WO2021013177A1 - 多晶硅还原炉的冷却系统和方法 - Google Patents

多晶硅还原炉的冷却系统和方法 Download PDF

Info

Publication number
WO2021013177A1
WO2021013177A1 PCT/CN2020/103508 CN2020103508W WO2021013177A1 WO 2021013177 A1 WO2021013177 A1 WO 2021013177A1 CN 2020103508 W CN2020103508 W CN 2020103508W WO 2021013177 A1 WO2021013177 A1 WO 2021013177A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
chassis
bell
cooling
high temperature
Prior art date
Application number
PCT/CN2020/103508
Other languages
English (en)
French (fr)
Inventor
石何武
张升学
杨永亮
郑红梅
严大洲
Original Assignee
中国恩菲工程技术有限公司
洛阳中硅高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921175361.4U external-priority patent/CN210825444U/zh
Priority claimed from CN201910669979.4A external-priority patent/CN110282627B/zh
Application filed by 中国恩菲工程技术有限公司, 洛阳中硅高科技有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2021013177A1 publication Critical patent/WO2021013177A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the embodiments of the present application belong to the field of polysilicon production. Specifically, the present application relates to a cooling system and method of a polysilicon reduction furnace.
  • Polysilicon is a raw material for solar photovoltaic and electronic communication products. It plays a pivotal role in photovoltaic cell production and electronic communication. Therefore, various systems in the polysilicon production process are continuously optimized and upgraded. To reduce the cost of polysilicon production by means of energy saving and consumption reduction is the goal that polysilicon production workers have been pursuing. Among the existing polysilicon production systems, the reduction system has the highest energy consumption and the most potential for tapping.
  • the polysilicon deposition reduction furnace is used to produce rod-shaped polysilicon.
  • the space formed by the reduction furnace bell jar and the reduction furnace chassis has a high-temperature deposition carrier of 1080 °C in high-purity trichlorohydrogen.
  • the vapor deposition of polysilicon is realized in a mixed atmosphere of silicon and hydrogen.
  • the bell jar and the chassis of the reduction furnace need to use an external cooling medium to cool down in such a high temperature environment to ensure the safe and stable operation of the equipment.
  • the traditional cooling medium of the bell jar of the reduction furnace includes high-temperature water, heat transfer oil and other media; the chassis mostly uses water as the cooling medium, and different reduction furnace models use water of different temperature levels to implement cooling.
  • the methods adopted by various polysilicon production companies are very different, and even many companies do not pay attention to the recovery and utilization of this heat. This results in the overall high energy consumption of the polysilicon production system and the difficulty in reducing costs.
  • Market competition is at a disadvantage.
  • the bell jar of the reduction furnace is cooled with 120-150°C high-temperature water or heat transfer oil, and the reduction furnace chassis is cooled with 60-90°C medium-temperature water.
  • the complexity of the system makes the restoration workshop complicated with piping, difficult to operate, and incomplete heat recovery and utilization.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent. For this reason, one purpose of this application is to provide a cooling system and method for a polysilicon reduction furnace.
  • the use of this system not only significantly simplifies the pipes of the existing polysilicon reduction furnace cooling system, but also realizes the efficient and hierarchical recovery and utilization of the high temperature water of the bell jar and the chassis high temperature water heat, and at the same time significantly reduces the consumption of cooling water of the polysilicon reduction furnace. Realize the safe and stable operation of the polysilicon reduction furnace.
  • the embodiment of the present application proposes a cooling system for a polysilicon reduction furnace.
  • the system includes:
  • the reduction furnace includes a bell jar and a base plate, the bell jar is arranged above the base plate, the base plate is arranged at the bottom of the bell jar, and the bell jar has a first cooling water inlet and a high temperature of the bell jar A water outlet, the chassis has a second cooling water inlet and a chassis high-temperature water outlet, the chassis high-temperature water outlet is connected to the first cooling water inlet and/or the second cooling water inlet;
  • the heat exchange device has a bell high temperature water inlet and a heat exchange cooling water outlet, the bell high temperature water inlet is connected to the bell high temperature water outlet, and the heat exchange cooling water outlet is connected to the The first cooling water inlet and/or the second cooling water inlet are connected.
  • the cooling system of the polysilicon reduction furnace of the embodiment of the present application by passing cooling water in the same heat range as the cooling medium to the bell jar and the chassis of the reduction furnace, the water source variety of the cooling system of the polysilicon reduction furnace can be reduced, and the complexity of the cooling system can be significantly reduced. It also simplifies the piping of the reduction workshop; further, because the bell is the key heat exchange part for the by-product heat transfer, accounting for more than 80% of the by-product heat, the temperature rise of the high-temperature water of the bell-cover relative to the cooling water The temperature rise of the high temperature water of the chassis is lower than that of the cooling water.
  • Separate processing of the two can prevent the high temperature water of the chassis from reducing the quality of the high temperature water of the bell, and improve the quality of the high temperature water of the bell in the subsequent heat exchange process;
  • the water is treated separately and directly returned as cooling water for the bell jar and/or chassis to recover the heat of the high temperature water of the chassis and reduce the cooling water volume of the polysilicon reduction furnace; and the obtained high temperature water from the bell jar is directly sent to the heat exchange device for processing
  • the heat exchange process can recover the heat of the high-temperature water of the bell, which simplifies the traditional complicated process of converting hot water into steam and then exchanges heat, and reduces the heat loss of the high-temperature water of the bell.
  • the temperature of the high-temperature water of the cover is obtained, and the cooling water after the heat exchange is returned to the bell and/or the chassis as cooling water, which realizes the two-stage utilization of the high-temperature water heat of the bell and further reduces
  • the amount of cooling water in the cooling system of the polysilicon reduction furnace is measured.
  • the use of this system not only significantly simplifies the pipes of the existing polysilicon reduction furnace cooling system, but also realizes the efficient and hierarchical recovery and utilization of the high temperature water of the bell jar and the chassis high temperature water heat, and at the same time significantly reduces the cooling water of the polysilicon reduction furnace. Usage amount and realize the safe and stable operation of polysilicon reduction furnace.
  • cooling system of the polysilicon reduction furnace according to the above embodiment of the present application may also have the following additional technical features:
  • the cooling system of the above polysilicon reduction furnace further includes: a first pressurizing pump, the first pressurizing pump is connected to the cooling water outlet after heat exchange, and the first pressurizing pump It is connected to the first cooling water inlet and/or the second cooling water inlet.
  • the cooling system of the above-mentioned polysilicon reduction furnace further includes: a buffer tank connected to the high temperature water outlet of the chassis; a second pressure pump, the second pressure pump being connected to the The buffer tank is connected, and the second pressurizing pump is connected to the first cooling water inlet and/or the second cooling water inlet.
  • the heat exchange device is a plate heat exchanger. Therefore, the utilization rate of the high temperature water heat of the bell jar can be further improved.
  • the bell-jar high temperature water outlet in the height direction, is located above the first cooling water inlet. Therefore, it is beneficial to realize the control of the high temperature water temperature of the bell jar.
  • the distance between the high temperature water outlet of the bell jar and the first cooling water inlet accounts for 80-90% of the height of the bell jar.
  • the present application proposes a method for cooling a polysilicon reduction furnace by using the cooling system of the above polysilicon reduction furnace.
  • the method includes:
  • Cooling water is supplied to the bell jar and the bottom plate of the reduction furnace from the first cooling water inlet and the second cooling water inlet respectively, so as to cool the bell jar and the bottom plate separately. Obtaining the high temperature water of the bell jar and the high temperature water of the chassis, and returning the high temperature water of the chassis as the cooling water to the bell jar and/or the chassis;
  • the high temperature water of the bell jar is supplied to the heat exchange device for heat recovery, so as to obtain cooling water after heat exchange, and the cooling water after heat exchange is returned to the bell jar and/or as the cooling water.
  • the chassis The chassis.
  • the cooling method of the polysilicon reduction furnace by passing cooling water within the same heat range as the cooling medium to the bell jar and the bottom plate of the reduction furnace, the types of water sources for cooling the polysilicon reduction furnace can be reduced, and the complexity of cooling can be significantly reduced.
  • the high temperature water of the chassis is separate It is directly returned to be used as the cooling water of the bell jar and/or chassis to recover the heat of the chassis high temperature water, and can reduce the cooling water volume of the polysilicon reduction furnace; and the obtained bell jar high temperature water is directly sent to the heat exchange device for heat exchange Treatment to recover the heat of the high-temperature water of the bell, simplifying the traditional complicated process of converting hot water into steam and then exchanging heat, reducing the heat loss of the high-temperature water of the bell, and reducing the high temperature of the bell after heat exchange.
  • the temperature of the water is used to obtain the cooling water after the heat exchange, and the cooling water after the heat exchange is returned to the bell jar and/or the chassis as cooling water, which realizes the two-stage utilization of the high temperature water heat of the bell jar and further reduces the polysilicon
  • the amount of cooling water used to cool the reduction furnace Therefore, the adoption of this method not only significantly simplifies the cooling pipeline of the existing polysilicon reduction furnace, but also realizes the efficient and hierarchical recovery and utilization of the high temperature water of the bell jar and the high temperature water of the chassis, and significantly reduces the use of cooling water for the polysilicon reduction furnace. And realize the safe and stable operation of the polysilicon reduction furnace.
  • cooling method of the polysilicon reduction furnace according to the above embodiment of the present application may also have the following additional technical features:
  • the temperature of the cooling water, the high temperature water of the chassis, and the cooling water after heat exchange are independently 120-150 degrees Celsius. As a result, the heat recovery and utilization of the high temperature water of the chassis and the high temperature water of the bell can be further realized.
  • the flow ratio of the cooling water supplied to the bell jar to the cooling water supplied to the chassis is 3-5:1, which is beneficial to realize the The temperature control of high temperature water and chassis high temperature water.
  • the temperature of the high temperature water of the bell jar is 150-170 degrees Celsius. As a result, the primary recovery and utilization of the high temperature water heat of the bell jar can be further realized.
  • the cooling water after the heat exchange is sent to the bell jar and/or the chassis through the first pressurizing pump for use as the cooling water.
  • the secondary recovery and utilization of the high temperature water heat of the bell jar can be further realized.
  • the high temperature water of the chassis is sent to the bell jar and/or the chassis through the second pressurizing pump for use as the cooling water.
  • the heat recovery and utilization of the high temperature water of the chassis can be further realized.
  • Fig. 1 is a schematic structural diagram of a cooling system of a polysilicon reduction furnace according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a cooling system of a polysilicon reduction furnace according to another embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of a cooling system of a polysilicon reduction furnace according to another embodiment of the present application.
  • Fig. 4 is a schematic flow chart of a cooling method of a polysilicon reduction furnace according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the present application proposes a cooling system for a polysilicon reduction furnace.
  • the system includes: a reduction furnace 100 and a heat exchange device 200.
  • the reduction furnace 100 includes a bell cover 110 and a base plate 120.
  • the bell cover 110 is arranged above the base plate 120, and the base plate 120 is arranged at the bottom of the bell cover 110.
  • the bell cover 110 has a first cooling water inlet 111 and a bell cover.
  • the high temperature water outlet 112 the chassis 120 has a second cooling water inlet 121 and a chassis high temperature water outlet 122.
  • the chassis high temperature water outlet 122 is connected to the first cooling water inlet 111 and/or the second cooling water inlet 121, and is suitable for cooling water
  • the first cooling water inlet and the second cooling water inlet are respectively supplied to the bell jar and the chassis to cool the bell jar and the chassis respectively, so as to obtain the high temperature water of the bell jar and the chassis high temperature water respectively, and use the chassis high temperature water as cooling water Return to the bell jar and/or chassis.
  • Lifting and processing the two separately can prevent the high-temperature water of the chassis from reducing the quality of the high-temperature water of the bell, and improve the quality of the high-temperature water of the bell in the subsequent heat exchange process; the high-temperature water of the chassis is treated separately and directly returned as the bell and/ Or use the cooling water of the chassis to recover the heat of the high-temperature water of the chassis and reduce the cooling water volume of the polysilicon reduction furnace.
  • the polysilicon reduction furnace is a common equipment in the existing polysilicon production process.
  • the gasified high-purity trichlorosilane and hydrogen are mixed in a certain proportion into the polysilicon reduction furnace, and the rod-shaped silicon cores placed in the reduction furnace are added Voltage generates high temperature.
  • trichlorosilane is reduced by hydrogen to elemental silicon and deposited on the surface of the silicon core to gradually generate polycrystalline silicon rods of the required specifications.
  • the bell jar and the chassis of the reduction furnace need to use cooling water with the same heat range to cool down in such a high temperature environment to ensure the safe and stable operation of the equipment.
  • the cooling water can obtain the chassis high temperature water and the bell high temperature water with obvious temperature difference after the chassis and the bell cool and exchange heat.
  • the temperature of the chassis high temperature water and the bell jar high temperature water output from the chassis and bell jar can be controlled, thereby controlling the recovery and utilization of the by-product heat of the entire reduction furnace and improving the efficiency of the reduction furnace. Utilization of heat production, while achieving stable operation of the system.
  • the cooling system of the reduction furnace may further include: a buffer tank 300 and a second pressurizing pump 400, which can return the chassis high-temperature water to the chassis and/or the bell through the buffer tank and the second pressurizing pump.
  • the buffer tank 300 is connected to the chassis high-temperature water outlet 122; the second pressurizing pump 400 is connected to the buffer tank 300, and the second pressurizing pump 400 is connected to the first cooling water inlet 111 and/or the second cooling water inlet 121.
  • the bell-jar high temperature water outlet 112 is located above the first cooling water inlet 111.
  • the angle between the direction of the high temperature water outlet of the bell jar and the direction of the first cooling water inlet is not particularly limited. Those skilled in the art can choose according to actual needs, for example, it can be 0-360 The degree may be, for example, 0 degree, 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees, 315 degrees, or 360 degrees, preferably 180 degrees.
  • the distance between the bell jar high temperature water outlet 112 and the cooling water first inlet 111 accounts for 80-90% of the bell jar height, for example, it can be 80%, 82%, 84%, 86%, 88% , 90%.
  • the temperature of the cooling water, the high temperature water of the chassis, and the cooling water after the heat exchange can be independently 130-150 degrees Celsius, for example, 130 degrees, 135 degrees, 140 degrees, 145 degrees, and 150 degrees. .
  • the temperature of the cooling medium used in the bell jar of the existing polysilicon reduction furnace is generally 130-150 degrees Celsius, and this application still uses the cooling medium in this temperature range (including cooling water, chassis high-temperature water and cooling water after heat exchange) for cooling
  • the chassis and the bell cover can continue to use the existing process equipment, without replacing the existing pipelines due to process changes, so as to avoid increasing the equipment cost of the system;
  • water in the above temperature range is used as the cooling medium . It is conducive to the direct recovery and utilization of the high-temperature water of the chassis, and it is also conducive to the subsequent recovery of the heat of the high-temperature water of the bell; in addition, by using the cooling medium in the above temperature range to cool the chassis and the bell, the system can be safe Stable operation.
  • the temperature of the high-temperature water in the bell jar is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be 150-170 degrees Celsius, for example, it can be 150 degrees Celsius, 155 degrees Celsius, 160 degrees Celsius, 165 degrees Celsius, 170 degrees Celsius. Degrees Celsius.
  • the flow ratio of the cooling water supplied to the bell jar to the cooling water supplied to the chassis is not particularly limited, and those skilled in the art can make selections according to actual needs, for example, according to the high temperature water of the chassis and The temperature of the high temperature water in the bell can be adjusted flexibly.
  • the flow ratio of the cooling water supplied to the bell jar to the cooling water supplied to the chassis is 3-5:1, for example, it may be 3/3.5/4.0/4.5/5:1.
  • the heat exchange device 200 has a bell housing high temperature water inlet 201 and a heat exchange cooling water outlet 202.
  • the bell housing high temperature water inlet 201 is connected to the bell housing high temperature water outlet 112, and the heat exchange cooling water outlet 202 is connected to
  • the first cooling water inlet 111 and/or the second cooling water inlet 121 are connected, and are suitable for recovering heat from the high temperature water of the bell, so as to obtain cooling water after heat exchange, and returning the cooling water after heat exchange as cooling water to the clock Cover and/or chassis.
  • the high temperature water of the bell jar is directly sent to the heat exchange device for heat exchange treatment to recover the heat of the high temperature water of the bell jar, which simplifies the traditional complicated process of converting hot water into steam and then heat exchange, and reduces the temperature.
  • the heat loss of the high-temperature water of the cover, and the temperature of the high-temperature water of the bell can be reduced after heat exchange, and the cooling water after heat exchange is obtained.
  • the cooling water after the heat exchange is returned to the bell and/or the chassis as cooling water for use.
  • the two-stage utilization of the high temperature water heat of the bell jar is realized, and the amount of cooling water for cooling the polysilicon reduction furnace is further reduced.
  • the specific type of the heat exchange device is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it may be a plate heat exchanger.
  • the heat exchange device can better transfer and reduce the by-product heat, improve the energy utilization efficiency of the polysilicon production system, and reduce the demand for external supplementary energy of the system.
  • the cooling system of the above polysilicon reduction furnace may further include: a first pressurizing pump 500, which can return the cooling water after heat exchange to the chassis and/or the bell jar through the first pressurizing pump.
  • the first pressurizing pump 500 is connected to the cooling water outlet 202 after heat exchange, and the first pressurizing pump 500 is connected to the first cooling water inlet 111 and/or the second cooling water inlet 121.
  • the cooling system of the polysilicon reduction furnace of the embodiment of the present application by passing cooling water in the same heat range as the cooling medium to the bell jar and the chassis of the reduction furnace, the water source variety of the cooling system of the polysilicon reduction furnace can be reduced, and the complexity of the cooling system can be significantly reduced. It also simplifies the piping of the reduction workshop; further, because the bell is the key heat exchange part for the by-product heat transfer, accounting for more than 80% of the by-product heat, the temperature rise of the high-temperature water of the bell-cover relative to the cooling water The temperature rise of the high temperature water of the chassis is lower than that of the cooling water.
  • Separate processing of the two can prevent the high temperature water of the chassis from reducing the quality of the high temperature water of the bell, and improve the quality of the high temperature water of the bell in the subsequent heat exchange process;
  • the water is treated separately and directly returned as cooling water for the bell jar and/or chassis to recover the heat of the high temperature water of the chassis and reduce the cooling water volume of the polysilicon reduction furnace; and the obtained high temperature water from the bell jar is directly sent to the heat exchange device for processing
  • the heat exchange process can recover the heat of the high-temperature water of the bell, which simplifies the traditional complicated process of converting hot water into steam and then exchanges heat, and reduces the heat loss of the high-temperature water of the bell.
  • the temperature of the high-temperature water of the cover is obtained, and the cooling water after the heat exchange is returned to the bell and/or the chassis as cooling water, which realizes the two-stage utilization of the high-temperature water heat of the bell and further reduces
  • the amount of cooling water in the cooling system of the polysilicon reduction furnace is measured.
  • the use of this system not only significantly simplifies the pipes of the existing polysilicon reduction furnace cooling system, but also realizes the efficient and hierarchical recovery and utilization of the high temperature water of the bell jar and the chassis high temperature water heat, and at the same time significantly reduces the cooling water of the polysilicon reduction furnace. Usage amount and realize the safe and stable operation of polysilicon reduction furnace.
  • the present application proposes a method for cooling a polysilicon reduction furnace by using the cooling system of the above polysilicon reduction furnace.
  • the method includes:
  • the cooling water is supplied to the bell jar and the bottom plate of the reduction furnace from the first cooling water inlet and the second cooling water inlet respectively, so as to cool the bell jar and the bottom plate respectively, so as to obtain the high temperature water of the bell jar and the high temperature bottom plate respectively. And return the high temperature water of the chassis to the bell jar and/or the chassis as cooling water.
  • Lifting and processing the two separately can prevent the high-temperature water of the chassis from reducing the quality of the high-temperature water of the bell, and improve the quality of the high-temperature water of the bell in the subsequent heat exchange process; the high-temperature water of the chassis is treated separately and directly returned as the bell and/ Or use the cooling water of the chassis to recover the heat of the high-temperature water of the chassis and reduce the cooling water volume of the polysilicon reduction furnace.
  • the polysilicon reduction furnace is a common equipment in the existing polysilicon production process.
  • the gasified high-purity trichlorosilane and hydrogen are mixed in a certain proportion into the polysilicon reduction furnace, and the rod-shaped silicon cores placed in the reduction furnace are added Voltage generates high temperature.
  • trichlorosilane is reduced by hydrogen to elemental silicon and deposited on the surface of the silicon core to gradually generate polycrystalline silicon rods of the required specifications.
  • the bell jar and the chassis of the reduction furnace need to use cooling water in the same heat range to cool down in such a high temperature environment to ensure the safe and stable operation of the equipment.
  • the cooling water can obtain the chassis high temperature water and the bell high temperature water with obvious temperature difference after the chassis and the bell cool and exchange heat.
  • the temperature of the chassis high temperature water and the bell jar high temperature water output from the chassis and bell jar can be controlled, thereby controlling the recovery and utilization of the by-product heat of the entire reduction furnace and improving the efficiency of the reduction furnace. Utilization of heat production, while achieving stable operation of the system.
  • the specific method of returning the chassis high-temperature water as cooling water to the chassis and/or bell jar is not particularly limited. Those skilled in the art can choose according to actual needs. For example, after buffering by a buffer tank, The high temperature water of the chassis is returned to the chassis and/or the bell jar through the second pressure pump.
  • the temperature of the cooling water, the high temperature water of the chassis, and the cooling water after the heat exchange can be independently 130-150 degrees Celsius, for example, 130 degrees, 135 degrees, 140 degrees, 145 degrees, and 150 degrees.
  • the chassis and the bell cover can continue to use the existing process equipment, without replacing the existing pipelines due to process changes, so as to avoid increasing the equipment cost of the system; on the one hand, water in the above temperature range is used as the cooling medium , It is conducive to the direct recovery and utilization of the high-temperature water of the chassis, and it is also conducive to the subsequent recovery of the heat of the high-temperature water of the bell; in addition, by using the cooling medium in the above temperature range to cool the chassis and the bell, the
  • the temperature of the high-temperature water in the bell jar is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be 150-170 degrees Celsius, for example, it can be 150 degrees Celsius, 155 degrees Celsius, 160 degrees Celsius, 165 degrees Celsius, 170 degrees Celsius. Degrees Celsius. The applicant found that if the temperature of the high-temperature water in the bell is too low, the quality of the heat source is reduced, which is not conducive to the subsequent heat recovery; if the temperature of the high-temperature water in the bell is too high, the result will be determined by the subsequent heat exchange device.
  • the flow ratio of the cooling water supplied to the bell jar to the cooling water supplied to the chassis is not particularly limited, and those skilled in the art can make selections according to actual needs, for example, according to the high temperature water of the chassis and The temperature of the high temperature water in the bell can be adjusted flexibly.
  • the flow ratio of the cooling water supplied to the bell jar to the cooling water supplied to the chassis is 3-5:1, for example, it may be 3/3.5/4.0/4.5/5:1.
  • the high temperature water of the bell jar is supplied to the heat exchange device for heat recovery, so as to obtain cooling water after heat exchange, and the cooling water after heat exchange is returned to the bell jar and/or the chassis as cooling water.
  • the heat loss of the high-temperature water of the cover, and the temperature of the high-temperature water of the bell can be reduced after heat exchange, and the cooling water after heat exchange is obtained.
  • the cooling water after the heat exchange is returned to the bell and/or the chassis as cooling water for use.
  • the two-stage utilization of the high temperature water heat of the bell jar is realized, and the amount of cooling water for cooling the polysilicon reduction furnace is further reduced.
  • the specific method of heat exchange is not particularly limited, and those skilled in the art can make a selection according to actual needs, for example, it may be plate heat exchange. The applicant found that this heat exchange form can better transfer and reduce the by-product heat, improve the energy utilization efficiency of the polysilicon production process, and reduce the need for external supplementary energy in the process.
  • the specific method of returning the cooling water to the chassis and/or the bell jar as cooling water after heat exchange is not particularly limited. Those skilled in the art can choose according to actual needs.
  • the pressure pump returns the cooling water after heat exchange to the chassis and/or bell jar.
  • the applicant found that by arranging the first pressurizing pump in the path that sends the cooling water after the heat exchange to the chassis and/or the bell jar, the secondary utilization of the heat of the cooling water after the heat exchange can be better realized, thereby improving the overall
  • the heat utilization efficiency of the system also promotes the stable operation of the system.
  • the cooling method of the polysilicon reduction furnace by passing cooling water within the same heat range as the cooling medium to the bell jar and the bottom plate of the reduction furnace, the types of water sources for cooling the polysilicon reduction furnace can be reduced, and the complexity of cooling can be significantly reduced.
  • the high temperature water of the chassis is separate It is directly returned to be used as the cooling water of the bell jar and/or chassis to recover the heat of the chassis high temperature water, and can reduce the cooling water volume of the polysilicon reduction furnace; and the obtained bell jar high temperature water is directly sent to the heat exchange device for heat exchange Treatment to recover the heat of the high-temperature water of the bell, simplifying the traditional complicated process of converting hot water into steam and then exchanging heat, reducing the heat loss of the high-temperature water of the bell, and reducing the high temperature of the bell after heat exchange.
  • the temperature of the water is used to obtain the cooling water after the heat exchange, and the cooling water after the heat exchange is returned to the bell jar and/or the chassis as cooling water, which realizes the two-stage utilization of the high temperature water heat of the bell jar and further reduces the polysilicon
  • the amount of cooling water used to cool the reduction furnace Therefore, the adoption of this method not only significantly simplifies the cooling pipeline of the existing polysilicon reduction furnace, but also realizes the efficient and hierarchical recovery and utilization of the high temperature water of the bell jar and the high temperature water of the chassis, and significantly reduces the use of cooling water for the polysilicon reduction furnace. And realize the safe and stable operation of the polysilicon reduction furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

提供多晶硅还原炉(100)的冷却系统和方法。该多晶硅冷却系统包括钟罩(110)和底盘(120),钟罩具有冷却水第一入口(111)和钟罩高温水出口(112),底盘具有冷却水第二入口(121)和底盘高温水出口(122),底盘高温水出口与冷却水第一入口和/或冷却水第二入口相连;换热装置(200),具有钟罩高温水入口(201)和换热后冷却水出口(202),钟罩高温水入口与钟罩高温水出口相连,换热后冷却水出口与冷却水第一入口和/或冷却水第二入口相连。还公开了使用该系统的方法。该系统既简化了现有多晶硅还原炉冷却系统的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时降低了多晶硅还原炉冷却水的远距离循环使用量并实现多晶硅还原炉的安全稳定运行。

Description

多晶硅还原炉的冷却系统和方法
相关申请的交叉引用
本申请要求申请号为201921175361.4和201910669979.4、申请日为2019年7月24日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请的实施例属于多晶硅生产领域,具体而言,本申请涉及多晶硅还原炉的冷却系统和方法。
背景技术
多晶硅是太阳能光伏及电子通讯产品类用原料,在光伏电池生产、电子通讯领域中起着举足轻重的作用,因此针对多晶硅生产过程中的各个系统在不断进行优化提升。通过节能降耗的手段来降低多晶硅生产成本是多晶硅生产工作者一直以来孜孜追求的目标。现有多晶硅生产系统中,还原系统是能耗最高、最具有挖潜空间的系统。
现有多晶硅生产80%以上采用改良西门子工艺,基本都是采用多晶硅沉积还原炉生产棒状多晶硅,由还原炉钟罩和还原炉底盘构成的空间内有1080℃的高温沉积载体在高纯三氯氢硅与氢气的混合气氛围下实现多晶硅的气相沉积,还原炉钟罩以及底盘在如此高温的环境氛围下需要采用外供冷却介质来降温,确保设备的安全稳定运行。还原炉钟罩的传统冷却介质有高温水、导热油等介质;底盘大都采用水作为降温介质,不同的还原炉炉型采用不同温度等级的水来实施降温。而对于降温介质的热量回收再利用上,各多晶硅生产企业采用的方法千差万别,甚至很多企业不注重这些热量的回收利用,导致多晶硅生产系统能耗整体偏高,成本难以下降,进而导致企业在激烈的市场竞争中处于下风。传统的多晶硅还原炉冷却系统中,还原炉钟罩用120-150℃的高温水或者导热油进行冷却,还原炉底盘则采用60~90℃的中温水进行冷却,这样的方式水源品种多,冷却系统复杂,使得还原车间配管繁杂,操作困难,热回收利用不全。
因此,现有多晶硅还原炉的冷却技术有待进一步改进。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个 目的在于提出一种多晶硅还原炉的冷却系统和方法。采用该系统既显著简化了现有多晶硅还原炉冷却系统的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时显著降低了多晶硅还原炉冷却水的使用量并实现多晶硅还原炉的安全稳定运行。
在本申请的一个方面,本申请的实施例提出了一种多晶硅还原炉的冷却系统,根据本申请的实施例,该系统包括:
还原炉,所述还原炉包括钟罩和底盘,所述钟罩设在所述底盘上方,所述底盘设于所述钟罩的底部,所述钟罩具有冷却水第一入口和钟罩高温水出口,所述底盘具有冷却水第二入口和底盘高温水出口,所述底盘高温水出口与所述冷却水第一入口和/或所述冷却水第二入口相连;
换热装置,所述换热装置具有钟罩高温水入口和换热后冷却水出口,所述钟罩高温水入口与所述钟罩高温水出口相连,所述换热后冷却水出口与所述冷却水第一入口和/或所述冷却水第二入口相连。
根据本申请实施例的多晶硅还原炉的冷却系统,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却系统的水源品种,显著降低冷却系统的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量;而所得的钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却系统的冷却水水量。由此,采用该系统既显著简化了现有多晶硅还原炉冷却系统的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时显著降低了多晶硅还原炉冷却水的使用量并实现多晶硅还原炉的安全稳定运行。
另外,根据本申请上述实施例的多晶硅还原炉的冷却系统还可以具有如下附加的技术特征:
在本申请的一些实施例中,上述多晶硅还原炉的冷却系统进一步包括:第一加压泵,所述第一加压泵与所述换热后冷却水出口相连,所述第一加压泵与所述冷却水第一入口和/或所述冷却水第二入口相连。由此,可进一步提高对换热后冷却水热量的利用率。
在本申请的一些实施例中,上述多晶硅还原炉的冷却系统进一步包括:缓冲罐,所述 缓冲罐与所述底盘高温水出口相连;第二加压泵,所述第二加压泵与所述缓冲罐相连,所述第二加压泵与所述冷却水第一入口和/或所述冷却水第二入口相连。由此,可进一步提高对底盘高温水热量的利用率。
在本申请的一些实施例中,所述换热装置为板式换热器。由此,可进一步提高对钟罩高温水热量的利用率。
在本申请的一些实施例中,在高度方向上,所述钟罩高温水出口位于所述冷却水第一入口的上方。由此,有利于实现对钟罩高温水温度的控制。
在本申请的一些实施例中,在高度方向上,所述钟罩高温水出口与所述冷却水第一入口的距离占所述钟罩高度的80-90%。由此,可进一步实现对钟罩高温水的控制。
在本申请的再一个方面,本申请提出了一种利用上述多晶硅还原炉的冷却系统进行多晶硅还原炉冷却的方法,根据本申请的实施例,该方法包括:
将冷却水分别从所述冷却水第一入口、冷却水第二入口供给至所述还原炉的所述钟罩和所述底盘,以分别对所述钟罩和所述底盘进行冷却,以便分别得到钟罩高温水和底盘高温水,并将所述底盘高温水作为所述冷却水返回至所述钟罩和/或所述底盘;
将所述钟罩高温水供给至所述换热装置进行热量回收,以便得到换热后冷却水,并将所述换热后冷却水作为所述冷却水返回至所述钟罩和/或所述底盘。
根据本申请实施例的多晶硅还原炉的冷却方法,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却的水源品种,显著降低冷却的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量;而所得的钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却的冷却水水量。由此,采用该方法既显著简化了现有多晶硅还原炉冷却的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时显著降低了多晶硅还原炉冷却水的使用量并实现多晶硅还原炉的安全稳定运行。
另外,根据本申请上述实施例的多晶硅还原炉的冷却方法还可以具有如下附加的技术特征:
在本申请的一些实施例中,所述冷却水、所述底盘高温水、所述换热后冷却水的温度分别独立的为120-150摄氏度。由此,可进一步实现对底盘高温水、钟罩高温水热量的回收利用。
在本申请的一些实施例中,供给至所述钟罩的所述冷却水与供给至所述底盘的所述冷却水的流量比为3-5:1,由此,有利于实现对钟罩高温水和底盘高温水温度的控制。
在本申请的一些实施例中,所述钟罩高温水的温度为150-170摄氏度。由此,可进一步实现对钟罩高温水热量的一级回收利用。
在本申请的一些实施例中,所述换热后冷却水通过所述第一加压泵送至所述钟罩和/或所述底盘作为所述冷却水使用。由此,可进一步实现对钟罩高温水热量的二级回收利用。
在本申请的一些实施例中,所述底盘高温水经所述缓冲罐缓冲后,通过所述第二加压泵送至所述钟罩和/或所述底盘作为所述冷却水使用。由此,可进一步实现对底盘高温水热量回收利用。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的多晶硅还原炉的冷却系统结构示意图;
图2是根据本申请再一个实施例的多晶硅还原炉的冷却系统结构示意图;
图3是根据本申请又一个实施例的多晶硅还原炉的冷却系统结构示意图;
图4是根据本申请一个实施例的多晶硅还原炉的冷却方法流程示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请的一个方面,本申请提出了一种多晶硅还原炉的冷却系统,根据本申请的实施例,参考图1,该系统包括:还原炉100和换热装置200。
根据本申请的实施例,还原炉100包括钟罩110和底盘120,钟罩110设在底盘120上方,底盘120设于钟罩110的底部,钟罩110具有冷却水第一入口111和钟罩高温水出口112,底盘120具有冷却水第二入口121和底盘高温水出口122,底盘高温水出口122与冷却水第一入口111和/或冷却水第二入口121相连,且适于将冷却水分别从冷却水第一入口和冷却水第二入口供给至钟罩和底盘,以分别对钟罩和底盘进行冷却,以便分别得到钟罩高温水和底盘高温水,并将底盘高温水作为冷却水返回至钟罩和/或底盘。申请人发现,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却的水源品种,显著降低冷却的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量。具体的,多晶硅还原炉是现有多晶硅生产过程中的常用设备,气化的高纯三氯氢硅与氢气按一定比例混合引入多晶硅还原炉,在置于还原炉内的棒状硅芯两端加以电压,产生高温,在高温的硅芯表面,三氯氢硅被氢气还原成元素硅,并沉积在硅芯表面,逐渐生成所需规格的多晶硅棒。还原炉钟罩以及底盘在如此高温的环境氛围下需 要采用同一热量范围的冷却水来降温,以确保设备的安全稳定运行。在整个冷却过程中,因底盘的副产热量较低,钟罩的副产热量较高,冷却水经底盘和钟罩冷却换热后可得到温度差异明显的底盘高温水和钟罩高温水。通过控制通入底盘和钟罩的冷却水的流量可控制从底盘和钟罩输出的底盘高温水与钟罩高温水的温度,进而控制整个还原炉副产热量的回收利用,提升对还原炉副产热量的利用率,同时实现系统的稳定运行。
进一步的,需要说明的是,将底盘高温水作为冷却水返回至底盘和/或钟罩的具体方式并不受特别限制,本领域技术人员根据实际需要进行选择,例如可以参考图2,上述多晶硅还原炉的冷却系统可进一步包括:缓冲罐300和第二加压泵400,即可通过缓冲罐和第二加压泵将底盘高温水返回至底盘和/或钟罩。具体的,缓冲罐300与底盘高温水出口122相连;第二加压泵400与缓冲罐300相连,第二加压泵400与冷却水第一入口111和/或冷却水第二入口121相连。申请人发现,因输入底盘和钟罩的冷却水量可根据底盘高温水和钟罩高温水的温度进行调节,通过在将底盘高温水输送回冷却水第一入口和/或冷却水第二入口之前设置缓冲罐,可进一步实现对输入至底盘和/或钟罩的冷却水水量的实时调节和控制,进而更好地实现对还原炉副产热量的回收利用,同时促进系统的稳定运行。
根据本申请的一个实施例,在高度方向上,钟罩高温水出口112位于冷却水第一入口111的上方。具体的,俯视来看,钟罩高温水出口的水流方向与冷却水第一入口的水流方向的夹角并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为0-360度,例如可以为0度、45度、90度、135度、180度、225度、270度、315度、360度,优选180度。进一步的,在高度方向上,钟罩高温水出口112与冷却水第一入口111的距离占钟罩高度的80-90%,例如可以为80%、82%、84%、86%、88%、90%。申请人发现,若该距离过小,钟罩得不到全面冷却保护;而若该距离过大,会出现钟罩流道难以布置的问题。
根据本申请的再一个实施例,冷却水、底盘高温水、换热后冷却水的温度可以分别独立的为130-150摄氏度,例如可以为130度、135度、140度、145度、150度。申请人发现,现有多晶硅还原炉钟罩所用的冷却介质的温度一般为130-150摄氏度,本申请依然采用该温度范围的冷却介质(包括冷却水、底盘高温水和换热后冷却水)冷却底盘和钟罩,一方面可实现对现有工艺设备的继续使用,无需因工艺的更改而更换现有管路,避免增加系统的设备成本;一方面,采用上述温度范围内的水作为冷却介质,有利于实现对底盘高温水的直接回收利用,同时也有利于促进后续对钟罩高温水热量的回收;再者,通过采用上述温度范围内的冷却介质冷却底盘和钟罩,可使得系统安全稳定运行。进一步的,钟罩高温水的温度也不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为150-170摄氏度,例如可以为150摄氏度、155摄氏度、160摄氏度、165摄氏度、170摄氏 度。申请人发现若钟罩高温水的温度过低,即热源品质降低,不利于后续对其热量的回收,;若钟罩高温水的温度过高,在后续换热装置确定的情况,所得的换热后冷却水的温度将过高,进而导致对还原炉还原生产过程中的备品备件要求更高,性价比大幅下降。
根据本申请的又一个实施例,供给至钟罩的冷却水与供给至底盘的冷却水的流量比并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以根据底盘高温水和钟罩高温水的温度进行灵活调节。根据本申请的一个具体实施例,供给至钟罩的冷却水与供给至底盘的冷却水的流量比为3-5:1,例如可以为3/3.5/4.0/4.5/5:1。申请人发现,还原炉还原生产过程中,钟罩和底盘所携带的热量以及设备内部流道的布置决定了冷却水流量的关系,底盘以及钟罩内冷却水均需要保证最低流速,确保冷却水循环畅通。
根据本申请的实施例,换热装置200具有钟罩高温水入口201和换热后冷却水出口202,钟罩高温水入口201与钟罩高温水出口112相连,换热后冷却水出口202与冷却水第一入口111和/或冷却水第二入口121相连,且适于将钟罩高温水进行热量回收,以便得到换热后冷却水,并将换热后冷却水作为冷却水返回至钟罩和/或底盘。申请人发现,钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却的冷却水水量。需要说明的是,换热装置的具体类型并不受特别限制,本领域的技术人员可以根据实际需要进行选择,例如可以为板式换热器。申请人发现该换热装置能够较好的转移还原副产热量,提高了多晶硅生产系统的能量利用效率,降低了系统外补能源的需求。
进一步的,需要说明的是,将换热后冷却水作为冷却水返回至底盘和/或钟罩的具体方式并不受特别限制,本领域技术人员根据实际需要进行选择,例如可以参考图3,上述多晶硅还原炉的冷却系统可进一步包括:第一加压泵500,即可通过第一加压泵将换热后冷却水返回至底盘和/或钟罩。具体的,第一加压泵500与换热后冷却水出口202相连,第一加压泵500与冷却水第一入口111和/或冷却水第二入口121相连。申请人发现,通过在将换热后冷却水送至底盘和/或钟罩的路径中设置第一加压泵,可以更好地实现对换热后冷却水热量的二级利用,进而提高整个系统的热量利用效率,同时促进系统的稳定运行。
根据本申请实施例的多晶硅还原炉的冷却系统,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却系统的水源品种,显著降低冷却系统的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并 提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量;而所得的钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却系统的冷却水水量。由此,采用该系统既显著简化了现有多晶硅还原炉冷却系统的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时显著降低了多晶硅还原炉冷却水的使用量并实现多晶硅还原炉的安全稳定运行。
在本申请的再一个方面,本申请提出了一种利用上述多晶硅还原炉的冷却系统进行多晶硅还原炉冷却的方法,根据本申请的实施例,参考图4,该方法包括:
S100:将冷却水分别从冷却水第一入口、冷却水第二入口供给至还原炉的钟罩和底盘
该步骤中,将冷却水分别从冷却水第一入口、冷却水第二入口供给至还原炉的钟罩和底盘,以分别对钟罩和底盘进行冷却,以便分别得到钟罩高温水和底盘高温水,并将底盘高温水作为冷却水返回至钟罩和/或底盘。申请人发现,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却的水源品种,显著降低冷却的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量。具体的,多晶硅还原炉是现有多晶硅生产过程中的常用设备,气化的高纯三氯氢硅与氢气按一定比例混合引入多晶硅还原炉,在置于还原炉内的棒状硅芯两端加以电压,产生高温,在高温的硅芯表面,三氯氢硅被氢气还原成元素硅,并沉积在硅芯表面,逐渐生成所需规格的多晶硅棒。还原炉钟罩以及底盘在如此高温的环境氛围下需要采用同一热量范围的冷却水来降温,以确保设备的安全稳定运行。在整个冷却过程中,因底盘的副产热量较低,钟罩的副产热量较高,冷却水经底盘和钟罩冷却换热后可得到温度差异明显的底盘高温水和钟罩高温水。通过控制通入底盘和钟罩的冷却水的流量可控制从底盘和钟罩输出的底盘高温水与钟罩高温水的温度,进而控制整个还原炉副产热量的回收利用,提升对还原炉副产热量的利用率,同时实现系统的稳定运行。
进一步的,需要说明的是,将底盘高温水作为冷却水返回至底盘和/或钟罩的具体方式并不受特别限制,本领域技术人员根据实际需要进行选择,例如可以通过缓冲罐缓冲后, 再通过第二加压泵将底盘高温水返回至底盘和/或钟罩。申请人发现,因输入底盘和钟罩的冷却水量可根据底盘高温水和钟罩高温水的温度进行调节,通过在将底盘高温水输送回冷却水第一入口和/或冷却水第二入口之前设置缓冲罐,可进一步实现对输入至底盘和/或钟罩的冷却水水量的实时调节和控制,进而更好地实现对还原炉副产热量的回收利用,同时促进系统的稳定运行。
根据本申请的一个实施例,冷却水、底盘高温水、换热后冷却水的温度可以分别独立的为130-150摄氏度,例如可以为130度、135度、140度、145度、150度。申请人发现,现有多晶硅还原炉钟罩所用的冷却介质的温度一般为130-150摄氏度,本申请依然采用该温度范围的冷却介质(包括冷却水、底盘高温水和换热后冷却水)冷却底盘和钟罩,一方面可实现对现有工艺设备的继续使用,无需因工艺的更改而更换现有管路,避免增加系统的设备成本;一方面,采用上述温度范围内的水作为冷却介质,有利于实现对底盘高温水的直接回收利用,同时也有利于促进后续对钟罩高温水热量的回收;再者,通过采用上述温度范围内的冷却介质冷却底盘和钟罩,可使得系统安全稳定运行。进一步的,钟罩高温水的温度也不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为150-170摄氏度,例如可以为150摄氏度、155摄氏度、160摄氏度、165摄氏度、170摄氏度。申请人发现,若钟罩高温水的温度过低,即热源品质降低,不利于后续对其热量的回收,;若钟罩高温水的温度过高,在后续换热装置确定的情况,所得的换热后冷却水的温度将过高,进而导致对还原炉还原生产过程中的备品备件要求更高,性价比大幅下降。根据本申请的又一个实施例,供给至钟罩的冷却水与供给至底盘的冷却水的流量比并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以根据底盘高温水和钟罩高温水的温度进行灵活调节。根据本申请的一个具体实施例,供给至钟罩的冷却水与供给至底盘的冷却水的流量比为3-5:1,例如可以为3/3.5/4.0/4.5/5:1。申请人发现,还原炉还原生产过程中,钟罩和底盘所携带的热量以及设备内部流道的布置决定了冷却水流量的关系,底盘以及钟罩内冷却水均需要保证最低流速,确保冷却水循环畅通。
S200:将钟罩高温水供给至换热装置进行热量回收
该步骤中,将钟罩高温水供给至换热装置进行热量回收,以便得到换热后冷却水,并将换热后冷却水作为冷却水返回至钟罩和/或底盘。申请人发现,钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却的冷却水水量。需要说明的是,换热的具体方式并不受特别限制,本领域的技术人员可以根据实际需要进行选择, 例如可以为板式换热。申请人发现,该换热形式能够较好的转移还原副产热量,提高多晶硅生产工艺的能量利用效率,降低工艺外补能源的需求。
进一步的,需要说明的是,将换热后冷却水作为冷却水返回至底盘和/或钟罩的具体方式并不受特别限制,本领域技术人员根据实际需要进行选择,例如可以通过第一加压泵将换热后冷却水返回至底盘和/或钟罩。申请人发现,通过在将换热后冷却水送至底盘和/或钟罩的路径中设置第一加压泵,可以更好地实现对换热后冷却水热量的二级利用,进而提高整个系统的热量利用效率,同时促进系统的稳定运行。
根据本申请实施例的多晶硅还原炉的冷却方法,通过往还原炉钟罩和底盘通同一热量范围内的冷却水作为冷却介质,可降低多晶硅还原炉冷却的水源品种,显著降低冷却的复杂度,简化还原车间的配管;进一步的,因钟罩是副产热量向外转移的关键换热部位,占到副产热量的80%以上,所得的钟罩高温水相对于冷却水的温升高,而底盘高温水相对于冷却水温升低,将两者分开处理,可避免底盘高温水降低钟罩高温水的品质,并提高钟罩高温水在后续换热过程中的品质;底盘高温水单独处理,直接返回作为钟罩和/或底盘的冷却水使用,回收底盘高温水的热量,且可降低多晶硅还原炉的冷却水水量;而所得的钟罩高温水直接送至换热装置进行换热处理,以回收钟罩高温水的热量,简化了传统先将热水转化成蒸汽再换热的复杂模式工艺,并降低了钟罩高温水的热损失,同时经换热后可降低钟罩高温水的温度,得到换热后冷却水,并将该换热后冷却水作为冷却水返回至钟罩和/或底盘使用,实现了对钟罩高温水热量的两级利用,并且进一步降低了多晶硅还原炉冷却的冷却水水量。由此,采用该方法既显著简化了现有多晶硅还原炉冷却的管道,又实现了对钟罩高温水和底盘高温水热量的高效、分级回收利用,同时显著降低了多晶硅还原炉冷却水的使用量并实现多晶硅还原炉的安全稳定运行。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多晶硅还原炉的冷却系统,其特征在于,包括:
    还原炉,所述还原炉包括钟罩和底盘,所述钟罩设在所述底盘上方,所述底盘设于所述钟罩的底部,所述钟罩具有冷却水第一入口和钟罩高温水出口,所述底盘具有冷却水第二入口和底盘高温水出口,所述底盘高温水出口与所述冷却水第一入口和/或所述冷却水第二入口相连;
    换热装置,所述换热装置具有钟罩高温水入口和换热后冷却水出口,所述钟罩高温水入口与所述钟罩高温水出口相连,所述换热后冷却水出口与所述冷却水第一入口和/或所述冷却水第二入口相连。
  2. 根据权利要求1所述的系统,其特征在于,进一步包括:
    第一加压泵,所述第一加压泵与所述换热后冷却水出口相连,所述第一加压泵与所述冷却水第一入口和/或所述冷却水第二入口相连。
  3. 根据权利要求1或2所述的系统,其特征在于,进一步包括:
    缓冲罐,所述缓冲罐与所述底盘高温水出口相连;
    第二加压泵,所述第二加压泵与所述缓冲罐相连,所述第二加压泵与所述冷却水第一入口和/或所述冷却水第二入口相连。
  4. 根据权利要求1-3中任一项所述的系统,其特征在于,所述换热装置为板式换热器。
  5. 根据权利要求1-4中任一项所述的系统,其特征在于,在高度方向上,所述钟罩高温水出口位于所述冷却水第一入口的上方;
    任选的,在高度方向上,所述钟罩高温水出口与所述冷却水第一入口的距离占所述钟罩高度的80-90%。
  6. 一种利用权利要求1-5中任一项所述的多晶硅还原炉的冷却系统进行多晶硅还原炉冷却的方法,其特征在于,包括:
    将冷却水分别从所述冷却水第一入口、冷却水第二入口供给至所述还原炉的所述钟罩和所述底盘,以分别对所述钟罩和所述底盘进行冷却,以便分别得到钟罩高温水和底盘高温水,并将所述底盘高温水作为所述冷却水返回至所述钟罩和/或所述底盘;
    将所述钟罩高温水供给至所述换热装置进行热量回收,以便得到换热后冷却水,并将所述换热后冷却水作为所述冷却水返回至所述钟罩和/或所述底盘。
  7. 根据权利要求6所述的方法,其特征在于,所述冷却水、所述底盘高温水、所述换热后冷却水的温度分别独立的为120-150摄氏度。
  8. 根据权利要求6或7所述的方法,其特征在于,供给至所述钟罩的所述冷却水与供 给至所述底盘的所述冷却水的流量比为3-5:1
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述钟罩高温水的温度为150-170摄氏度。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述换热后冷却水通过所述第一加压泵送至所述钟罩和/或所述底盘作为所述冷却水使用;
    任选的,所述底盘高温水经所述缓冲罐缓冲后,通过所述第二加压泵送至所述钟罩和/或所述底盘作为所述冷却水使用。
PCT/CN2020/103508 2019-07-24 2020-07-22 多晶硅还原炉的冷却系统和方法 WO2021013177A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921175361.4U CN210825444U (zh) 2019-07-24 2019-07-24 多晶硅还原炉的冷却系统
CN201921175361.4 2019-07-24
CN201910669979.4 2019-07-24
CN201910669979.4A CN110282627B (zh) 2019-07-24 2019-07-24 多晶硅还原炉的冷却系统和方法

Publications (1)

Publication Number Publication Date
WO2021013177A1 true WO2021013177A1 (zh) 2021-01-28

Family

ID=74193123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103508 WO2021013177A1 (zh) 2019-07-24 2020-07-22 多晶硅还原炉的冷却系统和方法

Country Status (1)

Country Link
WO (1) WO2021013177A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231005A (ja) * 2011-07-11 2011-11-17 Mitsubishi Materials Corp 多結晶シリコン還元炉
CN104891499A (zh) * 2015-05-20 2015-09-09 上海交通大学 一种硅烷法制备多晶硅的工艺方法
CN206590906U (zh) * 2017-03-01 2017-10-27 江苏金晖光伏有限公司 一种多晶硅还原炉冷却装置
CN108726520A (zh) * 2018-08-31 2018-11-02 内蒙古通威高纯晶硅有限公司 一种还原炉余热回收系统
CN110282627A (zh) * 2019-07-24 2019-09-27 中国恩菲工程技术有限公司 多晶硅还原炉的冷却系统和方法
CN210825444U (zh) * 2019-07-24 2020-06-23 中国恩菲工程技术有限公司 多晶硅还原炉的冷却系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231005A (ja) * 2011-07-11 2011-11-17 Mitsubishi Materials Corp 多結晶シリコン還元炉
CN104891499A (zh) * 2015-05-20 2015-09-09 上海交通大学 一种硅烷法制备多晶硅的工艺方法
CN206590906U (zh) * 2017-03-01 2017-10-27 江苏金晖光伏有限公司 一种多晶硅还原炉冷却装置
CN108726520A (zh) * 2018-08-31 2018-11-02 内蒙古通威高纯晶硅有限公司 一种还原炉余热回收系统
CN110282627A (zh) * 2019-07-24 2019-09-27 中国恩菲工程技术有限公司 多晶硅还原炉的冷却系统和方法
CN210825444U (zh) * 2019-07-24 2020-06-23 中国恩菲工程技术有限公司 多晶硅还原炉的冷却系统

Similar Documents

Publication Publication Date Title
CN103466629B (zh) 一种多晶硅还原炉控温节能系统及工艺
CN102432016A (zh) 多晶硅生产中还原尾气热能优化回收系统
CN110282627B (zh) 多晶硅还原炉的冷却系统和方法
JP3230568U (ja) ボイラ蒸気供給能力を向上させる給水連合冷再熱エネルギー利用システム
CN104776412B (zh) 一种高温超细粉体余热回收锅炉
WO2021013177A1 (zh) 多晶硅还原炉的冷却系统和方法
CN109665527A (zh) 多晶硅生产设备的尾气热量回收系统及运行方法
CN210825444U (zh) 多晶硅还原炉的冷却系统
CN209605253U (zh) 300mw及以上等级湿冷机组高背压和热泵联合供热系统
CN203700458U (zh) 镁还原法生产海绵钛用的还原蒸馏炉
CN206616128U (zh) 一种污泥处理换热系统
CN107337211B (zh) 一种多晶硅冷氢化法中四氯化硅的汽化方法及汽化装置
CN104016350A (zh) 一种多晶硅还原炉底盘和尾气冷却系统及其方法
CN201704079U (zh) 一种高效节能液相法制取硅酸钠的反应装置
CN106870077A (zh) 一种节能环保的燃气轮机
CN202131104U (zh) 多晶硅还原炉钟罩与底盘
CN206486294U (zh) 多晶硅还原生产新型汽化器
CN216845683U (zh) 一种还原炉热能回收系统及物料生产系统
CN207610197U (zh) 一种利用高温熔盐余热生产蒸汽的装置
JP3230555U (ja) ボイラ冷再熱蒸気供給能力を向上させる酸素除去器連合利用システム
CN219356168U (zh) 一种一氯甲烷节能生产系统
CN204299630U (zh) 一种节能型生水加热系统
CN221146508U (zh) 锅炉除氧器补给水的预热节能系统
CN213687946U (zh) 一种冷热源余热转换利用装置
CN211005714U (zh) 一种金刚石薄膜的制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843764

Country of ref document: EP

Kind code of ref document: A1