that causes hydrophobic interaction.
  • the hydrogel needs to contain a hydrophobic group to which the hydrophobic surface of CNT is adsorbed, and any hydrogel that satisfies the condition can be a dextran-based gel, an agarose-based gel, or another gel. But there is no limit. By selecting a surfactant that is compatible with the CNT to be separated and the hydrogel used, it is possible to separate and purify the CNT according to the difference in defect concentration.
  • the present invention separates by the difference in the defect concentration on the surface of the CNT, the internal structure and components of the CNT are not affected in principle. That is, the CNTs to be separated are not limited in terms of manufacturing method, shape (diameter and length), structure (single layer, two layers, three layers, multiple layers), etc., and all of them should be the objects of separation of the present invention. Can be done.
  • the CNTs do not necessarily have to be dispersed one by one. Even if a plurality of CNTs are bundled and dispersed in a solvent, they can be separated by the average defect concentration on the surface of the bundle. However, some CNTs exhibit metallic properties and some exhibit semiconducting properties depending on the structure of the atomic arrangement, and since these are mixed and synthesized into bundles of several to several hundreds, they are applied to electronic devices. In this case, it is desirable that the CNTs are isolated and dispersed in the solution in order to separate the metal type and the semiconductor type.
  • the mixture of CNTs is added to the aqueous solution of the surfactant, and the CNTs are dispersed by sufficiently performing ultrasonic treatment.
  • the liquid subjected to this dispersion treatment includes isolated and dispersed CNTs, CNTs that cannot be isolated and remain bundled, amorphous carbon that is a synthetic by-product, and a metal catalyst.
  • the bundled CNTs, amorphous carbon, and metal catalyst are first precipitated due to the difference in sedimentation rate, and the isolated and dispersed CNTs are recovered as a supernatant.
  • the obtained supernatant becomes a sample used for separating CNTs.
  • Water is most preferable as the solvent used for preparing the CNT dispersion liquid. From this point, water is used to prepare the CNT dispersion.
  • any surfactant can be used without limitation, but alkyl-sulfuric acid-based anionic surfactants are separated only by the defect concentration because there is a difference in the number of molecules adsorbed between the metal type and the semiconductor type. Not preferable as a surfactant. However, it can be used when it is desired to simultaneously separate the metal type and the semiconductor type and the separation due to the difference in the defect concentration. In order to efficiently disperse highly hydrophobic CNTs, a highly hydrophobic surfactant is desirable, and sodium cholic acid (SC) and various derivatives thereof are used. Cationic surfactants and amphoteric surfactants can also be used. These surfactants can be appropriately mixed and used. The concentration can be optimized according to the defect concentration of the CNT to be separated, the defect concentration to be separated, the type of surfactant used, and the type of hydrogel.
  • SC sodium cholic acid
  • Cationic surfactants and amphoteric surfactants can also be used. These surfactants can be appropriately mixed and used.
  • the hydrogel to be used is not limited as long as it has a hydrophobic group, but in order to emphasize the hydrophobic interaction, a hydrogel having no special interaction such as Coulomb interaction with the analyte is preferable. Since size exclusion chromatography uses a hydrogel that does not have an overt interaction with the analyte, the hydrogel used in size exclusion chromatography is a hydrogel based on the polysaccharide dextran (Cefacryl: allyl dextran). And N, N'-methylenebisacrylamide homopolymer, GE Healthcare), and agarose-based Sepharose and Superrose (GE Healthcare), which are also polysaccharides, are preferable.
  • a starch gel, an acrylamide gel, or the like may be used, or a mixture of these hydrogels, or a hydrogel composed of a mixture or compound of a component of these hydrogels or other substances.
  • the concentration of the gel is preferably, for example, 0.01% to 25% at the final concentration.
  • the separation of the present invention is not limited to the column method as long as it is a gel separation, and can be applied to the batch method.
  • a method of sending the solution to the column by gravity dropping of the solvent using an open column, a method of sending the solution to a closed column by a pump, or the like can be applied.
  • a pump it is also possible to use a large column to increase the flow rate and perform a large amount of processing. Automatic separation using a chromatography device is also possible.
  • the ratio of the intensity of the G band to the intensity of the D band in the Raman scattering spectrum is calculated and used as a criterion for determining whether the defect concentration is high or low.
  • the G band is a vibration mode in the two-dimensional plane that is commonly observed in carbon materials having a two-dimensional covalent bond network with carbon sp2 hybrid orbitals, and is usually observed near 1590 cm -1, but CNT. Since it has a curvature, it is known that its frequency changes slightly depending on the diameter.
  • the D-band is a mode of Raman scattering resulting from defects and is not observed in single crystal graphite with very few defects. Taking these ratios, it is judged that the larger the G / D and the smaller the D / G, the fewer defects.
  • Non-Patent Document 5 since the intensity of the G band is enhanced by the resonance effect depending on the structure of the CNT (Non-Patent Document 5), it varies greatly depending on the combination of the diameter distribution of the CNT and the wavelength of the laser light used for Raman scattering. Therefore, the diameter distribution of the CNTs to be measured and the laser used for Raman scattering can be compared only under the same conditions. Since the diameter distribution does not change when separated due to the difference in defect concentration, it can be evaluated that the larger the G / D ratio, the smaller the number of defects if the Raman scattering measurement conditions are the same.
  • Ultraviolet-visible-near-infrared light absorption spectrum measurement is used for changes in the diameter distribution of CNTs and the ratio of metal type to semiconductor type.
  • the light absorption structure of CNTs is the first gap (S 11 ) of semiconductor-type CNTs and the second gap (S 22 ) of semiconductor-type CNTs from the low-energy (long wavelength) side, with respect to CNT groups having the same diameter but different structures. ), And the absorption of the apparent band gap (M 11 ) of the metal CNT is observed in this order. Since each absorption wavelength is observed at a longer wavelength as the diameter becomes larger, the diameter distribution of the metal type or semiconductor type CNT can be discriminated from the light absorption spectrum. Based on this information, it is possible to know whether the laser beam used in the Raman scattering measurement excites the metal type of the target CNT or the semiconductor type.
  • Example 1 Separation by Difference in CNT Defect Concentration Using a high performance liquid chromatography device and dextran-based hydrogel, using anionic surfactants sodium cholic acid (SC) and sodium deoxycholate (DOC) as surfactants. , Separation was performed according to the difference in the defect concentration of CNT.
  • SC cholic acid
  • DOC sodium deoxycholate
  • CNT dispersion liquid 30 mg of CNT (EC1.5, manufactured by Meijo Nanocarbon Co., Ltd.) was put into an aqueous surfactant solution in which SC was dissolved in 30 mL of pure water at a concentration of 0.5% (hereinafter all by weight%), and a 1/2 inch horn type was added.
  • An ultrasonic homogenizer (Sonifer 250D, manufactured by Branson) was used to irradiate ultrasonic waves at an output of 30% for 30 minutes to prepare a dispersion of CNTs. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was cooled with cold water.
  • the obtained CNT dispersion liquid is centrifuged at a centrifugal acceleration of 210000 g for 1 hour using an ultracentrifugal separator (himac CS100GXII, manufactured by Hitachi Koki) equipped with an angle rotor (S50A, manufactured by Hitachi Koki), and bundled with CNTs. After the impurity particles were precipitated, 80% of the supernatant was recovered to prepare a CNT dispersion liquid for separation.
  • an ultracentrifugal separator himac CS100GXII, manufactured by Hitachi Koki
  • S50A angle rotor
  • the aqueous solution to be injected into the column was changed, and a 1.0% concentration DOC aqueous solution was flowed at a flow rate of 0.5 mL / min at 2.5 CV to desorb the CNT adsorbed on the gel from the gel and elute it.
  • the defective CNTs were fractionated to obtain some fractions. Let T be a typical fraction. In the chromatogram of FIG. 1a, the non-adsorbed fraction draws a tail because the defect concentration is not high enough to be adsorbed, but the CNT having a high defect concentration to some extent has a small amount of surfactant adsorbed and interacts with the gel.
  • CNT which has a low defect concentration and a large amount of surfactant adsorbed. That is, the CNT with the lowest defect concentration has a large amount of surfactant adsorbed and quickly passes through the column and is recovered as the first fraction, but as the defect concentration increases, the amount of surfactant adsorbed decreases and the elution time decreases. It is considered that those having a long defect concentration above a certain level are adsorbed on the column. Therefore, the fraction R has lower defects than the fraction S, and the adsorbed fraction T has the highest defect concentration.
  • the ultraviolet / visible / near-infrared light absorption spectrum was measured in the wavelength range of 200 nm to 1350 nm with a spectrophotometer (UV3600, manufactured by Shimadzu Corporation).
  • UV3600 UV3600
  • the light absorption spectrum of the CNT dispersion was measured using an optical cell having an optical path length of 10 mm with reference to the aqueous solvent solution.
  • the CNT concentration is too high, accurate measurement cannot be performed, so that it is used for separation.
  • the measurement was performed after diluting the CNT dispersion and the CNT dispersion with few defects separated by the difference in defect concentration with a 0.5% SC aqueous solution and the CNT dispersion with many defects with a 1.0% DOC aqueous solution. ..
  • the CNT dispersion before separation was diluted 100-fold and after separation, 10-fold to adjust.
  • the CNT fractions R and S with few defects are shown in FIG. 1b
  • the light absorption spectra of the CNT fraction T with many defects are shown in FIG. 1c.
  • the spectrum of the separation CNT dispersion P before separation is shown by a dotted line.
  • the absorbances are different, in FIG.
  • the absorbance of P was multiplied by 0.5 and indicated as P'.
  • the spectrum of fraction R is observed at wavelengths of 650 to 800 nm (M 11 ) and around 1000 to 1300 nm (S 22 ) compared to the spectrum of P.
  • M 11 650 to 800 nm
  • S 22 1000 to 1300 nm
  • the wavelength of light absorption of CNTs changes depending on the structure such as the diameter and spiralness of CNTs, but since many CNTs with different structures are mixed in the sample used, light absorption of various wavelengths is possible.
  • the magnitude of the G / D ratio can be known. Since the D-band has a G-band scattering tail, it is necessary to subtract the background when determining the net intensity of the D-band. It can be seen that the D-band of the fraction R has a lower intensity than any other fraction and has the highest G / D. On the other hand, it can be seen that the fraction T has a higher D-band intensity and a lower G / D ratio than the P before separation.
  • the G / D ratio measured for each fraction is shown in the chromatogram of FIG. 1a. The broken line in the figure shows 37, which is the G / D ratio of P before separation.
  • the value is higher than this, it means that the defect is lower than that before separation, and if it is lower, it means that the defect is higher.
  • G / D exceeds 50, indicating low defects.
  • the value is almost the same as before the separation.
  • the G / D is lower than that before the separation.
  • CNTs with few defects can be obtained by adsorbing CNTs with many defects on the column by column chromatography and separating the initial fractions in the process of elution of non-adsorbed CNTs. ..
  • Example 2 SC Concentration Dependence Test The concentration of the SC aqueous solution used for equilibrating the dispersion solvent and the column of the CNT was changed, and the CNTs were separated in the same manner as in Example 1.
  • a CNT dispersion was prepared by sonication and ultracentrifugation using a 0.5% SC aqueous solution using CNT (EC1.5, manufactured by Meijo Nanocarbon Co., Ltd.) as a raw material in the same process as in Example 1.
  • This CNT dispersion was concentrated by centrifugation ultrafiltration (Amicon Ultra: pore size 100K, Merck Millipore) until the liquid volume was reduced to 1/10.
  • the concentrated CNT dispersion was diluted with an equal amount of pure water to prepare a CNT dispersion for separation dispersed in a 0.25% SC aqueous solution. By weighing and adding SC powder there, the SC concentration was adjusted to 0.5% and 1.0%, respectively, and the CNT dispersion for separation with 0.5% SC concentration and 1.0% SC concentration were added.
  • a CNT dispersion for separation was prepared.
  • a column newly filled with cefacryl gel (S1000) was prepared, equilibrated with a 0.5% SC aqueous solution, and then 1 mL of a CNT dispersion for separation dispersed in a 0.5% SC aqueous solution was injected. Then, a 0.5% SC aqueous solution was flowed at a flow rate of 0.5 mL / min at 2.5 CV to separate a CNT fraction R having few defects not adsorbed on the gel.
  • the aqueous solution to be injected was changed to a 1% DOC aqueous solution, and 2.5 CV was flowed at a flow rate of 0.5 mL / min to desorb the CNTs adsorbed on the gel from the gel and elute the CNT fraction with many defects. T was separated. The chromatogram is shown in FIG. 2b.
  • a column newly filled with cefacryl gel (S1000) was prepared, equilibrated with a 1.0% SC aqueous solution, and then 1 mL of a CNT dispersion liquid dispersed in a 1.0% SC aqueous solution was injected, and then 1.
  • the concentration of critical defects which is the boundary between adsorption and non-adsorption, decreases, only CNTs with fewer defects become unadsorbed components, and the proportion of CNTs with many defects adsorbed on the gel increases. Therefore, the unadsorbed component becomes a CNT with fewer defects.
  • the G / D ratios of the unadsorbed CNT fraction R were calculated by the same analysis method as in Example 1, and are shown in the table below.
  • the G / D of the CNT dispersion P before separation was 40, whereas the G / D of the R fraction separated under the condition of 0.25% SC was 51, and the G / D of the R fraction separated under the condition of 0.5% SC was 46. It was 41 under the condition of 1.0% SC.
  • Example 3 SC Aqueous Solution Flow Rate Dependence Test The same CNT separation as in Example 1 was performed by changing the flow rate of the SC aqueous solution when separating the unadsorbed fraction and the adsorbed fraction.
  • CNT EC1.5, manufactured by Meijo Nanocarbon Co., Ltd.
  • CNT was ultrasonically dispersed in a 0.5% SC aqueous solution and then subjected to ultracentrifugal treatment to obtain a CNT dispersion liquid for separation.
  • the aqueous solution to be injected was changed to a 1% DOC aqueous solution, and 2.5 CV was flowed at a flow rate of 0.25 mL / min to desorb the CNTs adsorbed on the gel from the gel and elute the CNT fraction with many defects. T was separated. The chromatogram is shown in FIG. 3a.
  • a column newly filled with cefacryl gel (S1000) was prepared, equilibrated with a 0.5% SC aqueous solution, 1 mL of a CNT dispersion for separation was injected, and then a 0.5% SC aqueous solution was added to 0.
  • the CNT fraction R having few defects not adsorbed on the gel was separated.
  • the aqueous solution to be injected was changed to a 1% DOC aqueous solution, and 2.5 CV was flowed at a flow rate of 0.5 mL / min to desorb the CNTs adsorbed on the gel from the gel and elute the CNT fraction with many defects. T was separated. The chromatogram is shown in FIG. 3b.
  • a column newly filled with cefacryl gel (S1000) was prepared, equilibrated with a 0.5% SC aqueous solution, 1 mL of a CNT dispersion for separation was injected, and then a 0.5% SC aqueous solution was added.
  • the CNT fraction R having few defects not adsorbed on the gel was separated.
  • the aqueous solution to be injected was changed to a 1% DOC aqueous solution, and 2.5 CV was flowed at a flow rate of 1.0 mL / min to desorb the CNTs adsorbed on the gel from the gel and elute the CNT fraction with many defects. T was separated.
  • the chromatogram is shown in FIG. 3c.
  • a part of the CNTs in the injected separation CNT dispersion is adsorbed on the gel and eluted with the DOC aqueous solution, so that adsorption chromatography is realized.
  • the ratio of CNTs adsorbed changes depending on the flow velocity of the SC aqueous solution. The slower the flow rate of the SC aqueous solution, the higher the concentration of the adsorbed fraction, and the lower the concentration of the unadsorbed fraction.
  • the type of CNT that resonates with the excitation light at 488 nm changes, and the ratio of the metal type and the semiconductor type changes, but the G / D of the fraction R at each flow velocity is the G / D of the unseparated P.
  • the result that the G / D of the fraction T is lower than the G / D of the unseparated P and the result that the G / D of the fraction R is higher at a slower flow rate are the same as the result of 488 nm.
  • metal type and semiconductor type there is no distinction between metal type and semiconductor type, and it can be seen that CNTs with few defects and CNTs with many defects can be separated for both. As described above, the separation conditions of the CNTs having few defects and the CNTs having many defects can be adjusted by changing the flow velocity.
  • Example 4 The same CNT separation as in Example 1 was carried out using a single-walled CNT (HiPco) having an average diameter of 1 nm synthesized from carbon oxide as a raw material.
  • CNT dispersion liquid 100 mg of CNT (HiPco lot number R1-832, manufactured by NanoIntegras) was added to an aqueous surfactant solution in which SC was dissolved in 100 mL of pure water at a concentration of 0.5%, and the output was 30% with a 1/2 inch horn type ultrasonic homogenizer.
  • the CNT dispersion was prepared by irradiating with ultrasonic waves for 150 minutes. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • the obtained CNT dispersion liquid is subjected to ultracentrifugal treatment at a centrifugal acceleration of 210,000 g for 1 hour using an ultracentrifugator equipped with an S50A angle rotor to settle CNT bundles and impurity particles, and then a supernatant of 80% is obtained. It was recovered and used as a CNT dispersion liquid for separation (HiPco).
  • the spectrum of the fraction R shown by the solid line has a more remarkable uneven structure of the absorption peak derived from CNT than the spectrum of the unseparated P, and the half width is narrow enough to see the fine structure.
  • the spectrum of the fraction T it can be seen that the unevenness of the absorption structure derived from CNT is smaller than that of the unseparated P, the fine structure is not visible, and the half width is wide. It can be interpreted that the CNT of fraction R has few defects, so that the life of excitons is long and the half width of the absorption peak is narrowed. On the contrary, the fraction T has many defects and a wide half width.
  • the values of the G / D ratios of the fractions R and T and the unseparated CNT dispersion P were calculated by the same analysis method as in Example 1, and are shown in the table below.
  • Example 5 The same CNT separation as in Example 1 was performed using multi-walled carbon nanotubes synthesized by different synthetic methods.
  • CNT dispersion liquid 30 mg of multi-layer CNT (Nanocil-7000, manufactured by Nanocil) was added to each of two aqueous surfactant solutions in which SC was dissolved in 30 mL of pure water at 0.5% and 0.75% concentrations, and a 1/2 inch horn was added.
  • a CNT dispersion was prepared by irradiating ultrasonic waves at an output of 30% for 3 hours with a type ultrasonic homogenizer. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • the obtained CNT dispersion is centrifuged by a centrifuge (Himac CT-13) at a centrifugal acceleration of 16060 g for 1 hour using a 2 mL microtube to settle CNT bundles and impurity particles, and then the supernatant 80. % was recovered, and two types of CNT dispersions for separation (Nanocil0.5) and CNT dispersions for separation (Nanocil0.75) having SC concentrations of 0.5% and 0.75% were prepared.
  • each spectrum is normalized with an absorbance of 280 nm. Since it is a multi-walled CNT with many defects, the spectrum of the separation CNT dispersion P before separation shows a spectrum similar to that of amorphous carbon, and the spectrum characteristic of CNT is not remarkable.
  • the fraction R has the highest absorbance, followed by P and T has the lowest absorbance. It has become.
  • P and T looking at the absorption of ultraviolet rays around 250 nm, P and T almost overlap and there is no difference, but only R shows a sharp peak structure. This is the same result as the sharpening of the peak of fraction R seen in Example 4 (FIG. 4b), and indicates that the CNT of fraction R has low defects.
  • Example 6 The same CNTs as in Example 1 were separated using CNTs having an average diameter of 1.4 nm and a narrow diameter distribution synthesized from graphite powder by an arc discharge method.
  • CNT dispersion liquid [Preparation of CNT dispersion liquid] Add 30 mg of CNT (AP, lot number AP-A26k, manufactured by Carbon Solution) to an aqueous surfactant solution in which SC is dissolved in 30 mL of pure water at a concentration of 0.5%, and output with a 1/2 inch horn type ultrasonic homogenizer. A dispersion of CNTs was prepared by irradiating at 30% for 30 minutes. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • CNT AP, lot number AP-A26k, manufactured by Carbon Solution
  • the obtained CNT dispersion liquid is subjected to ultracentrifugal treatment for 1 hour at a centrifugal acceleration of 210,000 g using an ultracentrifugator equipped with an S50A angle rotor to settle CNT bundles and impurity particles, and then to obtain 80% of the supernatant. It was recovered and used as a CNT dispersion liquid (AP) for separation.
  • AP CNT dispersion liquid
  • S 22 near 1000 nm and S 33 near 500 nm shown in FIG. 6b indicate the second and third absorption bands of the semiconductor CNT, and M 11 near 720 nm is the first absorption band of the metal CNT. Is shown. Spectrum of the fraction R indicated by a solid line, a remarkable absorption from CNT than the spectrum of the unseparated P indicated by a dotted line, not only particularly strong strength of the semiconductor-type S 22 band, a fine uneven structure It is strongly observed.
  • the CNT of the fraction R has fewer defects than the unseparated CNTP, so that the exciton has a long life and the half width of the absorption peak is narrowed. Since there is no change in the central wavelength and the overall width of the S 22 , S 33 , and M 11 bands in P, R, and T, it can be seen that the diameter and chirality are not separated.
  • Example 7 Separation of CNTs with Different Defect Concentrations The CNTs were separated by gradually changing the surfactant concentration and passing the liquid through, and gradually eluting the CNTs with different defect concentrations.
  • CNT dispersion liquid [Preparation of CNT dispersion liquid] Add 100 mg of CNT (EC1.5, manufactured by Meijo Nanocarbon) to an aqueous surfactant solution in which SC is dissolved in 100 mL of pure water at a concentration of 0.5%, and use a 1/2 inch horn type ultrasonic homogenizer to increase the output to 30%. The mixture was irradiated for 1 hour to prepare a dispersion of CNTs. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • CNT EC1.5, manufactured by Meijo Nanocarbon
  • the obtained CNT dispersion was subjected to ultracentrifugation for 1 hour at a centrifugal acceleration of 210000 g using an ultracentrifugator equipped with an S50A angle rotor to settle CNT bundles and impurity particles, and then 80% of the supernatant was recovered. An equal amount of pure water was added to this CNT dispersion liquid to adjust the SC concentration to 0.25% to obtain a separation CNT dispersion liquid (EC1.5).
  • the surfactant concentration of the surfactant aqueous solution for elution is stepwise used by using a high performance liquid chromatography device. It was changed to and separated. A column having a diameter of 10 mm and a length of 300 mm filled with 23.5 mL of cefacryl gel (S1000) was equilibrated with a 0.25% SC aqueous solution, and then a separation CNT dispersion (EC1.5) was added to a 1 mL column.
  • each spectrum is standardized with an absorbance of 280 nm.
  • the spectrum of the portion surrounded by the dotted line near 1100 nm is enlarged and shown in FIG. 7c. It can be seen that the absorption structure derived from CNT observed near 1100 nm is different for each fraction. Since the amplitude of the microstructure changes in the order of R1>R2>P>R3>T> R4, it can be seen that the higher the amplitude, the longer the life of the excitons and the fewer defects. That is, R1 and R2 have fewer defects than unseparated P, and R3, R4, and T have more defects. That is, it is shown that the CNTs having different defect concentrations could be eluted by elution by gradually changing the concentration of the surfactant.
  • R3 and T are 33 and 30, respectively, which are lower than the unseparated P.
  • the G / D value decreases monotonically as the SC concentration increases.
  • Example 8> By pouring the CNT dispersion into a bottle filled with gel beads without using a batch type separation column, CNTs with many defects are adsorbed on the gel, and the CNTs with few defects remaining without being adsorbed are collected and batched. Expression separation was performed.
  • CNT dispersion liquid [Preparation of CNT dispersion liquid] Add 100 mg of CNT (EC1.5, manufactured by Meijo Nanocarbon) to an aqueous surfactant solution in which SC is dissolved in 100 mL of pure water at a concentration of 0.5%, and use a 1/2 inch horn type ultrasonic homogenizer to increase the output to 30%. The mixture was irradiated for 90 minutes to prepare a dispersion of CNTs. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • CNT EC1.5, manufactured by Meijo Nanocarbon
  • the obtained CNT dispersion was divided into small portions, and an equal amount of pure water was added to obtain a CNT dispersion for separation (EC1.5 without centrifugation) at an SC concentration of 0.25%. Further, the CNT dispersion liquid having a 0.5% SC concentration is subjected to ultracentrifugation treatment at a centrifugal acceleration of 210,000 g for 1 hour using an ultracentrifuge equipped with an S50A angle rotor to settle CNT bundles and impurity particles. After recovering 80% of the supernatant, an equal amount of pure water was added thereto to adjust the SC concentration to 0.25% to prepare a CNT dispersion liquid for separation (ultracentrifugation EC1.5).
  • Cefacryl gel (S1000) was subjected to water substitution treatment 5 times, then packed in a column having a diameter of 50 mm for high performance chromatography, and a 0.25% concentration SC aqueous solution was flowed therein by 3 CV to obtain 0.25. Gels equilibrated with% SC were prepared. The gel was removed from the column, 20 mL each was placed in two 45 mL Falcon tubes, and 5 mL each of 0.25% SC aqueous solution was added thereto. 2 mL of the CNT dispersion for separation (EC1.5 without centrifuge) and 2 mL of the CNT dispersion for separation (ultracentrifugal EC1.5) were added thereto and sealed.
  • the Raman spectra of the CNT dispersions for separation (EC1.5 without centrifugation) (P-noUS) and the CNT dispersions for supernatant (EC1.5 without centrifugation) (Batch-no-US) are shown in FIG. 8a for separation.
  • the Raman spectra of the CNT dispersion liquid (ultracentrifugal EC1.5) (P-US) and the supernatant CNT dispersion liquid (ultracentrifugal EC1.5) (Batch-US) are shown in FIG. 8b.
  • the G / D value was calculated from the obtained spectrum.
  • the G / D of the separation CNT dispersion (EC1.5 without centrifugation) was 39, while the G / D of the supernatant CNT dispersion (EC1.5 without centrifugation) was 42.
  • the G / D of the separation CNT dispersion (ultracentrifugal EC1.5) was 38, whereas the G / D of the supernatant CNT dispersion (ultracentrifugal EC1.5) was 42.
  • the G / D of both CNT dispersions was improved in the batch-treated supernatant CNT dispersion, and CNTs with fewer defects than before separation were obtained.
  • chromatography is not indispensable, and if a method such as a batch method in which CNTs having many defects contained in the CNT dispersion are adsorbed on a gel and fixed, CNTs having few defects can be obtained from the flow phase. it can. Further, it is not necessary to use the isolated dispersed CNTs after the ultracentrifugal treatment, and the CNTs having few defects can be separated from the CNT dispersion liquid having only the dispersion treatment.
  • Example 9 Evaluation test of CNT using the separation result based on the defect concentration of CNT From the separation result based on the defect concentration of the sample with different ultrasonic treatment time, extrapolate the amount of CNT with few defects contained in the CNT sample not treated with ultrasonic waves. Therefore, the crystallinity of the CNT sample was evaluated.
  • CNT dispersion liquid Prepare three samples in which 30 mg of CNT (EC1.5, manufactured by Meijo Nanocarbon) was added to an aqueous surfactant solution in which SC was dissolved in 30 mL of pure water at a concentration of 0.5%, and each was over 1/2 inch horn type.
  • a CNT dispersion was prepared by performing ultrasonic treatment with a sonic homogenizer at an output of 30% and an ultrasonic irradiation time of 30 minutes, 1 hour, and 2 hours. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • the three types of CNT dispersions obtained were subjected to ultracentrifugation for 1 hour at a centrifugal acceleration of 210000 g using an ultracentrifugator equipped with an S50A angle rotor, and after sedimenting CNT bundles and impurity particles, the supernatant was 80%. Was recovered.
  • the light absorption spectrum of each dispersion was measured, and the CNT dispersion treated for 1 hour and 2 hours was concentrated at 0.5% so that the absorbance at a wavelength of 280 nm was equal to the sample dispersed for 30 minutes at the lowest concentration.
  • 3 types of CNT dispersions for separation (0.5 h), CNT dispersion for separation (1.0 h) and CNT dispersion for separation (2.0 h) having the same concentration were prepared by diluting with the SC aqueous solution of.
  • FIG. 9d shows a graph in which the ratio of the fraction R of the chromatogram is plotted on the vertical axis and the ultrasonic processing time is plotted on the horizontal axis.
  • the vertical axis is a logarithmic plot.
  • t is the ultrasonic irradiation time
  • is the characteristic time
  • WR 0 is the ratio of the fraction R of the untreated CNTs.
  • This ratio varies depending on the concentration of the surfactant, the concentration of the CNT dispersion, the column diameter and length, the type of the column carrier, and the flow velocity, but if these parameters are set to the same and the experiment is performed, the synthesis method and the diameter distribution It is possible to fairly compare the defect concentrations of different CNTs.
  • the G / D ratio of Raman scattering is also used to evaluate the defect concentration, but the G / D has the same diameter distribution because the resonance conditions change and the value changes when the diameter of the CNT changes. Can only be compared between CNTs of the same, and cannot be compared between CNTs made by different synthetic methods. Since the evaluation of the crystallinity of CNTs using the method of separation by defect concentration does not have such defects, it is possible to fairly compare the crystallinity of CNTs having different diameters and different synthetic methods.
  • Example 10 A conductive film was prepared using CNTs with few defects separated by the defect concentration of CNTs, CNTs with many defects, and CNTs before separation, and their electrical resistance and atomic force microscope images were compared.
  • CNT dispersion liquid Prepare a sample in which 100 mg of CNT (EC1.5, manufactured by Meijo Nanocarbon) is added to an aqueous surfactant solution in which SC is dissolved in 100 mL of pure water at a concentration of 0.5%, and use a 1/2 inch horn type ultrasonic homogenizer. A dispersion of CNTs was prepared by irradiating ultrasonic waves at an output of 30% for 90 minutes. At that time, in order to prevent the water temperature from rising due to the energy of ultrasonic waves, the glass bottle containing the above aqueous solution was placed in a water tank kept at 20 ° C. and cooled.
  • CNT EC1.5, manufactured by Meijo Nanocarbon
  • the obtained CNT dispersion liquid is subjected to ultracentrifugal treatment for 1 hour at a centrifugal acceleration of 210,000 g using an ultracentrifugator equipped with an S50A angle rotor to settle CNT bundles and impurity particles, and then 80% of the supernatant is recovered. Then, a CNT dispersion liquid (EC1.5) for separation was prepared.
  • a thin film was formed on a polyethylene naphthalate (PEN) film by the following procedure for three types of fraction R, fraction T and unseparated CNT dispersion liquid (EC1.5) P.
  • Surfactants were appropriately added to each of the obtained fractions to improve the CNT dispersibility by adjusting the surfactant concentration of all CNT dispersions to a mixed surfactant of 0.5% SC + 0.5% DOC. ..
  • suction filtration was performed with a hydrophilic polycarbonate filter (VCTP04700, manufactured by Merck Millipore) in which fine holes were formed by track etching to prepare a thin film on the filter.
  • the thin film was washed with water and methanol and then with boiling water.
  • the amount of CNTs flowing out from the holes of the filter differs depending on the CNTs, the amount of CNTs to be filtered is 27.2 ⁇ g and 40.8 ⁇ g for unseparated P, and 7.2 ⁇ g and 10.8 ⁇ g for fraction R.
  • the fraction T there were two types, 32 ⁇ g and 48 ⁇ g. The amount of each CNT was estimated from light absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、原料カーボンナノチューブを、分離前よりも欠陥の少ないカーボンナノチューブと分離前よりも欠陥の多いカーボンナノチューブに分離して回収する方法、及び該方法により得られる分離前よりも欠陥の少ないカーボンナノチューブ、並びに分離前のカーボンナノチューブの結晶性を評価する方法を提供することを課題とする。本発明では、欠陥を多く含むカーボンナノチューブへの界面活性剤の吸着量が少なくなることを利用して、欠陥を多く含むカーボンナノチューブを選択的に、疎水基を含むハイドロゲルに吸着させることにより、吸着しなかった欠陥の少ないカーボンナノチューブを分取する。また、該方法により得られる、欠陥の少ないカーボンナノチューブと欠陥の多いカーボンナノチューブとの量比を、分散時間を変化させて求めることにより、原料カーボンナノチューブに含まれる欠陥の濃度を推定評価する。

Description

低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法
 本発明は、原料カーボンナノチューブを欠陥の少ないカーボンナノチューブと欠陥の多いカーボンナノチューブに分離して回収する方法、及び該方法により得られる欠陥の少ないカーボンナノチューブに関する。また、本発明は、前記方法により得られた分離結果を用いて原料カーボンナノチューブに含まれる欠陥の濃度を推定評価する方法に関する。
 カーボンナノチューブ(CNT)は光学特性や電気伝導特性、熱伝導特性、機械的強度などに優れ、用途の広い新素材として研究開発が進められている。CNTは構造の違いによって電気的な性質が異なって金属にも半導体にもなり(非特許文献1)、これらを分離する事により(特許文献1)金属型は薄膜化して導電膜に、半導体型はトランジスタや集積回路への応用研究が進められている。
 CNTの合成法は、グラファイト電極間で放電させることで炭素を蒸発させて合成するアーク放電法や、メタンやアルコールなどの有機分子や一酸化炭素などを原料として、電気炉内で金属微粒子触媒から成長させる化学気相合成法など様々な手法がある(非特許文献2)。いずれの手法で合成したCNTでも表面に欠陥を含んでいる事がわかっている。
 グラファイトやCNTにどの程度欠陥が入っているかを調べる手法として、ラマン散乱スペクトルのピーク強度比を用いる方法が広く用いられている。該手法では、振動数1590cm-1付近に観測されるGバンドと呼ばれる光学活性モードの強度と、1300cm-1付近に、励起レーザー光の波長に依存して振動数を変化させて観測されるDバンドと呼ばれる欠陥由来の振動モードの強度との比をG/D比と呼び、その大小を比較する事により、どの程度の欠陥が導入されているかの目安としている(非特許文献3)。CNTのラマン散乱を測定すると必ずDバンドが観測されることから、どの合成法で作製したCNTも欠陥を含んでいる事がわかる。
 しかし、G/D比の値と欠陥濃度の関係については、G/Dの値がいくつなら欠陥がどの程度入っているという基準が得られていない。GバンドもDバンドも異なる共鳴効果(非特許文献4,5)により強度が変化するため、励起するレーザー光の波長が変化したり、CNTの直径分布が変化したりすると、欠陥濃度が変化しなくてもG/D比が変化してしまうという問題点があるため(非特許文献6)、異なる合成法で作製されたCNT集合体の欠陥導入の度合いを定量的に調べる事はできない。
 高分解能電子顕微鏡観察や、走査型トンネル顕微鏡観察により、個々のCNTを原子レベルで観察し、欠陥がどれだけ含まれるかを一つ一つ評価する事は原理的には可能である。しかしながら、多数のCNTの集合体の平均的な欠陥導入の度合いを信頼できる精度で調べるためには、数百から数万本という極めて多数のCNTを一本一本調べる事が必要となり、現実的に不可能である。
 合成直後のCNT集合体は、合成に使用された触媒金属やそれを取り囲む炭素皮膜、うまく合成されなかったCNTの断片や、グラファイト、アモルファスカーボン等を含んでいる。それら不純物を除去する事により、CNTの純度を向上させ、相対的にG/Dを向上させる事がこれまでに可能となっている。例えば、CNT集合体を、酸素を含むガス中で加熱する事により、欠陥を相対的に多く含むと考えられるアモルファスカーボンを優先的に酸化燃焼させ、炭酸ガスに変換することによって除去する手法がある(非特許文献7)。溶媒中に分散したCNTを溶解させた酸化剤を用いて酸化させる手法もある(非特許文献8)。どちらも、結果として得られた精製されたCNT集合体は、精製前よりもG/Dが向上する。しかし、これらの酸化手法では、精製対象であるCNTも同時に酸化してしまうため、CNTだけに着目すれば、酸化処理前よりも欠陥濃度が上昇してしまう事になる。
 界面活性剤などの分散剤を用いて水中や有機溶媒中でCNTに超音波を照射してCNTを分散し、その分散液を遠心分離機もしくは超遠心分離機にかけることにより、沈降速度の速い粒子を選択的に沈降させ、沈降速度の遅いCNTを上澄みとして回収する手法がある。この方法で得られた上澄み液は、遠心分離をかける前よりもG/D比が向上しており、CNTの精製が行われた事がわかる。
 上記、超音波分散と遠心分離を組み合わせた手法をさらに発展させ、密度勾配をかけた溶媒中で超遠心分離をかけることにより、実効的密度の違いで分離する密度勾配超遠心分離法と呼ばれる手法がある。この手法でも、CNTと不純物の実効的密度の違いからCNTの精製が可能である。
 しかし、これらの精製法はすべて、CNTと不純物の混合物から不純物を除去することにより、全体としてG/D比が改善されただけであり、CNTの集合体の中から欠陥の少ないCNTを選び出す事は一切できていない。CNT薄膜を用いて、トランジスタなどの高性能半導体電子デバイスを作製する場合、欠陥が多く移動度の低いCNTが少量でも混じっていると、デバイス全体の移動度が低下してしまうため、欠陥の多いCNTを除去して、欠陥の少ないCNTのみを選別して取り出す技術が望まれているが、これまでは実現しなかった。
特許第5594727号公報
R.Saito et.al. Electronic structure of chiral graphene tubules, Applied Physics Letters Volume 60 (1992) pp.2204-2206. 「カーボンナノチューブの基礎と応用」倍風館(2004) p23-40 F.Tuinstra and J.L.Koenig,The Journal of Chemical Physics Volume53 (1970) pp.1126-1130. C. Thomsen and S. Reich, Physical Review Letters volume85 (2000)pp.5214-5217. Ernst Richter and K.R.Subbaswamy, Physical Review Letters volume 79(1997)pp.2738-2741. Rahul Rao et al.Carbon volume49(2011)pp.1318-1325. Jie Ma and Jian Nong Wang, Chemistry of matterials volume 20 (2008) pp.2895-2902. Shawn X. Xie et al. Applied Physics Letters volume 103 (2013) pp.133114-1-5.
 本発明は、以上のようなこと情に鑑みてなされたものであって、原料CNTを欠陥の少ないCNTと欠陥の多いCNTに分離して回収する手法、及び該方法により得られる欠陥の少ないCNTを提供することを目的とするものである。またさらに、上記分離結果を定量的に分析することにより、原料CNTに含まれていた欠陥の少ないCNTの割合を調べ、該原料CNTの欠陥濃度の評価を実現することを目的とするものである。
 本発明者らは上記課題を解決するため検討を重ねたところ、原料CNT集合体を界面活性剤で水に分散し、疎水基を含むハイドロゲル粒子と作用させることにより、欠陥を多く含むCNTがハイドロゲル粒子に吸着するのに対し、欠陥の少ないCNTはハイドロゲル粒子に吸着せずに溶液中に残ることを見いだした。吸着したCNTは、界面活性剤の種類や濃度を調整した水溶液を作用させることによりハイドロゲル粒子から流出させて採取することが可能であり、結果的に原料CNT分散液を、原料CNT分散液よりも欠陥の少ないCNT分散液と原料CNTよりも欠陥の多いCNTの分散液に分離することが可能となる。各分散液の濃度は、光吸収スペクトルの光学濃度から算出することが可能であるため、欠陥の少ないCNTと欠陥の多いCNTの相対比率を定量的に算出することが可能である。また、欠陥の少ないCNTは欠陥の多いCNTよりも電子移動度が高くなるため、欠陥の少ないCNT分散液を用いて導電膜やトランジスタを作製することにより、この分離を行わないCNTを用いた場合よりも高移動度の導電膜やトランジスタを作製することができる。
 この分離手法は、疎水性の性質を持つCNT側壁の欠陥部分が局所的に親水性となることを利用して分離を行うものであり、それ故界面活性剤の種類には基本的に制限が無い。水に分散されたCNTにおいては、原子空孔などの欠陥部分にはカルボキシル基などが自然と形成されるため、欠陥の無い部分よりも親水性が高くなる。界面活性剤を添加すると、界面活性剤は疎水性相互作用によりCNTの疎水表面を減らすようにCNT表面に吸着するが、欠陥周辺では親水性となっているため、界面活性剤が吸着しても自由エネルギーが減少しないことから、吸着する界面活性剤分子数が少なくなる。そのため、欠陥が多く疎水性表面の狭いCNTに吸着する界面活性剤分子の数は、欠陥が少なく疎水性表面の広いCNTに吸着する界面活性剤分子よりも少なくなる。界面活性剤の被覆率が低いとハイドロゲルの疎水基に吸着するため、欠陥の多いCNTがハイドロゲルに吸着する。これが本発明の原理である。したがって、添加する界面活性剤の濃度を下げると、全体としてCNT表面の界面活性剤の被覆率が低下するため、吸着するCNTの量が増加し、吸着しないCNTが減少する。その際、界面活性剤濃度が高かったときには未吸着であったCNTの中でも、欠陥の多いCNTからゲルに吸着するようになるため、吸着するかしないかの境目が、より欠陥の少ない方に移行する。そのため、吸着しないCNTの欠陥濃度は、界面活性剤の濃度が低いほど低くなり、つまりより低欠陥のCNTが得られることになる。以上のように界面活性剤の濃度調整により、得られるCNTの欠陥濃度調整が可能となる。
 本発明はかかる新規な知見に基づいてなされたものである。
 すなわち、この出願によれば、以下の発明が提供される。
〈1〉界面活性剤を用いて水に分散した原料カーボンナノチューブをハイドロゲルに作用させることにより、分散液に含まれている欠陥が多いカーボンナノチューブを選択的にハイドロゲルに吸着させること、及び吸着せずに水溶液中に残留した欠陥が少ないカーボンナノチューブを回収することを含む、原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブの分離回収方法。
〈2〉前記界面活性剤の濃度を下げることによりハイドロゲルに吸着する欠陥が多いカーボンナノチューブの量を増加させ、より欠陥の少ないカーボンナノチューブのみを水溶液中に残留させて、それを回収することを特徴とする、〈1〉に記載の原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブの分離回収方法。
〈3〉〈1〉または〈2〉に記載の分離回収方法によって得られた、原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブ。
〈4〉界面活性剤を用いて水に分散した原料カーボンナノチューブをハイドロゲルに作用させることにより、分散液に含まれている欠陥が多いカーボンナノチューブを選択的にハイドロゲルに吸着させること、及び前記ハイドロゲルに吸着した欠陥の多いカーボンナノチューブを、吸着時と異なる種類や濃度の界面活性剤水溶液をハイドロゲルに作用させることにより溶液中に溶出させて回収することを含む、原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブの分離回収方法。
〈5〉〈4〉に記載の分離回収方法によって得られた、原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブ。
〈6〉〈3〉に記載された原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブと〈5〉に記載された原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブとの量比を、分離前の原料カーボンナノチューブの分散処理時間を変化させて複数導出することにより、原料カーボンナノチューブに含まれる欠陥の濃度を推定評価することを含む、カーボンナノチューブの欠陥濃度評価方法。
 これまでのCNTの精製では、CNT以外の不純物を除去するのみであったが、本発明の欠陥濃度の違いで分離する方法を使うことにより、CNTの中でも欠陥の少ないCNTと欠陥の多いCNTに分離することが可能になる。欠陥の少ないCNTでは、欠陥に起因する電子の散乱や格子振動の散乱が減少するため、電子やホールの移動度が高く、かつ格子振動による熱伝導度も高いCNTを選別して分取することが可能となる。この分離法で得られたCNTをさらに金属型・半導体型で分離精製することにより、高い移動度を持つ高速動作トランジスタやそれを集積した集積回路、抵抗の低い導電性薄膜などが可能となる。また、一定の条件で得られる欠陥の少ないCNTと欠陥の多いCNTの比率を計算し比較することにより、分離前のCNTの欠陥導入率を評価することが可能になる。この欠陥濃度評価法により、ラマン散乱による評価法では不可能だった合成法や直径分布に依存しないCNTの品質評価が可能となる。
実施例1の、分取した結果を示すクロマトグラム(縦軸左)及び各フラクションのラマンスペクトルにおけるG/D比(縦軸右) 記号R,S,Tは代表的フラクションを示す。 実施例1の、分取したフラクションR,S及び未分離CNT分散液Pの光吸収スペクトル 実施例1の、分取したフラクションT及び未分離CNT分散液P’(Pの0.5倍)の光吸収スペクトル 実施例1の、分取したフラクションR,S,T及び未分離CNT分散液Pのラマン散乱スペクトル 実施例2の、0.25%SC水溶液で分取した結果を示すクロマトグラム 実施例2の、0.5%SC水溶液で分取した結果を示すクロマトグラム 実施例2の、1.0%SC水溶液で分取した結果を示すクロマトグラム 実施例2の、0.25%SC水溶液で分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例2の、0.5%SC水溶液で分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例2の、1.0%SC水溶液で分取したフラクションR、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例3の、SC水溶液の流速を0.25mL/minとして分取した結果を示すクロマトグラム 実施例3の、SC水溶液の流速を0.5mL/minとして分取した結果を示すクロマトグラム 実施例3の、SC水溶液の流速を1.0mL/minとして分取した結果を示すクロマトグラム 実施例3の、0.25mL/minの流速で分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例3の、0.5mL/minの流速で分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例3の、1.0mL/minの流速で分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例4の、単層CNT(HiPco)を用いて分取した結果を示すクロマトグラム 実施例4の、単層CNT(HiPco)を用いて分取したフラクションR,T、及び未分離CNT分散液Pの光吸収スペクトル 実施例4の、単層CNT(HiPco)を用いて分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例5の、多層CNT(Nanocyl)を用いて0.5%SC水溶液で分取した結果を示すクロマトグラム 実施例5の、多層CNT(Nanocyl)を用いて0.75%SC水溶液で分取した結果を示すクロマトグラム 実施例5の、多層CNT(Nanocyl)を用いて0.75%SC水溶液で分取したフラクションR,T、及び未分離CNT分散液Pの光吸収スペクトル 実施例6の、単層CNT(AP)を用いて分取した結果を示すクロマトグラム(左縦軸)とG/D比(右縦軸) 実施例6の、単層CNT(AP)を用いて分取したフラクションR,T、及び未分離CNT分散液Pの光吸収スペクトル 実施例6の、単層CNT(AP)を用いて分取したフラクションR,T、及び未分離CNT分散液Pのラマン散乱スペクトル 実施例7の、SC水溶液の濃度を段階的に変更して分取した結果を示すクロマトグラム 実施例7の、SC水溶液の濃度を段階的に変更して分取したフラクションR1,R2,R3,R4,T、及び未分離CNT分散液Pの光吸収スペクトル 図7bの点線で囲った部分のスペクトルの拡大像 実施例7の、SC水溶液の濃度を段階的に変更して分取したフラクションR1,R2,R3,T、及び未分離CNT分散液PのラマンスペクトルのG/D比 点線は、未分離PのG/Dを示す。 実施例8の、超遠心処理無しの、分離用CNT分散液及び上澄みCNT分散液のラマン散乱スペクトル 実施例8の、超遠心処理を行った、分離用CNT分散液及び上澄みCNT分散液のラマン散乱スペクトル 実施例9の、超音波分散時間を0.5時間として分取した結果を示すクロマトグラム 実施例9の、超音波分散時間を1.0時間として分取した結果を示すクロマトグラム 実施例9の、超音波分散時間を2.0時間として分取した結果を示すクロマトグラム 実施例9の、分取したフラクションRの全体に対する割合を分散時間に対してプロットし、分散処理前のフラクションRの割合を導出した図 実施例10で作製したCNT薄膜について、シート抵抗を縦軸に、吸光度を横軸に、プロットしたグラフ 実施例10で作製したCNT薄膜の原子間力顕微鏡像
 以下、本発明を詳細に説明する。
 本発明は、CNTを界面活性剤水溶液に分散して得られたCNT分散液をハイドロゲルと作用させることにより、CNT分散液に含まれる欠陥の多いCNTを選択的に固定相であるハイドロゲルに吸着させて固定し、欠陥の少ないCNTを流動相である水溶液中に残留させることにより、欠陥の少ないCNTを分離回収することを特徴とする。分離原理を以下に述べる。CNT側壁は疎水性であり、そこに疎水性相互作用により界面活性剤が吸着することで水中に安定に分散される。しかし、そこに格子空孔などの構造欠陥がある場合、カルボキシル基などの親水基が自然と形成され局所的に親水性となる。親水性表面には疎水性相互作用が有効に働かず、界面活性剤が吸着しないため、欠陥近傍のCNT側壁は界面活性剤の吸着量が減少する。そのため、欠陥の多いCNTへの界面活性剤の吸着量は、欠陥の少ないCNTへの界面活性剤の吸着量に比べて少なくなる。CNT表面の界面活性剤の吸着量が少ない場合、CNTはハイドロゲルへ吸着するため、欠陥が多く、界面活性剤の吸着量が少ないCNTが選択的にハイドロゲルに吸着する。本発明はこのような原理に基づくため、使用する界面活性剤の種類に制限は無い。欠陥の少ないCNTは、ハイドロゲルに吸着せず、水溶液中に分散した状態を維持するため、それを回収することにより欠陥の少ないCNTを分取するが、溶液中に分散しているCNTを回収する方法であれば、クロマトグラフィーを使っても良いし、別の手法でも良い。回収方法には制限が無い。
 欠陥の多いCNTがハイドロゲルに吸着する原理は、疎水性相互作用であるため、溶媒は水または水を含む有機溶媒もしくは疎水性相互作用を生じせしめる液体であれば何でも良い。ハイドロゲルにはCNTの疎水表面が吸着する疎水基を含むことが必要となるが、その条件を満たすハイドロゲルであれば、デキストランをベースにしたゲルでも、アガロースをベースにしたゲルでも他のゲルでも制限が無い。分離対象となるCNTと使用するハイドロゲルに適合する界面活性剤を選ぶことにより、欠陥濃度の違いによるCNTの分離精製が可能である。
 本発明は、CNTの表面の欠陥濃度の違いによって分離するため、CNTの内部の構造や成分は原理的に影響を受けない。つまり、分離対象となるCNTは、製造方法や形状(直径や長さ)あるいは構造(単層、二層、三層、多層)などについて制限は無く、いずれも本発明の分離の対象とすることができる。
 [CNT分散液の調製について]
 本発明の、欠陥の多いCNTと欠陥の少ないCNTの分離では、必ずしもCNTが1本1本バラバラに分散されている必要は無い。複数のCNTが束になって溶媒中に分散していても、束の表面の平均的な欠陥濃度により分離可能である。しかし、CNTは原子配列の構造によって金属的な性質を示すものと半導体的な性質を示すものがあり、それらが混在して数本から数百本の束状に合成されるため、電子デバイス応用の際には金属型と半導体型を分離するために、CNTが溶液中でバラバラに孤立分散していることが望ましい。
 そこで、CNTの混合物を界面活性剤の水溶液に加え、十分に超音波処理を行うことによりCNTを分散する。この分散処理を施した液には、孤立化分散したCNTと、孤立化できずにバンドルを形成したままのCNT、合成副産物であるアモルファスカーボンや、金属触媒などが含まれる。このCNT分散液を遠心分離機で遠心分離することにより、沈降速度の違いから、バンドルのままのCNTや、アモルファスカーボン、金属触媒を先に沈殿させ、孤立分散したCNTを上清として回収する。得られた上清がCNTの分離に使用する試料となる。ここで、超音波処理時間や遠心時間、遠心加速度を変更することにより、超音波分散によるCNTへの欠陥導入や、CNT分散液の孤立性が制御できる。
 CNT分散液の調製に用いる溶媒としては、水が最も好ましい。この点からCNT分散液の調製には水が使用される。
 界面活性剤は、制限無く何でも使用することができるが、アルキル硫酸系の陰イオン界面活性剤は、金属型と半導体型で吸着する分子数に差が生じてしまうため、欠陥濃度のみで分離する界面活性剤としては好ましくない。しかし、金属型と半導体型の分離と欠陥濃度の違いによる分離を同時に行いたい場合は、使用することができる。疎水性の高いCNTを効率よく分散するには疎水性の高い界面活性剤が望ましく、コール酸ナトリウム(SC)やその各種誘導体が使われる。陽イオン界面活性剤や両性界面活性剤も使用することができる。これらの界面活性剤は、適宜混合して使用することができる。濃度は、分離対象のCNTの欠陥濃度や、分取したい欠陥濃度、使用する界面活性剤の種類、ハイドロゲルの種類によって、最適化を行うことができる。
[用いるハイドロゲルについて]
 使用するハイドロゲルは、疎水基を有するゲルであれば制限は無いが、疎水性相互作用を際立たせるために、分析物とクーロン相互作用などの特殊な相互作用を持たないハイドロゲルが好ましい。サイズ排除クロマトグラフィーでは、分析物とのあからさまな相互作用が無いハイドロゲルを使用するため、サイズ排除クロマトグラフィーで用いられるハイドロゲルとして、多糖類であるデキストランをベースにしたハイドロゲル(セファクリル:アリルデキストランとN,N’-メチレンビスアクリルアミドのホモポリマー、GEヘルスケア社)、同じく多糖類であるアガロースをベースにしたセファロースやスーパーロース(GEヘルスケア社)などが好ましい。他にデンプンゲルやアクリルアミドゲルなどでも良く、また、これらハイドロゲルの混合物、あるいは、これらハイドロゲルの構成成分や他の物質の混合物や化合物からなるハイドロゲルであってもよい。ゲルの濃度については、例えば、終濃度で0.01%~25%とするのがよい。
 本発明の分離はゲル分離であれば、カラム法に限定されるものではなく、バッチ法にも適用できる。カラムを用いた分離では、カラムへの送液は、オープンカラムを用いて溶媒の重力落下で送液する方法の他、密閉したカラムにポンプで溶液を送液する方法などが適用できる。ポンプを用いた分離では、大型カラムを用いて、流速をあげて大量処理を行うことも可能である。クロマトグラフィー装置を用いた自動分離も可能である。
 欠陥濃度の高・低の判断基準として、ラマン散乱スペクトルにおける、Gバンドの強度とDバンドの強度の比を計算して用いる。Gバンドとは、炭素sp2混成軌道による2次元共有結合ネットワークを有する炭素材料に共通して観測される、2次元面内の振動モードであり、通常は1590cm-1付近に観測されるが、CNTにおいては、曲率を持つため、直径依存して若干その振動数が変化することが知られている。Dバンドは、欠陥に由来して生じるラマン散乱のモードで、欠陥の極めて少ない単結晶グラファイトでは観測されない。これらの比をとり、G/Dであれば大きいほど、D/Gであれば小さいほど欠陥が少ないと判断される。ただし、Gバンドの強度は、CNTの構造に依存した共鳴効果により増強されているため(非特許文献5)、CNTの直径分布とラマン散乱に使用するレーザー光の波長の組み合わせにより大きく変化してしまうことから、測定するCNTの直径分布とラマン散乱に使用するレーザーが同一の条件でしか比較することができない。欠陥濃度の違いで分離した場合は、直径分布は変化しないため、ラマン散乱測定の条件が同一であれば、G/D比が大きいほど欠陥が少ないと評価できる。
 CNTの直径分布や、金属型と半導体型の割合の変化については、紫外-可視-近赤外光吸収スペクトル測定を利用する。CNTの光吸収構造は、同等の直径で構造のみが異なるCNT群に対し、低エネルギー(長波長)側から半導体型CNTの第一ギャップ(S11)、半導体型CNTの第二ギャップ(S22)、金属型CNTの見かけ上のバンドギャップ(M11)の吸収という順番で観測される。それぞれの吸収波長は、直径が大きくなるほど長波長に観測されることから、光吸収スペクトルから、金属型や半導体型のCNTの直径分布が判別できる。この情報を元に、ラマン散乱測定において使用されたレーザー光が、対象CNTの金属型を励起しているのか、半導体型を励起しているのかを知ることができる。
 以下、本発明を実施例により詳細に説明するが、本発明がこれに制限されるものではない。
 〈実施例1〉
 CNTの欠陥濃度の違いによる分離
 高速液体クロマトグラフィー装置とデキストラン系ハイドロゲルを用い、界面活性剤として陰イオン界面活性剤であるコール酸ナトリウム(SC)とデオキシコール酸ナトリウム(DOC)を使用して、CNTの欠陥濃度の違いによる分離を行った。
[CNT分散液の作製]
 CNT(EC1.5、名城ナノカーボン社製)30mgを、純水30mLにSCを0.5%(以下すべて重量%)濃度で溶解させた界面活性剤水溶液に投入し、1/2インチホーン型超音波ホモジナイザー(Sonifier 250D、ブランソン社製)で出力30%にて30分間超音波を照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を冷水にて冷却した。得られたCNT分散液を、アングルローター(S50A、日立工機製)を装着した超遠心分離機(himac CS100GXII、日立工機製)を用いて遠心加速度210000gで1時間遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収して、分離用CNT分散液とした。
[欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、高速液体クロマトグラフィー装置(HPLC、AKTA pure25、GEヘルスケア製)を用いて欠陥濃度の違いによる分離を行った。23.5mLのセファクリルゲル(S1000、GEヘルスケア社製)を充填した直径10mm、長さ300mmのカラム(Tricorn10/30、GEヘルスケア社製)を、0.5%のSC水溶液で平衡化した後、分離用CNT分散液を1mL注入し、その後0.5%SC水溶液を0.5mL/minの流速でカラムボリューム(CV、この場合23.5mL)の2.5倍量(2.5CVと表記、この場合58.75mL)流すことにより、ゲルに吸着しない欠陥の少ないCNTを分取し、溶出時間の異なるフラクションを1mLごとに得た。クロマトグラムを図1aに示す。吸光度は鋭い立ち上がりの後テールを引く。図中に示す通り、初期に流出する代表的なフラクションをRとし、中期に流出するフラクションをSとする。その後カラムに注入する水溶液を変更し、1.0%濃度のDOC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNTを分取し、いくつかのフラクションを得た。そのうち代表的なフラクションをTとする。図1aのクロマトグラムにおいて、非吸着フラクションがテールを引くのは、吸着するほどには欠陥濃度は高く無いものの、ある程度欠陥濃度の高いCNTは、界面活性剤の吸着量が少なくゲルとの相互作用が大きくなるため、欠陥濃度が低く界面活性剤の吸着量の多いCNTよりも溶出に時間がかかるためと考えられる。つまり、最も欠陥濃度の低いCNTは界面活性剤の吸着量が多く素早くカラムを通り、最初のフラクションとして回収されるが、欠陥濃度が上がるにしたがって界面活性剤の吸着量が低下し、溶出時間が長くなり、一定以上の欠陥濃度のものはカラムに吸着すると考えられる。そのため、フラクションRはフラクションSよりも低欠陥であり、吸着したフラクションTが最も欠陥濃度が高くなる。
[光吸収スペクトルの測定]
 分光光度計(UV3600、島津制作所製)により、波長200nm~1350nmの範囲で紫外・可視・近赤外光吸収スペクトルを測定した。光吸収スペクトル測定では、光路長10mmの光学セルを用いて、溶媒水溶液を参照としてCNT分散液の光吸収スペクトルを測定したが、その際CNT濃度が高すぎると正確な測定ができないため、分離用CNT分散液および欠陥濃度の違いで分離した欠陥の少ないCNTの分散液は0.5%SC水溶液で、欠陥の多いCNT分散液は1.0%のDOC水溶液で希釈してから測定を行った。分離前のCNT分散液は100倍に、分離後は10倍に希釈して調整した。欠陥の少ないCNTフラクションR及びSを図1bに、欠陥の多いCNTフラクションTの光吸収スペクトルを図1cに示す。どちらも、分離前の分離用CNT分散液Pのスペクトルを点線で示してある。ただし、吸光度が異なるため、図1cではPの吸光度を0.5倍し、P’と表記した。フラクションTとP’のスペクトルに顕著な差は見られないが、フラクションRのスペクトルはPのスペクトルに比べ、波長650~800nm(M11)および波長1000~1300nm付近(S22)に観測されるCNT固有の光吸収構造において、微細な凹凸がより強く観測される。CNTの光吸収の波長は、CNTの直径や螺旋度などの構造に依存して変化するが、使用した試料には多数の異なる構造のCNTが混在しているため、様々な波長の光吸収が重ね合わさって観測され、波長650~800nmおよび波長1000~1300nm付近の光吸収バンドを形成している。CNTの光吸収においては、エキシトンによる光吸収が支配的であるが、エキシトンの寿命はCNTの欠陥が少ないほど長くなる。光吸収の半値幅はエキシトンの寿命の逆数に比例するため、欠陥の少ないCNTでは、光吸収の半値幅が狭くなる。フラクションRの光吸収スペクトルにおいて、微細な凹凸構造が強く観察されるのは、他のフラクションよりもエキシトンの寿命が長く、光吸収の半値幅が狭いためであり、欠陥濃度が他のフラクションよりも低いことを示している。
[ラマンスペクトルの測定]
 CNT分散液および欠陥濃度の違いにより分離した欠陥の少ないCNTと欠陥の多いCNTのラマンスペクトルを、ラマン分光器(CRP-200MS、分光計器)を用いて測定した。使用したレーザーは波長488nmである。試料は光路長10mmの石英製キュベットに入れて、後方散乱のジオメトリーのマクロステージで測定した。典型的なスペクトルをフラクションR,S,Tおよび未分離の分離用CNT分散液Pについて図1dに示す。1590cm-1付近に観測されるG-bandの強度が1となるように強度を規格化してある。したがって、D-bandの強度を比較することで、G/D比の大小がわかる。なお、D-bandにはG-bandの散乱のテールがかかっているため、D-bandの正味の強度を求める際には、バックグラウンドを差し引く必要がある。フラクションRのD-bandは、他のどのフラクションよりも強度が低く、G/Dが一番高いことがわかる。一方、フラクションTは分離前のPよりもD-band強度が高く、G/D比が低いことがわかる。フラクションごとに測定したG/D比を図1aのクロマトグラム内に示した。図中破線は分離前のPのG/D比である37を示している。これよりも高い値であれば分離前よりも低欠陥、低ければ高欠陥であることを意味する。フラクションR近傍の、初期の溶出フラクションではG/Dが50を超えており、低欠陥であることを示している。Sの付近では、分離前とほぼ同じ値となっている。一方、Tの付近では30以下であり、分離前よりもG/Dが低い。以上をまとめると、0.5%SCの条件で吸着したフラクションTは、分離前よりも欠陥の多いCNTであることがわかる。吸着しなかったフラクションRとSは平均として分離前よりも欠陥が少なくなっており、溶出初期のフラクションRにおいて特に欠陥が少なくなっている。これらの結果から、カラムクロマトグラフィーで、欠陥の多いCNTをカラムに吸着させ、非吸着のCNTの溶出過程で、初期のフラクションを分取することにより、欠陥の少ないCNTを得ることができることがわかる。
 〈実施例2〉
 SC濃度依存性試験
 CNTの分散溶媒及びカラムの平衡化に用いる、SC水溶液の濃度を変更して、実施例1と同様のCNTの分離を行った。
[CNT分散液の作製]
 実施例1と同じ工程でCNT(EC1.5、名城ナノカーボン社製)を原料として0.5%SC水溶液を用いて、超音波処理および超遠心処理によりCNT分散液を準備した。このCNT分散液を遠心限外濾過(アミコンウルトラ:ポアサイズ100K、メルク・ミリポア)を用いて液量が1/10になるまで濃縮した。この濃縮されたCNT分散液を等量の純水で希釈し、0.25%SC水溶液に分散した分離用CNT分散液を準備した。そこにSC粉末を計量して加えることにより、SC濃度をそれぞれ0.5%および1.0%に調整して、0.5%SC濃度の分離用CNT分散液および1.0%SC濃度の分離用CNT分散液を準備した。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。セファクリルゲル(S1000)を充填したカラムを、0.25%のSC水溶液で平衡化した後、0.25%のSC水溶液に分散した分離用CNT分散液を1mLカラムに注入し、その後0.25%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図2aに示す。次に、セファクリルゲル(S1000)を新たに充填したカラムを準備し、0.5%SC水溶液で平衡化した後、0.5%SC水溶液に分散した分離用CNT分散液を1mL注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図2bに示す。次にセファクリルゲル(S1000)を新たに充填したカラムを準備し、1.0%SC水溶液で平衡化した後、1.0%SC水溶液に分散したCNT分散液を1mL注入し、その後1.0%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図2cに示す。
 図2a,b,cのいずれの場合も、注入した分離用CNT分散液の中の一部のCNTがゲルに吸着し、それをDOC水溶液で溶出しており、吸着クロマトグラフィーが実現されているが、吸着するCNTの割合がSCの濃度によって変化していることがわかる。SC濃度が低いほど吸着画分Tの濃度が上がり、その分未吸着画分の濃度が下がっている。これは、欠陥の多いCNTには、表面に親水基が多いため界面活性剤の吸着量が低くなり、ゲルに吸着するという分離原理を裏付ける結果である。つまり、SC濃度が低くなると、CNT表面に吸着するSC分子数は全体的に低下するため、CNTはよりゲルに吸着しやすい状態となる。この状態では、吸着と未吸着の境界となる臨界欠陥濃度が低下し、より欠陥の少ないCNTのみが未吸着の成分となり、ゲルに吸着する欠陥の多いCNTの割合が増加することになる。したがって、未吸着成分はより欠陥の少ないCNTとなる。
[ラマンスペクトル測定]
 SC濃度0.25%、0.5%、1.0%の条件で得られた未吸着CNT画分Rおよび吸着CNT画分T、分離用CNT分散液Pのラマンスペクトルを、ラマン分光器を用いて波長488nmのレーザーで測定した。結果を図2d(0.25%SC)、図2e(0.5%SC)、図2f(1.0%SC)に示す。ただし、1.0%SCの吸着CNT画分Tは、濃度が低すぎて、分析可能なラマンスペクトルを得ることができなかったため、結果を示していない。実施例1と同様の解析法により、未吸着CNT画分RのG/D比をそれぞれ算出し、以下の表に示した。分離前のCNT分散液PのG/Dが40であったのに対し、0.25%SCの条件で分離したR画分のG/Dは51、0.5%SCの条件では46、1.0%SCの条件では41であった。SC濃度が低いほど、吸着・未吸着の境界となるCNTの欠陥濃度が下がるため、SC濃度が低いほど未吸着画分のCNTの欠陥濃度が低下し、未吸着画分RのG/D比が高くなることが分かる。
Figure JPOXMLDOC01-appb-T000001
 〈実施例3〉
 SC水溶液流速依存性試験
 未吸着画分と吸着画分を分離する際のSC水溶液の流速を変化させて、実施例1と同様のCNTの分離を行った。
 [CNT分散液の作製]
 実施例1と同様の方法により、CNT(EC1.5、名城ナノカーボン社製)を、0.5%のSC水溶液に超音波分散後超遠心処理し、分離用CNT分散液とした。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。セファクリルゲル(S1000)を充填したカラムを、0.5%のSC水溶液で平衡化した後、分離用CNT分散液を1mLカラムに注入し、その後0.5%SC水溶液を0.25mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、0.25mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図3aに示す。次に、セファクリルゲル(S1000)を新たに充填したカラムを準備し、0.5%SC水溶液で平衡化した後、分離用CNT分散液を1mL注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図3bに示す。次にセファクリルゲル(S1000)を新たに充填したカラムを準備し、0.5%SC水溶液で平衡化した後、分離用CNT分散液を1mL注入し、その後0.5%SC水溶液を1.0mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1%DOC水溶液に変更し、1.0mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図3cに示す。
 図3a,b,cのいずれの場合も、注入した分離用CNT分散液の中の一部のCNTがゲルに吸着し、それをDOC水溶液で溶出しており、吸着クロマトグラフィーが実現されているが、吸着するCNTの割合がSC水溶液の流速によって変化していることがわかる。SC水溶液の流速が遅いほど吸着画分の濃度が上がり、その分未吸着画分の濃度が下がっている。これは、欠陥の多いCNTがゲルに吸着するには有限の時間がかかり、流速が速いと吸着力の弱いCNTは、限られたカラム通過時間内には十分吸着できずに、未吸着成分としてフラクションRに混入することを示している。
[ラマンスペクトル測定]
 SC水溶液の流速0.25mL/min、0.5mL/min、1.0mL/minの条件で得られた未吸着CNT画分Rと吸着CNT画分Tのラマンスペクトルを、マクロラマン分光器を用いて波長488nmおよび633nmのレーザーで測定した。また、分離前の分離用CNT分散液Pのラマンスペクトルも同条件で測定した。488nmのレーザーで測定したスペクトルを流速0.25mL/minについては図3d、0.5mL/minについては図3e、1.0mL/minについては図3fに示す。実施例1と同様の解析法により、それぞれのG/D比を算出し、以下の表に示した。波長488nmの結果では、分離前の分離用CNT分散液PのG/Dが33であったのに対し、0.25mL/minの条件で分離したR画分のG/Dは52、0.5mL/minの条件では38、1.0mL/minの条件では38であった。また、T画分については、0.25mL/minではG/Dは25、0.5mL/minでは23、1.0mL/minでは22であった。いずれの流速でも、フラクションRは未分離PよりもG/Dが高くなり、分離前よりも欠陥の少ないCNTが得られたことが分かる。逆にフラクションTでは、未分離よりもG/Dが低くなり、分離前よりも欠陥の多いCNTが得られた。流速依存性を見ると、流速が遅いほうが、フラクションRのG/Dが大きくなり、より欠陥の少ないCNTが得られていることがわかる。波長633nmでの測定では、488nmの励起光と共鳴するCNTの種類が変わり、金属型と半導体型の割合が変化するが、各流速でのフラクションRのG/Dが未分離PのG/Dよりも高くなり、フラクションTのG/Dは未分離PのG/Dよりも低くなるという結果も、流速が遅いほうがフラクションRのG/Dが高くなるという結果も、488nmの結果と同様であり、金属型と半導体型の区別はなく、どちらに対しても欠陥の少ないCNTと多いCNTに分離できていることがわかる。以上のように、流速を変化させることにより、欠陥の少ないCNTと欠陥の多いCNTの分離条件を調整することができる。
Figure JPOXMLDOC01-appb-T000002
 〈実施例4〉
 酸化炭素を原料として合成した平均直径1nmの単層CNT(HiPco)を用いて、実施例1と同様のCNTの分離を行った。
[CNT分散液の作製]
 純水100mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(HiPcoロット番号R1-832、NanoIntegris製)100mgを投入し、1/2インチホーン型超音波ホモジナイザーで出力30%にて150分間超音波を照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を、S50Aアングルローターを装着した超遠心分離機を用いて遠心加速度210000gで1時間、超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収し、分離用CNT分散液(HiPco)とした。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液(HiPco)を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。23.5mLのセファクリルゲル(S1000)を充填した直径10mm、長さ300mmのカラムを、0.5%のSC水溶液で平衡化した後、分離用CNT分散液(HiPco)を1mLカラムに注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図4aに示す。注入した分離用CNT分散液中の一部のCNTがゲルに吸着し、それをDOC水溶液で溶出しており、吸着クロマトグラフィーが実現されている。
[光吸収スペクトルの測定]
 実施例1と同様に、分光光度計により、波長200nmから1350nmの範囲で紫外・可視・近赤外光吸収スペクトルを測定した。ただし、分離用CNT分散液およびフラクションRの希釈には0.5%のSC水溶液、フラクションTの希釈には1.0%のDOC水溶液を用いた。分離前の分離用CNT分散液P、フラクションR及びTの光吸収スペクトルを図4bに示す。スペクトルの違いを明確にするため、各スペクトルは280nmの吸光度でノーマライズしてある。実線で示されたフラクションRのスペクトルは、未分離PのスペクトルよりもCNT由来の吸収ピークの凹凸構造が顕著で、微細構造が見えるほど半値幅が狭い。一方、フラクションTのスペクトルは、未分離Pに比べてCNT由来の吸収構造の凹凸が小さく、微細構造も見えず、半値幅が広いことがわかる。これは、フラクションRのCNTは欠陥が少なく、そのためエキシトンの寿命が長く、吸収ピークの半値幅が狭くなっていると解釈できる。フラクションTはその反対に、欠陥が多く、半値幅が広くなっている。
[ラマンスペクトルの測定]
 フラクションR、Tおよび未分離の分離用CNT分散液Pについて、ラマン分光器を用いてラマンスペクトルを測定した。使用したレーザーの波長は633nmである。試料は光路長10mmの石英製キュベットに入れて、後方散乱のジオメトリーのマクロステージで測定した。典型的なスペクトルをフラクションR,Tおよび未分離のPについて図4cに示す。1590cm-1付近に観測されるG-bandの強度を1として強度をノーマライズしてある。したがって、D-bandの強度を比較することで、G/D比の大小がわかる。D-bandを比較しやすいように、10倍に拡大したスペクトルを同時に示してある。実施例1と同様の解析法により、フラクションR,Tおよび未分離CNT分散液PのG/D比の値を算出し、以下の表に示した。フラクションRのD-band(G/D=93)は、未分離のPのD-band(G/D=71)よりも小さく、未分離のCNTよりも低欠陥のCNTが分取できていることがわかる。逆にフラクションTのD-band(G/D=48)は、Pのそれよりも大きく、欠陥が多いことがわかる。
Figure JPOXMLDOC01-appb-T000003
 
 〈実施例5〉
 異なる合成法で合成された多層カーボンナノチューブを用いて、実施例1と同様のCNTの分離を行った。
[CNT分散液の作製]
 純水30mLにSCを0.5%および0.75%濃度で溶解させた2種類の界面活性剤水溶液にそれぞれ、多層CNT(Nanocyl-7000、Nanocyl製)30mgを投入し、1/2インチホーン型超音波ホモジナイザーで出力30%にて3時間超音波を照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を遠心分離機(Himac CT-13)により遠心加速度16060gで1時間、2mLのマイクロチューブを用いて遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収し、SC濃度が0.5%および0.75%の二種類の分離用CNT分散液(Nanocyl0.5)と分離用CNT分散液(Nanocyl0.75)を準備した。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。23.5mLのセファクリルゲル(S1000)を充填した直径10mm、長さ300mmのカラムを、まず0.5%のSC水溶液で平衡化した後、分離用CNT分散液(Nanocyl0.5)を1mLカラムに注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図5aに示す。次にSC濃度を0.75%に変更して、分離用CNT分散液(Nanocyl0.75)の分離実験を行った。ただし、吸着したCNTの溶出はDOC1.0%濃度で変更していない。クロマトグラムを図5bに示す。いずれの場合も、分離用CNT分散液の中の一部のCNTがゲルに吸着し、それをDOC水溶液で溶出しており、吸着クロマトグラフィーが実現されているが、0.75%濃度のSC水溶液の場合は、吸着するCNTの量が減少するため、SC水溶液で溶出するCNTの量が増加している。このSC濃度依存性は、実施例2で観測された傾向と一致しており、欠陥濃度による分離が行われたことがわかる。
[光吸収スペクトルの測定]
 実施例1と同様に、分光光度計により、波長200nmから1350nmの範囲で紫外・可視・近赤外光吸収スペクトルを測定した。0.75%SCを用いた際の分離前の分離用CNT分散液(Nanocyl0.75)P、フラクションR及びTの光吸収スペクトルを図5cに示す。ただし、CNT分散液の希釈には分離用CNT分散液とフラクションRについては0.75%のSC水溶液、フラクションTについては1.0%のDOC水溶液を用いた。スペクトルの違いを明確にするため、各スペクトルは280nmの吸光度でノーマライズしてある。欠陥の多い多層CNTであるため、分離前の分離用CNT分散液Pのスペクトルは、アモルファスカーボンのスペクトルと同様のスペクトルを示し、CNTに特徴的なスペクトルは顕著ではない。しかし、CNT固有の光吸収が観測されるはずの近赤外波長域の光吸収を比較すると、フラクションRが最も吸光度が高く、次いでP,そしてTが最も低いという、実施例4と同じ結果となっている。一方、250nm付近の紫外の吸収をみると、PとTはほぼ重なっており違いが無いが、Rのみ鋭いピーク構造を示している。これは、実施例4(図4b)でみられるフラクションRのピークの先鋭化と同じ結果であり、フラクションRのCNTが低欠陥であることを示している。
 〈実施例6〉
 アーク放電法でグラファイト粉末から合成された平均直径1.4nmの直径分布の狭いCNTを用いて、実施例1と同様のCNTの分離を行った。
[CNT分散液の作製]
 純水30mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(AP、ロット番号AP-A26k、Carbon Solution製)30mgを投入し、1/2インチホーン型超音波ホモジナイザーで出力30%にて30分照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を、S50Aアングルローターを装着した超遠心分離機を用いて、遠心加速度210000gで1時間超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収し、分離用CNT分散液(AP)とした。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液(AP)を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。23.5mLのセファクリルゲル(S1000)を充填した直径10mm、長さ300mmのカラムを、0.5%のSC水溶液で平衡化した後、分離用CNT分散液(AP)を1mLカラムに注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図6aに示す。注入したSC水溶液中に分散したCNT分散液の一部がゲルに吸着し、それをDOC水溶液で溶出しており、吸着クロマトグラフィーが実現されている。
[光吸収スペクトルの測定]
 実施例1と同様に、分光光度計により、波長200nmから1350nmの範囲で紫外・可視・近赤外光吸収スペクトルを測定した。ただし、CNT分散液の希釈には、分離用CNT分散液およびフラクションRについては0.5%のSC水溶液、フラクションTについては1.0%のDOC水溶液を用いた。分離前の分離用CNT分散駅(AP)P、フラクションR及びTの光吸収スペクトルを図6bに示す。スペクトルの違いを明確にするため、各スペクトルは280nmの吸光度で規格化してある。APは直径分布が狭いため、金属型および半導体型の光吸収スペクトルが、明瞭に分離して観測される。図6bに示した、1000nm付近のS22、500nm付近のS33は、半導体型CNTの第二および第三吸収帯を示しており、720nm付近のM11は、金属型CNTの第一吸収帯を示している。実線で示されたフラクションRのスペクトルは、点線で示された未分離PのスペクトルよりもCNT由来の吸収が顕著で、特に半導体型S22バンドの強度が強いだけでなく、微細な凹凸構造が強く観測されている。これは、フラクションRのCNTが未分離CNTPよりも欠陥が少なく、そのためエキシトンの寿命が長く、吸収ピークの半値幅が狭くなっていると理解できる。P,R,Tにおける、S22,S33,M11バンドの中心波長や全体の幅は変化が無いことから、直径やカイラリティーの分離は生じていないことがわかる。
[ラマンスペクトルの測定]
 フラクションR、Tおよび未分離のPについて、ラマン分光器を用いてラマンスペクトルを測定した。使用したレーザーの波長は488nmである。試料は光路長10mmの石英製キュベットに入れて、後方散乱のジオメトリーのマクロステージで測定した。典型的なスペクトルをフラクションR,Tおよび未分離のPについて図6cに示す。1590cm-1付近に観測されるG-bandの強度を1として強度をノーマライズしてある。したがって、D-bandの強度を比較することで、G/D比の大小がわかる。D-bandを比較しやすいように、20倍に拡大したスペクトルを同時に示してある。このCNTのD-bandは小さいため、違いがわかりにくいが、D-bandの大きさは、T>P>Rの順に変化しており、欠陥濃度の違いによって分離されていることがわかる。フラクションRおよびフラクションTをそれぞれ分画したCNT分散液のG/Dの値を図6aのクロマトグラムの中に示した。分離前のCNT分散液(AP)のG/Dよりも高い値がフラクションRに観測され、低い値がフラクションTに観測されていることがわかる。
 〈実施例7〉
 欠陥濃度が段階的に異なるCNTの分離
 界面活性剤濃度を段階的に変化させて通液し、欠陥濃度の異なるCNTを段階的に溶出して、CNTの分離を行った。
[CNT分散液の作製]
 純水100mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(EC1.5、名城ナノカーボン製)100mgを投入し、1/2インチホーン型超音波ホモジナイザーで出力30%にて1時間照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を、S50Aアングルローターを装着した超遠心分離機により遠心加速度210000gで1時間超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収した。このCNT分散液に等量の純水を加え、SC濃度を0.25%にして分離用CNT分散液(EC1.5)とした。
[界面活性剤の段階的濃度変更による欠陥濃度が段階的に異なるCNTの分離]
 分離用CNT分散液(EC1.5)から欠陥濃度の異なるCNT分散液を段階的に分離するため、高速液体クロマトグラフィー装置を用いて、溶出用の界面活性剤水溶液の界面活性剤濃度を段階的に変更して分離を行った。23.5mLのセファクリルゲル(S1000)を充填した直径10mm、長さ300mmのカラムを、0.25%のSC水溶液で平衡化した後、分離用CNT分散液(EC1.5)を1mLカラムに注入し、その後0.25%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分R1を分取した。その後注入する水溶液を0.5%SC水溶液に変更し、同流速で2.5CV流すことにより、0.25%SC環境下ではゲルに吸着するが、0.5%SC環境下ではゲルに吸着しないCNT画分R2を分取した。同様に0.75%SC水溶液を2.5CV流し、R3画分を、1.0%SC水溶液を2.5CV流しR4画分を分取した。最後に1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、最後までゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図7aに示す。最初に未吸着のCNTが溶出した後、SC濃度を上げるたびにその濃度で溶出するCNTが段階的に溶出していることがわかる。SC濃度が1.0%に達すると、溶出するCNT濃度が大きく低下することから、カラムに残留しているCNTがほとんど無い状態であることがわかるが、DOC1.0%で溶出すると、まだ溶出可能なCNTがカラムに残留していたことがわかった。各SC濃度における吸光度の変化を見ると、2.5CVでは完全にゼロに落ちていないことから、溶出に時間のかかるCNTが各濃度で溶出しきれておらず、そのため溶解度の高いDOC1.0%水溶液で一気に溶出したものと考えられる。最初の0.25%SCで吸着したCNTを、段階的にSC濃度を変化させることで、それぞれの濃度に対応したCNTが溶出しており、吸着クロマトグラフィーおよびその段階的溶出が実現していることがわかる。
[光吸収スペクトルの測定]
 実施例1と同様に、分光光度計により、波長200nmから1350nmの範囲で各フラクションの紫外・可視・近赤外光吸収スペクトルを測定した。ただし、CNT分散液の希釈にはフラクションR1(および分離用CNT分散液),R2,R3,R4についてはそれぞれ0.25%、0.5%、0.75%、1.0%濃度のSC水溶液、フラクションTについては1.0%のDOC水溶液を用いた。分離前のCNT分散駅(EC1.5)P、フラクションR1-R4及びTの光吸収スペクトルを図7bに示す。スペクトルの違いを明確にするため、各スペクトルは280nmの吸光度で規格化してある。さらにスペクトルの違いを明確にするため、1100nm付近の点線で囲った部分のスペクトルを拡大して図7cに示す。1100nm付近に観測されるCNT由来の吸収構造が各フラクションで異なっていることがわかる。微細構造の振幅が、R1>R2>P>R3>T>R4の順に変化していることから、振幅が高いほどエキシトンの寿命が長く、欠陥が少ないことがわかる。つまり、未分離のPよりもR1とR2は欠陥が少なく、R3,R4,Tは欠陥が多い。つまり、界面活性剤の濃度を段階的に変化させて溶出することにより、欠陥濃度が段階的に異なるCNTを溶出できたことを示している。
[ラマンスペクトルの測定]
 フラクションR1、R2、R3、Tおよび未分離のPについて、ラマン分光器を用いてラマンスペクトルを測定した。使用したレーザーの波長は488nmである。試料は光路長10mmの石英製キュベットに入れて、後方散乱のジオメトリーのマクロステージで測定した。なお、フラクションR4については、濃度が不十分で正確に測定できなかった。得られたラマンスペクトルからG/Dを算出して、各フラクションごとにプロットしたものを図7dに示す。G/Dの値は未分離Pでは40であるのに対し、R1は50、R2は42とPよりも高い値となっており、低欠陥のCNTであることを示している。一方、R3とTはそれぞれ33および30となっており、未分離Pよりも低い値となっている。全体として、G/Dの値はSC濃度増加に伴い単調に減少している。このように、溶出課程で界面活性剤の濃度を段階的に変化させることにより、溶出させるCNTの平均的欠陥濃度を調整することが可能であることが示された。
 〈実施例8〉
 バッチ式分離
 カラムを使うこと無く、ゲルビーズを充填したボトルにCNT分散液を投入することにより、欠陥の多いCNTをゲルに吸着させ、吸着せずに残った欠陥の少ないCNTを回収して、バッチ式分離を行った。
[CNT分散液の作製]
 純水100mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(EC1.5、名城ナノカーボン製)100mgを投入し、1/2インチホーン型超音波ホモジナイザーで出力30%にて90分間照射し、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を小分けし、等量の純水を添加することにより、SC濃度を0.25%として分離用CNT分散液(遠心無しEC1.5)とした。さらに、0.5%SC濃度のCNT分散液を、S50Aアングルローターを装着した超遠心分離機を用いて遠心加速度210000gで1時間超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収した後、そこに等量の純水を加えてSC濃度を0.25%とし、分離用CNT分散液(超遠心EC1.5)とした。
[CNTの欠陥濃度によるバッチ式分離]
 セファクリルゲル(S1000)を、水置換処理を5回繰り返した後、高速クロマトグラフィー用の直径50mmのカラムに充填し、そこに0.25%濃度のSC水溶液を3CV流すことにより、0.25%SCで平衡化したゲルを準備した。このゲルをカラムから取り出し、45mLのファルコンチューブ2本に、それぞれに20mLずつ入れ、そこに0.25%SC水溶液を各5mLずつ加えた。そこに分離用CNT分散液(遠心無しEC1.5)2mLと分離用CNT分散液(超遠心EC1.5)2mLをそれぞれ添加し密閉した。これら2本のファルコンチューブを回転式攪拌機(ビッグローターBR-2、アズワン製)で60分攪拌した後、遠心分離機で加速度3000gで3分遠心分離することによりゲルビーズを沈降させ、上澄みCNT分散液(遠心無しEC1.5)と上澄みCNT分散液(超遠心EC1.5)をそれぞれ回収した。
[ラマンスペクトルの測定]
 分離用CNT分散液(遠心無しEC1.5)、上澄みCNT分散液(遠心無しEC1.5)、分離用CNT分散液(超遠心EC1.5)、および上澄みCNT分散液(超遠心EC1.5)の4試料に対し、ラマン分光器を用いてラマンスペクトルを測定した。使用したレーザーの波長は488nmである。試料は光路長10mmの石英製キュベットに入れて、後方散乱のジオメトリーのマクロステージで測定した。分離用CNT分散液(遠心無しEC1.5)(P-noUS)および上澄みCNT分散液(遠心無しEC1.5)(Batch-no-US)のCNT分散液のラマンスペクトルを図8aに、分離用CNT分散液(超遠心EC1.5)(P-US)および上澄みCNT分散液(超遠心EC1.5)(Batch-US)のラマンスペクトルを図8bに示す。得られたスペクトルから、G/D値を算出した。その結果、分離用CNT分散液(遠心無しEC1.5)のG/Dは39であるのに対し、上澄みCNT分散液(遠心無しEC1.5)のG/Dは42であった。また、分離用CNT分散液(超遠心EC1.5)のG/Dは38であるのに対し、上澄みCNT分散液(超遠心EC1.5)のG/Dは42であった。以上、どちらのCNT分散液についても、バッチ処理した上澄みCNT分散液ではG/Dが向上しており、分離前よりも欠陥の少ないCNTが得られたことがわかる。以上のことから、クロマトグラフィーは必須でなく、バッチ式等、CNT分散液に含まれる欠陥の多いCNTをゲルに吸着させて固定する手法であれば、流動相から欠陥の少ないCNTを得ることができる。また、超遠心処理後による孤立分散CNTを使用する必要は無く、分散処理のみのCNT分散液から欠陥の少ないCNTを分離することができる。
 〈実施例9〉
 CNTの欠陥濃度による分離結果を用いた、CNTの評価試験
 超音波処理時間を変えた試料の欠陥濃度による分離結果から、超音波未処理のCNT試料に含まれる欠陥の少ないCNT量を外挿することにより、CNT試料の結晶性評価を行った。
[CNT分散液の作製]
 純水30mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(EC1.5、名城ナノカーボン製)30mgを投入した試料を3本用意し、それぞれ1/2インチホーン型超音波ホモジナイザーで出力30%にて超音波照射時間を30分、1時間、2時間として超音波処理を行い、CNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られた3種類のCNT分散液を、それぞれS50Aアングルローターを装着した超遠心分離機により遠心加速度210000gで1時間超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収した。それぞれの分散液の光吸収スペクトルを測定し、波長280nmの吸光度が最も低濃度である30分間分散した試料と等しくなるように、1時間処理、2時間処理のCNT分散液を0.5%濃度のSC水溶液で希釈し、濃度の等しい3種類の分離用CNT分散液(0.5h)、分離用CNT分散液(1.0h)および分離用CNT分散液(2.0h)を準備した。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。23.5mLのセファクリルゲル(S1000)を充填した直径10mm、長さ300mmのカラムを、0.5%のSC水溶液で平衡化した後、分離用CNT分散液(0.5h)を1mLカラムに注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。クロマトグラムを図9aに示す。このクロマトグラムから、ゲルに吸着しなかったフラクションRの面積を求め、31.1%の結果を得た。同様の実験を分散時間1時間の分離用CNT分散液(1h)、および分散時間2時間の分離用CNT分散液(2h)についても行った。それぞれのクロマトグラムを図9bおよび図9cに示す。それぞれ、クロマトグラムからフラクションRの面積割合を算出し、21.2%、12.3%を得た。超音波処理時間を長くすることにより、フラクションRが減り、フラクションTが増えることがわかる。超音波処理は、CNTに欠陥を導入することが知られていることから、フラクションTが高欠陥CNTの画分であることと矛盾せず、本発明が正しく機能していることを示している。
[超音波未処理CNTのフラクションRの割合の算出]
 欠陥濃度による分離の結果は、分離用CNT分散液準備過程の超音波処理の条件によって変化してしまうため、そのままでは試料の評価法として適切で無い。しかし、超音波処理時間を変えて実験を行い、超音波処理時間ゼロの値を外挿すれば、超音波処理の影響を受ける前の初期値を推定できる。そこで、クロマトグラムのフラクションRの割合を縦軸に、超音波処理時間を横軸に結果をプロットしたグラフを図9dに示す。縦軸は対数プロットになっている。欠陥導入は、指数関数的に進行すると考えられることから、フラクションRの割合WRは、WR=WRexp(-t/τ)で変化すると考えられる。ここで、tは超音波照射時間、τは特性時間、WRは、未処理のCNTのフラクションRの割合である。実験結果をこの式を用いて最小二乗法でフィッティングすることにより、初期値WRが40.8%と導出できる。つまり、このCNTは、超音波処理を行う前の時点で、欠陥の少ないCNTの割合が約41%であったことを示している。この割合は、界面活性剤の濃度、CNT分散液の濃度、カラム直径と長さ、カラム担体の種類、流速によって変化するが、これらのパラメータを同一にして実験を行えば、合成法や直径分布が異なるCNTの欠陥濃度を公平に比較することが可能になる。一般にラマン散乱のG/D比も欠陥濃度の評価に用いられているが、G/Dは、CNTの直径が変化すると共鳴条件が変わってしまい、値が変化してしまうため、直径分布が同一のCNT間でしか比較することができず、異なる合成法で作られたCNT間では比較することができない。欠陥濃度による分離の手法を用いたCNTの結晶性の評価は、このような欠点が無いため、異なる直径や異なる合成法のCNTの結晶性を公平に比較可能である。
 〈実施例10〉
 CNTの欠陥濃度により分離した欠陥の少ないCNTと欠陥の多いCNT及び分離前のCNTを用いて導電膜を作製し、それぞれの電気抵抗及び原子間力顕微鏡像を比較した。
[CNT分散液の作製]
 純水100mLにSCを0.5%濃度で溶解させた界面活性剤水溶液にCNT(EC1.5、名城ナノカーボン製)100mgを投入した試料を用意し、1/2インチホーン型超音波ホモジナイザーで出力30%にて90分、超音波を照射しCNTの分散液を作製した。その際、超音波のエネルギーによる水温上昇を防ぐため、上記水溶液を入れたガラス瓶を20℃に保った水槽に入れて冷却した。得られたCNT分散液を、S50Aアングルローターを装着した超遠心分離機を用いて遠心加速度210000gで1時間超遠心処理を行い、CNTのバンドルや不純物粒子を沈降させた後、上澄み80%を回収し、分離用CNT分散液(EC1.5)を準備した。
[CNTの欠陥濃度の違いによる分離]
 分離用CNT分散液を欠陥の少ないCNT分散液と欠陥の多いCNT分散液に分離するため、実施例1と同様に、高速液体クロマトグラフィー装置を用いて欠陥濃度の違いによる分離を行った。ただし、大量分取のため大型のカラムを用いた。400mLのセファクリルゲル(S1000)を充填した直径50mm、長さ203mmのカラムを、0.5%のSC水溶液で平衡化した後、0.5%のSC水溶液に分散した分離用CNT分散液(EC1.5)を40mLカラムに注入し、その後0.5%SC水溶液を0.5mL/minの流速で2.5CV(1000mL)流すことにより、ゲルに吸着しない欠陥の少ないCNT画分Rを分取した。その後注入する水溶液を1.0%DOC水溶液に変更し、0.5mL/minの流速で2.5CV流すことにより、ゲルに吸着していたCNTをゲルから脱離して溶出し、欠陥の多いCNT画分Tを分取した。同分離をもう一度繰り返し、導電膜用の分散液(フラクションRとフラクションT)および分離前の分離用CNT分散液(EC1.5)Pを準備した。
[導電膜の作製]
 フラクションR,フラクションTおよび未分離のCNT分散液(EC1.5)Pの三種類について、以下の手順でポリエチレンナフタレート(PEN)フィルム上に薄膜を形成した。得られた各フラクションに適宜界面活性剤を追加調整して、すべてのCNT分散液の界面活性剤濃度を0.5%SC+0.5%DOCの混合界面活性剤として、CNT分散性を向上させた。その後、トラックエッチによる微細な穴を形成した親水性ポリカーボネート製のフィルター(VCTP04700、メルクミリポア製)で吸引濾過し、フィルター上に薄膜を作製した。この薄膜を水およびメタノールで洗浄後、熱湯で洗浄した。これを50%メタノール+50%純水の混合液に浸した後、PENフィルムに圧着し、60℃のオーブンで乾燥させた後に、Nメチルピロリドンおよびジクロロメタンで洗浄して、ポリカーボネート製のフィルターを溶解除去し、CNT薄膜をPENフィルムに転写した。最後にフィルムを60℃のオーブンで乾燥し、導電膜とした。CNTによって、フィルターの穴から流出するCNT量が異なるため、濾過するCNTの量を未分離Pに関しては、27.2μgと40.8μgの2種類、フラクションRに関しては、7.2μgと10.8μgの2種類、フラクションTに関しては、32μgと48μgの2種類とした。なお、それぞれのCNT量は、光吸収から見積もった。
[導電膜の電気抵抗測定]
 PENに転写したフラクションR,フラクションT、および未分離Pの3種のCNT薄膜のシート抵抗を4探針型低抵抗抵抗率計(ロレスタ-GX、三菱ケミカルアナリテック製)を用いて測定した。各フィルムにおいて4カ所の抵抗値を測定し、その平均を求めた。得られたシート抵抗を、以下の表に示す。括弧内の数値は、波長500nmにおける吸光度であり、CNT膜の厚さに比例する量である。そこで、横軸を波長500nmにおける吸光度、縦軸をシート抵抗として、方対数プロットしたグラフを図10aに示す。未分離を四角、フラクションTを三角、フラクションRを丸で示してある。シート抵抗は、厚さによって変化し、厚いほど低くなる性質があるが、このようにプロットすることにより、どの厚みにおいても、フラクションRのシート抵抗が小さいことがわかる。一方、TとPの間には大きな差が無い。この結果から、欠陥の少ないCNT画分のフラクションRから作製したCNT薄膜のシート抵抗が分離前Pや欠陥の多いCNTであるフラクションTから作製したCNT薄膜のシート抵抗よりも小さいことが明確であり、これは、フラクションRで得られたCNTのキャリア移動度が高いことを示している。
Figure JPOXMLDOC01-appb-T000004
[原子間力顕微鏡像の測定]
 シート抵抗の違いが、CNT以外の不純物の混入によるもので無いことを確認するために、CNT薄膜の原子間力顕微鏡像を観測した。原子間力顕微鏡(NanoNavi S・image、SII社製)を用いて、フラクションRとフラクションTおよび未分離CNTであるPを、形状観察のため少量だけ濾過したポリカーボネートフィルター表面の原子間力顕微鏡像を、9Nmのカンチレバーによりダイナミックフォースモードで測定した結果を図10bに示す。図中、黒い丸はフィルターに空いた直径0.1μmのトラックエッチによる濾過穴である。白い線に見えるのがCNTである。いずれのフラクションの像も観測されるのはCNTのみであり、不純物粒子は見えないことから、どれもCNT純度は十分高く、観測されたシート抵抗の違いは、CNT表面の欠陥濃度の違いに由来することがわかる。

Claims (6)

  1.  界面活性剤を用いて水に分散した原料カーボンナノチューブをハイドロゲルに作用させることにより、分散液に含まれている欠陥が多いカーボンナノチューブを選択的にハイドロゲルに吸着させること、及び吸着せずに水溶液中に残留した欠陥が少ないカーボンナノチューブを回収することを含む、原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブの分離回収方法。
  2.  前記界面活性剤の濃度を下げることによりハイドロゲルに吸着する欠陥が多いカーボンナノチューブの量を増加させ、より欠陥の少ないカーボンナノチューブのみを水溶液中に残留させ、それを回収することを特徴とする、請求項1に記載の原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブの分離回収方法。
  3.  請求項1または請求項2に記載の分離回収方法によって得られた、原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブ。
  4.  界面活性剤を用いて水に分散した原料カーボンナノチューブをハイドロゲルに作用させることにより、分散液に含まれている欠陥が多いカーボンナノチューブを選択的にハイドロゲルに吸着させること、及びハイドロゲルに吸着した欠陥の多いカーボンナノチューブを、吸着時と異なる種類や濃度の界面活性剤水溶液をハイドロゲルに作用させることにより溶液中に溶出させて回収することを含む、原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブの分離回収方法。
  5.  請求項4に記載の分離回収方法で得られた、原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブ。
  6.  請求項3に記載された原料カーボンナノチューブよりも欠陥の少ないカーボンナノチューブと請求項5に記載された原料カーボンナノチューブ中の欠陥の多いカーボンナノチューブとの量比を、分離前の原料カーボンナノチューブの分散処理時間を変化させて複数導出することにより、原料カーボンナノチューブに含まれる欠陥の濃度を推定評価することを含む、カーボンナノチューブの欠陥濃度評価方法。
PCT/JP2020/025501 2019-07-19 2020-06-29 低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法 WO2021014896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-134066 2019-07-19
JP2019134066A JP7334901B2 (ja) 2019-07-19 2019-07-19 低欠陥カーボンナノチューブの分離法および低欠陥ナノチューブ

Publications (1)

Publication Number Publication Date
WO2021014896A1 true WO2021014896A1 (ja) 2021-01-28

Family

ID=74193779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025501 WO2021014896A1 (ja) 2019-07-19 2020-06-29 低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法

Country Status (2)

Country Link
JP (1) JP7334901B2 (ja)
WO (1) WO2021014896A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184225A (ja) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology カーボンナノチューブの分離回収方法及びカーボンナノチューブ
JP2014169193A (ja) * 2013-03-01 2014-09-18 Nec Corp ナノカーボンとグラフェンまたはグラファイトが複合した炭素材料及びその製造方法
JP2018168018A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 半導体型カーボンナノチューブの分離方法および半導体素子の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164193A (ja) 2013-02-26 2014-09-08 Oki Data Corp 画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184225A (ja) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology カーボンナノチューブの分離回収方法及びカーボンナノチューブ
JP2014169193A (ja) * 2013-03-01 2014-09-18 Nec Corp ナノカーボンとグラフェンまたはグラファイトが複合した炭素材料及びその製造方法
JP2018168018A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 半導体型カーボンナノチューブの分離方法および半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURAKAMI, T. ET AL.: "Raman and photoluminescence from dispersed single walled carbon nanotubes", DIAMOND & RELATED MATERIALS, vol. 16, 2007, pages 1192 - 1194, XP022049800, DOI: 10.1016/j.diamond. 2007.01.01 2 *

Also Published As

Publication number Publication date
JP7334901B2 (ja) 2023-08-29
JP2021017384A (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US11608269B2 (en) Monodisperse single-walled carbon nanotube populations and related methods for providing same
Subbaiyan et al. Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes
EP3036024B1 (en) Process for purifying semiconducting single-walled carbon nanotubes
US8715607B2 (en) Method for separating and collecting carbon nanotube, and carbon nanotube
Moon et al. Reduced graphene oxide by chemical graphitization
KR100875392B1 (ko) 카본 나노튜브의 분리방법 및 분산액
US20150203355A1 (en) Sorting Two-Dimensional Nanomaterials by Thickness
KR20070049179A (ko) 밴드갭에 의한 탄소 나노튜브의 벌크 분리 방법
JP2011195431A (ja) カーボンナノチューブのより簡便な分離回収方法
KR102552129B1 (ko) 섬유상 탄소 나노 구조체 분산액 및 그 제조 방법, 그리고 섬유상 탄소 나노 구조체
US20160280547A1 (en) Method of separating and recovering optically active carbon nanotube, and optically active carbon nanotube
Streit et al. Separation of double-wall carbon nanotubes by electronic type and diameter
Shpilevsky et al. Modification of materials by carbon nanoparticles
JP2010001162A (ja) 糖類を密度勾配剤として用いた金属型・半導体型カーボンナノチューブの分離方法。
Huh et al. Separation and characterization of double-wall carbon nanotube subpopulations
CN112174118B (zh) 一种大直径半导体性单壁碳纳米管的分离方法
WO2021014896A1 (ja) 低欠陥カーボンナノチューブの分離回収方法、及び該方法により得られる低欠陥ナノチューブ、並びに原料カーボンナノチューブに含まれる欠陥濃度評価方法
CN111747400B (zh) 一种提高单分散的碳纳米管分散液浓度的方法
KR20190086886A (ko) 산화 그래핀의 분리방법
Headrick Novel solution processing and characterization of aligned carbon nanotube materials for rapid composition-property relationship determination and additive manufacturing
Bharadwaj et al. Length based Separation of Single Walled Carbon Nanotubes using Liquid-Liquid Extraction
Ozyar Chirality sorted single walled carbon nanotubes for random network thin film applications
CN117658116A (zh) 一种纳米碳材料制备方法
Mansfield et al. Methods for TEM analysis of NIST's single-walled carbon nanotube Standard Reference Material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844637

Country of ref document: EP

Kind code of ref document: A1