WO2021013133A1 - 一种可分区控制的洁净厂房 - Google Patents

一种可分区控制的洁净厂房 Download PDF

Info

Publication number
WO2021013133A1
WO2021013133A1 PCT/CN2020/103109 CN2020103109W WO2021013133A1 WO 2021013133 A1 WO2021013133 A1 WO 2021013133A1 CN 2020103109 W CN2020103109 W CN 2020103109W WO 2021013133 A1 WO2021013133 A1 WO 2021013133A1
Authority
WO
WIPO (PCT)
Prior art keywords
clean
partition wall
independent
partition
return air
Prior art date
Application number
PCT/CN2020/103109
Other languages
English (en)
French (fr)
Inventor
秦学礼
张群
肖红梅
阎冬
李鹏
李传琰
王江标
张欣赏
王威
Original Assignee
中国电子工程设计院有限公司
世源科技工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910668606.5A external-priority patent/CN110307610A/zh
Priority claimed from CN201910740337.9A external-priority patent/CN110469160A/zh
Application filed by 中国电子工程设计院有限公司, 世源科技工程有限公司 filed Critical 中国电子工程设计院有限公司
Priority to EP20844025.5A priority Critical patent/EP4006434A4/en
Priority to KR1020217043108A priority patent/KR20220012361A/ko
Publication of WO2021013133A1 publication Critical patent/WO2021013133A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0227Ducting arrangements using parts of the building, e.g. air ducts inside the floor, walls or ceiling of a building
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present disclosure relates to the technical field of clean production plants, and in particular to a clean plant that can be controlled in zones.
  • the present disclosure provides a clean workshop with zoned control, which can separately control the cleanliness, temperature, relative humidity, and VOC concentration of each process area, and can reduce energy consumption while ensuring the normal operation of each process area.
  • the technical solution is as follows:
  • the present disclosure provides a clean workshop that can be partitioned and controlled, including a workshop body, the workshop body is provided with an upper technical mezzanine, a lower technical mezzanine, and an upper technical mezzanine and a lower technical mezzanine.
  • Clean production layer the clean production layer is provided with a clean room and a return air duct for connecting the lower technical interlayer and the upper technical interlayer, and the return air duct includes a first one located on one side of the clean room.
  • the return air chute and the second return air chute located on the other side of the clean room, the plant body is also provided with a partition wall assembly to separate the clean room into an independent first clean production area and a second clean production area
  • the first clean production area and the second clean production area respectively have independent return air systems.
  • the clean room is divided into independent first clean production area and second clean production area by partition wall components, and the first clean production area and the second clean production area have independent return air systems.
  • the air supply can be controlled through an independent return air system to realize the circulation of airflow, so as to ensure the cleanliness and temperature of the first clean production area and the second clean production area. , Relative humidity and VOC concentration requirements.
  • separately controlling the air supply volume of each clean production area can facilitate the reduction of energy consumption, thereby reducing costs.
  • Figure 1 is a schematic diagram of the structure of a clean workshop provided in the prior art
  • FIG. 2 is a schematic diagram of the structure of a clean plant provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of the structure of another clean workshop provided by an embodiment of the disclosure.
  • FIG. 4 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure
  • Figure 5 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure
  • Figure 6 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • FIG. 7 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 8 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 9 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • FIG. 10 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 11 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 12 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • FIG. 13 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • FIG. 14 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • 15 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 16 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • Figure 17 is a side view of a clean room with a secondary humidification system provided by an embodiment of the disclosure.
  • FIG. 18 is a schematic diagram of air circulation in a clean room with a secondary humidification system provided by an embodiment of the disclosure
  • FIG. 19 is a schematic top view of a clean production plant provided by an embodiment of the disclosure.
  • FIG. 20 is a schematic structural diagram of a space-type two-fluid humidification system provided by an embodiment of the disclosure.
  • FIG. 21 is a schematic structural diagram of a space-type high-pressure micro mist humidification system provided by an embodiment of the disclosure.
  • the clean workshop that can be partitioned and controlled in this embodiment includes a workshop body 270.
  • the workshop body 270 is provided with a lower technical mezzanine 110, an upper technical mezzanine 100, and between the upper technical mezzanine 100 and the lower technical mezzanine 110
  • the clean production layer is equipped with a clean room.
  • the two sides of the clean room form a first return air duct 130 and a second return air duct 140 for connecting the upper technical mezzanine 100 and the lower technical mezzanine 110.
  • the plant body 270 Partition wall components are also arranged inside to separate the clean room into independent first clean production area and second clean production area, and the first clean production area and the second clean production area have independent return air systems.
  • the clean room is divided into an independent first clean production area and a second clean production area by a partition wall assembly, and the first clean production area and the second clean production area have independent return air systems respectively.
  • the air supply can be controlled through an independent return air system, which realizes the circulation of air flow, so as to ensure the cleanliness of the first and second clean production areas. , Temperature, relative humidity, and VOC concentration.
  • separately controlling the air supply volume of each clean production area can reduce energy consumption and reduce costs.
  • the traditional clean workshop is shown in Figure 1, including a workshop body 270.
  • the workshop body 270 is equipped with an upper technical mezzanine 100, a lower technical mezzanine 110, and a clean production layer between the upper technical mezzanine 100 and the lower technical mezzanine 110.
  • Clean production There is an overhead waffle board 190 and a clean room 120 on the waffle board 190.
  • the clean room 120 includes a raised floor 150 and a suspended ceiling 160 on the waffle board 190, and is matched with the raised floor 150 and the suspended ceiling 160
  • On both sides of the clean room 2 are provided with a first return air duct 130 and a second return air duct 140 for connecting the lower technical mezzanine 5 and the upper technical mezzanine 6, and the lower technical mezzanine 110 and the first return air duct 130 and
  • a dry cooling coil 220 for cooling the circulating air is provided between the second air return ducts 140.
  • the material storage area 171 is equipped with a material storage rack 230 for storing materials to be processed.
  • a material storage rack 230 for storing materials to be processed.
  • an automatic handling device is installed in the material transfer area 172;
  • the process production area 125 is usually equipped with process production equipment and is also an activity area for operators. Since the glass substrates, chips, etc. to be processed in the material storage area 171 and the material transfer area 172 are in direct contact with the ambient air, the air cleanliness level in the space is usually much stricter than the air cleanliness level in the process production area 125.
  • fan filter units 210 are arranged on the ceiling 160 of the process production area 125, and in order to ensure the stricter cleanliness level of the material storage and transfer area 170, the ceiling 160 of the material transfer area 172 is usually covered with fan filters Unit 210, and high-density fan filter unit 210 is arranged on the side of the material storage rack 230.
  • the air circulation path of the entire clean room purification air conditioning system is shown by the arrow in Figure 1, where the fan filter unit 210 installed on the side of the material storage rack 230 sucks the air in the process production area 125, causing the process production area 125 It is necessary to additionally arrange a fan filter unit with the same air volume as the fan filter unit installed on the side of the material storage rack 230, resulting in a large increase in the number of fan filter units 210 that need to be installed on the ceiling 160 of the process production area 125. , Energy consumption also increases accordingly.
  • the cleanliness level requirements of the material storage area 171 and the material transfer area 172 are very strict. It is necessary to ensure that the cleanliness level of the air supply is large, but the equipment in the area generates very little heat, so the air flowing through the area Only a small part of the flow needs to be cooled, but according to the traditional clean room 2 construction method shown in Figure 1, the fan filter unit 210 installed on the top of the material transfer area 172 and the fan filter installed on the side wall of the material storage rack 230 The air flow sucked by the device unit 210 is the air flow processed by the dry cooling coil 220. At the same time, the air flow from the process production area 125 and the material transfer area 172 enters the lower technical interlayer 110, and all passes through the dry cooling coil 220.
  • the number of dry cooling coils 220 has been increased a lot, resulting in many projects where the dry cooling coils 220 cannot be arranged in the prescribed space; in addition, the air flow from the process production area 125 and the material transfer area 172 all passes through the technology
  • the aisle 7 and the upper technical interlayer 100 increase the space required by the return air passage and the upper technical interlayer 100, which increases the construction cost.
  • the clean room in the clean room of this embodiment, is set on the waffle plate 190 that is set overhead, and the clean room also includes an upper ceiling 160 and a matching ceiling 160
  • a dry cooling coil 220 for cooling circulating air is provided between the lower technical interlayer 110 and the first return air duct 130 and the second return air duct 140.
  • the waffle board 190 is a concrete slab with evenly-opened holes, which has support and ventilation functions; the clean room 2 includes an upper ceiling 160 and a wall panel matched with the ceiling 160.
  • the first clean production area includes two independent areas for crafting Production area 125, the space between the two process production areas 125 is a material storage and transfer area 170, and the ceilings of the material storage and transfer area 170 and the process production area 125 are respectively provided with a plurality of fan filter units 210.
  • the two sides of the material storage and transmission area 170 are respectively provided with process production areas 125; the material storage and transmission area 170 is provided with a material storage rack group, and both sides of the material storage rack group are respectively provided Partition wall panels 200, the top of each partition wall 200 extends to the top of the upper technical mezzanine 100, and the bottom is connected with the wafer plate 190; the material storage rack group includes two rows of material storage racks 230, each row of material storage racks 230 is connected to the corresponding
  • the gap between the adjacent partition wall panels 200 forms a third return air chute 180, and each third return air chute 180 is connected to the upper technical interlayer 100.
  • the third return air chute 180 passes through a hole opened on the ceiling 160 It is connected to the upper technical mezzanine layer 100, and the holes opened on the suspended ceiling 160 are distributed in the area corresponding to the third return air duct 180.
  • the material storage rack 230 is used to store materials such as glass substrates and chips to be processed.
  • the area where the material storage rack 230 is set is the material storage area 171, and the area between the two rows of material storage racks 230 A material transfer area 172 is formed, and an automatic handling device is arranged in the material transfer area 172; among them, in the material storage area 171, a plurality of fan filter units 210 are provided on the side wall of each row of the material storage rack 230 to suck the third cycle
  • the airflow in the air duct 180 is sent into the corresponding material storage rack 230, that is, these fan filter units 210 can suck in the airflow into the third return air duct 180, and after filtering and pressurizing the airflow to the material storage rack Send out on the 230 side, that is, send out to the material storage area 171 to dilute the concentration of suspended particles in the material storage area 171 to maintain the cleanliness level requirements of the material storage area 171; in the material transfer area 172, a high
  • each row of material storage racks 230 is provided with an air flow path connecting the material transfer area 172 and the adjacent third return air clamping channel 180, that is, the third return air clamping channel 180 and the material transmission The areas 172 are connected.
  • a raised floor 150 is provided between the bottom of each row of material storage racks 230 and the waffle plate 190, and the gap between the raised floor 150 and the waffle plate 190 forms the aforementioned air flow path.
  • a raised floor 150 can also be provided on the waffle board 190, and the raised floor 150 is provided with holes, thereby ensuring that the process production area 125 is connected to the lower technical mezzanine 110, and the raised floor 150
  • the surface is relatively flat, which is convenient for arranging process and production equipment.
  • Some pipes and other devices can also be arranged in the gap between the raised floor 150 and the waffle board 190.
  • the third return air duct 180 is connected to the material conveying area 172 through the airflow passage at the bottom of the material storage rack 230, and is connected to the lower technical interlayer 110 through the holes provided in the wafer plate 190, and the material conveying area 172 Part of the outflowing airflow enters the third return air duct 180 through the airflow passage at the bottom of the material storage rack 230, and the other part enters the lower technical interlayer 110 through the holes on the waffle plate 190, and the part of the airflow entering the lower technical interlayer 110, Due to the path and pressure balance, most of the holes passing through the waffle plate 190 also enter the third return air duct 180 (a small part of the airflow enters the first return air duct 130 and the second return air duct through the dry cooling coil 220 140; A part of the airflow in the third return air chute 180 is sucked in by the fan filter unit 210 arranged on the side wall of the material storage rack 230, and is pressurized and filtered before being sent out, passing
  • the in-situ circulation is realized. Because this part of the in-situ circulating air flow no longer passes through the dry cooling coil 220, the first return air duct 130, the second return air duct 140 and the upper technical interlayer 100, the dry The number of cooling coils 220 can be greatly reduced, and the space occupied by the first return air duct 130, the second return air duct 140, and the upper technical interlayer 100 can also be compressed, reducing the cost of building the clean room 2.
  • the third return air chute 180 provides the air volume for the fan filter installed on the side wall of the material storage rack 230
  • the top of the process production area 125 does not need to have the same air volume as the fan filter unit 210 installed on the side of the material storage rack 230.
  • the fan filter unit 210 thereby reducing the air supply volume of the process production area 125 and the number of fan filter units 210, reducing energy consumption and construction costs. It is worth noting that in the structure shown in Figure 2, it can also be No raised floor 150 is provided to reduce construction costs.
  • a fresh air supply duct 240 is provided in the lower technical mezzanine 110, and the air outlet of the fresh air supply duct 240 and each third return air chute 180 is connected, and the fresh air supply pipe 240 is used to transport the processed low-temperature air to the third return air duct 180.
  • the fresh air is mixed with the circulating air flow, and part of the mixed air flow is set in the material storage
  • the fan filter unit on the side wall of the rack is sucked in, filtered under pressure, and sent out, passes through the material storage rack, and enters the material transfer area; the other part flows upward into the upper technical interlayer, and is filtered by the fan set on the top of the material transfer area
  • the machine unit is sucked in and sent to the material transfer area after being pressurized and filtered.
  • the fresh air supply pipe 240 may be connected to the fresh air processing unit of the clean room air conditioning system.
  • an electric regulating valve 260 is provided on the fresh air supply pipe 240, and a temperature sensor is arranged in the material storage and transfer area 170 or the third return air chute 180, and the electric regulating valve 260 and the temperature sensor are signally connected to the control device.
  • the control device is used to control the opening degree of the electric regulating valve 260 according to the temperature detected by the temperature sensor to control the air supply volume of the fresh air supply duct 240. In this way, the amount of fresh air fed into the third return air chute 180 can be controlled according to the temperature in the material storage and transfer area 170 or the third return air chute 180, thereby accurately controlling the temperature of the material storage area 171 and the material transfer area 172.
  • the bottom of the wafer plate 190 in the area corresponding to the material storage and transfer area 170 and the third return air chute 180 is provided with a sealing plate 250.
  • 250 is used to isolate the bottom of the material storage and transfer area 170 and the third return air chute 180 from the lower technical interlayer 110; or, the top of the hole of the waffle plate in the corresponding area of the material storage and transfer area and the return air chute is provided with a cover
  • the board and cover are used to isolate the material storage and transfer area and the bottom of the return air chute from the lower technical interlayer, so that the material storage and transfer area and the third return air chuck 180 are completely isolated from the surrounding environment, and are used for material storage and transmission.
  • An independent air circulation is formed between the zone and the third air clip channel 23.
  • the air flow from the material transfer area 172 enters the third return air chute 180 through the air flow path formed by the raised floor 150 and the waffle plate 190, and is transported with the fresh air supply duct 240 Part of the mixed air flow is sucked in by the fan filter unit 210 arranged on the side wall of the material storage rack 230, and then sent out after being pressurized and filtered. After passing through the material storage rack 230, it enters the material transfer area 172, and the other part goes upward.
  • a partition of a certain height can be installed vertically close to the lower bottom surface of the wafer board, and a sealing plate can be installed horizontally at the lower end of the partition.
  • the partition and the horizontally arranged sealing plate are used to isolate the bottom of the material storage and transfer area from the outside, thereby forming an independent air circulation between the material storage and transfer area and the return air chute.
  • a third return air chute connected to the upper technical mezzanine and the material transfer area is formed between the partition wall panel and the material storage rack, so as to improve the plant body
  • the air circulation path inside has been optimized, reducing the air supply in the process production area and the number of dry cooling coils and fan filter units, compressing the space occupied by the technical channel and the upper technical mezzanine, reducing energy consumption and construction cost.
  • a fresh air supply duct can be set up to provide fresh air for the third return air chute
  • a sealing plate can be provided at the bottom of the waffle plate in the material storage and transfer area and the corresponding area of the third return air chuck, or in the material storage and transmission
  • the top of the hole of the waffle plate in the corresponding area of the third return air clip channel is provided with a cover plate, or the material storage and transfer area and the corresponding area of the third return air clip channel are close to the bottom surface of the waffle plate and vertically downward
  • a partition of a certain height is set, and a sealing plate is installed horizontally at the lower end of the partition to isolate the material storage and transfer area and the third return air chute from the surrounding environment, and further ensure the pressure in the material storage and transfer area , Temperature and humidity requirements.
  • the indoor air humidity is not increased (that is, the indoor air content). Humidity remains the same) only by setting a low clean room temperature value to increase the relative humidity to approach the indoor temperature and humidity demand value, but after implementing this measure, the indoor temperature and humidity value will always be the same as the production demand temperature and humidity value. A certain deviation has a certain impact on the production environment and is likely to cause a decrease in product yield.
  • each set of secondary humidification system includes: humidification device 280, the upper technical interlayer 100, the lower technical interlayer 110, the first return air duct, the second return air duct or A clean room; a relative humidity sensor 290 for detecting the air humidity in the clean room; a humidity controller 300 connected to the relative humidity sensor 290 and a humidifying device 280, the humidity controller 300 is used to receive the humidity signal of the relative humidity sensor 290 according to the humidity The signal controls the operation of the humidifying device 280.
  • each set of secondary humidification systems includes: a relative humidity sensor arranged in the clean room for detecting indoor air humidity
  • the relative humidity sensor can be installed in the production area of the clean room.
  • the production area is the place where the production equipment is placed.
  • the relative humidity sensor can be installed in the production area to detect the humidity in the production area, that is, to compare the production environment of the product. Humidity detection can more accurately determine the actual relative humidity of the production environment of the product.
  • the humidification device is used to directly humidify the indoor air.
  • the humidification device can be installed in the upper technical interlayer of the clean room or in the clean room.
  • the humidified air can enter the air system in the clean room. Humidify the entire clean room environment. Of course, the humidified air can enter the production area during the circulation of the clean room air system.
  • the production environment in the clean room has the effect of secondary humidification.
  • the humidity controller is connected to the relative humidity sensor signal and Electrically connected to the humidification device, the humidity signal detected by the relative humidity sensor can be received, and the humidification device can be controlled through the humidity signal, and the humidity signal is the relative humidity value of the clean production area, and the production area is based on the products produced in the production area.
  • the relative humidity requires setting a preset value.
  • the humidity controller controls the humidification device to work to humidify the indoor air, which can achieve the proportion of humidification Adjust; when the relative humidity sensor detects that the humidity value in the production area is greater than or equal to the preset value, the humidity controller controls the humidification device to reduce the humidification volume to a constant and continuous humidification or does not start working. Therefore, the humidity controller receives the relative humidity
  • the humidity signal control humidification device of the humidity sensor automatically humidifies the indoor air to meet the humidity requirements of the production environment in the production area, and can make the relative humidity of the production environment in the production area reach the best value.
  • a secondary humidification system is installed in the clean room, which can effectively humidify the indoor air and increase the relative humidity of the production area environment, so that the production environment of the product is relatively
  • the humidity reaches the optimal value, which helps to ensure a good manufacturing environment for the production process and improve the product yield.
  • the relative humidity sensor in each group of secondary humidification systems, is set to one or more, and when the relative humidity sensor is set to one, the humidity signal is relative The sensed value of the humidity sensor; when the relative humidity sensor is set to multiple, the humidity signal is the average value of the humidity sensed value of the multiple relative humidity sensors, where the relative humidity sensor is set to multiple, and the relative humidity sensor
  • the average value of the sensed value is used as the humidity signal, which can more accurately test the relative humidity in the room, which is beneficial to improve the accuracy of the secondary humidification system for indoor humidification, and is beneficial to ensure that the humidity of the indoor environment is at the best relative humidity value in production.
  • the above-mentioned clean room with secondary humidification system can be equipped with multiple sets of secondary humidification systems, which is beneficial to increase the humidification rate of the production environment in the clean room and can make the environment humidity The relative humidity value required by the production environment can be reached faster.
  • the humidification device 280 in the multiple sets of secondary humidification systems can be installed in the upper technical interlayer 100, the lower technical interlayer 110, the first return air duct 130, and the second return air duct of the clean room.
  • any one of the air duct 140 or the clean room 120, or any two, three or four of them, for example, the humidification devices 280 in the multiple sets of secondary humidification systems can all be arranged in the upper technical interlayer 100 of the clean room It can also be all set in the return air duct of the clean room, or all set in the lower technical mezzanine 110 of the clean room, or all set in the clean room 120 of the clean room; in addition, the multiple sets of secondary humidification systems Part of the humidification device can be arranged in the upper technical interlayer 100, and part of it can be arranged in the first return air duct 130 and the second return air duct 140; or, some of the humidification devices in the multiple sets of secondary humidification systems are arranged below In the technical interlayer 110, part of it is installed in the first return air duct 130 and the second return air duct 140; or, part of the humidification devices in the multiple sets of secondary humidification systems are installed in the upper technical interlayer 100, and part of it is installed at the same time In the lower technical interlayer 110,
  • the above-mentioned humidification devices in the secondary humidification system include the upper technical interlayer 100, the lower technical interlayer 120, and the first return air passage 130, There are many ways to set up the second return air duct 140 and the clean room 120, which are not listed here. It should be noted that the setting of each set of secondary humidification systems in the multiple sets of secondary humidification systems can be set according to The actual needs are reasonably arranged, and the number of secondary humidification systems can also be set according to indoor needs, and this embodiment is not limited.
  • the production plant is divided into multiple independent partitions, and the product preparation or process production with different environmental requirements is carried out in different independent partitions.
  • the clean room can be adjusted according to the difference in humidity.
  • Set up the first independent partition and the second independent partition that is, the multiple independent partitions include the first independent partition and the second independent partition, where multiple first independent partitions can be set, and multiple second independent partitions can also be set.
  • the number and layout of the first independent partition and the second independent partition can be set according to actual needs.
  • the first independent partition and the second independent partition are set up in the clean room, there will be multiple options for the setting of the secondary humidification system.
  • a first independent partition 320 and a second independent partition 330 are provided in the clean room, and partition wall components are provided between the first independent partition 320 and the second independent partition 330 to separate the clean room 120
  • the first clean production area 121 and the second clean production area 122 are formed, the upper technical interlayer 100 is separated to form the first upper technical interlayer 101 and the second upper technical interlayer 102, and the lower technical interlayer 110 is separated to A first lower technical interlayer 111 and a second lower technical interlayer 112 are formed, and the first independent zone 320 includes a first upper technical interlayer 101, a first clean production area 121, a first lower technical interlayer 111 and a first return air duct 130, And the first return air duct 130 is located on the side of the first independent partition 320 away from the second independent partition 330.
  • the second independent partition 330 includes a second upper technical interlayer 102, a second clean production area 122, a second lower technical interlayer 112, and
  • the second return air duct 140, the secondary humidification system is arranged in the first independent zone 320, can directly humidify the air in the first independent zone, and effectively improve the indoor air humidity, especially the first independent zone, which helps ensure the first independent zone.
  • the relative humidity in the independent zone is the best value for production requirements.
  • one set of secondary humidification systems may be set in the first independent partition, or multiple sets of secondary humidification systems may be set, and this embodiment is not limited.
  • the partition wall assembly includes a partition wall 350 disposed between the first independent partition 320 and the second independent partition 330, that is, only one partition wall is disposed between the first independent partition 320 and the second independent partition 330 350, and the partition wall 350 corresponds to at least the first clean production area 121 and the second clean production area 122, and separates the first clean production area 121 from the second production area 121, that is, the first clean production area and the second clean production area.
  • the clean production areas are adjacent and close to each other, separated only by partition walls.
  • the partition wall may only correspond to the first clean production area and the second clean production area, that is, the first upper technical interlayer and the second upper technical interlayer can be connected, the first lower technical interlayer and the second lower technical interlayer They can also communicate with each other; in addition, the bottom of the partition wall can also be arranged to extend to the bottom plate of the lower technical mezzanine and be sealed to fit with the bottom plate of the lower technical mezzanine, that is, there is a partition wall between the first lower technical mezzanine and the second lower technical mezzanine.
  • the bottom of the partition wall 350 can also be set to extend to the bottom of the lower technical mezzanine and to seal with the bottom of the lower technical mezzanine, while the top of the partition wall extends to the top of the upper technical mezzanine And it is sealed and matched with the top plate of the upper technical interlayer, that is, the first lower technical interlayer 111 and the second lower technical interlayer 112 are separated by a partition wall, and the first upper technical interlayer 101 and the second upper technical interlayer 102 are also separated by a partition wall. It is separated by a partition wall, so that the two independent partitions are completely separated.
  • the first independent partition and the second independent partition are set as independent spaces that are not connected to each other, so that the environmental conditions between each other will not affect each other. It is more conducive to ensuring their environmental needs.
  • the independent partition setting method 1 when the partition wall sets the first independent partition and the second independent partition as independent spaces that are not connected to each other, the environmental conditions between each other can be prevented from affecting each other, which is more beneficial to ensure that each In the first independent zone, a secondary humidification system can be set up in the first independent zone.
  • the production process with higher relative humidity requirements can be carried out in the first independent zone, or the production of products with higher relative humidity requirements can be improved.
  • the relative humidity value of the air in the first independent zone can ensure that the relative humidity of the air in the first independent zone reaches the optimal demand value for product production, which is beneficial to improve the product yield.
  • the partition wall assembly includes two side-by-side partition walls arranged between the first independent partition 320 and the second independent partition 330, the first partition 590, the second partition 600, namely the first partition A first partition wall 590 and a second partition wall 600 are arranged side by side and opposite to each other between an independent partition 320 and a second independent partition 330, and the two partition walls are at least connected to the first clean production area 121 and the second clean production area 122
  • the first clean production area 121 is separated from the second clean production area 122
  • the first partition wall 590 is located in the first independent partition 320
  • the second partition wall 600 is located in the second independent partition 330
  • the first partition wall 590 is connected to the
  • a fourth return air duct is formed between the second partition wall 600, where the first partition wall and the second partition wall can only correspond to the first clean production area and the second clean production area, and the first upper technical interlayer and the second
  • the upper technical mezzanine is connected
  • the first lower technical mezzanine is connected to the second lower
  • each independent partition in order to improve the accuracy of the environmental requirements in each independent partition, each independent partition can be completely separated to form two independent spaces that are not connected to each other, then the partition wall assembly is included in the first Three side-by-side partition walls between an independent partition 320 and a second independent partition 330, the first partition wall 590, the second partition wall 600 and the third partition wall 610, and the third partition wall 610 is located at the first partition wall 590 Between the first partition wall 590 and the second partition wall 600, the first partition wall 590 is located in the first independent partition 320, the second partition wall 600 is located in the second independent partition 330, and the top of the third partition wall 610 extends to the top board of the upper technical mezzanine and is connected to the upper technical center.
  • the top plate of the mezzanine is sealed and matched, and the bottom of the third partition wall 610 extends to the bottom of the lower technical mezzanine and is in sealing cooperation with the bottom of the lower technical mezzanine, dividing the first independent partition 320 and the second independent partition 330 into two independent partitions.
  • the interconnected independent spaces can prevent the environmental conditions from affecting each other, which is more conducive to ensuring their environmental requirements.
  • the first partition wall corresponds to the first clean production area, and the bottom of the first partition wall extends to the lower technical mezzanine.
  • the second partition wall corresponds to the second clean production area, and the bottom of the second partition wall extends to the lower technical mezzanine, and a fifth return air duct 360 is formed between the first partition wall 590 and the third partition wall 610, or, A sixth return air passage 370 is formed between the second partition wall 600 and the third partition wall 610, or a fifth return air passage 360 is formed between the first partition wall 590 and the third partition wall 610, and at the same time, A sixth return air duct 370 is formed between the second partition wall 600 and the third partition wall 610.
  • the first independent partition and the second independent partition are set as independent spaces that are not connected to each other, so that the environmental conditions between each other do not affect each other, which is more conducive to ensuring the respective environmental requirements, and
  • a secondary humidification system is installed in the first independent zone, which can carry out production processes with higher relative humidity requirements in the first independent zone, or produce products with higher relative humidity requirements.
  • the secondary humidification system can increase the air in the first independent zone.
  • the relative humidity value can ensure that the relative humidity of the air in the first independent zone reaches the optimal demand value for product production, which is beneficial to improve the product yield.
  • a humidification device may be provided in the fifth return air duct 360 to facilitate the Humidification is carried out in independent zones.
  • the first lower technical interlayer 111 is provided with a zeolite runner unit 340 for adsorbing volatile organic compounds.
  • the zeolite runner unit 340 will dehumidify the indoor air to a certain extent during operation, resulting in cleanliness Indoors, especially in the first independent zone, the environmental humidity is reduced, which deviates from the environmental humidity demand value of product production, and the first independent zone 320 is equipped with a secondary humidification system, which can directly humidify the indoor air and increase the relative humidity of the indoor air. , Which helps to ensure that the relative humidity value of indoor air is maintained at the optimal humidity demand value for product production, and is beneficial to ensure product yield.
  • a first independent partition 320 and a second independent partition 330 are arranged in the clean room.
  • a partition wall assembly is provided between the first independent partition 320 and the second independent partition 330 to separate the production area to form a first independent partition.
  • the mezzanine 111 and the second lower technical mezzanine 112 and the first independent partition 320 includes the first upper technical mezzanine 101, the first clean production area 121, the first lower technical mezzanine 111 and the first return air duct 130, and the second independent partition 330 Including the second upper technical mezzanine 102, the second clean production area 122, the second lower technical mezzanine 112 and the second return air duct 140, and the secondary humidification system is arranged in at least two groups, the first independent partition 320 and the second independent partition A secondary humidification system is provided in 330
  • a secondary humidification system is provided in both the first independent partition and the second independent partition, which can quickly increase the relative humidity of the air in the first independent partition and the second independent partition, which is beneficial to ensure The relative humidity of the air in the first independent zone and the second independent zone is at the optimal demand value to ensure product yield.
  • the partition wall assembly includes a partition wall 350 disposed between the first independent partition 320 and the second independent partition 330, that is, only one partition wall is disposed between the first independent partition 320 and the second independent partition 330 350, and the partition wall 350 corresponds to at least the first clean production area 121 and the second clean production area 122, and separates the first clean production area 121 from the second clean production area 122, that is, the first clean production area 121 and The second clean production area 122 is adjacent and close to each other, and only separated by a partition wall 350.
  • the partition wall may only correspond to the first clean production area and the second clean production area, that is, the first upper technical interlayer and the second upper technical interlayer can be connected, the first lower technical interlayer and the second lower technical interlayer They can also communicate with each other; in addition, the bottom of the partition wall can also be arranged to extend to the bottom plate of the lower technical mezzanine and be sealed to fit with the bottom plate of the lower technical mezzanine, that is, there is a partition wall between the first lower technical mezzanine and the second lower technical mezzanine.
  • the bottom of the partition wall 350 can also be set to extend to the bottom of the lower technical mezzanine and to seal with the bottom of the lower technical mezzanine, while the top of the partition wall extends to the top of the upper technical mezzanine And it is sealed and matched with the top plate of the upper technical interlayer, that is, the first lower technical interlayer 111 and the second lower technical interlayer 112 are separated by a partition wall, and the first upper technical interlayer 101 and the second upper technical interlayer 102 are also separated by a partition wall. It is separated by a partition wall, so that the two independent partitions are completely separated.
  • the first independent partition and the second independent partition are set as independent spaces that are not connected to each other, so that the environmental conditions between each other will not affect each other. It is more conducive to ensuring their environmental needs.
  • the independent partition setting method of the second method above when the first independent partition and the second independent partition of the partition wall are set as independent spaces that are not connected to each other, the environmental conditions between each other can be prevented from affecting each other, which is more beneficial Ensure the respective environmental requirements, and set up a secondary humidification system in the first independent partition and the second independent partition, which can carry out the production process with high relative humidity requirements in the first independent partition, or produce high relative humidity requirements
  • the secondary humidification system can increase the relative humidity value of the air in the first independent zone, and can ensure that the relative humidity of the air in the first independent zone reaches the optimal demand value for product production, which is beneficial to improve the product yield.
  • the partition wall assembly includes two side-by-side partition walls arranged between the first independent partition 320 and the second independent partition 330.
  • the first partition wall 590 and the second partition wall 600 are the first independent partition.
  • a first partition wall 590 and a second partition wall 600 are arranged side by side and opposite to each other between 320 and the second independent partition 330, and the two partition walls at least correspond to the first clean production area 121 and the second clean production area 122.
  • the first clean production area 121 is separated from the second clean production area 122, the first partition wall 590 is located in the first independent partition 320, the second partition wall 600 is located in the second independent partition 330, and the first partition wall 590 and the second partition A fourth return air duct is formed between the walls 600, where the first partition wall and the second partition wall can only correspond to the first clean production area and the second clean production area, and the first upper technical interlayer and the second upper technical interlayer Connected, the first lower technical mezzanine is connected to the second lower technical mezzanine; in addition, the bottom of the first partition wall may be extended to the lower technical mezzanine, and the bottom of the second partition wall may be extended to the lower technical mezzanine.
  • the independent partitions can be completely separated to form two independent spaces that are not connected to each other.
  • the partition wall assembly is included in the first independent partition 320 and the second independent partition 320.
  • Three side-by-side partition walls between two independent partitions 330, the first partition wall 590, the second partition wall 600, and the third partition wall 610, and the third partition wall 610 is located between the first partition wall 590 and the second partition wall 600
  • the first partition wall 590 is located in the first independent partition 320
  • the second partition wall 600 is located in the second independent partition 330
  • the top of the third partition wall 610 extends to the roof of the upper technical mezzanine and is sealed with the roof of the upper technical mezzanine.
  • the bottom of the third partition wall 610 extends to the bottom plate of the lower technical mezzanine and seals with the bottom plate of the lower technical mezzanine to separate the first independent partition and the second independent partition into two independent spaces that are not connected to each other.
  • the environmental conditions between each other do not affect each other, which is more conducive to ensuring their own environmental requirements.
  • the first partition wall corresponds to the first clean production area, and the bottom of the first partition wall extends to the lower technical mezzanine.
  • the second partition wall and the first The two clean production areas correspond, and the bottom of the second partition wall extends to the lower technical mezzanine, and a fifth return air duct 360 is formed between the first partition wall 590 and the third partition wall 610, or the second partition wall 600 and A sixth return air duct 370 is formed between the third partition wall 610, or a fifth return air duct 370 is formed between the first partition wall and the third partition wall 610, and at the same time, the second partition wall and the third partition wall A sixth return air duct is formed between 610.
  • the first independent partition and the second independent partition are set as independent spaces that are not connected to each other, so that the environmental conditions between each other do not affect each other, which is more conducive to ensuring their own environmental requirements .
  • the secondary humidification system is set in the first independent partition and the second independent partition, that is, the first independent partition and the second independent partition can carry out the preparation processes with higher relative humidity requirements and different relative humidity requirements, and can guarantee The relative humidity in the first independent subarea and the second independent subarea with higher relative humidity requirements reaches the best demand value for the production of their respective products to ensure product yield.
  • a humidification device may be provided in the fifth return air duct to facilitate humidification in the first independent zone;
  • a humidification device may be provided in the sixth return air duct to facilitate humidification in the second independent zone.
  • the first clean production area 121 in the first independent zone 320 is provided with a production equipment 310 that generates volatile organic compounds during operation.
  • the technical interlayer 111 is equipped with a zeolite runner unit 340 for absorbing volatile organic compounds.
  • the zeolite runner unit 340 will dehumidify the indoor air to a certain extent during operation, resulting in a clean room, especially the environmental humidity of the first independent zone.
  • both the first independent partition and the second independent partition are equipped with secondary humidification systems, which can directly humidify the indoor air, increase the relative humidity of the indoor air, and help ensure the indoor air
  • the relative humidity is maintained at the best demand value for product production, which helps ensure product yield.
  • the above-mentioned clean room with a secondary humidification system further includes: a clean fresh air main pipe 570 arranged in the upper technical interlayer 100 of the clean room, and a main duct 570 extending into each The clean fresh air branch pipe 580 in the return air duct of the independent partitions and used to output fresh air provides fresh air to each independent partition.
  • the above-mentioned secondary humidification system can be a space-type two-fluid humidification system or a space-type high-pressure micro-mist humidification system, or a space-type electric humidifier or a space-type electrode humidifier, which can directly humidify the clean room indoor air and increase the indoor humidity , And realize the fully automatic control of the secondary humidification.
  • the secondary humidification system may also be other forms of humidification systems, and this embodiment is not limited.
  • the space-type two-fluid humidification system includes a relative humidity sensor, a humidification device, and a humidity controller.
  • the humidification device of the space-type two-fluid humidification system includes a plurality of nozzles 380, and each nozzle 380 includes two input ports, one The input port is connected and connected to the air inlet pipe 390, which can be a stainless steel humidification pipe, and the other input port is connected and connected to the water inlet pipe 400.
  • One end of the air inlet pipe 390 includes a compressed air inlet for connecting with the air supply device. 410, and an air intake auxiliary unit 420 for controlling air intake and a compressed air filter 430 are provided at the air intake end of the air intake pipe 390.
  • One end of the water intake pipe 400 includes a water inlet 460 for connecting with a water supply device, and the water intake pipe
  • the water inlet end of the 400 is provided with a water filter 440 and a water inlet auxiliary unit 450, and the water inlet auxiliary unit 450 is provided with a drain 470.
  • the water inlet auxiliary unit 450 and the air intake auxiliary unit 420 are electrically connected to the electric control box 480.
  • the electric control box 480 constitutes a humidity controller, and the electric control box 480 is connected to the relative humidity sensor.
  • the water intake auxiliary unit 450 and the intake auxiliary unit 420 can be controlled by receiving the humidity signal of the relative humidity sensor to achieve humidification.
  • the spatial two-fluid humidification system can control the pressure setting and control the humidification Coverage, according to the humidification requirements of each area, the number and spacing of different nozzles can be freely combined, which is beneficial to improve indoor humidification efficiency, and compressed air is used as the power to promote air flow during spraying, and humidification is uniform; dual control design, air,
  • the mixing of water pipes can effectively prevent nozzle blockage and ensure continuous and good humidification.
  • it also has low compressed air consumption and high humidification efficiency, which is beneficial to improve indoor air humidification efficiency and ensure product production yield.
  • the space-type high-pressure micro-mist humidification system includes a relative humidity sensor, a humidification device, and a humidity controller.
  • the humidification device of the space-type high-pressure micro-mist humidification system includes a nozzle holder 490, which is provided with a plurality of sprays.
  • each spray tube 31 is provided with a plurality of stainless steel nozzles 510, each spray tube 31 includes an input port, and the input port is connected and communicated with the humidification pipe 520, the input end of the humidification pipe 520 is connected to the high-pressure micro-mist humidification
  • the host 530, and the high-pressure micro-mist humidification host 530 is connected with an inlet pipe 540, the inlet pipe 540 is provided with a water inlet 550 for connecting with a water supply device, and a water filter 560 is connected to the inlet pipe 540.
  • the temperature controller is electrically connected. The temperature controller can control the high-pressure micro-mist humidification host according to the humidity signal of the relative humidity sensor to achieve spray control of the stainless steel nozzles.
  • the space-type high-pressure micro-mist humidification system has a large humidification capacity. Low power consumption, energy saving, fast response speed and high humidification efficiency are beneficial to improve indoor humidification efficiency and ensure product production yield.

Abstract

一种可分区控制的洁净厂房,包括厂房本体(270),厂房本体(270)内设有上技术夹层(100)、下技术夹层(110)以及位于上技术夹层(100)和下技术夹层(110)之间的洁净生产层,洁净生产层内设有洁净室,洁净室的两侧设有用于连通下技术夹层(110)与上技术夹层(100)的第一回风夹道(130)和第二回风夹道(140),厂房本体(270)内还设有间隔墙组件以将洁净室分隔成独立的第一洁净生产区(121)和第二洁净生产区(122),第一洁净生产区(121)和第二洁净生产区(122)分别具有独立的回风系统。

Description

一种可分区控制的洁净厂房
相关申请的交叉引用
本申请要求在2019年07月23日提交中国专利局、申请号为201910668606.5、申请名称为“一种洁净厂房”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2019年08月12日提交中国专利局、申请号为201910740337.9、申请名称为“一种具有二次加湿系统的洁净室布置结构及洁净生产厂房”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及洁净生产厂房技术领域,特别涉及一种可分区控制的洁净厂房。
背景技术
目前,洁净厂房面积需求越来越大,洁净厂房具有的每个洁净生产层面积也越来越大,每一个洁净生产层的不同工艺区域对于洁净等级、温度、相对湿度、VOC浓度等的管控要求也不相同,但是,目前的洁净厂房中,不同的工艺区域之间是通过共用的集中回风系统且按照最高要求对整个洁净生产层进行洁净度、温度、相对湿度、VOC浓度等进行控制,能耗较高。
因此,如何保持每个工艺区域的正常运转的同时还能降低能耗是目前急需解决的问题。
发明内容
本公开提供了一种可分区控制的洁净厂房,能够分别对每一个工艺区域洁净度、温度、相对湿度以及VOC浓度等进行控制,在保证各工艺区域的正常运转的同时还能够降低能耗,所述技术方案如下:
一方面,本公开提供了一种可分区控制的洁净厂房,包括厂房本体,所述厂房本体内设有上技术夹层、下技术夹层以及位于所述上技术夹层和所述下技术夹层之间的洁净生产层,所述洁净生产层内设有洁净室和用于连通所述下技术夹层与所述上技术夹层的回风夹道,所述回风夹道包括位于所述洁净室一侧的第一回风夹道和位于所述洁净室另一侧的第二回风夹道,所述厂房本体内还设有间隔墙组件以将所述洁净室分隔成独立的第一洁净生产区和第二洁净生产区,所述第一洁净生产区和第二洁净生产区分别具有独立的回风系统。
上述洁净厂房,通过间隔墙组件将洁净室分隔成独立的第一洁净生产区和第二洁净生产区,且第一洁净生产区和第二洁净生产分别具有独立的回风系统,当第一洁净生产区和第二洁净生产区处于运转状态时,能够通过独立的回风系统控制送风量,实现了气流的循环,从而分别保证第一洁净生产区和第二洁净生产区对于洁净度、温度、相对湿度以及VOC浓度的要求,此外,分别控制各洁净生产区的送风量,可便于降低能耗,从而降低成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中提供的一种洁净厂房的构造示意图;
图2为本公开实施例提供的一种洁净厂房的构造示意图;
图3为本公开实施例提供的另一种洁净厂房的构造示意图;
图4为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图5为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图6为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图7为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图8为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图9为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图10为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图11为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图12为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图13为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图14为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图15为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图16为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图17为本公开实施例提供的一种具有二次加湿系统的洁净室的侧视图;
图18为本公开实施例提供的一种具有二次加湿系统的洁净室内的风系统流通示意图;
图19为本公开实施例提供的一种洁净生产厂房的俯视示意图;
图20为本公开实施例提供的空间型二流体加湿系统的结构示意图;
图21为本公开实施例提供的空间型高压微雾加湿系统的结构示意图。
图标:
100-上技术夹层;101-第一上技术夹层;102-第二上技术夹层;110-下技术夹层;111-第一下技术夹层;112-第二下技术夹层;120-生产区;121-第一洁净生产区;122-第二洁净生产区;125-工艺生产区;130-第一回风夹道;140-第二回风夹道;150-高架地板;160-吊顶;170-物料存储与传输区;171-物料存储区;172-物料传输区;180-第三回风夹道;190华夫板;200-隔墙板;210-风机过滤器机组;220-干冷却盘管;230-物料存储架;240-新风送风管;250-密封板;260-电动调节阀;270-厂房本体;280-加湿装置;290-相对湿度传感器;300-湿度控制器;310-生产设备;320-第一独立分区;330-第二独立分区;340-沸石转轮机组;350-间隔墙;360-第五回风夹道;370-第六回风夹道;380-喷嘴;390-进气管;400,540-进水管;410-压缩空气进气口;420-进气辅助单元;430-压缩空气过滤器;440,560-水过滤器;450-进水辅助单元; 460,550-进水口;470-排水口;480-电控箱;490-喷头支架;500-喷雾管;510-不锈钢喷嘴;520-加湿管道;530-高压微雾加湿主机;570-洁净新风主管道;580-洁净新风支管道;590-第一间隔墙;600-第二间隔墙;610-第三间隔墙。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
可参考图1,本实施例公开的可分区控制的洁净厂房,包括厂房本体270,厂房本体270内设有下技术夹层110、上技术夹层100以及位于上技术夹层100与下技术夹层110之间的洁净生产层,洁净生产层内设有洁净室,洁净室的两侧形成用于连通上技术夹层100与下技术夹层110的第一回风夹道130和第二回风夹道140,厂房本体270内还设有间隔墙组件以将洁净室分隔成独立的第一洁净生产区和第二洁净生产区,且第一洁净生产区和第二洁净生产区域分别具有独立的回风系统。
本公开实施例中,通过间隔墙组件将洁净室分隔成独立的第一洁净生产区和第二洁净生产区,且第一洁净生产区和第二洁净生产分别具有独立的回风系统,当第一洁净生产区和第二洁净生产区处于运转状态时,能够通过独立的回风系统控制送风量,实现了气流的循环,从而分别保证第一洁净生产区和第二洁净生产区对于洁净度、温度及相对湿度以及VOC浓度等的要求,此外,分别控制各洁净生产区的送风量,可便于降低能耗,从而降低成本。
现有技术中,一种情况是,洁净室内的洁净度等级通过设置在吊顶上的风机过滤器机组向室内送入洁净空气,并将室内的悬浮粒子从回风口排出来维持。传统的洁净厂房如图1所示,包括厂房本体270,厂房本体270内设有上技术夹层100、下技术夹层110以及位于上技术夹层100和下技术夹层110之间的洁净生产层,洁净生产层内设有架空设置的华夫板190以及设置在华夫板190上的洁净室120,洁净室120包括位于华夫板190上的高架地板150、吊顶160以及与高架地板150以及吊顶160配合的墙板,洁净室2两侧设有 用于连通下技术夹层5与上技术夹层6的第一回风夹道130和第二回风夹道140,且下技术夹层110与第一回风夹道130以及第二回风夹道140之间设有用于冷却循环空气的干冷却盘管220。
洁净室120内需要保证空气洁净度的空间有三部分,分别为物料存储区171、物料传输区172以及工艺生产区125,其中,物料存储区171设有物料存储架230,用于存储待加工的玻璃基板、芯片等物料,物料传输区172内设有自动搬运装置;工艺生产区125通常布置工艺生产设备,也是操作人员的活动区域。由于物料存储区171以及物料传输区172内待加工的玻璃基板、芯片等与环境空气直接接触,所以该空间内空气洁净度等级通常远远严于工艺生产区125内的空气洁净度等级。
工艺生产区125的吊顶160上布置有多个风机过滤器机组210,并且,为了保证物料存储与传输区170较严格的洁净度等级,通常在物料传输区172的吊顶160上满布风机过滤器机组210,并在物料存储架230的侧面高密度布置风机过滤器机组210。整个洁净室净化空调系统的空气流通路径如图1中的箭头所示,其中,由于物料存储架230侧面安装的风机过滤器机组210吸入的是工艺生产区125内的空气,致使工艺生产区125的吊顶160上需要额外布置与物料存储架230侧面安装的风机过滤器机组相同风量的风机过滤器机组,导致工艺生产区125的吊顶160上需要安装的风机过滤器机组210的数量大大增加,同样,能耗也相应增加。
另外,物料存储区171与物料传输区172的洁净度等级要求很严,需要保证洁净度等级的送风量很大,但该区域内的设备发热量又很小,所以流经该区域的空气流只有极少部分需要冷却处理,但按照图1所示的传统的洁净室2营造方式,安装在物料传输区172顶部的风机过滤器机组210以及安装在物料存储架230侧壁上的风机过滤器机组210吸入的气流都为经过干冷却盘管220处理后的气流,同时,从工艺生产区125以及物料传输区172流出的气流进入下技术夹层110后,全部经过了干冷却盘管220,致使干冷却盘管220的数量额外增加很多,导致很多工程出现在规定的空间内布置不下干冷却 盘管220的情况;再者,从工艺生产区125以及物料传输区172送出的气流全部经过技术夹道7以及上技术夹层100,致使回风夹道以及上技术夹层100所需要的空间增大,增加了建设成本。
鉴于此,一种实施例中,如图2所示,本实施例中的洁净室中,洁净室设置于架空设置的华夫板190上,洁净室还包括上部的吊顶160以及与吊顶160配合的墙板,下技术夹层110与第一回风夹道130以及第二回风夹道140之间设有用于冷却循环空气的干冷却盘管220。
华夫板190为均匀开有孔洞的混凝土板,具有支撑以及通风功能;洁净室2包括上部的吊顶160以及与吊顶160配合的墙板,第一洁净生产区包括的两个独立的区域为工艺生产区125,两个工艺生产区125之间的空间为物料存储与传输区170,且物料存储与传输区170以及工艺生产区125的吊顶分别设有多个风机过滤器机组210。如图2、图3所示,物料存储与传输区170的两侧分别设有工艺生产区125;物料存储与传输区170内设有物料存储架组,物料存储架组的两侧分别设有隔墙板200,每个隔墙板200的顶部延伸至上技术夹层100的顶部,且底部与华夫板190连接;物料存储架组包括两排物料存储架230,每排物料存储架230与相邻的隔墙板200之间的间隙形成第三回风夹道180,且每个第三回风夹道180与上技术夹层100连通,具体的,第三回风夹道180通过吊顶160上开设的孔洞与上技术夹层100连通,且吊顶160上开设的这些孔洞分布在与第三回风夹道180对应的区域。
在物料存储与传输区170内,物料存储架230用于存储待加工的玻璃基板、芯片等物料,设置有物料存储架230的区域即物料存储区171,两排物料存储架230之间的区域形成物料传输区172,物料传输区172内设置有自动搬运装置;其中,在物料存储区171,每排物料存储架230的侧壁上设有多个风机过滤器机组210用以吸入第三回风夹道180内的气流并送入相应的物料存储架230内部,即,这些风机过滤器机组210可以吸入进入第三回风夹道180内的气流,并经过滤、加压处理后向物料存储架230一侧送出,即向物料存储区171送出,从而稀释物料存储区171的悬浮粒子浓度,以维持物料存储 区171的洁净度等级要求;在物料传输区172,高密度布置在顶部的风机过滤器机组210吸入上技术夹层100内的气流,并经过滤、加压处理后向物料传输区172内送出,从而稀释物料传输区172的悬浮粒子浓度,以维持物料传输区172的洁净度等级要求。
另外,在物料存储与传输区170内,每排物料存储架230的底部设有连通物料传输区172与相邻的第三回风夹道180的气流通路,即第三回风夹道180与物料传输区172连通,具体设置时,每排物料存储架230的底部与华夫板190之间设有高架地板150,高架地板150与华夫板190之间的间隙形成了上述气流通路。另外,在工艺生产区125内,也可以在华夫板190上设置高架地板150,高架地板150上设有孔洞,从而保证了工艺生产区125与下技术夹层110连通,并且,高架地板150的表面比较平整,便于布置工艺生产设备,还可以将一些管路等装置可以布置在高架地板150与华夫板190之间的间隙内。
如图2所示,第三回风夹道180既通过物料存储架230底部的气流通路与物料传输区172连通,又通过华夫板190上设置的孔洞与下技术夹层110连通,物料传输区172流出的气流一部分通过物料存储架230底部的气流通路进入第三回风夹道180,另一部分穿过华夫板190上的孔洞进入下技术夹层110,其中,进入下技术夹层110的这部分气流,由于路径和压力平衡等原因,大部分穿过华夫板190的孔洞也进入第三回风夹道180(一小部分气流通过干冷却盘管220进入第一回风夹道130和第二回风夹道140;第三回风夹道180内的气流一部分被设置在物料存储架230侧壁上的风机过滤器机组210吸入,并经加压过滤后送出,穿过物料存储架230后进入物料传输区172;另一部分气流向上流动进入上技术夹层100,并被设置在物料传输区172顶部的风机过滤器机组210吸入,经加压过滤后送入物料传输区172内;由此可见,由物料传输区172流出的大部分气流在进入第三回风夹道180后,通过设置在物料存储架230侧壁上的风机过滤器机组210以及布置在物料传输区172顶部的风机过滤器机组210又回到了物料传输区172内,实现了就地循环,由于 这部分就地循环的气流不再经过干冷却盘管220、第一回风夹道130、第二回风夹道140以及上技术夹层100,所以,干冷却盘管220的数量可大大减少,并且,第一回风夹道130、第二回风夹道140以及上技术夹层100所占用的空间也可以进行压缩,降低了洁净室2营造的成本,同时,由于第三回风夹道180为设置在物料存储架230侧壁上的风机过滤机提供了风量,工艺生产区125的顶部不用再额外布置与物料存储架230侧面安装的风机过滤器机组210相同风量的风机过滤器机组210,从而减少了工艺生产区125的送风量以及风机过滤器机组210数量,降低了能耗及建设成本。值得说明的是,在图2所示的构造中,也可以不设置高架地板150,以降低建造成本。
继续参考图2,为了保证物料存储与传输区170的温度和相对湿度参数,下技术夹层110内设有新风送风管240,且新风送风管240的出风口与每个第三回风夹道180连通,新风送风管240用于将处理后的低温空气输送到第三回风夹道180内,在第三回风夹道180内,新风与循环气流进行混合,混合气流一部分被设置在物料存储架侧壁上的风机过滤器机组吸入,并经加压过滤后送出,穿过物料存储架后进入物料传输区;另一部分向上流动进入上技术夹层,并被设置在物料传输区顶部的风机过滤器机组吸入,经加压过滤后送入物料传输区内。具体设置时,新风送风管240可以与洁净室净化空调系统的新风处理机组连通。进一步的,新风送风管240上设有电动调节阀260,且物料存储与传输区170内或第三回风夹道180内设有温度传感器,电动调节阀260以及温度传感器分别与控制装置信号连接,控制装置用于根据温度传感器检测的温度控制电动调节阀260的开度,以控制新风送风管240的送风量。这样可以根据物料存储与传输区170内或第三回风夹道180内的温度控制送入第三回风夹道180内的新风量,从而精确地控制物料存储区171以及物料传输区172的温度。
为了进一步满足物料存储与传输区170内的压力要求,如图3所示,物料存储与传输区170以及第三回风夹道180对应区域的华夫板190的底部设有密封板250,密封板250用于将物料存储与传输区170以及第三回风夹道 180的底部与下技术夹层110隔离;或者,物料存储与传输区以及回风夹道对应区域的华夫板的孔洞的顶部设有盖板,盖板用于将物料存储与传输区以及回风夹道的底部与下技术夹层隔离,从而使物料存储与传输区以及第三回风夹道180与周围环境完全隔离,并在物料存储与传输区以及回第三风夹道23之间形成独立的气流循环。如图3中箭头所示的气流方向,由物料传输区172流出的气流通过高架地板150与华夫板190所形成的气流通路进入第三回风夹道180内,并与新风送风管240输送的新风进行混合,混合气流一部分被设置在物料存储架230侧壁上的风机过滤器机组210吸入,经加压过滤后送出,并穿过物料存储架230后进入物料传输区172,另一部分向上流动进入上技术夹层100,被布置在物料传输区172顶部的风机过滤器机组210吸入,经加压过滤后送出,并进入物料传输区172内,形成循环。由于新风送风管240不断地向第三回风夹道180内输送新风,从而使物料存储与传输区170内的压力值高于周围的压力值,保障了较严格洁净度等级区压力值应高于较劣洁净度等级区压力值的要求,也就是说,由于物料存储与传输区170内的压力较高,使得该空间内的空气可以通过结构之间的缝隙等进入周围环境,而周围环境中洁净度等级相对较劣的空气不能逆向流动,进而保证了物料存储与传输区内较严格的洁净度等级。
或者,还可以在下技术夹层内与每个隔墙板对应的位置,紧贴华夫板下底面往下竖向设置一定高度的隔板,并在隔板的下端部水平方向设置密封板,竖向设置的隔板和水平设置的密封板用于将物料存储与传输区的底部与外部隔离,从而在物料存储与传输区以及回风夹道之间形成独立的气流循环。
通过以上描述可以看出,本公开实施例中,通过设置隔墙板并在隔墙板与物料存储架之间形成与上技术夹层以及物料传输区连通的第三回风夹道,从而对厂房本体内的气流循环路径进行了优化,减少了工艺生产区的送风量以及干冷却盘管和风机过滤器机组的数量,压缩了技术夹道以及上技术夹层所占用的空间,降低了能耗以及建设成本。此外,还可以设置新风送风管为第三回风夹道提供新风,并在物料存储与传输区以及第三回风夹道对应区域 的华夫板的底部设有密封板,或在物料存储与传输区以及第三回风夹道对应区域的华夫板的孔洞的顶部设有盖板,或在所述物料存储与传输区以及第三回风夹道对应区域紧贴华夫板下底面往下竖向设置一定高度的隔板,并在隔板的下端部水平向设置密封板,从而使物料存储与传输区以及第三回风夹道与周围环境隔离开,进一步保障了物料存储与传输区内的压力、温度以及湿度的要求。
针对生产环境湿度变化或者对生产环境相对湿度要求不同的情况,现有技术中针对相对湿度变化明显或相对湿度要求较高的洁净室的房间,在不增加室内空气含湿量(即室内空气含湿量保持不变)的情况下仅通过设低洁净室内的温度值来提高相对湿度的措施来接近室内温湿度需求值,但是实施该措施之后室内温湿度值始终会与生产需求温湿度值具有一定的偏差,对生产环境具有一定的影响,容易造成产品良率降低。
鉴于此,一种实施例中,请参考图4,其中,图4中将加湿装置设置在洁净室的上技术夹层100内,本发明实施例提供的一种具有二次加湿系统的洁净室,包括:至少一组二次加湿系统,每一组二次加湿系统包括:加湿装置280,设于洁净室的上技术夹层100、下技术夹层110、第一回风夹道、第二回风夹道或洁净室内;用于检测洁净室内的空气湿度的相对湿度传感器290;与相对湿度传感器290和加湿装置280连接的湿度控制器300,湿度控制器300用于接收相对湿度传感器290的湿度信号以根据湿度信号控制加湿装置280工作。
上述具有二次加湿系统的洁净室中,在洁净室内设置有至少一组二次加湿系统,其中,每一组二次加湿系统包括:设置在洁净室内用于检测室内的空气湿度的相对湿度传感器,其中,可以将相对湿度传感器设置在洁净室的生产区内,生产区即放置生产设备的地方,在生产区设置相对湿度传感器可以对生产区的湿度进行检测,即对产品的生产环境进行相对湿度检测,可以更加准确的确定产品的制作环境的实际相对湿度,另外,加湿装置用于对室内空气进行直接加湿,其中,加湿装置可以设置在洁净室的上技术夹层内, 也可以设置在洁净室的下技术夹层内,或者设置在洁净室的第一回风夹道或第二回风夹道内,或者设置在洁净室的生产区内,被加湿的空气可以进入到洁净室内的风系统中可以对整个洁净室内的环境进行加湿,当然,加湿的空气可以在洁净室内风系统流通过程中进入到生产区,洁净室内的生产环境得到二次加湿的效果,湿度控制器与相对湿度传感器信号连接且与加湿装置电连接,可以通过接收相对湿度传感器检测到的湿度信号,并通过该湿度信号对加湿装置进行控制,且湿度信号为洁净生产区的相对湿度值,根据生产区生产的产品对生产区的相对湿度要求设定一个预设值,当相对湿度传感器检测到洁净生产区内湿度值小于预设值时,湿度控制器控制加湿装置进行工作,对室内空气进行加湿,可实现加湿量的比例调节;当相对湿度传感器检测到生产区内的湿度值大于或等于预设值时,湿度控制器控制加湿装置比例调小加湿量至恒定持续加湿或不启动工作,因此,湿度控制器通过接收相对湿度传感器的湿度信号控制加湿装置对室内空气进行自动加湿,满足生产区内生产环境的湿度要求,可以使生产区内生产环境的相对湿度达到最佳值。
因此,上述具有二次加湿系统的洁净室中,在洁净室内设置有二次加湿系统,可以有效对室内空气进行二次加湿,可以增加生产区环境的相对湿度,以使产品的生产环境的相对湿度达到最佳值,有利于保证良好的生产工序制造环境,提高产品良率。
在本公开实施例中,上述具有二次加湿系统的洁净室,每一组二次加湿系统中,相对湿度传感器设置为一个或多个,且当相对湿度传感器设置为一个时,湿度信号为相对湿度传感器的感应值;当相对湿度传感器设置为多个时,湿度信号为多个相对湿度传感器的湿度感应值的平均值,其中,将相对湿度传感器设置为多个,以多个相对湿度传感器的感应值的平均值作为湿度信号,可以更精确的测试室内相对湿度,有利于提高二次加湿系统对室内加湿的准确性,有利于保证室内环境的湿度在生产的最佳相对湿度值。
需要说明的是,参考图4至图6所示,上述具有二次加湿系统的洁净室中可以设置多组二次加湿系统,有利于提高对洁净室内的生产环境的加湿速 率,可以使环境湿度更快的达到生产环境需求的相对湿度值,该多组二次加湿系统中的加湿装置280可以设置在洁净室的上技术夹层100、下技术夹层110、第一回风夹道130、第二回风夹道140或洁净室120中的任意一处,或者其中的任意两处、三处或四处,例如,该多组二次加湿系统中的加湿装置280可以全部设置在洁净室的上技术夹层100内、也可以全部设置在洁净室的回风夹道内,或者全部设置在洁净室的下技术夹层110内,或者全部设置在洁净室的洁净室120内;另外,该多组二次加湿系统中的加湿装置中可以一部分设置在上技术夹层100内,同时一部分设置在第一回风夹道130和第二回风夹道140中;或者,该多组二次加湿系统中的加湿装置中一部分设置在下技术夹层110内,同时一部分设置在第一回风夹道130和第二回风夹道140内;或者,该多组二次加湿系统中的加湿装置中一部分设置在上技术夹层100内,同时一部分设置在下技术夹层110内,或者一部分设置在第一回风夹道130和第二回风夹道140内,同时一部分设置在洁净室的洁净室120内;或者,该多组二次加湿系统中的加湿装置中的一部分设置在上技术夹层100内,同时一部分设置在下技术夹层110内,并且同时一部分设置在第一回风夹道130和第二回风夹道140内,即在上技术夹层100和下技术夹层110以及第一回风夹道130和第二回风夹道140中均设置有加湿装置,上述关于二次加湿系统中的加湿装置在上技术夹层100、下技术夹层120、第一回风夹道130、第二回风夹道140以及洁净室120的设置方式有多种方式,在此不一一列举,需要说明的是,对于多组二次加湿系统中的每组二次加湿系统的设置,可以根据实际需求进行合理安排,二次加湿系统的数量也可以根据室内需求进行设置,本实施例不做局限。
另外,参考图19和图10所示,由于电子工业的主流产品显示器件的生产厂房内的生产产品的不同、生产工序的不同等因素,对生产环境的要求也不相同,所以生产厂房内会针对生产环境要求、制备工序的特殊需求等因素在生产厂房内划分多个独立分区,在不同的独立分区进行不同的环境要求的产品制备或工序制作,其中,可以根据湿度的不同可以将洁净室内设立第一 独立分区和第二独立分区,即,多个独立分区中包括有第一独立分区和第二独立分区,其中,第一独立分区可以设置多个,第二独立分区也设置多个,第一独立分区与第二独立分区的数量以及布局可以根据实际需求设置,并且,在洁净室内设立第一独立分区和第二独立分区,二次加湿系统的设置方式也会有多种选择方式,如:
方式一:
参考图7至图9所示,在洁净室内设置第一独立分区320和第二独立分区330,第一独立分区320与第二独立分区330之间设置有间隔墙组件以将洁净室120分隔开,形成第一洁净生产区121和第二洁净生产区122、将上技术夹层100分隔开以形成第一上技术夹层101和第二上技术夹层102、将下技术夹层110分隔开以形成第一下技术夹层111和第二下技术夹层112,且第一独立分区320包括第一上技术夹层101、第一洁净生产区121、第一下技术夹层111和第一回风夹道130,且第一回风夹道130位于第一独立分区320背离第二独立分区330的一侧,第二独立分区330包括第二上技术夹层102、第二洁净生产区122、第二下技术夹层112和第二回风夹道140,二次加湿系统设置于第一独立分区内320,可以对第一独立分区的空气进行直接加湿,有效提高室内空气湿度,尤其是第一独立分区,有利于保证第一独立分区内的相对湿度是生产需求的最佳值。其中,在第一独立分区内可以设置一组二次加湿系统,也可以设置多组二次加湿系统,本实施例不做局限。
对于上述方式一的洁净室内的第一独立分区与第二独立分区的设置,也可以有多种设置选择方式,如:
独立分区设置方式一:
参考图16所示,间隔墙组件包括设置在第一独立分区320与第二独立分区330之间的一个间隔墙350,即第一独立分区320与第二独立分区330之间仅设置一个间隔墙350,且该间隔墙350至少与第一洁净生产区121和第二洁净生产区122对应,将第一洁净生产区121与第二生产区121分隔开,即第一洁净生产区与第二洁净生产区相邻且紧挨着,只有间隔墙隔开。
其中,该间隔墙可以仅与第一洁净生产区与第二洁净生产区对应,即,第一上技术夹层和第二上技术夹层之间可以连通,第一下技术夹层和第二下技术夹层之间也可以连通;另外,也可以设置间隔墙的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,即,第一下技术夹层和第二下技术夹层之间被间隔墙隔开;除此之外,如图16所示,也可以设置间隔墙350的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,同时间隔墙的顶部延伸至上技术夹层的顶板且与上技术夹层的顶板密封配合,即,第一下技术夹层111和第二下技术夹层112之间被间隔墙隔开,同时第一上技术夹层101和第二上技术夹层102之间也被间隔墙隔开,这样两个各独立分区之间完全被隔开,将第一独立分和第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求。
其中,在上述独立分区设置方式一中,当间隔墙将第一独立分区和第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,且在第一独立分区内设置二次加湿系统,可以在第一独立分区内进行相对湿度要求较高的生产工序,或生产相对湿度要求较高的产品,二次加湿系统可以提高第一独立分区内空气的相对湿度值,则可以保证第一独立分区内空气的相对湿度达到产品生产的最佳需求值,有利于提高产品良率。
独立分区设置方式二:
参考图5至图9所示,间隔墙组件包括设置在第一独立分区320与第二独立分区330之间的两个并排的间隔墙,第一间隔墙590、第二间隔墙600,即第一独立分区320与第二独立分区330之间设置并排且相对的第一间隔墙590和第二间隔墙600,且该两个间隔墙至少与第一洁净生产区121和第二洁净生产区122对应,将第一洁净生产区121与第二洁净生产区122隔开,第一间隔墙590位于第一独立分区320,第二间隔墙600位于第二独立分区330,且第一间隔墙590与第二间隔墙600之间形成有第四回风夹道,其中,第一间隔墙与第二间隔墙可以仅与第一洁净生产区和第二洁净生产区对应,第一 上技术夹层与第二上技术夹层连通,第一下技术夹层与第二下技术夹层连通;另外,也可以设置第一间隔墙的底部延伸至下技术夹层,且第二间隔墙的底部延伸至下技术夹层。
独立分区设置方式三:
参考图13、图14以及图15所示,为提高各独立分区内的环境要求精度,可以将各独立分区完全分隔开形成两个彼此互不相通的独立空间,则间隔墙组件包括在第一独立分区320与第二独立分区330之间的三个并排的间隔墙,第一间隔墙590、第二间隔墙600和第三间隔墙610,且第三间隔墙610位于第一间隔墙590与第二间隔墙600之间,第一间隔墙590位于第一独立分区320,第二间隔墙600位于第二独立分区330,第三间隔墙610的顶部延伸至上技术夹层的顶板且与上技术夹层的顶板密封配合,且第三间隔墙610的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,将第一独立分区320和第二独立分区330分隔成两个彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,第一间隔墙与第一洁净生产区对应,且第一间隔墙的底部延伸至下技术夹层,第二间隔墙与第二洁净生产区对应,且第二间隔墙的底部延伸至下技术夹层,且第一间隔墙590与第三间隔墙610之间形成有第五回风夹道360,或者,第二间隔墙600与第三间隔墙610之间形成有第六回风夹道370,或者在第一间隔墙590与第三间隔墙610之间形成有第五回风夹道360,同时,在第二间隔墙600与第三间隔墙610之间形成有第六回风夹道370。
在上述独立分区设置方式三中,第一独立分区与第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,且在第一独立分区内设置二次加湿系统,可以在第一独立分区内进行相对湿度要求较高的生产工序,或生产相对湿度要求较高的产品,二次加湿系统可以提高第一独立分区的空气相对湿度值,则可以保证第一独立分区内空气相对湿度达到产品生产的最佳需求值,有利于提高产品良率。
其中,如图12所示,在第一间隔墙590与第三间隔墙610之间形成有第五回风夹道360时,可以在第五回风夹道360内设置有加湿装置,便于对第一独立分区内进行加湿。
本公开实施例中,在上述方式一中,参考图5、图6、图11、图12以及图16所示,第一独立分区320中的第一生产洁净区11内设有工作过程中产生挥发性有机物的生产设备310,第一下技术夹层111内设置有用于吸附挥发性有机物的沸石转轮机组340,沸石转轮机组340在工作过程中会使室内空气有一定的减湿,造成洁净室内,尤其是第一独立分区的环境湿度降低,偏离产品生产的环境湿度需求值,而在第一独立分区320设置有二次加湿系统,可以对室内空气直接加湿,可以提高室内空气的相对湿度,有利于保证室内空气的相对湿度值维持在产品生产的最佳湿度需求值,有利于保证产品良率。
方式二:
如图4所示,在洁净室内设置第一独立分区320和第二独立分区330,第一独立分区320与第二独立分区330之间设有间隔墙组件以将生产区分隔开,形成第一洁净生产区121和第二洁净生产区122、将上技术夹层100分隔开以形成第一上技术夹层101和第二上技术夹层102、将下技术夹层110分隔开以形成第一下技术夹层111和第二下技术夹层112,且第一独立分区320包括第一上技术夹层101、第一洁净生产区121、第一下技术夹层111和第一回风夹道130,第二独立分区330包括第二上技术夹层102、第二洁净生产区122、第二下技术夹层112和第二回风夹道140,且二次加湿系统设置为至少两组,第一独立分区320和第二独立分区330内均设置有二次加湿系统,其中,二次加湿系统可以设置为两组,在第一独立分区320和第二独立分区330内均设置为一组,或者,二次加湿系统可以设置为多组,第一独立分区320和第二独立分区330内分别设置有多组。
其中,上述方式二中,在第一独立分区和第二独立分区内都设置有二次加湿系统,即可以快速的提高第一独立分区内和第二独立分区内空气的相对湿度,有利于保证第一独立分区内和第二独立分区内空气的相对湿度在最佳 需求值,保证产品良率。
对于上述方式二的洁净室内的第一独立分区与第二独立分区的设置,也可以有多种设置选择方式,如:
独立分区设置方式一:
参考图17所示,间隔墙组件包括设置在第一独立分区320与第二独立分区330之间的一个间隔墙350,即第一独立分区320与第二独立分区330之间仅设置一个间隔墙350,且该间隔墙350至少与第一洁净生产区121和第二洁净生产区122对应,将第一洁净生产区121与第二洁净生产区122分隔开,即第一洁净生产区121与第二洁净生产区122相邻且紧挨着,只有间隔墙350隔开。其中,该间隔墙可以仅与第一洁净生产区与第二洁净生产区对应,即,第一上技术夹层和第二上技术夹层之间可以连通,第一下技术夹层和第二下技术夹层之间也可以连通;另外,也可以设置间隔墙的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,即,第一下技术夹层和第二下技术夹层之间被间隔墙隔开;除此之外,如图17所示,也可以设置间隔墙350的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,同时间隔墙的顶部延伸至上技术夹层的顶板且与上技术夹层的顶板密封配合,即,第一下技术夹层111和第二下技术夹层112之间被间隔墙隔开,同时第一上技术夹层101和第二上技术夹层102之间也被间隔墙隔开,这样两个各独立分区之间完全被隔开,将第一独立分和第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求。
其中,在上述方式二的独立分区设置方式一中,当间隔墙第一独立分和第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,且在第一独立分区和第二独立分区内均设置二次加湿系统,可以在第一独立分区内进行相对湿度要求较高的生产工序,或生产相对湿度要求较高的产品,二次加湿系统可以提高第一独立分区的空气的相对湿度值,则可以保证第一独立分区内空气的相对湿度达到产品生产的最佳需求值,有利于提高产品良率。
独立分区设置方式二:
如图4所示,间隔墙组件包括设置在第一独立分区320与第二独立分区330之间的两个并排的间隔墙,第一间隔墙590、第二间隔墙600,即第一独立分区320与第二独立分区330之间设置并排且相对的第一间隔墙590和第二间隔墙600,且该两个间隔墙至少与第一洁净生产区121和第二洁净生产区122对应,将第一洁净生产区121与第二洁净生产区122隔开,第一间隔墙590位于第一独立分区320,第二间隔墙600位于第二独立分区330,且第一间隔墙590与第二间隔墙600之间形成有第四回风夹道,其中,第一间隔墙与第二间隔墙可以仅与第一洁净生产区和第二洁净生产区对应,第一上技术夹层与第二上技术夹层连通,第一下技术夹层与第二下技术夹层连通;另外,也可以设置第一间隔墙的底部延伸至下技术夹层,且第二间隔墙的底部延伸至下技术夹层。
独立分区设置方式三:
参考图10所示,为提高各独立分区内的环境要求精度,可以将各独立分区完全分隔开形成两个彼此互不相通的独立空间,则间隔墙组件包括在第一独立分区320与第二独立分区330之间的三个并排的间隔墙,第一间隔墙590、第二间隔墙600和第三间隔墙610,且第三间隔墙610位于第一间隔墙590与第二间隔墙600之间,第一间隔墙590位于第一独立分区320内,第二间隔墙600位于第二独立分区330内,第三间隔墙610的顶部延伸至上技术夹层的顶板且与上技术夹层的顶板密封配合,且第三间隔墙610的底部延伸至下技术夹层的底板且与下技术夹层的底板密封配合,将第一独立分区和第二独立分区分隔成两个彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,第一间隔墙与第一洁净生产区对应,且第一间隔墙的底部延伸至下技术夹层,第二间隔墙与第二洁净生产区对应,且第二间隔墙的底部延伸至下技术夹层,且第一间隔墙590与第三间隔墙610之间形成有第五回风夹道360,或者,第二间隔墙600与第三间隔墙610之间形成有第六回风夹道370,或者在第一间隔墙与第三间隔墙610之间形成有第 五回风夹道,同时,在第二间隔墙与第三间隔墙610之间形成有第六回风夹道。
在上述方式二的独立分区设置方式三中,第一独立分区与第二独立分区设置为彼此互不相通的独立空间,可以使彼此之间环境条件不互相影响,更有利于保证各自的环境需求,在第一独立分区内和第二独立分区内均设置二次加湿系统,即第一独立分区和第二独立分区内可以进行相对湿度要求较高且相对湿度要求不同的制备工序,且可以保证在相对湿度要求较高的第一独立分区和第二独立分区内的相对湿度达到各自产品生产的最佳需求值,保证产品良率。
其中,在第一间隔墙590与第三间隔墙610之间形成有第五回风夹道360时,可以在第五回风夹道内设置有加湿装置,便于对第一独立分区内进行加湿;在第二间隔墙600与第三间隔墙610之间形成有第六回风夹道370时,可以在第六回风夹道内设置有加湿装置,便于对第二独立分区内进行加湿。
在本公开实施例中,在上述方式二中,参考图10所示,第一独立分区320中的第一洁净生产区121内设有工作过程中产生挥发性有机物的生产设备310,第一下技术夹层111内设置有用于吸附挥发性有机物的沸石转轮机组340,沸石转轮机组340在工作过程中会使室内空气有一定的减湿,造成洁净室内,尤其是第一独立分区的环境湿度降低,偏离产品生产的环境湿度需求值,而在第一独立分区和第二独立分区均设置有二次加湿系统,可以对室内空气直接加湿,可以提高室内空气的相对湿度,有利于保证室内空气的相对湿度维持在产品生产的最佳需求值,有利于保证产品良率。
上述方式一和方式二中,参考图18和图19所示,上述具有二次加湿系统的洁净室还包括:设于洁净室的上技术夹层100中的洁净新风主管道570、以及伸入各独立分区的回风夹道内且用于输出新风空气的洁净新风支管道580,给各独立分区提供新风空气。
上述二次加湿系统可以为空间型二流体加湿系统或空间型高压微雾加湿系统,也可以为空间型电热加湿器或空间型电极加湿器,可以对洁净室室内 空气进行直接加湿,提升室内湿度,并实现二次加湿的全自动控制,具体地,二次加湿系统也可以是其他形式的加湿系统,本实施例不做局限。
参考图20所示,空间型二流体加湿系统包括相对湿度传感器、加湿装置和湿度控制器,空间型二流体加湿系统的加湿装置包括多个喷嘴380,每个喷嘴380包括两个输入口,一个输入口连接并连通于进气管390,进气管390可以为不锈钢加湿管道,另一个输入口连接并连通于进水管400,进气管390的一端包括有用于与供气装置连接的压缩空气进气口410,且在进气管390的进气端设置有用于控制进气的进气辅助单元420和压缩空气过滤器430,进水管400的一端包括有用于与供水装置连接的进水口460,且进水管400的进水端设置有水过滤器440和进水辅助单元450,且进水辅助单元450设置有排水口470,其中,进水辅助单元450和进气辅助单元420均与电控箱480电连接,电控箱480即构成湿度控制器,电控箱480且与相对湿度传感器连接,可以通过接收相对湿度传感器的湿度信号对进水辅助单元450和进气辅助单元420进行控制以达到对加湿工作的控制,另外,也可以手动对进水辅助单元和进气辅助单元进行调节,以便于更好的对室内空气进行加湿,其中,空间型二流体加湿系统可控压力设定,可控加湿覆盖范围,根据各区域加湿量需求不同喷嘴数量及间距配置可自由组合,有利于提高室内加湿效率,且以压缩空气作为动力,促进喷雾时空气的流动,加湿均匀;双联控设计,气、水管路混配,有效防止喷嘴堵塞,保证可以持续良好的加湿工作,另外,还具有压缩空气消耗量小,加湿效率高,有利于提高室内空气加湿效率,保证产品生产良率。
参考图21所示,空间型高压微雾加湿系统包括相对湿度传感器、加湿装置和湿度控制器,空间型高压微雾加湿系统的加湿装置包括喷头支架490,所述喷头支架490设有多个喷雾管500,每个喷雾管31上设有多个不锈钢喷嘴510,每个喷雾管31包括有一输入端口,且输入端口连接并连通于加湿管道520,加湿管道520的输入端连接于高压微雾加湿主机530,且高压微雾加湿主机530连接有进水管540,进水管540设有用于与供水装置连接的进水口 550,且进水管540中连接有水过滤器560,高压微雾加湿主机530与温度控制器电连接,温度控制器可以根据相对湿度传感器的湿度信号对高压微雾加湿主机进行控制,以达到对加各不锈钢喷嘴的喷雾控制,其中,空间型高压微雾加湿系统加湿量大,耗电量低,节约能源,且反应速度快,加湿效率高,有利于提高室内加湿效率,保证产品生产良率。
以上所述仅为本公开的说明性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种可分区控制的洁净厂房,包括厂房本体,所述厂房本体内设有上技术夹层、下技术夹层以及位于所述上技术夹层和所述下技术夹层之间的洁净生产层,所述洁净生产层内设有洁净室和用于连通所述下技术夹层与所述上技术夹层的回风夹道,所述回风夹道包括位于所述洁净室一侧的第一回风夹道和位于所述洁净室另一侧的第二回风夹道,其特征在于,所述厂房本体内还设有间隔墙组件以将所述洁净室分隔成独立的第一洁净生产区和第二洁净生产区,所述第一洁净生产区和第二洁净生产区分别具有独立的回风系统。
  2. 如权利要求1所述的可分区控制的洁净厂房,其特征在于,所述洁净生产区内还设有架空设置的华夫板,所述洁净室设置于所述华夫板上,所述洁净室包括上部的吊顶以及与所述吊顶配合的墙板,且所述下技术夹层与所述第一回风夹道以及第二回风夹道之间均设有用于冷却循环空气的干冷却盘管;
    所述第一洁净生产区为物料存储与传输区,所述第二洁净生产区为工艺生产区,且所述物料存储与传输区以及所述工艺生产区的吊顶分别设有多个风机过滤器机组;其中,
    所述物料存储与传输区内设有物料存储架组,所述间隔墙组件包括位于所述物料存储架组的两侧的隔墙板,每个隔墙板的顶部延伸至所述上技术夹层的顶部,且底部与所述华夫板连接;
    所述物料存储架组包括两排物料存储架,每排物料存储架与相邻的隔墙板之间的间隙形成第三回风夹道,且所述第三回风夹道与所述上技术夹层连通;所述每排物料存储架侧壁上设有多个风机过滤器机组用以吸入所述第三回风夹道内的气流并送入相应的物料存储架内部;
    所述两排物料存储架之间形成物料传输区,且所述每排物料存储架的底部设有连通所述物料传输区与相邻的第三回风夹道的气流通路;
    所述下技术夹层内设有新风送风管,所述新风送风管的出风口与所述第 三回风夹道连通。
  3. 如权利要求2所述的可分区控制的洁净厂房,其特征在于,所述新风送风管上设有电动调节阀,且所述物料存储与传输区内或所述第三回风通道内设有温度传感器;
    还包括控制装置,所述控制装置分别与所述温度传感器以及所述电动调节阀信号连接,所述控制装置用于根据所述温度传感器检测的温度控制所述电动调节阀的开度以控制所述新风送风管的送风量。
  4. 如权利要求2所述的可分区控制的洁净厂房,其特征在于,所述物料存储与传输区以及所述第三回风夹道对应区域的华夫板的底部设有密封板,所述密封板用于将所述物料存储与传输区以及所述回风夹道的底部与所述下技术夹层隔离;
    或者,所述物料存储与传输区以及所述第三回风夹道对应区域的华夫板的孔洞的顶部设有盖板,所述盖板用于将所述物料存储与传输区以及所述第三回风夹道的底部与所述下技术夹层隔离。
  5. 如权利要求2所述的可分区控制的洁净厂房,其特征在于,在所述物料存储与传输区内,所述每排物料存储架的底部与所述华夫板之间设有高架地板,所述高架地板与所述华夫板之间形成用于连通所述物料传输区与相邻的第三回风夹道的气流通路。
  6. 如权利要求2所述的可分区控制的洁净厂房,其特征在于,所述新风送风管与洁净生产层净化空调系统的新风处理机组连通。
  7. 如权利要求1所述的可分区控制的洁净厂房,其特征在于,所述洁净室具有第一独立分区和第二独立分区,所述第一独立分区包括第一上技术夹层、所述第一洁净生产区、第一下技术夹层和所述第一回风夹道,所述第二独立分区包括第二上技术夹层、所述第二洁净生产区、第二下技术夹层和所述第二回风夹道。
  8. 如权利要求7所述的可分区控制的洁净厂房,其特征在于,所述间隔墙组件包括设于所述第一独立分区与所述第二独立分区之间的一个间隔墙, 所述间隔墙至少位于所述第一洁净生产区与所述第二洁净生产区之间,以将所述第一洁净生产区与所述第二洁净生产区分隔开;或者,
    所述间隔墙组件包括设于所述第一独立分区与所述第二独立分区之间、且并排设置的第一间隔墙和第二间隔墙,所述第一间隔墙和第二间隔墙至少位于所述第一洁净生产区与所述第二洁净生产区之间,以将所述第一洁净生产区与所述第二洁净生产区分隔,且所述第一间隔墙与所述第二间隔墙之间形成有第四回风夹道;或者,
    所述间隔墙组件包括设于所述第一独立分区与所述第二独立分区之间的第一间隔墙、第二间隔墙和第三间隔墙,所述第一间隔墙和第二间隔墙至少位于所述第一洁净生产区与所述第二洁净生产区之间,已将所述第一洁净生产区与所述第二洁净生产区分隔,所述第三间隔墙设于所述第一间隔墙与所述第二间隔墙之间,且所述第三间隔墙的顶部延伸至所述上技术夹层的顶板且与所述上技术夹层的顶板密封配合,所述第三间隔墙的底部延伸至所述下技术夹层的底板且与所述下技术夹层的底板密封配合;所述第一间隔墙与所述第三间隔墙之间形成有第五回风夹道,和/或,所述第二间隔墙与所述第三间隔墙之间形成有第六回风夹道。
  9. 如权利要求1-8任一项所述的可分区控制的洁净厂房,其特征在于,包括:至少一组二次加湿系统,每一组所述二次加湿系统包括:
    加湿装置,设于所述上技术夹层、下技术夹层、回风夹道或洁净生产层内;
    用于检测所述洁净生产层内的空气湿度的相对湿度传感器;
    与所述相对湿度传感器和所述加湿装置连接的湿度控制器,所述湿度控制器用于接收所述相对湿度传感器的湿度信号以根据所述湿度信号控制所述加湿装置工作。
  10. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,当所述洁净室具有第一独立分区和第二独立分区时,所述二次加湿系统设置于所述第一独立分区或者所述第二独立分区内。
  11. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,当所述洁净室具有第一独立分区和第二独立分区时,所述二次加湿系统设置有至少两组,所述第一独立分区和第二独立分区均设置有所述二次加湿系统。
  12. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,当所述间隔墙组件包括设于所述第一独立分区与所述第二独立分区之间的第一间隔墙、第二间隔墙和第三间隔墙、且所述第一间隔墙与所述第三间隔墙之间形成有第五回风夹道时,所述第五回风夹道内设有所述加湿装置。
  13. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,当所述洁净室具有第一独立分区和第二独立分区时,所述第一独立分区的第一下技术夹层内设置有用于吸附所述挥发性有机物的沸石转轮机组。
  14. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,所述相对湿度传感器设于所述洁净室。
  15. 如权利要求9所述的可分区控制的洁净厂房,其特征在于,每一组所述二次加湿系统中,所述相对湿度传感器设置为一个或多个,且当所述相对湿度传感器设置为一个时,所述湿度信号为所述相对湿度传感器的感应值;当所述相对湿度传感器设置为多个时,所述湿度信号为所述多个相对湿度传感器的湿度感应值的平均值。
PCT/CN2020/103109 2019-07-23 2020-07-20 一种可分区控制的洁净厂房 WO2021013133A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20844025.5A EP4006434A4 (en) 2019-07-23 2020-07-20 OWN WORKSHOP THAT CAN BE CONTROLLED IN A SEPARATION MODE
KR1020217043108A KR20220012361A (ko) 2019-07-23 2020-07-20 파티션 모드로 제어 가능한 청정 작업장

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910668606.5A CN110307610A (zh) 2019-07-23 2019-07-23 一种洁净厂房
CN201910668606.5 2019-07-23
CN201910740337.9 2019-08-12
CN201910740337.9A CN110469160A (zh) 2019-08-12 2019-08-12 一种具有二次加湿系统的洁净室布置结构及洁净生产厂房

Publications (1)

Publication Number Publication Date
WO2021013133A1 true WO2021013133A1 (zh) 2021-01-28

Family

ID=74193122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103109 WO2021013133A1 (zh) 2019-07-23 2020-07-20 一种可分区控制的洁净厂房

Country Status (3)

Country Link
EP (1) EP4006434A4 (zh)
KR (1) KR20220012361A (zh)
WO (1) WO2021013133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022262553A1 (en) * 2021-06-17 2022-12-22 Intelligent Precision Micro-Systems Limited Clean room module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184010A (ja) * 2002-12-05 2004-07-02 Sony Corp クリーンルーム
CN1731032A (zh) * 2005-08-22 2006-02-08 无锡华润微电子有限公司 洁净室的空气调节、净化系统流型
JP2006328687A (ja) * 2005-05-24 2006-12-07 Toyo Netsu Kogyo Kk クリーンルーム及びその設計施工方法
CN102200334A (zh) * 2010-03-25 2011-09-28 元邦Tech株式会社 洁净室水喷雾加湿控制方法及加湿控制系统
CN103046776A (zh) * 2013-01-10 2013-04-17 亚翔系统集成科技(苏州)股份有限公司 一种用于半导体厂房的洁净室
CN203783198U (zh) * 2014-03-18 2014-08-20 亚翔系统集成科技(苏州)股份有限公司 一种用于半导体厂房的洁净室
CN109059099A (zh) * 2018-06-01 2018-12-21 世源科技工程有限公司 一种洁净室的洁净度控制系统
CN110307610A (zh) * 2019-07-23 2019-10-08 世源科技工程有限公司 一种洁净厂房
CN110469160A (zh) * 2019-08-12 2019-11-19 中国电子工程设计院有限公司 一种具有二次加湿系统的洁净室布置结构及洁净生产厂房

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625031A (ja) * 1985-06-28 1987-01-12 Kajima Corp 部分的に清浄度の異なるクリ−ンル−ム
JPH1096332A (ja) * 1996-09-20 1998-04-14 Mitsubishi Electric Corp クリーンルーム
JP2002147811A (ja) * 2000-11-08 2002-05-22 Sharp Corp クリーンルーム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184010A (ja) * 2002-12-05 2004-07-02 Sony Corp クリーンルーム
JP2006328687A (ja) * 2005-05-24 2006-12-07 Toyo Netsu Kogyo Kk クリーンルーム及びその設計施工方法
CN1731032A (zh) * 2005-08-22 2006-02-08 无锡华润微电子有限公司 洁净室的空气调节、净化系统流型
CN102200334A (zh) * 2010-03-25 2011-09-28 元邦Tech株式会社 洁净室水喷雾加湿控制方法及加湿控制系统
CN103046776A (zh) * 2013-01-10 2013-04-17 亚翔系统集成科技(苏州)股份有限公司 一种用于半导体厂房的洁净室
CN203783198U (zh) * 2014-03-18 2014-08-20 亚翔系统集成科技(苏州)股份有限公司 一种用于半导体厂房的洁净室
CN109059099A (zh) * 2018-06-01 2018-12-21 世源科技工程有限公司 一种洁净室的洁净度控制系统
CN110307610A (zh) * 2019-07-23 2019-10-08 世源科技工程有限公司 一种洁净厂房
CN110469160A (zh) * 2019-08-12 2019-11-19 中国电子工程设计院有限公司 一种具有二次加湿系统的洁净室布置结构及洁净生产厂房

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006434A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022262553A1 (en) * 2021-06-17 2022-12-22 Intelligent Precision Micro-Systems Limited Clean room module

Also Published As

Publication number Publication date
KR20220012361A (ko) 2022-02-03
EP4006434A1 (en) 2022-06-01
EP4006434A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
CN1329696C (zh) 洁净室的空气调节、净化系统
KR950012146B1 (ko) 반도체 제조공장의 청정실
CN110307610A (zh) 一种洁净厂房
CN106322585B (zh) 一种高架库控温控湿空调系统
WO2021013133A1 (zh) 一种可分区控制的洁净厂房
CN106288064A (zh) 模块化变工况医用空气净化系统
JP7030483B2 (ja) クリーンルームの空調システム
CN106871316B (zh) 一种高大洁净空间的送风系统
CN103307718A (zh) 辐流洁净室空调送、回风系统的辐流送风通道装置
CN209399713U (zh) 一种环保石膏板生产用干燥机
CN210345719U (zh) 一种洁净厂房
CN110469160A (zh) 一种具有二次加湿系统的洁净室布置结构及洁净生产厂房
CN210345720U (zh) 一种洁净厂房
CN210713995U (zh) 一种洁净厂房
CN206160386U (zh) 一种新型洁净室
JP7224996B2 (ja) クリーンルームの空調システム
CN220169580U (zh) 一种气流组织除湿系统
CN207847186U (zh) 一种洁净烘干间
CN212006019U (zh) 超大规模集成电路超净生产环境系统
CN211949806U (zh) 一种具有二次加湿系统的洁净室布置结构及洁净生产厂房
RU2375641C2 (ru) Экспериментально-технологический бокс
JPH0330060B2 (zh)
JP2000337675A (ja) 低露点のクリーンルーム装置
JP2020159654A (ja) 空調システム
CN202828945U (zh) 一种自动化物料处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217043108

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844025

Country of ref document: EP

Effective date: 20220223